UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERÍA

PROGRAMA DE ESTUDIO DE INGENIERÍA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Evaluación y análisis de las condiciones actuales y propuesta de diseño estructural de pavimento rígido y flexible para la Av. Federico Villarreal entre los tramos de la carretera industrial y la Av. Túpac Amaru

Línea de investigación: Ingeniería de Transportes Sub línea de investigación: Transportes

AUTORES:

Bazán Alayo, Claudia Fernanda Tucto López, Cristhian Patrick.

JURADO EVALUADOR:

Presidente : Galvez Paredes, José Alcides.

Secretario : Henriquez Ulloa, Juan Paúl.

Vocal : Galicia Guarniz, William Conrad.

ASESOR:

Luján Silva, Enrique Francisco.

Código Orcid: https://orcid.org/0000-0001-8960-8810

TRUJILLO-PERÚ

2023

Fecha de Sustentación: 2023 / 07 / 20

UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERÍA

PROGRAMA DE ESTUDIO DE INGENIERÍA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Evaluación y análisis de las condiciones actuales y propuesta de diseño estructural de pavimento rígido y flexible para la Av. Federico Villarreal entre los tramos de la carretera industrial y la Av. Túpac Amaru

Línea de investigación: Ingeniería de Transportes Sub línea de investigación: Transportes

AUTORES:

Bazán Alayo, Claudia Fernanda Tucto López, Cristhian Patrick.

JURADO EVALUADOR:

Presidente : Galvez Paredes, José Alcides.

Secretario : Henriquez Ulloa, Juan Paúl.

Vocal : Galicia Guarniz, William Conrad.

ASESOR:

Luján Silva, Enrique Francisco.

Código Orcid: https://orcid.org/0000-0001-8960-8810

TRUJILLO-PERÚ

2023

Fecha de Sustentación: 2023 / 07 / 20

Evaluación y análisis de las condiciones actuales y propuesta de diseño estructural de pavimento rígido y flexible para la Av. Federico Villarreal entre los tramos de la carretera industrial y la Av

NFORME DE ORIGINALIDAD 2% INDICE DE SIMILITUD FUENTES DE INTERNET PUBLICACIONES TRABAJOS DEL ESTUDIANTE FUENTES PRIMARIAS 1 hdl.handle.net Fuente de Internet 2%

Excluir citas Activo Excluir coincidencias < 1%

Excluir bibliografía Activo

Enrique Luján Silva ING CIVIL R. CIP. 54460

Declaración de originalidad

Yo, Luján Silva, Enrique Francisco, docente del Programa de Estudio de Ingeniería Civil de la Universidad Privada Antenor Orrego, asesor de la tesis de investigación titulada "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU", de los autores Bazán Alayo, Claudia Fernanda y Tucto López, Cristhian Patrick, dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud del 2%. Así lo consigna el reporte de similitud emitido por el software Turnitin el día 08 de julio del 2023.
- He revisado con detalle dicho reporte y la tesis "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU", y no se advierte indicios de plagio.
- Las citas a otros autores y sus respectivas referencias cumplen con las normas establecidas por la Universidad.

Trujillo, 08 de Julio del 2023

Bazán Alayo, Claudia Fernanda

DNI: 71460999

Tucto López, Cristhian Patrick

DNI: 71044235

Luján Silva, Enrique Francisco

DNI: 18888927

ORCID: https://orcid.org/0000-0001-8960-8810

PRESENTACIÓN

Señores Miembros del Jurado:

Dando cumplimiento al Reglamento de Grados y Títulos de la Facultad de Ingeniería de la Universidad Privada Antenor Orrego, para optar el título Profesional de Ingeniero Civil, es grato poner a vuestra consideración, la presente tesis titulada: "Evaluación y análisis de las condiciones actuales y propuesta de diseño estructural de pavimento rígido y flexible para la Av. Federico Villarreal entre los tramos de la carretera industrial y la Av. Túpac Amaru", con la convicción de alcanzar una justa evaluación y dictamen.

Atentamente,

Bazán Alayo, Claudia Fernanda.

Tucto López, Cristhian Patrick.

DEDICATORIA

A mi amada madre:

Jadira Alayo, por ese amor incondicional y ser mi pilar fundamental, quién gracias a su esfuerzo y coraje me ha dado todo en la vida, siendo mi motor y motivo de siempre salir adelante y nunca rendirme. Te amo.

A mis queridos hermanos:

Arturo, Fer y Leo, piezas claves en mi vida, quiénes siempre han estado conmigo brindándome su apoyo.

A mi compañero de vida:

Félix Jesús, por siempre impulsarme a seguir creciendo en todos los ámbitos de mi vida, por su apoyo y amor incondicional y llenarme de luz con su bonita energía.

Bazán Alayo, Claudia Fernanda

DEDICATORIA

A mis amados padres:

Juan Tucto y Celmira López, quienes gracias a su esfuerzo y sacrificio me permitieron llegar a este momento tan importante en mi formación profesional, siendo a su vez, mi mayor motivación para el cumplimiento de mis objetivos. Los amo mucho.

A mi amada compañera:

Natali Vela, por su compañía y amor incondicional, por estar conmigo día a día en este complicado camino de la vida dándome ánimos y fuerza para seguir adelante.

Tucto López, Cristhian Patrick

AGRADECIMIENTO

Agradezco a Dios, por bendecirme y guiarme en el camino de la vida, permitiéndome cumplir unos de mis objetivos profesionales tan anhelados.

A mi familia, por su apoyo y amor incondicional, por sus valiosos consejos y siempre creer y confiar en mí. Los amo.

A todos mis amigos que estuvieron detrás de mí, metiendo presión para que pueda lograr este objetivo profesional.

A nuestro asesor, el Ing. Enrique Luján Silva, por brindarnos su tiempo y paciencia, guiándonos con sus conocimientos y experiencia profesional en el desarrollo de la presente tesis.

Bazán Alayo, Claudia Fernanda

AGRADECIMIENTO

Agradezco a Dios por su inmenso amor, bondad y por permitirme un día más de vida, por guiarme, bendecirme y brindarme sabiduría.

A mis padres por su motivación e incondicional apoyo, estando conmigo en buenos y malos momentos, además por creer incondicionalmente en mí y brindarme su inmenso amor.

A mi alma mater, la Universidad Privada Antenor Orrego, por todos los conocimientos brindados esenciales para mi desarrollo académico. En especial al Ing. Enrique Luján Silva por su constante orientación durante el desarrollo de la presente tesis.

RESUMEN

La presente investigación parte de la observación y análisis del mal estado en la que se encuentra el pavimento en la zona de estudio, Av. Federico Villarreal entre los tramos de la Carretera Industrial y la Av. Túpac Amaru, una avenida de vital importancia para nuestra ciudad ya que es un importante acceso al Mercado La Hermelinda (Mercado importante de gran afluencia de personas los 365 días del año) y a su vez, en el extremo sur tiene una importante conexión con la carretera de penetración a la Sierra Liberteña, vía principal que une Costa, Sierra y Selva de nuestra Región.

Por ello se plantea dos propuestas de diseño estructural una en pavimento flexible y otra en pavimento rígido. Para llegar a ello se realizó conteo vehicular en 7 puntos de control, obteniéndose de dicho procesamiento de datos un EAL o W18 de 5,820,011.01 para pavimento flexible, y un EAL o W18 de 6,676,529.56 para pavimento rígido. También se procedió a realizar 10 calicatas o pozos exploratorios a una profundidad de 2m cada uno, de los cuales se obtuvo un valor promedio de CBR de 12.64%.

Para el diseño estructural de ambas propuestas se utilizó la metodología de la guía AASHTO 93 y a su vez parámetros de diseño según la norma peruana del Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos, 2014, publicado por el Ministerio de Transportes y Comunicaciones (MTC); y del Reglamento Nacional de Edificaciones: Norma CE.010 Pavimentos Urbanos, 2010.

Los resultados obtenidos para el diseño estructural del pavimento flexible son los siguientes espesores: 9cm de carpeta asfáltica, 15cm de base y 20cm de sub base, con un costo que asciende a los Cinco Millones Cuatrocientos Ochenta y Dos Mil Seiscientos Dieciocho con 77/100 soles (S/5,482,618.77); mientras que, para el diseño estructural del pavimento rígido son: 23cm de losa de concreto considerando un f'c = 300kg/cm² y 15cm de sub base; con un costo que asciende a los Ocho Millones Ciento Once Mil Treinta y Dos con 18/100 soles (S/8,111,032.18).

Por lo cual, concluimos que el costo de ejecución para pavimento flexible es 14.79% veces más económico que al costo del pavimento rígido. Para fines de

viabilidad del proyecto se ha de tener en cuenta factores como el climático, proceso constructivo, especificaciones técnicas para obtener una correcta serviciabilidad final del pavimento.

Palabras claves: (diseño estructural, serviciabilidad, pavimento flexible, pavimento rígido.)

ABSTRACT

This research is based on the observation and analysis of the poor condition of the pavement in the study area, Federico Villarreal Avenue between the sections of the Industrial Highway and Tupac Amaru Avenue, an avenue of vital importance for our city since it is an important access to La Hermelinda Market (important market with a large influx of people 365 days a year) and in turn, at the southern end it has an important connection to the penetration road to the Sierra Liberteña, the main road that connects the coast, highlands and jungle of our region.

Therefore, two structural design proposals are proposed, one in flexible pavement and the other in rigid pavement. To achieve this, a vehicle count was performed at 7 control points, obtaining an EAL or W18 of 5,820,011.01 for flexible pavement, and an EAL or W18 of 6,676,529.56 for rigid pavement. Also, 10 exploratory pits were made at a depth of 2m each, from which an average CBR value of 12.64% was obtained.

For the structural design of both proposals, the methodology of the AASHTO 93 guide was used and in turn design parameters according to the Peruvian standard of the Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos, 2014, published by the Ministerio de Transportes y Comunicaciones (MTC); and the Reglamento Nacional de Edificaciones: Norma CE.010 Pavimentos Urbanos, 2010.

The results obtained for the structural design of the flexible pavement are the following thicknesses: 9cm of asphalt binder, 15cm of base and 20cm of sub base, with a cost amounting to Five Million Four Hundred Eighty Two Thousand Six Hundred Eighteen with 77/100 soles (S/ 5,482,618. 77); while, for the structural design of the rigid pavement are: 23cm of concrete slab considering a f'c = 300kg/cm2 and 15cm of sub base; with a cost that amounts to Eight Million One Hundred Eleven Thousand Thirty-two with 18/100 soles (S/ 8,111,032.18).

Therefore, we conclude that the cost of execution for flexible pavement is 14.79% times more economical than the cost of rigid pavement. For project feasibility, factors such as climate, construction process, and technical specifications must be taken into account to obtain a correct final serviceability of the pavement.

Key words: (structural design, serviceability, flexible pavement, rigid pavement).

ÍNDICE

PRESE	NTACIÓN	iv
DEDICA	ATORIA	vii
DEDICA	ATORIA	viii
AGRAD	PECIMIENTO	ix
AGRAD	PECIMIENTO	x
RESUM	IEN	xi
ABSTR.	ACT	xiii
ÍNDICE	DE TABLAS	18
ÍNDICE	DE FIGURAS	21
I. INT	RODUCCIÓN	22
1.1.	Problema de Investigación	22
a.	Descripción de la realidad problemática	22
b.	Formulación del Problema	23
1.2.	Objetivos	23
a.	Objetivo General	23
b.	Objetivos Específicos	23
1.3.	Justificación del Estudio	23
II. MA	RCO DE REFERENCIA	25
2.1.	Antecedentes de estudio	25
2.2.	Marco teórico	28
2.2.	Definición de Pavimento	28
2.2.	2. Clasificación del Pavimento	28
2.2.	Estructura del Pavimento	29
2.2.	4. Funciones de la Estructura de Pavimentos	30
2.2.	5. Estudio de tráfico	31
2.2.	6. Estudio de mecánica de suelos	38
2.2.	7. Estudios hidrológicos-pluviométricos	51
2.2.	8. Estudios de canteras y fuentes de agua	52
2.3.	Marco conceptual	54
2.4.	Hipótesis	57
2.5.	Variables e Indicadores	57
a.	Variables Independientes:	57
b.	Variables Dependientes:	57
C.	Cuadro de Operacionalización de las Variables:	57
III. M	IETODOLOGÍA EMPLEADA	59

3.1.	Tipo	y nivel de investigación	59
3.2.	Pob	lación y muestra de estudio	59
a.	Pob	lación	59
b.	Mue	estra	59
3.3.	Dise	eño de investigación	59
3.4.	Téc	nicas e instrumentos de investigación	59
a.	Téc	nicas:	59
b.	Inst	rumentos	60
3.5.	Pro	cesamiento y análisis de datos	60
3.6.	Ger	neralidades	61
3.6	S.1.	Ubicación del Área de Estudio	61
3.6	6.2.	Estado Actual del Área en Estudio	61
3.7.	Clin	na	62
3.8.	Geo	ología y Sismicidad	62
3.8	3.1.	Geología	62
3.8	3.2.	Geodinámica	62
3.8	3.3.	Sismicidad	63
3.8	3.4.	Parámetros de diseño Sismorresistente	63
3.9.	Tral	oajos de Campo	64
3.9	9.1.	Calicatas	64
3.9	9.2.	Muestreo	65
3.10	. Е	nsayos de Laboratorio	65
3.11.	. T	rabajos de Gabinete	66
3.1	1.1.	Perfil Estratigráfico	66
3.1	1.2.	Conformación del Subsuelo	66
3.1	1.3.	Presencia del Nivel Freático	68
3.12	. E	studio de Tráfico	68
3.1	2.1.	Conteo Vehicular	70
3.1	2.2.	Cálculo del IMD's	72
3.1	2.3.	Factor de crecimiento acumulado (Fca)	74
3.1	2.4.	Factor de distribución direccional (Fd) y de carril (Fc)	75
3.1	2.5.	Factor de Ejes Equivalentes (EE)	76
3.1	2.6.	Factor de Vehículo Pesado (Fvp)	78
3.1	2.7.	Factor de ajuste por presión de neumáticos (Fp)	86
3.1	2.8.	Cálculo de Ejes Equivalentes día – carril	87
3.1	2.9.	Número de repeticiones de Eies Equivalentes de 8.2tn	90

3.13	. Est	tudio de Mecánica de Suelos	90
3.	13.1.	Contenido de humedad	90
3.	13.2.	Análisis granulométrico	91
3.	13.3.	Límite liquido	92
3.	13.4.	Límite plástico	92
3.	13.5.	Índice de plasticidad	93
3.	13.6.	CBR	93
3.	13.7.	Proctor modificado	94
3.14	. Lev	vantamiento Topográfico	95
3.15	. Pe	rfil Estratigráfico	95
IV.	PRESE	ENTACIÓN DE RESULTADOS	97
4.1.	Prop	uesta de investigación	97
4.2.	Análi	sis e interpretación de resultados	98
A.	Diser	ño de pavimento flexible, según Guía AASHTO 93	98
B.	Diser	ño de pavimento rígido, según metodología AASHTO 93	109
C.	Pre	esupuesto pavimento flexible	125
D.	Pre	esupuesto pavimento rígido	126
4.3.	Docir	nasia de hipótesis	127
V. DI	SCUSI	ÓN DE LOS RESULTADOS	128
CONC	LUSIO	NES	131
RECO	MEND	ACIONES	133
REFE	RENCI	AS BIBLIOGRÁFICAS	135
ANEX	os		137
ANE	XO N°	01: PLANO DE UBICACIÓN GEOGRÁFICA	138
ANE	XO N°	02: CONTEO VEHICULAR	139
ANE	XO N°	03: PERFILES ESTRATIGRÁFICOS	147
ANE	XO N°	04: ENSAYOS DE LABORATORIO	157
ANE	XO N°	05: FOTOGRAFÍAS	213
		06: HOJA DE CÁLCULO DISEÑO DE PAVIMENTO	
		, ~ ~	223
		07: HOJA DE CÁLCULO DISEÑO DE PAVIMENTO	225
		08: ANÁLISIS DE PRECIOS UNITARIOS DEL PAVIMENTO	
		U8: ANALISIS DE PRECIOS UNITARIOS DEL PAVIMENTO	
		09: ANÁLISIS DE PRECIOS UNITARIOS DEL PAVIMENTO	
_			

ÍNDICE DE TABLAS

Tabla 1 Factores de Distribución Direccional y de Carril para determinar	
el Tránsito en el Carril de Diseño	33
Tabla 2 Factores de Crecimiento Acumulado (Fca) para el Cálculo de	
Número de Repeticiones de EE	34
Tabla 3 Relación de Cargas por Eje para determinar Ejes Equivalentes (El	E)
Para Afirmados, Pavimentos Flexibles y Semirrígidos	37
Tabla 4 Relación de Cargas por Eje para determinar Ejes Equivalentes (El	E)
Para Pavimentos Rígidos	37
Tabla 5 Número de Calicatas para Exploración de Suelos	40
Tabla 6 Número de Ensayos MR y CBR	41
Tabla 7 Clasificación de suelos según Tamaño de partículas	43
Tabla 8 Clasificación de suelos según Indice de Plasticidad	45
Tabla 9 Clasificación de suelos según Equivalente de Arena	45
Tabla 10 Clasificación de suelos según Índice de Grupo	46
Tabla 11 Correlación de Tipos de suelos AASHTO – SUCS	47
Tabla 12 Clasificación de los Suelos basada en AASHTO M 145 y/o	
ASTM D 3282	48
Tabla 13 Categorías de Sub rasante	50
Tabla 14 Selección del tipo de cemento asfaltico	51
Tabla 15 Ubicación de Calicatas	65
Tabla 16 Conteo de Vehículos	71
Tabla 17 Cálculo del Índice Medio Diario Semanal	73
Tabla 18 Tasa de crecimiento promedio anual de la población censada,	
según provincia, 1981-1993, 1993-2007 y 2007 y 2017	74
Tabla 19 Factores de crecimiento del tráfico (Fca)	75
Tabla 20 Factores de distribución direccional y de carril para determinar	
el tránsito en el carril de diseño	76
Tabla 21 Configuración de los ejes	77
Tabla 22 Relación de cargas por eje para determinar Ejes Equivalentes	
(EE) para pavimentos flexibles	77
Tabla 23 Relación de cargas por eje para determinar Ejes Equivalentes	
(EE) para pavimentos rígidos	78

Tabla 24 Factor vehículo pesado para pavimento flexible	78
Tabla 25 Factor vehículo pesado para pavimento rígido	82
Tabla 26 Ejes Equivalentes día - carril para pavimento flexible	88
Tabla 27 Ejes Equivalentes día-carril para pavimento rígido	89
Tabla 28 Número de repeticiones de EE. de 8.2tn para pavimento flexible	∍90
Tabla 29 Número de repeticiones de E.E. de 8.2tn para pavimento rígido	90
Tabla 30 Contenido de humedad	91
Tabla 31 Análisis granulométrico	91
Tabla 32 Límite líquido	92
Tabla 33 Límite plástico	92
Tabla 34 índice de plasticidad	93
Tabla 35 CBR	93
Tabla 36 Proctor modificado	94
Tabla 37 Perfil Estratigráfico	95
Tabla 38 Categoría de sub rasante	99
Tabla 39 Nivel de confiabilidad en función a la clase de vía	
	100
Tabla 40 Coeficiente estadístico de la desviación estándar normal (Zr) se	∍gún
el nivel de confiabilidad seleccionado y el rango de Tráfico (W18)	
	101
Tabla 41 Índice de serviciabilidad final (ρ _t)	
	102
Tabla 42 Coeficientes Estructurales de las Capas del Pavimento a ₁ , a ₂ , a	13106
Tabla 43 Calidad de drenaje	107
Tabla 44 Valores recomendados del Coeficiente de Drenaje m1, para	
bases y subbases granulares no tratadas en Pavimentos Flexibles	107
Tabla 45 Índice de Serviciabilidad Inicial (ρi) e Índice de Serviciabilidad	
Final (ρt), en base a Ejes Equivalentes (W ₁₈)	111
Tabla 46 Valores recomendados de Nivel de Confiabilidad (R) y Desviac	ión
Estándar Normal (Zr), según Ejes Equivalentes (W ₁₈)	112
Tabla 47 Valores recomendados de Resistencia del Concreto según	
rango de Tráfico	115
Tabla 48 Coeficiente de drenaje de las capas granulares (Cd)	116
Tabla 49 Valores de Coeficiente de Transmisión de Carga J	116

Tabla 50 Dimensiones de losa	122
Tabla 51 Diámetros y longitudes recomendados en pasadores	123
Tabla 52 Diámetros y Longitudes recomendados en barras de amarre	. 123
Tabla 53 Resumen de ensayos de mecánica de suelos	. 128
Tabla 54 EAL o W18 para pavimento flexible	128
Tabla 55 EAL o W18 para pavimento rígido	129
Tabla 56 Parámetros de diseño para pavimento flexible y rígido	129

ÍNDICE DE FIGURAS

Figura 1 Estructura típica de un pavimento	29
Figura 2 Estructura pavimento flexible	30
Figura 3 Estructura pavimento rígido	30
Figura 4 Configuración de ejes	36
Figura 5 Signos convencionales para perfil de calicatas -	
Clasificación AASHTO	42
Figura 6 Signos convencionales para perfil de calicatas -	
Clasificación SUCS	42
Figura 7 Curvas de Nivel	95
Figura 8 Sección de Pavimento Flexible	97
Figura 9 Sección de Pavimento Rígido	98
Figura 10 Ecuación de diseño de pavimento flexible	98
Figura 11 Cálculo del SN, en programa "Ecuación AASHTO 93"	104
Figura 12 Cálculo del SN en nomograma para pavimentos flexibles	105
Figura 13 Ecuación de diseño AASHTO para cálculo de espesores	108
Figura 14 Sección de pavimento flexible	109
Figura 15 Ecuación de diseño de pavimento rígido	110
Figura 16 Correlación CBR y Módulo de Reacción de la Sub rasante	114
Figura 17 Cálculo del SN, en programa "Ecuación AASHTO 93"	118
Figura 18 Cálculo del SN en nomograma para pavimentos rígidos	119
Figura 19 Sección de pavimento rígido	121
Figura 20 Detalle de losa	121
Figura 21 Detalle de dowells y barras de amarre	124
Figura 22 Espesores del pavimento flexible	130
Figura 23 Espesores del pavimento rígido	130

I. INTRODUCCIÓN

1.1. Problema de Investigación

a. Descripción de la realidad problemática

Según las proyecciones del Ministerio de Transportes y Comunicaciones (MTC), la Red vial Nacional se encontrará pavimentada al 100% en el 2021. Aunque hoy por hoy se tiene un avance del 75%, es necesario considerar qué es lo más conveniente para pavimentar las vías que permitirán integrar al país.

Al porcentaje restante hay que añadirle los trabajos de reconstrucción vial debido a lo ocurrido con el Niño Costero, para lo cual, la Autoridad para la Reconstrucción con Cambios (ARCC), proyecta una inversión aproximada de S/2.081 millones en los próximos tres años.

En esta situación, es recomendable saber cuáles son los beneficios que ofrece el pavimento rígido y el flexible, siendo el más utilizado en nuestro país el último mencionado.

En primer lugar, definimos que el pavimento rígido es aquel que está formado por una losa de concreto sobre una base, o sobre la subrasante. Este tipo de pavimento transmite directamente los esfuerzos al suelo en menor proporción, es auto-resistente, y debe ser controlada la cantidad de concreto que se le añada.

En segundo lugar, el pavimento flexible es aquel donde su estructura se deflecta o flexiona según las cargas que transitan sobre él. Generalmente se utiliza el uso de pavimentos flexibles en zonas donde existe gran congestión vehicular.

La diferencia entre ambos pavimentos es que mientras en el pavimento rígido las fuerzas proyectadas por las cargas son asumidas y absorbidas por la capa de concreto, en el pavimento flexible son recibidas por la base granular.

En La Libertad identificamos que los pavimentos flexibles son susceptibles a la acción continua del tráfico y de la meteorología. Estos

dos factores, junto con el envejecimiento natural de los materiales, hacen que el pavimento sufra un proceso de progresivo deterioro.

b. Formulación del Problema

¿Cuál es la condición actual del pavimento entre los tramos de la Carretera Industrial y la Av. Túpac Amaru, de la Av. Federico Villarreal y cuáles son las características del nuevo diseño estructural de pavimento rígido y flexible?

1.2. Objetivos

a. Objetivo General

Evaluar y analizar las condiciones actuales y realizar el diseño estructural de pavimento rígido y flexible para la Av. Federico Villarreal entre los tramos de la Carretera Industrial y la Av. Túpac Amaru cumpliendo con los parámetros de la norma AASHTO 93.

b. Objetivos Específicos

- Realizar el levantamiento topográfico de la zona en estudio.
- Realizar los ensayos de mecánica de suelos y métodos de evaluación en campo, necesarios y correspondientes para el nuevo diseño estructural del pavimento.
- Realizar el estudio y análisis de tráfico de la vía por el método del conteo.
- Diseñar la estructura del pavimento flexible mediante la metodología AASHTO 93.
- Diseñar la estructura del pavimento rígido mediante la metodología AASHTO 93.
- Realizar una comparación económica entre las dos metodologías escogidas, con el fin de hallar la estructura más óptima y funcional del pavimento.

1.3. Justificación del Estudio

La tesis "Evaluación y análisis de las condiciones actuales y propuesta de diseño estructural de pavimento rígido y flexible para la Av. Federico

Villarreal entre los tramos de la Carretera Industrial y la Av. Túpac Amaru" tiene como objetivo diseñar una nueva estructura de pavimento bajo la metodología de la American Association of State Highway and Transportation Officials (AASHTO), para después comparar los resultados obtenidos y así poder escoger la mejor opción. También se tendrá en cuenta el desarrollo económico y el mejoramiento de la seguridad respecto al tránsito vehicular, considerando el incremento de viajes tanto del número de personas y de carga que transitan por la zona en estudio.

Una vez obtenidos los diseños del pavimento, se efectuará una comparación económica entre las dos opciones: pavimento rígido y flexible, con la finalidad escoger y trabajar con la estructura más óptima y funcional del pavimento.

Se tendrá en cuenta que es necesario brindar una adecuada comodidad a los usuarios, lo que conlleva al mejoramiento de las vías, y a su vez implica una evaluación del estado del pavimento y la implementación de metodologías modernas para el comportamiento óptimo y eficaz del mismo.

Es pertinente el desarrollo de nuestro proyecto de investigación para así poder intervenir la vía en estudio antes que llegue a su colapso, poder predecir las fallas tanto por ahuellamiento como por fatiga y poder brindar la mejor solución respecto al nuevo diseño de la estructura del pavimento. Y de esa manera brindar una buena serviciabilidad adecuada a los usuarios.

II. MARCO DE REFERENCIA

2.1. Antecedentes de estudio

- 1. (Benites M, 2014) "Evaluación de las condiciones actuales y diseño estructural del pavimento utilizando conceptos urbanísticos modernos para el proyecto de rehabilitación y mejoramiento de las vías en la Urbanización Santa Edelmira – Trujillo". Concluye que, en las 5 vías estudiadas de la Urbanización Santa Edelmira del Distrito de Víctor Larco, de acuerdo a los datos tomados y la evaluación efectuada a las condiciones superficiales del pavimento, se obtiene como resultado el siguiente diagnóstico: La calle más afectada es la calle "Las Casuarinas" con un porcentaje mayor a la de las demás de 12.24 por ciento sobre el total del área, asimismo el tipo de daño predominante de toda el área afectada estudiada son las Fisuras de Bloque con un 49.1 por ciento y el nivel de severidad que más se ve presente en los daños, es de nivel mediano con un 62.2 por ciento, lo que refleja un deterioro considerable en estas vías. Desde el punto de vista estructural, solo ha sido afectado la capa de rodadura que es asfáltica en espesores variables entre "1.5" y "3". La Sub base y base respectiva muestran condiciones de aceptabilidad, mayormente no han sido dañadas salvo zonas puntuales, por efecto de filtraciones de agua de las redes de agua potable y alcantarillado. El análisis comparativo entre el polímero elastómero y plastómero, se decidió utilizar polímeros tipo elastómeros en el diseño de mezcla asfáltica debido a que mejoran las propiedades físicomecánicas del asfalto convencional según tablas XV y XVI. La adición de polímeros elastómeros mejora la resistencia a la deformación plástica de una mezcla asfáltica. Esto se observa en el comportamiento del AC-20E en la recuperación elástica por torsión (ver tablas XV y XVI). El uso de polímeros elastómeros significa un aumento en la viscosidad, de esta forma la mezcla asfáltica es más resistente y el riesgo de fluir a temperaturas altas, disminuye.
- (Ccasani Mayra. & Ferro Y, 2017) "Evaluación y Análisis de Pavimentos en la Ciudad de Abancay, para Proponer una Mejor Alternativa Estructural en el Diseño de Pavimentos". Al concluir la

evaluación y análisis de los distintos tipos de deterioros de los pavimentos en la ciudad de Abancay, mediante la observación y monitoreo in situ, la mayoría de los deterioros encontrados corresponden al fisuramiento de la estructura del pavimento. En pavimentos flexibles se encontraron deterioros o falla estructural en calzada y bermas como; fisuras longitudinales y transversales que han ido evolucionando rápidamente hacia una fisuración continua y en algunos casos ramificados. La desintegración superficial de la carpeta asfáltica, peladuras y desprendimientos con incidencia de rugosidades altas y moderadas que propician la aparición de hundimientos y baches localizados. En todas las vías en estudio se observan cortes para conexiones domiciliarias de servicios básicos (agua y desagüe) los cuales se encuentran severamente daños y en muchos casos sin reposición de pavimento.

3. (Escobar L. & Huincho J, 2017) "Diseño De Pavimento Flexible, Bajo Influencia De Parámetros De Diseño Debido Al Deterioro Del Pavimento En Santa Rosa – Sachapite, Huancavelica – 2017". Basándose en los estudios realizados en la zona, se encontró un ESAL de 2, 289,418 de ejes equivalentes para el 2006 y un espesor de carpeta asfáltica de 4 pulgadas. Actualmente para el 2017 la carpeta asfáltica ha de ser de 7 pulgadas con un ESAL de 7, 867,970 de ejes equivalentes (EE). Entonces concluimos que a mayor ESAL aumenta la carpeta asfáltica requerida y a menor ESAL disminuye, así la estructura trabaja en buenas condiciones. El CBR influye directamente ya que, al diseñar en el pavimento flexible se encontró un CBR de diseño de 7.2% para ambos diseños hecho del 2006 y del 2017, debido a que por ser el mismo suelo es recomendable trabajar con el mismo CBR de la subrasante, si fuera menor se optaría por estabilizaciones u otros métodos. Al optimizar la carpeta asfáltica con 4 pulgadas la base se incrementa de 11.5 cm a 30.5 cm, conservando un espesor de la sub-base con 17 cm y con una vida útil de 3860083.0 falla por ahuellamiento por el INSTITUTO DEL ASFALTO.

4. (Vega D, 2018) "Diseño De Los Pavimentos De La Carretera De Acceso Al Nuevo Puerto De Yurimaguas (Km 1+000 A 2+000)". Del estudio de tráfico se obtuvo que el número de ejes equivalentes (ESAL) fue de 12.00E+06 para el pavimento flexible y 15.19E+06 para el pavimento rígido. Es necesario recalcar que el dato del ESAL fue usado solamente para los diseños por la metodología de la AASHTO y del IA. Para el caso del diseño por la metodología de la PCA se usó el IMDA y la composición de ejes por vehículo para hallar el número de repeticiones esperadas acumuladas al periodo de diseño por tipo y peso de cada eje, a diferencia del ESAL que representa el número de repeticiones esperadas acumuladas al periodo de diseño de un eje equivalente de 8.2 toneladas. El estudio de tráfico es el dato de entrada más importante en la metodología de diseño de pavimentos y es por ello que en proyectos como el de la presente tesis se recomienda instalar estaciones de pesaje que regulen las cargas máximas legales permitidas por tipo de vehículo para así no incurrir en un subdimensionamiento del pavimento. Del capítulo de diseño del pavimento flexible se obtuvieron múltiples alternativas de diseño tanto por la metodología de la AASHTO como de la del IA. Las diferencias entre ambas radican en el enfoque aplicado. Mientras que la AASHTO utiliza conceptos de confiabilidad, desviación estándar combinada (que toma en cuenta la variabilidad del tránsito y otros factores que afectan el comportamiento del pavimento) y pérdida de serviciabilidad; el IA ofrece un método más directo a través de las cartas de diseño, derivadas del programa de computadora DAMA, clasificadas por diferentes temperaturas promedio anual del aire. En la presente tesis, al diseñar por la metodología del IA, se obtuvo un mayor SN del pavimento a comparación que el diseño por la metodología de la AASHTO lo cual se tradujo en mayores espesores de capas. Además, el espesor mínimo de carpeta asfáltica por la metodología del IA fue de 5 pulgadas a diferencia de la AASHTO, donde se usó un espesor mínimo de carpeta asfáltica de 4 pulgadas. Finalmente, se recomienda hacer uso del programa DAMA para comparar los resultados finales obtenidos por la metodología del IA.

2.2. Marco teórico

2.2.1. Definición de Pavimento

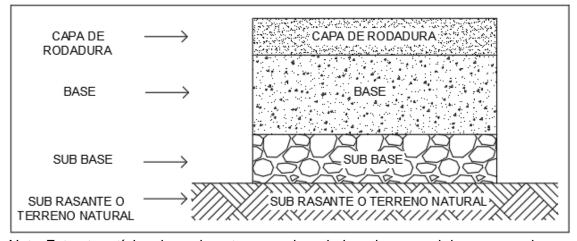
Según (Ministerio de Transportes y Comunicaciones, 2014) "El pavimento es una estructura de varias capas construida sobre la sub-rasante del camino para resistir y distribuir esfuerzos originados por los vehículos y mejorar las condiciones de seguridad y comodidad para el tránsito.

2.2.2. Clasificación del Pavimento

Según (Ministerio de Transportes y Comunicaciones, 2014) clasifica a los pavimentos en tres tipos:

- a. Pavimentos flexibles: es una estructura compuesta por capas granulares (subbase, base) y como capa de rodadura una carpeta constituida con materiales bituminosos como aglomerantes, agregados y de ser el caso aditivos. Principalmente se considera como capa de rodadura asfáltica sobre capas granulares: mortero asfáltico, tratamiento superficial bicapa, micropavimentos, macadam asfáltico, mezclas asfálticas en frío y mezclas asfálticas en caliente.
- b. Pavimentos semirrígidos: es una estructura de pavimento compuesta básicamente por capas asfálticas con un espesor total bituminoso (carpeta asfáltica en caliente sobre base tratada con asfalto); también se considera como pavimento semirrígido la estructura compuesta por carpeta asfáltica sobre base tratada con cemento o sobre base tratada con cal. Dentro del tipo de pavimento semirrígido se ha incluido los pavimentos adoquinados.
- c. Pavimentos rígidos: es una estructura de pavimento compuesta específicamente por una capa de subbase granular, no obstante, esta capa puede ser de base granular, o puede ser estabilizada con cemento, asfalto o cal, y una capa de rodadura de losa de concreto de cemento hidráulico como aglomerante, agregados y de ser el caso aditivos. Dentro de los pavimentos rígidos existen tres categorías:
 - Pavimento de concreto simple con juntas.
 - Pavimento de concreto con juntas y refuerzo de acero en forma de fibras o mallas.

Pavimento de concreto con refuerzo continúo.

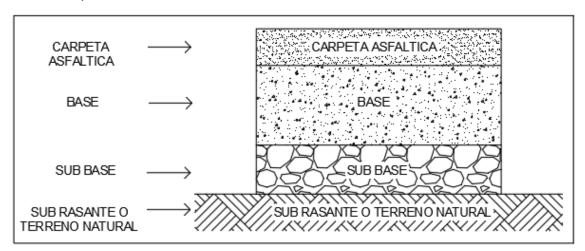

2.2.3. Estructura del Pavimento

Por lo general está conformada por las siguientes capas: base, sub-base y capa de rodadura."

- Capa de rodadura: Parte superior de un pavimento, puede ser de asfalto (flexible), de concreto (rígido) o de adoquines (articulado), su principal función es soportar y permitir una accesible circulación del tránsito.
- Base: Capa inferior a la capa de rodadura, tiene como función principal soportar, distribuir y transmitir las cargas ocasionadas por el tránsito. Esta capa será de material granular drenante (CBR ≥ 80%) o será tratada con asfalto, cal o cemento.
- Sub-base: Capa de material especificado y con un espesor de diseño, el cual sirve de soporte a la base y a la capa de rodadura. También sirve como capa de drenaje y controlador de la capilaridad del agua. Dependiendo del tipo, diseño y dimensionamiento del pavimento, está capa puede obviarse. Esta capa puede ser de material granular (CBR ≥ 40%) o tratada con cal o cemento.

Figura 1

Estructura típica de un pavimento

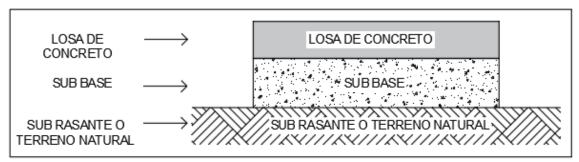


Nota. Estructura típica de pavimento: capa de rodadura, base y sub base apoyadas sobre la sub rasante o terreno natural.

a. Estructura Pavimento Flexible

Figura 2

Estructura pavimento flexible



Nota. Estructura de pavimento flexible: capa de rodadura asfáltica, base y sub base apoyadas sobre la sub rasante o terreno natural.

b. Estructura Pavimento Rígido

Figura 3

Estructura pavimento rígido

Nota. Estructura de pavimento rígido: losa de concreto y sub base apoyadas sobre la sub rasante o terreno natural.

2.2.4. Funciones de la Estructura de Pavimentos

Según (Menéndez Acurio, 2016) menciona:

- Proporcionar a los usuarios circulación segura, cómoda y confortable sin demoras excesivas.
- Proporcionar a los vehículos acceso bajo cualquier condición de clima.
- Reducir costos de operación vehicular, tiempo de viaje y accidentes.
- Facilitar y mejorar las condiciones de operación y transporte.

- Reducir y distribuir la carga de tráfico para que ésta no dañe la subrasante.
- Proteger la subrasante y el suelo de fundación del clima (agua y/o congelamiento).
- Cumplir requerimientos medio ambientales y estéticos.
- Limitar el ruido y la contaminación del aire.

Datos necesarios para el diseño:

Según (Harumi Rengifo Arakaki, 2014) Aunque algunas metodologías pueden variar entre sí, los siguientes factores son necesarios para el diseño del pavimento en la mayoría de ellas:

- 1. Estudio de tráfico.
- 2. Estudio de mecánica de suelos.
- 3. Estudio hidrológico-pluviométrico.
- 4. Estudio de canteras y fuentes de agua.

2.2.5. Estudio de tráfico

Según (Ministerio de Transportes y Comunicaciones, 2014) es de suma importancia que el ingeniero conozca con suficiente precisión la demanda del tráfico, para poder planificar y diseñar de forma óptima muchos aspectos de la vialidad.

En lo referido a la sección de suelos y pavimentos, la información del tráfico se define desde dos puntos de vista: el diseño estructural del pavimento y el de la capacidad de los tramos viales para conocer hasta qué límites de volúmenes de tráfico puede proyectarse que aumentará la demanda que afectará a la estructura vial durante el periodo del análisis vial adoptado para un estudio.

El estudio de tráfico tendrá que proporcionar la información del índice medio diario anual (IMDA) para cada tramo vial materia de un estudio. Para ello es conveniente que los términos de referencia ya proporcionen la identificación de tramos homogéneos.

Para los estudios de tráfico la información que se requiera en principio y salvo necesidades con objetivos más precisos o distintos, consistirá en muestreos orientados a calcular el IMDA del tramo, empezando por la demanda volumétrica actual de los flujos clasificados por tipo de vehículos en cada sentido de tráfico. La demanda de carga por eje, y la presión de los neumáticos en el caso de vehículos pesados (camiones y ómnibus) guardan relación directa con el deterioro del pavimento. Contando con la referencia regional previamente descrita, en términos generales será suficiente realizar las nuevas investigaciones puntuales por tramo en solo dos días, teniendo en cuenta que el tráfico esté bajo condición normal. Uno de los días corresponde a un día laborable típico y el otro a un día sábado.

Demanda proyectada

La información levantada servirá como base para el estudio de la proyección de la demanda para el periodo de análisis; y en este contexto, para establecer el número de ejes equivalentes (EE) de diseño para el pavimento. El ingeniero responsable deberá sustentar si hay razones para establecer que el crecimiento de la demanda seguirá una tendencia histórica identificable con información previa existente o si esta será modificada por factores socio-económicos, acompañando el análisis justificatorio.

Factor direccional y factor de carril

El factor de distribución direccional expresado como una relación, que corresponde al número de vehículos pesados que circulan en una dirección o sentido de tráfico, normalmente corresponde a la mitad del total de tránsito circulante en ambas direcciones, pero en algunos casos puede ser mayor en una dirección que en otra, el que se definirá según el conteo de tráfico.

El factor de distribución carril expresado como una relación, que corresponde al carril que recibe el mayor número de ejes equivalentes (EE), donde el tránsito por dirección mayormente se canaliza por ese carril. Ver tabla:

Tabla 1Factores de Distribución Direccional y de Carril para determinar el Tránsito en el Carril de Diseño

Número de calzadas	Número de sentidos	Número de carriles por sentido	Factor Direccional (Fd)	Factor Carril (Fc)	Factor Ponderado Fd x Fc para carril de diseño
	1 sentido	1	1.00	1.00	1.00
	1 sentido	2	1.00	0.80	0.80
1 calzada (para	1 sentido	3	1.00	0.60	0.60
IMDa total de la calzada)	1 sentido	4	1.00	0.50	0.50
	2 sentidos	1	0.50	1.00	0.50
	2 sentidos	2	0.50	0.80	0.40
2 calzadas con	2 sentidos	1	0.50	1.00	0.50
separador	2 sentidos	2	0.50	0.80	0.40
central (para IMDa total de	2 sentidos	3	0.50	0.60	0.30
las dos calzadas)	2 sentidos	4	0.50	0.50	0.25

Nota. El tráfico para el carril de diseño del pavimento tendrá en cuenta el número de direcciones o sentidos y el número de carriles por calzada de carretera, según el porcentaje o factor ponderado aplicado al IMD.

Cálculo de tasas de crecimiento y proyección

Se puede calcular el crecimiento de tránsito utilizando una fórmula de progresión geométrica por separado para el componente del tránsito de vehículos de pasajeros y para el componente del tránsito de vehículos de carga.

$$Tn = to(1+r)^{n-1}$$

En la que:

Tn: Transito proyectado al año "n" en veh/día.

To: Tránsito actual (año base) en veh/día.

n: Número de años del período de diseño.

r: Tasa anual de crecimiento del tránsito.

La tasa anual de crecimiento del tránsito se define en correlación con la dinámica de crecimiento socio-económico. Normalmente se asocia la tasa de crecimiento del tránsito de vehículos de pasajeros con la tasa anual de

crecimiento poblacional; y la tasa de crecimiento del tránsito de vehículos de carga con la tasa anual del crecimiento de la economía expresada como el producto bruto interno (PBI). Normalmente las tasas de crecimiento del tráfico varían entre 2% y 6%.

Estas tasas pueden variar sustancialmente si existieran proyectos de desarrollo específicos, por implementarse con certeza a corto plazo en la zona del camino.

Tabla 2Factores de Crecimiento Acumulado (Fca) Para el Cálculo d Número de Repeticiones de EE

Período de Análisis (años) Factor sin (crecimiento) 2 3 4 5 6 7 8 10 1 1.00 <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	•									
(años) Crecimiento 2 3 4 5 6 7 8 10 1 1.00 <		Tasa anual de crecimiento(r)								
2 2.00 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.10 3 3.00 3.06 3.09 3.12 3.15 3.18 3.21 3.25 3.31 4 4.00 4.12 4.18 4.25 4.31 4.37 4.44 4.51 4.64 5 5.00 5.20 3.19 5.42 5.53 5.64 5.75 5.87 6.11 6 6.00 6.31 6.47 6.63 6.80 6.98 7.15 7.34 7.72 7 7.00 7.43 7.66 7.90 8.14 8.39 8.65 8.92 9.49 8 8.00 8.58 8.89 9.21 9.55 9.90 10.26 10.64 11.44 9 9.00 9.75 10.16 10.58 11.03 11.49 11.98 12.49 13.58 10 10.00 10.95 11.46 12.01 12.58 13.18 13.82 14.49 15.94 11 11.00 12.17		Crecimiento	2	3	4	5	6	7	8	10
3 3.00 3.06 3.09 3.12 3.15 3.18 3.21 3.25 3.31 4 4.00 4.12 4.18 4.25 4.31 4.37 4.44 4.51 4.64 5 5.00 5.20 3.19 5.42 5.53 5.64 5.75 5.87 6.11 6 6.00 6.31 6.47 6.63 6.80 6.98 7.15 7.34 7.72 7 7.00 7.43 7.66 7.90 8.14 8.39 8.65 8.92 9.49 8 8.00 8.58 8.89 9.21 9.55 9.90 10.26 10.64 11.44 9 9.00 9.75 10.16 10.58 11.03 11.49 11.98 12.49 13.58 10 10.00 10.95 11.46 12.01 12.58 13.18 13.82 14.49 15.94 11 11.00 12.17 12.81 13.49 14.21 14.97 15.78 16.65 18.53 12 12.00 13	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4 4.00 4.12 4.18 4.25 4.31 4.37 4.44 4.51 4.64 5 5.00 5.20 3.19 5.42 5.53 5.64 5.75 5.87 6.11 6 6.00 6.31 6.47 6.63 6.80 6.98 7.15 7.34 7.72 7 7.00 7.43 7.66 7.90 8.14 8.39 8.65 8.92 9.49 8 8.00 8.58 8.89 9.21 9.55 9.90 10.26 10.64 11.44 9 9.00 9.75 10.16 10.58 11.03 11.49 11.98 12.49 13.58 10 10.00 10.95 11.46 12.01 12.58 13.18 13.82 14.49 15.94 11 11.00 12.17 12.81 13.49 14.21 14.97 15.78 16.65 18.53 12 12.00 13.41 14.19 15.03 15.92 16.87 17.89 18.98 21.38 13 13.00	2	2.00	2.02	2.03	2.04	2.05	2.06	2.07	2.08	2.10
5 5.00 5.20 3.19 5.42 5.53 5.64 5.75 5.87 6.11 6 6.00 6.31 6.47 6.63 6.80 6.98 7.15 7.34 7.72 7 7.00 7.43 7.66 7.90 8.14 8.39 8.65 8.92 9.49 8 8.00 8.58 8.89 9.21 9.55 9.90 10.26 10.64 11.44 9 9.00 9.75 10.16 10.58 11.03 11.49 11.98 12.49 13.58 10 10.00 10.95 11.46 12.01 12.58 13.18 13.82 14.49 15.94 11 11.00 12.17 12.81 13.49 14.21 14.97 15.78 16.65 18.53 12 12.00 13.41 14.19 15.03 15.92 16.87 17.89 18.98 21.38 13 13.00 14.68 15.62 16.63<	3	3.00	3.06	3.09	3.12	3.15	3.18	3.21	3.25	3.31
6 6.00 6.31 6.47 6.63 6.80 6.98 7.15 7.34 7.72 7 7.00 7.43 7.66 7.90 8.14 8.39 8.65 8.92 9.49 8 8.00 8.58 8.89 9.21 9.55 9.90 10.26 10.64 11.44 9 9.00 9.75 10.16 10.58 11.03 11.49 11.98 12.49 13.58 10 10.00 10.95 11.46 12.01 12.58 13.18 13.82 14.49 15.94 11 11.00 12.17 12.81 13.49 14.21 14.97 15.78 16.65 18.53 12 12.00 13.41 14.19 15.03 15.92 16.87 17.89 18.98 21.38 13 13.00 14.68 15.62 16.63 17.71 18.88 20.14 21.50 24.52 14 14.00 15.97 17.09 18.29 19.16 21.01 22.55 24.21 27.97 15	4	4.00	4.12	4.18	4.25	4.31	4.37	4.44	4.51	4.64
7 7.00 7.43 7.66 7.90 8.14 8.39 8.65 8.92 9.49 8 8.00 8.58 8.89 9.21 9.55 9.90 10.26 10.64 11.44 9 9.00 9.75 10.16 10.58 11.03 11.49 11.98 12.49 13.58 10 10.00 10.95 11.46 12.01 12.58 13.18 13.82 14.49 15.94 11 11.00 12.17 12.81 13.49 14.21 14.97 15.78 16.65 18.53 12 12.00 13.41 14.19 15.03 15.92 16.87 17.89 18.98 21.38 13 13.00 14.68 15.62 16.63 17.71 18.88 20.14 21.50 24.52 14 14.00 15.97 17.09 18.29 19.16 21.01 22.55 24.21 27.97 15 15.00 17.29 18.60 20.02 21.58 23.28 25.13 27.15 31.77 1	5	5.00	5.20	3.19	5.42	5.53	5.64	5.75	5.87	6.11
8 8.00 8.58 8.89 9.21 9.55 9.90 10.26 10.64 11.44 9 9.00 9.75 10.16 10.58 11.03 11.49 11.98 12.49 13.58 10 10.00 10.95 11.46 12.01 12.58 13.18 13.82 14.49 15.94 11 11.00 12.17 12.81 13.49 14.21 14.97 15.78 16.65 18.53 12 12.00 13.41 14.19 15.03 15.92 16.87 17.89 18.98 21.38 13 13.00 14.68 15.62 16.63 17.71 18.88 20.14 21.50 24.52 14 14.00 15.97 17.09 18.29 19.16 21.01 22.55 24.21 27.97 15 15.00 17.29 18.60 20.02 21.58 23.28 25.13 27.15 31.77 16 16.00 18.64 20.16 21.82 23.66 25.67 27.89 30.32 35.95	6	6.00	6.31	6.47	6.63	6.80	6.98	7.15	7.34	7.72
9 9.00 9.75 10.16 10.58 11.03 11.49 11.98 12.49 13.58 10 10.00 10.95 11.46 12.01 12.58 13.18 13.82 14.49 15.94 11 11.00 12.17 12.81 13.49 14.21 14.97 15.78 16.65 18.53 12 12.00 13.41 14.19 15.03 15.92 16.87 17.89 18.98 21.38 13 13.00 14.68 15.62 16.63 17.71 18.88 20.14 21.50 24.52 14 14.00 15.97 17.09 18.29 19.16 21.01 22.55 24.21 27.97 15 15.00 17.29 18.60 20.02 21.58 23.28 25.13 27.15 31.77 16 16.00 18.64 20.16 21.82 23.66 25.67 27.89 30.32 35.95 17 17.00 20.01 21.76 23.70 25.84 28.21 30.84 33.75 40.55	7	7.00	7.43	7.66	7.90	8.14	8.39	8.65	8.92	9.49
10 10.00 10.95 11.46 12.01 12.58 13.18 13.82 14.49 15.94 11 11.00 12.17 12.81 13.49 14.21 14.97 15.78 16.65 18.53 12 12.00 13.41 14.19 15.03 15.92 16.87 17.89 18.98 21.38 13 13.00 14.68 15.62 16.63 17.71 18.88 20.14 21.50 24.52 14 14.00 15.97 17.09 18.29 19.16 21.01 22.55 24.21 27.97 15 15.00 17.29 18.60 20.02 21.58 23.28 25.13 27.15 31.77 16 16.00 18.64 20.16 21.82 23.66 25.67 27.89 30.32 35.95 17 17.00 20.01 21.76 23.70 25.84 28.21 30.84 33.75 40.55 18 18.00 21.41 23.41 25.65 28.13 30.91 34.00 37.45 45.60	8	8.00	8.58	8.89	9.21	9.55	9.90	10.26	10.64	11.44
11 11.00 12.17 12.81 13.49 14.21 14.97 15.78 16.65 18.53 12 12.00 13.41 14.19 15.03 15.92 16.87 17.89 18.98 21.38 13 13.00 14.68 15.62 16.63 17.71 18.88 20.14 21.50 24.52 14 14.00 15.97 17.09 18.29 19.16 21.01 22.55 24.21 27.97 15 15.00 17.29 18.60 20.02 21.58 23.28 25.13 27.15 31.77 16 16.00 18.64 20.16 21.82 23.66 25.67 27.89 30.32 35.95 17 17.00 20.01 21.76 23.70 25.84 28.21 30.84 33.75 40.55 18 18.00 21.41 23.41 25.65 28.13 30.91 34.00 37.45 45.60 19 19.00 22.84 25.12 27.67 30.54 33.76 37.38 41.45 51.16	9	9.00	9.75	10.16	10.58	11.03	11.49	11.98	12.49	13.58
12 12.00 13.41 14.19 15.03 15.92 16.87 17.89 18.98 21.38 13 13.00 14.68 15.62 16.63 17.71 18.88 20.14 21.50 24.52 14 14.00 15.97 17.09 18.29 19.16 21.01 22.55 24.21 27.97 15 15.00 17.29 18.60 20.02 21.58 23.28 25.13 27.15 31.77 16 16.00 18.64 20.16 21.82 23.66 25.67 27.89 30.32 35.95 17 17.00 20.01 21.76 23.70 25.84 28.21 30.84 33.75 40.55 18 18.00 21.41 23.41 25.65 28.13 30.91 34.00 37.45 45.60 19 19.00 22.84 25.12 27.67 30.54 33.76 37.38 41.45 51.16	10	10.00	10.95	11.46	12.01	12.58	13.18	13.82	14.49	15.94
13 13.00 14.68 15.62 16.63 17.71 18.88 20.14 21.50 24.52 14 14.00 15.97 17.09 18.29 19.16 21.01 22.55 24.21 27.97 15 15.00 17.29 18.60 20.02 21.58 23.28 25.13 27.15 31.77 16 16.00 18.64 20.16 21.82 23.66 25.67 27.89 30.32 35.95 17 17.00 20.01 21.76 23.70 25.84 28.21 30.84 33.75 40.55 18 18.00 21.41 23.41 25.65 28.13 30.91 34.00 37.45 45.60 19 19.00 22.84 25.12 27.67 30.54 33.76 37.38 41.45 51.16	11	11.00	12.17	12.81	13.49	14.21	14.97	15.78	16.65	18.53
14 14.00 15.97 17.09 18.29 19.16 21.01 22.55 24.21 27.97 15 15.00 17.29 18.60 20.02 21.58 23.28 25.13 27.15 31.77 16 16.00 18.64 20.16 21.82 23.66 25.67 27.89 30.32 35.95 17 17.00 20.01 21.76 23.70 25.84 28.21 30.84 33.75 40.55 18 18.00 21.41 23.41 25.65 28.13 30.91 34.00 37.45 45.60 19 19.00 22.84 25.12 27.67 30.54 33.76 37.38 41.45 51.16	12	12.00	13.41	14.19	15.03	15.92	16.87	17.89	18.98	21.38
15 15.00 17.29 18.60 20.02 21.58 23.28 25.13 27.15 31.77 16 16.00 18.64 20.16 21.82 23.66 25.67 27.89 30.32 35.95 17 17.00 20.01 21.76 23.70 25.84 28.21 30.84 33.75 40.55 18 18.00 21.41 23.41 25.65 28.13 30.91 34.00 37.45 45.60 19 19.00 22.84 25.12 27.67 30.54 33.76 37.38 41.45 51.16	13	13.00	14.68	15.62	16.63	17.71	18.88	20.14	21.50	24.52
16 16.00 18.64 20.16 21.82 23.66 25.67 27.89 30.32 35.95 17 17.00 20.01 21.76 23.70 25.84 28.21 30.84 33.75 40.55 18 18.00 21.41 23.41 25.65 28.13 30.91 34.00 37.45 45.60 19 19.00 22.84 25.12 27.67 30.54 33.76 37.38 41.45 51.16	14	14.00	15.97	17.09	18.29	19.16	21.01	22.55	24.21	27.97
17 17.00 20.01 21.76 23.70 25.84 28.21 30.84 33.75 40.55 18 18.00 21.41 23.41 25.65 28.13 30.91 34.00 37.45 45.60 19 19.00 22.84 25.12 27.67 30.54 33.76 37.38 41.45 51.16	15	15.00	17.29	18.60	20.02	21.58	23.28	25.13	27.15	31.77
18 18.00 21.41 23.41 25.65 28.13 30.91 34.00 37.45 45.60 19 19.00 22.84 25.12 27.67 30.54 33.76 37.38 41.45 51.16	16	16.00	18.64	20.16	21.82	23.66	25.67	27.89	30.32	35.95
19 19.00 22.84 25.12 27.67 30.54 33.76 37.38 41.45 51.16	17	17.00	20.01	21.76	23.70	25.84	28.21	30.84	33.75	40.55
	18	18.00	21.41	23.41	25.65	28.13	30.91	34.00	37.45	45.60
20 20.00 24.30 26.87 29.78 33.06 36.79 41.00 45.76 57.28	19	19.00	22.84	25.12	27.67	30.54	33.76	37.38	41.45	51.16
	20	20.00	24.30	26.87	29.78	33.06	36.79	41.00	45.76	57.28

Nota. El presente cuadro proporciona el criterio para seleccionar el Factor de Crecimiento Acumulado (Fca) para el periodo de diseño, considerando la tasa anual de crecimiento (r) y el periodo de análisis en años.

$$Factor Fca = \frac{(1+r)^n - 1}{r}$$

Donde:

r = Tasa de crecimiento.

n = Periodo de diseño.

Número de repeticiones de ejes equivalentes.

Para el diseño de pavimento, la demanda que corresponde al tráfico pesado de ómnibus y de camiones es la que tiene mucha más importancia.

El efecto del tránsito se mide en la unidad definida, por AASHTO, como ejes equivalentes (EE) acumulados durante el periodo de diseño tomado en el análisis. AASHTO definió como un EE, al efecto de deterioro causado sobre el pavimento por un eje simple de dos ruedas convencionales cargado con 8.2 tn de peso, con neumáticos a la presión de 80 lbs/pulg². Los ejes equivalentes (EE), son factores de equivalencia que representan el factor destructivo de las distintas cargas, por tipo de eje que conforman cada tipo de vehículo pesado, sobre la estructura del pavimento.

Figura 4Configuración de ejes

Conjunto de Eje (s)	Nomenclatura	N° de Neumáticos	Gráfico
EJE SIMPLE (con rueda simple)	1RS	2	
EJE SIMPLE (con rueda doble)	1RD	4	
EJE TANDEM (1Eje Rueda Simple + 1 Eje Rueda Doble)	1RS + 1RD	6	
EJE TANDEM (2 Ejes Rueda Doble)	2RD	8	
EJE TRIDEM (1 Rueda Simple + 2 Ejes Rueda Doble)	1RS + 2RD	10	
EJE TRIDEM (3 Ejes Rueda Doble)	3RD	12	

Nota. Se presenta la configuración de ejes para el diseño de pavimento.

Nota:

RS: Rueda Simple

RD: Rueda Doble

Para el cálculo de los EE, se utilizarán las siguientes relaciones simplificadas:

Tabla 3Relación de Cargas por Eje para determinar Ejes Equivalentes (EE) Para Afirmados,
Pavimentos Flexibles y Semirrígidos

Tipo de Eje	Eje Equivalente (EE _{8.2tn})
Eje Simple de ruedas simples (EE _{s1})	$EE_{S1} = [P / 6.6]^{4.0}$
Eje Simple de ruedas dobles (EE _{s2})	$EE_{S2} = [P / 8.2]^{4.0}$
Eje Tandem (1 eje ruedas dobles + 1 eje rueda simple) (EE_{TA1})	$EE_{TA1} = [P / 14.8]^{4.0}$
Eje Tandem (2 ejes de ruedas dobles) (EE _{TA2})	$EE_{TA2} = [P / 15.1]^{4.0}$
Ejes Tridem (2 ejes ruedas dobles + 1 eje rueda simple) (EE _{TR1})	$EE_{TR1} = [P / 20.7]^{3.9}$
Ejes Tridem (3 ejes de ruedas dobles) (EE _{TR2})	$EE_{TR2} = [P / 21.8]^{3.9}$
P = peso real por eje en toneladas	

Nota. las relaciones simplificadas expresadas, resultaron de correlacionar los valores de las Tablas del apéndice D de la Guía AASHTO'93, para las diferentes configuraciones de ejes de vehículos pesados (buses y camiones) y tipo de pavimento

Tabla 4Relación de Cargas por Eje para determinar Ejes Equivalentes (EE) Para Pavimentos Rígidos

Tipo de Eje	Eje Equivalente (EE _{8.2tn})
Eje Simple de ruedas simples (EE _{s1})	$EE_{S1} = [P / 6.6]^{4.1}$
Eje Simple de ruedas dobles (EE _{s2})	$EE_{S2} = [P / 8.2]^{4.1}$
Eje Tandem (1 eje ruedas dobles + 1 eje rueda simple) (EE_{TA1})	$EE_{TA1} = [P / 13.0]^{4.1}$
Eje Tandem (2 ejes de ruedas dobles) (EE _{TA2})	$EE_{TA2} = [P / 13.3]^{4.1}$
Ejes Tridem (2 ejes ruedas dobles + 1 eje rueda simple) (EE_{TR1})	$EE_{TR1} = [P / 16.6]^{4.0}$
Ejes Tridem (3 ejes de ruedas dobles) (EE _{TR2})	$EE_{TR2} = [P / 17.5]^{4.0}$
P = peso real por eje en toneladas	

Nota. las relaciones simplificadas expresadas, resultaron de correlacionar los valores de las Tablas del apéndice D de la Guía AASHTO'93, para las diferentes configuraciones de ejes de vehículos pesados (buses y camiones) y tipo de pavimento

Para el diseño de un pavimento se toma en cuenta el número proyectado de EE que circularán por el "Carril de diseño", durante el periodo de análisis. El carril de diseño corresponderá al carril identificado como el más cargado de la carretera y el resultado de este cálculo será adoptado

para todos los carriles de la sección vial típica de esa carretera, por tramos de demanda homogénea.

Para definir la demanda sobre el carril de diseño se analizará el tipo de sección transversal operativa de la carretera, el número de calzadas vehiculares y la distribución de la carga sobre cada carril que conforma la calzada.

2.2.6. Estudio de mecánica de suelos

Según (Ministerio de Transportes y Comunicaciones, 2014) indica, la exploración e investigación del suelo es muy importante para la determinar las características del suelo, y para un correcto diseño de la estructura del pavimento. Si la información obtenida y las muestras enviadas al laboratorio no son representativas, los resultados de las pruebas no tendrán mayor sentido para los fines propuestos.

La guía AASHTO para la investigación y muestreo de suelos y rocas recomienda la aplicación de la norma T 86-90 que equivale a la ASTM D420-69.

Para la exploración de suelos primero deberá efectuarse un reconocimiento del terreno en estudio y como resultado de ello un programa de exploración e investigación de campo a lo largo de la vía y en las zonas de préstamo, para así poder identificar los diferentes tipos de suelo que puedan presentarse en la zona de estudio.

El reconocimiento del terreno permitirá identificar los cortes naturales y/o artificiales, definir los principales estratos de suelos superficiales, delimitar las zonas en las cuales los suelos presentan características similares, asimismo identificar las zonas de riesgo o poco recomendables para emplazar el trazo de la vía.

El programa de exploración e investigación de campo incluirá la ejecución de calicatas o pozos exploratorios, cuyo distanciamiento dependerá fundamentalmente de las características de los materiales subyacentes en el trazo de la vía. Generalmente están distanciadas entre 250 m y 2,000

m, pero pueden estar más próximas dependiendo de puntos singulares, como en los casos de:

- Cambio de la topografía de la zona de estudio.
- Por la naturaleza de los suelos o cuando los suelos se presentan en forma errática o irregular.
- Delimitar las zonas en que se detecten suelos que se consideren pobres o inadecuados.
- Zonas que soportarán terraplenes o rellenos de altura mayor a 5.0 m.
- Zonas donde la rasante se ubica muy próxima al terreno natural (h < 0.6 m).
- En zonas de cortes, se ubicarán los puntos de cambio de corte a terraplén o de terraplén a corte, para conocer el material a nivel de sub rasante.

De las calicatas o pozos exploratorios

Se han de obtener muestras representativas de cada estrato en número y cantidades suficientes de suelo o de roca, de cada material que sea requerido para el diseño y la construcción. El tamaño y tipo de la muestra a obtener depende de los ensayos que se vayan a realizar y del porcentaje de partículas gruesas en la muestra, y del equipo de ensayo a utilizar.

Con las muestras obtenidas en campo se efectuarán ensayos en laboratorio para posteriormente con estos datos pasar a la etapa de gabinete, para consignar en forma gráfica y escrita los resultados, debidamente acotado en un espesor no menor a 1.50 m, teniendo como nivel superior la línea de subrasante del diseño geométrico vial y debajo de ella, espesores y tipos de suelos del terraplén y los del terreno natural, con descripción de sus propiedades o características y los parámetros básicos para el diseño de pavimentos. Para la obtención del perfil estratigráfico en zonas donde existen cortes cerrados, se efectuarán métodos geofísicos de prospección que permitan determinar la naturaleza

y características de los suelos y/o roca subyacente (según norma MTC E101).

Caracterización de la subrasante

Con el fin de hallar las características físico-mecánicas de los materiales de la sub rasante se llevarán a cabo investigaciones mediante la ejecución de pozos exploratorios o calicatas.

Tabla 5 *Número de Calicatas para Exploración de Suelos*

Tipo de Carretera	Profundidad (m)	Número mínimo de Calicatas	Observaciones		
		Calzadas 2 carriles por sentido: 4 calicatas x Km x sentido			
Autopistas: carreteras de IMDA mayor de 6000 veh/día, de calzadas separdas, cada una con dos o más carriles	1.50 m respecto al nivel de sub rasante del proyecto	Calzadas 3 carriles por sentido: 4 calicatas x Km x sentido			
		Calzadas 4 carriles por sentido: 6 calicatas x Km x sentido	Las calicatas se ubicarán		
Carreteras Duales o Multicarril: carreteras		Calzadas 2 carriles por sentido: 4 calicatas x Km x sentido	longitudinalmente y en forma alternada		
de IMDA entre 6000 y 4001 veh/día, de calzadas separadas, cada una con dos o más carriles	1.50 m respecto al nivel de sub rasante del proyecto	Calzadas 3 carriles por sentido: 4 calicatas x Km x sentido	_		
		Calzadas 4 carriles por sentido: 6 calicatas x Km x sentido			
Carreteras de Primera Clase: carreteras con un IMDA entre 4000-2001 veh/día, de una calzada de dos carriles	1.50 m respecto al nivel de sub rasante del proyecto	4 calicatas x km			
Carreteras de Segunda Clase: carreteras con un IMDA entre 2000-401 veh/día, de una calzada de dos carriles	1.50 m respecto al nivel de sub rasante del proyecto	3 calicatas x km	Las calicatas se ubicarán		
Carreteras de Tercera Clase: carreteras con un IMDA entre 400-201 veh/día, de una calzada de dos carriles	1.50 m respecto al nivel de sub rasante del proyecto	2 calicatas x km	longitudinalmente y en forma alternada		
Carreteras de Bajo Volumen de Tránsito: carreteras con un IMDA ≤ 200 veh/día, de una calzada	1.50 m respecto al nivel de sub rasante del proyecto	1 calicata x km			

Nota. La presente tabla expresa la cantidad mínima de calicatas o pozos exploratorios por kilómetros, ejecutadas a una profundidad mínima de 1.5m.

Registros de excavación

Según (Ministerio de Transportes y Comunicaciones, 2014) menciona que de los estratos encontrados en cada una de las calicatas se obtendrán muestras representativas, las que serán descritas e identificadas mediante una tarjeta con la ubicación de la calita (con coordenadas UTM,

WGE84), número de muestra y profundidad y luego colocadas en bolsas de polietileno para su traslado al laboratorio.

Así mismo se extraerán muestras representativas de la sub rasante para realizar ensayos de Módulos de resiliencia (M_R) o ensayos de CBR para correlacionarlos con ecuaciones de M_R , la cantidad de ensayos dependerá del tipo de carretera.

Tabla 6

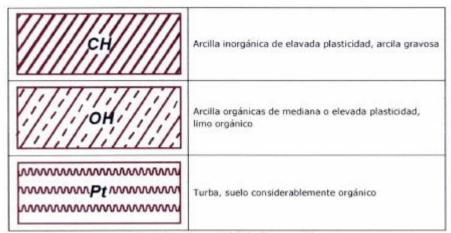
Número de Ensayos MR y CBR

Tipo de Carretera	N° M _R y CBR
	Calzadas 2 carriles por sentido: 1 M_R cada 3 km x sentido y 1 CBR cada 1 km x sentido.
Autopistas: carreteras de IMDA mayor de 6000 veh/día, de calzadas separadas, cada una con dos o más carriles	Calzadas 3 carriles por sentido: 1 M_R cada 2 km x sentido y 1 CBR cada 1 km x sentido
	Calzadas 4 carriles por sentido: 1 M_R cada 1 km x sentido y 1 CBR cada 1 km x sentido
	Calzada 2 carriles por sentido: 1 M_R cada 3 km x sentido y 1 CBR cada 1 km x sentido
Carreteras Duales o Multicarril: carreteras con un IMDA entre 6000 y 4001 vh/día, de calzadas separadas, cada una con dos o más carriles	Calzada 3 carriles por sentido: 1 M_R cada 2 km x sentido y 1 CBR cada 1 km x sentido
con acc characteristics	Calzada 4 carriles por sentido: 1 M_R cada 1 km x sentido y 1 CBR cada 1 km x sentido
Carreteras de Primera Clase: carreteras con un IMDA entre 4000 - 2001 veh/día, de una calzada de dos carriles	1 M _R cada 3 km y 1 CBR cada 1 km
Carreteras de Segunda Clase: carreteras con un IMDA entre 2000 - 401 veh/día, de una calzada de dos carriles	Cada 1.5 km se realizará un CBR (*)
Carreteras de Tercera Clase: carreteras con un IMDA entre 400 - 201 veh/día, de una calzada de dos carriles	Cada 2 km se realizará un CBR (*)
Carreteras con un IMDA ≤ 200 veh/día, de una calzada Nota. La necesidad de efectuar los ensavos de mód	Cada 3 km se realizará un CBR

Nota. La necesidad de efectuar los ensayos de módulos de resiliencia, será determinado en los respectivos términos de referencia, previa evaluación de la zona de estudio y la importancia de la obra.

Descripción de los suelos


Los suelos encontrados serán descritos y clasificados de acuerdo a metodología para construcción de vías, la clasificación se efectuará obligatoriamente por AASHTO y SUCS, se utilizarán los signos convencionales de los cuadros:


Figura 5
Signos convencionales para perfil de calicatas - Clasificación AASHTO

Simbología	Clasificación	Simbología	Clasificación
d d d d d	A - 1 - a		A - 5
, a a	A - 1 - b		A - 6
	A - 3		A - 7 - 5
	A - 2 - 4		A - 7 - 6
	A - 2 - 5	4 4 4 4 4 A	Materia Orgánica
	A - 2 - 6		Roca Sana
	A - 2 - 7		Roca Desintegrada
	A - 4		

Nota. Clasificación y Simbología de tipos de suelos según AASHTO.

Figura 6
Signos convencionales para perfil de calicatas - Clasificación SUCS

Nota. Clasificación y símbolos gráficos para suelos según SUCS.

Granulometría

Representa la distribución de los diferentes tamaños que posee el agregado mediante el tamizado respecto a las especificaciones técnicas (Ensayo MTC E107). Por consiguiente, se puede estimar con mayor o menor aproximación, las demás propiedades para el diseño del pavimento.

El análisis granulométrico tiene como finalidad determinar la proporción del tamaño de sus diferentes elementos que componen una muestra.

Tabla 7Clasificación de suelos según Tamaño de partículas

Tipo de Material		Tamaño de las partículas
Grava		75 mm - 4.75 mm
		Arena gruesa: 4.75 mm - 2.00 mm
Arena		Arena media: 2:00 mm - 0.425 mm
		Arena fina: 0.425 mm - 0.075 mm
Matavial Fina	Limo	0.075 mm - 0.005 mm
Material Fino	Arcilla	Menor a 0.005 mm

Nota. Clasificación de tipo de suelos según el tamaño de las partículas.

Plasticidad

Es la propiedad que poseen los suelos hasta cierto límite de humedad sin que este se disgregue, por lo tanto, la plasticidad depende únicamente de los elementos finos que posee el suelo. El análisis granulométrico no permite apreciar esta característica, por lo que es necesario determinar los Límites de Atterberg.

Según (Ministerio de Transportes y Comunicaciones, 2014), los Límites de Atterberg establecen cuán sensible es el comportamiento de un suelo en relación con su contenido de humedad (agua), definiéndose los límites correspondientes a los tres estados de consistencia según su humedad y de acuerdo a ello puede presentarse un suelo: líquido, plástico o sólido. Estos límites de Atterberg que miden la cohesión del suelo son: el límite líquido (LL, según ensayo MTC E 110), el límite plástico (LP, según ensayo MTC E 111) y el límite de contracción (LC, según ensayo MTC E 112).

- Límite Líquido (LL), cuando el suelo pasa del estado semilíquido a un estado plástico, posee facilidad para moldearse.
- Límite Plástico (LP), cuando el suelo pasa de un estado plástico a un estado semisólido y se rompe.
- Límite de Contracción (retracción), cuando el suelo pasa de un estado semisólido a un estado sólido y deja de contraerse al perder humedad.

Además del LL y del LP, una característica a obtener es el índice de plasticidad IP (ensayo MTC E 111) que corresponde a la diferencia numérica entre LL y LP:

$$IP = LL - LP$$

El índice de plasticidad es el tamaño del intervalo de contenido de agua en el que el suelo posee consistencia plástica y facilita su clasificación. Un IP (Índice de Plasticidad) elevado corresponde a un suelo muy arcilloso; por el contrario, un IP pequeño caracteriza a un suelo poco arcilloso.

Tabla 8

Clasificación de suelos según Índice de Plasticidad

Índice de Plasticidad	Plasticidad	Característica
IP > 20	Alta	Suelos muy arcillosos
IP ≤ 20	Media	Sueles ereilleses
IP > 7	Daia	Suelos arcillosos
IP < 7	Baja	Suelos poco arcillosos plasticidad
IP = 0	No Plástico (NP)	Suelos exentos de arcilla

Nota. El suelo en relación a su índice de plasticidad puede clasificarse de la siguiente forma.

Equivalente de Arena

Es la proporción relativa de la cantidad de polvo fino nocivo o material arcilloso que posee los suelos (ensayo MTC E 114). Este ensayo es fácil y rápido de realizar, aunque de resultados menos precisos que en la determinación de los límites de Atterberg.

Tabla 9Clasificación de suelos según Equivalente de Arena

Característica
el suelo no es plástico, es arena
el suelo es poco plástico y no heladizo
el suelo es plástico y arcilloso

Nota. El valor de Equivalente de Arena (EA) es un indicativo de la plasticidad del suelo.

Índice de Grupo

Según (Ministerio de Transportes y Comunicaciones, 2014) el Índice de Grupo es un índice normado por AASHTO de uso corriente para clasificar suelos, está basado en gran parte en los límites de Atterberg. El índice de grupo de un suelo se define mediante la siguiente fórmula:

$$IG = 0.2 (a) + 0.005 (ac) + 0.01 (bd)$$

Donde:

a = F-35 (F = Fracción del porcentaje que pasa el tamiz N° 200-74 micras). Expresado por un número entero positivo comprendido entre 1 y 40.

- b = F-15 (F = Fracción del porcentaje que pasa el tamiz N° 200-74 micras). Expresado por un número entero positivo comprendido entre 1 y 40.
- c = LL-40 (LL = límite líquido). Expresado por un número entero comprendido entre 0 y 20.
- d = IP-10 (IP = índice plástico). Expresado por un número entero comprendido entre 0 y 20 o más.

El Índice de Grupo es un valor entero positivo entre 0 y 20 o más. Si al calcular el IG el resultado es un valor negativo, se considera como cero. Un índice cero corresponde a suelo muy bueno, mientras que un índice > a 20 corresponde a un suelo no recomendable para caminos

Tabla 10Clasificación de suelos según Índice de Grupo

Índice de Grupo	Suelo de Sub rasante
IG > 9	Inadecuado
IG está entre 4 a 9	Insuficiente
IG está entre 2 a 4	regular
IG está entre 1 - 2	Bueno
IG está entre 0 - 1	Muy bueno

Nota. Valores de Índice de Grupo según clasificación de suelos.

Humedad Natural

Se determina mediante el ensayo (MTC E 108), el cual permitirá realizar una comparación con la humedad óptima que se obtendrá en los ensayos Proctor para obtener el CBR del suelo ensayo (MTC E 132).

Si la humedad natural es igual o menor a la humedad óptima, se propondrá la compactación normal del suelo y la aplicación de una cantidad conveniente de agua. En cambio, si la humedad natural es mayor a la humedad óptima, se propondrá aumentar la energía de compactación, airear el suelo o reemplazar el material saturado según sea conveniente.

Clasificación de los suelos

La clasificación de los suelos se realizará según el sistema mostrado en el cuadro siguiente. Mediante esta clasificación podremos predecir el comportamiento aproximado de los suelos, y delimitar los sectores homogéneos desde el punto de vista geotécnico.

Tabla 11Correlación de Tipos de suelos AASHTO - SUCS

Clasificación de Suelos AASHTO	Clasificación de Suelos SUCS				
AASHTO M-145	ASTM-D-2487				
A-1-a	GW, GP, GM, SW, SP, SM				
A-1-b	GM, GP, SM, SP				
A - 2	GM, GC, SM, SC				
A - 3	SP				
A - 4	CL, ML				
A - 5	ML, MH, CH				
A - 6	CL, CH				
A - 7	OH, MH, CH				

Nota. A continuación, se muestra una correlación de los dos sistemas de clasificación de suelos más empleados, AASHTO y ASTM (SUCS)

Para complementar la información se presenta el siguiente cuadro, que muestra la Clasificación de los Suelos basada en AASHTO M 145 y/o ASTM D 3282.

Tabla 12Clasificación de los Suelos basada en AASHTO M 145 y/o ASTM D 3282

Clasificación general		35% máxin	Suel no que pasa	os granular por tamiz d		n (N° 200)		más de	35% pasa	Suelos fi por el tam	inos iz de 0.075 m	m (N° 200)
Clasificación de Grupo	A-	-1	A-3		Α	-2		A-4	A-5	A-6	А	-7
Clasificación de Grupo	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-3	A-0	A-7-5	A-7-6
Análisis granulométrico												
% que pasa por el tamiz de:												
2 mm (N° 10)	máx. 50											
0.425 mm (N° 40)	máx. 30	máx. 50	mín. 51									
F: 0.075 mm (N° 200)	máx. 15	máx. 25	máx. 10	máx. 35	máx. 35	máx. 35	máx. 35	máx. 36	máx. 36	máx. 36	máx. 36	máx. 36
Características de la fracción												
que pasa el 0.425 (N° 40)												
Características de la fracción												
que pasa del tamiz (N° 40)												
LL: Límite de Liquido				máx. 40	máx. 41	máx. 40	máx. 41	máx. 40	máx. 41	máx. 40	máx. 41	máx. 41
IP: Índice de Plásticidad	máx. 6	máx. 6	NP	máx. 10	máx. 10	máx. 11	máx. 11	máx. 10	máx. 10	máx. 11	máx. 11 ^(a)	máx. 11 ^(b)
Tina da matarial	Piedras	gravas y	Arenas		Gravas	y arenas		Sue	elos		Suelos arcillo	505
Tipo de material	are	nas	finas		limosas o	arcillosas		limo	osos		Suelos arcillo	505
Estimación general del suelo como sub rasante		Exc	elente a bue	no				Re	gular a inst	uficiente		
Nota												

Nota.

⁽a) Índice de Plasticidad del subgrupo A-7-5: es igual o menor que LL-30.

⁽b)Índice de Plasticidad del subgrupo A-7-6: es mayor que LL-30.

⁻ Cuando se requiera relacionar los grupos con el Índice de Grupo (IG), estos deben mostrarse entre paréntesis después del símbolo del grupo, ejemplo: A-18: 182-6 (3), A-4(5), A-7-5 (17), etc. IG = (F-35) [0.2+0.005 ((LL-40)] +0.01 (F-15) (IP-10).

Ensayos CBR

Una vez realizada la clasificación de los suelos por el sistema AASHTO y SUCS, se elaborará un perfil estratigráfico para cada sector homogéneo o tramo en estudio, del cual se determinará el programa de ensayos para establecer el CBR que es el valor soporte o resistencia del suelo, que estará referido al 95% de la MDS (Máxima densidad seca) y a una penetración de carga de 2.54 mm (Ensayo MTC EM 132).

Según (Ministerio de Transportes y Comunicaciones, 2014), Para determinar el valor de CBR de diseño de la subrasante, se debe considerar los siguientes puntos:

- 1. En los sectores con 6 o más valores de CBR realizados por el tipo de suelo representativo o por sección de características homogéneas de suelos, se determinará el valor de CBR de diseño de la subrasante considerando el promedio del total de los valores analizados por sector de características homogéneas.
- 2. En los sectores con menos de 6 valores de CBR realizados por tipo de suelo representativo o por sección de características homogéneas de suelos, se determinará el valor de CBR de diseño de la subrasante en función a los siguientes criterios:
 - Si los valores son parecidos o similares, tomar el valor promedio.
 - Si los valores no son parecidos o no son similares, tomar el valor más crítico (el más bajo).
- 3. Una vez definido el valor del CBR de diseño: para cada sector de características homogéneas, se clasificará a que categoría de subrasante pertenece el sector, según lo siguiente:

Tabla 13

Categorías de Sub rasante

Categorias de Sub rasante	CBR
S ₀ : Sub rasante Inadecuada	CBR < 3%
S ₁ : Sub rasante insuficiente	De CBR ≥ 3% A CBR < 6%
S ₂ : Sub rasante Regular	De CBR ≥ 6% A CBR < 10%
S ₃ : Sub rasante Buena	De CBR ≥ 10% A CBR < 20%
S ₄ : Sub rasante Muy Buena	De CBR ≥ 20% A CBR < 30%
S ₅ : Sub rasante Excelente	De CBR ≥ 30%

Nota. Categoría de Sub rasante según el CBR de diseño.

Ensayo de Módulo Resiliente

Para diseño de nuevos pavimentos, se debe obtener el Módulo de Resiliencia (M_R), mediante ensayos de laboratorio. Se debe usar la norma MTC E 128 (AASHTO T274).

El Módulo de Resiliencia determina la propiedad elástica de los suelos, otorgando ciertas características no lineales. Para el diseño de pavimentos flexibles se trabaja directamente con el Módulo de Resiliencia, mientras que para el diseño de pavimentos rígidos, este debe convertirse a Módulo de reacción de la sub rasante (valor k).

Según (Ministerio de Transportes y Comunicaciones, 2014) menciona tener en cuenta que, debido a lo especializado en la realización del ensayo de Módulo de Resiliencia, se cuenta con las publicaciones Design Pamphlet for the Determination of Design Subgrade in support of the 1993 AASHTO Guide for the Design of Pavement Strutures (Publicación N° FHWA-RD-97-083) y Design Pamphlet for the Determination of Layered Elastic Moduli for Flexible Pavement Design in Support of the 1993 AASHTO Guide for the Design of Pavement Structures (Publicación N° FHWA-RD-97-077). Además, la Guía AASHTO, recomendó para esa edición de 1993 el uso de una correlación M_R -CBR, solo para casos de suelos finos y CBR \leq 10% obtenido por el método del Cuerpo de Ingenieros de USA.

2.2.7. Estudios hidrológicos-pluviométricos

Los factores considerados son la temperatura y las precipitaciones de lluvia, los cuales considerando la zona de aplicación de la presente Tesis influyen directamente en el diseño y comportamiento de los pavimentos.

La región Costa norte del territorio peruano se caracteriza por un clima caluroso por estar cerca de la zona ecuatorial y que en los últimos años ha tenido un incremento de presencia de lluvias tropicales debido a los efectos del Fenómeno del niño.

Temperatura

El efecto de la temperatura se evidencia directamente en la carpeta asfáltica (CA); estás variaciones de temperaturas producen tensiones y deformaciones en la CA. En bajas temperaturas podemos evidenciar la aparición del agrietamiento por fatiga la que se potencia con el ahuellamiento. Por otra parte, en altas temperaturas podemos evidenciar la aparición de ahuellamiento en la CA. En pavimentos rígidos expuestos a altas variaciones de temperatura se puede evidenciar esquinas del pavimento levantas, debilitándose hasta su rompimiento.

Según (Ministerio de Transportes y Comunicaciones, 2014) establece una relación en función de las temperaturas regionales distintas debe seleccionarse la aplicación de asfaltos con rangos distintos de penetración, tal como se indica en el cuadro que se presenta a continuación.

Tabla 14
Selección del tipo de cemento asfaltico

Temperatura Media Anual							
24°C o más	24°C - 15°C	15°C - 5°C	Menos de 5°C				
40-50 ó 60-70 ó modificado	60-70 (*)	60-70 120-150 (*)	Asfalto modificado				

Nota. Aplicación de asfalto en relación a la temperatura.

Las precipitaciones de Iluvias

Como ya se sabe, la lluvia es uno de los grandes enemigos de las carreteras, afectan considerablemente los requerimientos del diseño de las capas granulares y del diseño de la estructura de los pavimentos, sea su presencia sobre la superficie del pavimento y su percolación hacia el interior del mismo, o por el efecto que causa la presencia de aguas cercanas sea lagunas, corrientes de aguas superficiales y/o subterráneas que elevan el nivel de la napa freática bajo la plataforma del pavimento. Un nivel freático alto cercano a las capas superiores de la subrasante de diseño del proyecto, pueden desestabilizarlas por el fenómeno de la capilaridad del material utilizado.

Para efectos de diseño de carreteras con eficiencia funcional y económica, se requiere contar con data actualizada por dos necesidades principales: estabilidad del pavimento y la estabilidad de los terraplenes, de la plataforma en general.

Está información se viene trabajando directamente con información climática nacional elaborada por el SENAMHI.

2.2.8. Estudios de canteras y fuentes de agua

Los materiales naturales, como las rocas, gravas, arenas y suelos seleccionados, denominados frecuentemente como "áridos", "inertes" o "agregados", según sus usos y aplicaciones, cumplen un rol muy significativo e importante en la calidad, durabilidad y economía de las obras viales. La naturaleza y propiedades físicas de estos materiales, así como las formas en que se presentan y su disponibilidad, serán los factores principales que determinarán los usos de estos, así como el grado de procesamiento que requerirán antes de su empleo.

La mayor o menor disponibilidad de estos en las proximidades de la obra, así como la intensidad del procesamiento afectan con frecuencia los costos de construcción, por lo cual se justifica una exploración sistemática del área del proyecto, siempre que se puedan lograr reducciones razonables de las distancias de transporte y de los procesos de

transformación de los materiales. (Ministerio de Transportes y Comunicaciones, 2014)

Estudio de canteras de suelo

El estudio de las fuentes de materiales o canteras, lugar de donde se extraerán diferentes tipos de agregados para usos como mejoramientos de suelos, terraplenes, afirmado, agregados para rellenos, subbase y base granular, agregados para tratamientos bituminosos, agregados para mezclas asfálticas y agregados para mezclas de concreto, es determinar sí estos agregados son o no aptos para el tipo de obra a ejecutar, en tal sentido se requiere determinar sus características mediante la realización de los correspondientes ensayos de laboratorio.

Las Fuentes de Materiales o Canteras serán ubicadas en función a su distancia de la obra a realizar, considerando para su elección la de menor distancia a esta, siempre y cuando cumpla con la calidad y cantidad requeridas para la ejecución de la obra.

Ensayos de Laboratorio

Los ensayos realizados en laboratorio para determinar las características químicas, físicas y mecánicas de los materiales de las canteras, se realizarán de acuerdo al Manual de Ensayo de Material para Carreteras del MTC (vigente) y serán las que señalen en el Manual de Carreteras: Especificaciones Técnicas Generales para, vigente. (Ministerio de Transportes y Comunicaciones, 2014)

Los ensayos de los materiales deberán ser de dos tipos:

- Estrato por estrato.
- De conjunto de los materiales.

Fuentes de agua

Se determinará las fuentes de agua y su distancia a la obra, así mismo se tendrá en cuenta el tipo de fuente, calidad de agua, disponibilidad y variación estacional.

Para el uso del agua en obra, se realizarán ensayos químicos para poder obtener su calidad, los requerimientos de calidad para el agua serán los estipulados en las Especificaciones Generales para Construcción de Carreteras del MTC, vigente.

2.3. Marco conceptual

MTC: Ministerio de Transportes y Comunicaciones.1

AASHTO: American Association of Stage Highway and Transportation Officials.¹

SLUMP: Sistema Legal de Unidades de Medida del Perú.¹

SI: Sistema Internacional de Unidades.¹

Pavimento: Estructura compuesta por capas apoyadas sobre el terreno preparado para soportarla durante un lapso denominado Período de Diseño y dentro de un rango de Serviciabilidad.²

Pavimentos (pavimentos asfálticos): Los pavimentos con superficie asfáltica en cualquiera de sus formas o modalidades (concreto asfáltico mezcla en caliente, concreto asfáltico mezcla en frío, mortero asfáltico, tratamiento asfáltico, micropavimento, etc.), está compuesto por una o más capas de mezclas asfálticas que pueden o no apoyarse sobre una base y una sub base granular. El pavimento asfáltico de espesor total, es el nombre patentado por el Instituto del Asfalto, para referirse a los pavimentos de concreto asfáltico construidos directamente sobre la subrasante.³

Carretera: Camino para el tránsito de vehículos motorizados de por lo menos dos ejes, cuyas características geométricas, tales como: pendiente longitudinal, pendiente transversal, sección transversal, superficie de rodadura y demás elementos de la misma, deben cumplir las normas técnicas vigentes del Ministerio de Transportes y Comunicaciones.⁴

² (Ministerio de Vivienda Construcción y Saneamiento, 2010, p.43)

54

¹ (Ministerio de Transportes y Comunicaciones, 2018, p.9)

³ (Ministerio de Vivienda Construcción y Saneamiento, 2010, p.44)

⁴ (Ministerio de Transportes y Comunicaciones, 2018, p.10)

Sección Transversal: Representación de una sección de la carretera en forma transversal al eje y a distancias específicas, que nómina y dimensiona los elementos que conforman la misma, dentro del Derecho de Vía. Hay dos tipos de sección transversal: General y Especial.⁵

Tramos homogéneos: Son aquellos que el diseñador identifica a lo largo de una carretera, a los que, por las condiciones orográficas, se les asigna una misma velocidad de diseño. Por lo general, una carretera tiene varios tramos homogéneos.⁵

Afirmado: Capa de material selecto procesado de acuerdo a diseño, que se coloca sobre la sub-rasante o sub-base de un pavimento. Funciona como capa de rodadura y de soporte al tráfico en vías no pavimentadas. Esta capa puede tener un tratamiento de estabilización.⁶

Año base: Es el año para el que se escogen y consideran los datos del tráfico que servirá de base al tráfico de diseño.⁶

Base: Capa generalmente granular, aunque también podría ser de suelo estabilizado, de concreto asfáltico, ó de concreto hidráulico. Su función principal es servir como elemento estructural de los pavimentos, aunque en algunos casos puede servir también como capa drenante.⁶

Capa asfáltica de superficie: Es la capa superior de un pavimento asfáltico, llamada también Capa de Desgaste o Capa de Rodadura.⁷

Capa de base asfáltica: Es una capa estructural de algunos pavimentos flexibles compuesta de agregados minerales unidos con productos asfálticos. También conocida como Base Negra.⁷

Capa de sub-rasante: Porción superior del terreno natural en corte o porción superior del relleno, de 20 cm de espesor compactado en vías locales y colectoras y de 30 cm de espesor compactado en vías arteriales y expresas.⁷

⁶ (Ministerio de Vivienda Construcción y Saneamiento, 2010, p.38)

⁵ (Ministerio de Transportes y Comunicaciones, 2018, p.11)

⁷ (Ministerio de Vivienda Construcción y Saneamiento, 2010, p.39)

Carril de diseño: Es el carril sobre el que se espera el mayor número de aplicaciones de cargas por eje simple equivalente de 80 kN. Normalmente, será cualquiera de los carriles en una vía de 2 carriles en el mismo sentido, o el carril exterior en una vía de carriles múltiples también en el mismo sentido.⁷

Estabilización de suelos: Proceso físico y/o químico por el que se mejoran las propiedades físico- mecánicas del suelo natural en corte o de los materiales de préstamo en relleno, con el objeto de hacerlos estables.⁸

Estructura del pavimento asfáltico: Pavimento con todas sus capas de mezclas asfálticas, o de una combinación de capas asfálticas y base granulares, colocadas encima de la sub-rasante natural o estabilizada.⁸

Imprimación asfáltica: Asfalto diluido, aplicado con un rociador de boquilla que permita una distribución uniforme sobre la Base Granular para impermeabilizarla y lograr su adherencia con la Capa Asfáltica de Superficie.⁹

Rasante: Es el nivel superior del pavimento terminado. La Línea de Rasante se ubica en el eje de la vía. ¹⁰

Sub-rasante: Es el nivel inferior del pavimento paralelo a la rasante. 11

Tráfico: Determinación del número de aplicaciones de carga por eje simple equivalente, evaluado durante el período de diseño de proyecto.

Si el número de aplicaciones es menor de 10⁴ ESALs se considera Tráfico Ligero.

Si el número de aplicaciones es mayor o igual a 10⁴ ESALs y menor de 10⁶ ESALs se considera como Tráfico Medio.

Si el número de aplicaciones es mayor a 10⁶ ESALs se considera tráfico alto.¹¹

Tránsito: Acción de ir o pasar de un punto a otro por vías públicas.¹¹

⁹ (Ministerio de Vivienda Construcción y Saneamiento, 2010, p.42)

^{8 (}Ministerio de Vivienda Construcción y Saneamiento, 2010, p.41)

^{10 (}Ministerio de Vivienda Construcción y Saneamiento, 2010, p.45)

¹¹ (Ministerio de Vivienda Construcción y Saneamiento, 2010, p.45)

2.4. Hipótesis

La condición actual del pavimento entre los tramos Carretera Industrial y la Av. Túpac Amaru de la Av. Federico Villarreal se encuentra en un estado deteriorado y el nuevo diseño estructural de pavimento rígido y flexible, cumplirán los parámetros de la Norma AASHTO 93.

2.5. Variables e Indicadores

- a. Variables Independientes:
 - Condiciones del pavimento
 - Resistencia al esfuerzo de corte del suelo
 - Estudio de tránsito vehicular
 - Levantamiento topográfico
- b. Variables Dependientes:
 - Espesor de la Superficie de Rodadura
 - Espesor de la losa de concreto
 - Espesor de la base
 - Espesor de la Sub Base
 - Espesor de la Sub Rasante
- c. Cuadro de Operacionalización de las Variables:

VARIABLES	INDICADORES	UNIDAD DE	INSTRUMENTO DE
INDEPENDIENTES		MEDIDA	INVESTIGACIÓN
Condiciones del	Estado de	Escala de Likert	Ficha de
pavimento	pavimento		Observación
Resistencia al			
esfuerzo de corte	CBR	%	Laboratorio de
del suelo			suelos
Estudio de tránsito	Tráfico	# de Vehículos	Estudio de tráfico
vehicular			
Levantamiento	Topografía	Cotas	Estación Total
topográfico			

VARIABLES INDICADORE DEPENDIENTES		UNIDAD DE MEDIDA	INSTRUMENTO DE INVESTIGACIÓN		
Espesor de la Superficie de rodadura	Sección	Centímetros (cm)	Proceso de Cálculo		
Espesor de la Losa de Concreto	Sección	Centímetros (cm)	Proceso de Cálculo		
Espesor de la Base	Sección	Centímetros (cm)	Proceso de Cálculo		
Espesor de la Sub – base	Sección	Centímetros (cm)	Proceso de Cálculo		
Espesor de la Sub – rasante	Sección	Centímetros (cm)	Proceso de Cálculo		

III. METODOLOGÍA EMPLEADA

3.1. Tipo y nivel de investigación

Será un tipo de investigación **aplicada**, ya que se utiliza de los conocimientos de la ingeniería civil y geotecnia para posterior a ello ponerlo en práctica en el ámbito social, con el fin de poder beneficiar a la comunidad.

3.2. Población y muestra de estudio

a. Población

La población se considera toda la Av. Federico Villarreal.

b. Muestra

Nuestra muestra es el tramo entre la Carretera Industrial y la Av. Túpac Amaru, haciendo un total de 5,017Km de vía en estudio.

3.3. Diseño de investigación

Investigación de campo, ya que tanto el análisis y la recolección de datos se realizaron in situ. En el tramo en estudio se realizó el conteo vehicular, obtención de muestras de suelo para ensayos y el levantamiento topográfico. Así mismo, se empleará metodologías tales como la AASHTO 93 y del Instituto del Asfalto, comúnmente empleadas en la Normativa Peruana para determinar los espesores del pavimento flexible y pavimento rígido.

3.4. Técnicas e instrumentos de investigación

a. Técnicas:

- ✓ Inspección visual.
- ✓ Conteo de vehículos.
- ✓ Recolección de muestras de suelo.
- ✓ Evaluación y análisis de fallas superficiales.
- ✓ Levantamiento topográfico de la zona en estudio.
- ✓ Ensayos de laboratorio.

b. Instrumentos

- ✓ Plano de localización de la zona en estudio.
- ✓ Ficha de observación y recopilación de datos.
- ✓ Formatos para caracterizar el tráfico.
- ✓ Teodolito y estación total.
- ✓ Equipos de laboratorio de mecánica de suelos.

3.5. Procesamiento y análisis de datos

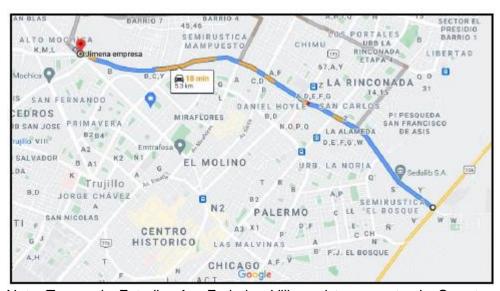
Técnica de procesamiento de datos.

- ✓ En primer lugar, coordinar con la Municipalidad de Trujillo, para los estudios respectivos de suelo y tráfico entre los tramos de la Carretera Industrial y la Av. Túpac Amaru de la Av. Villarreal.
- ✓ Realizar el conteo total vehicular según tipo, sentido y la hora de control para determinar el índice medio diario (IMD).
- ✓ Determinar la capacidad de resistencia de corte del suelo de la subrasante (CBR) en el laboratorio de mecánica de suelos.
- ✓ Realizar una evaluación visual in-situ de las fallas superficiales del pavimento actual del tramo en estudio.
- ✓ Realizar una propuesta económica en software S10 Presupuestos 2005, para comparar costos de diseño de pavimento flexible y pavimento rígido.

Análisis de datos.

- ✓ AutoCad, software de diseño que nos ayudará a ubicar la zona de estudio, ubicación de calicatas y perfil topográfico.
- ✓ Civil 3D, software que permitirá representar la propuesta de diseño del pavimento.
- ✓ Microsoft Excel 2019, programa que simplificará el uso de tablas y hojas de cálculo para la metodología de diseño.

- ✓ Microsoft Word 2019, programa que servirá para redactar el informe de la presente tesis.
- √ S10 Presupuestos 2005, software que permitirá calcular el monto económico de la ejecución del pavimento flexible y pavimento rígido obtenido del diseño previo.


3.6. Generalidades

3.6.1. Ubicación del Área de Estudio

El proyecto denominado "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INSDUSTRIAL Y LA AV. TÚPAC AMARU", se encuentra ubicado en el Distrito de Trujillo, Provincia de Trujillo, Departamento de La Libertad.

Figura 1

Ubicación del tramo de Estudio

Nota. Tramo de Estudio, Av. Federico Villarreal tramo entre la Carretera Industrial y la Av. Túpac Amaru.

3.6.2. Estado Actual del Área en Estudio

El área de intervención del proyecto se encuentra en mal estado, debido al desgaste natural del terreno y de las condiciones climáticas que han afectado directamente la condición del asfalto, por otro lado, existen también erosiones ocasionadas por el paso del tiempo, y que dificultan la transitabilidad hacia el distrito.

3.7. Clima

Durante el invierno, que se presenta en los meses de mayo a setiembre, la temperatura promedio desciende a los 15°C y en el verano que se presenta en los meses de diciembre a marzo, la temperatura puede alcanzar los 32°C.

Deberán tomarse previsiones en caso, de que pueda presentarse condiciones desfavorables como la originada por el fenómeno del niño. También podrían presentarse precipitaciones pluviales de gran magnitud, pudiendo estás generar problemas a la infraestructura vial.

3.8. Geología y Sismicidad

3.8.1. Geología

De acuerdo al Mapa Geológico, se identificó que en el área de estudio un grupo litológico principal constituido por un depósito de sedimentos de tipo aluvial cuya edad geológica pertenece al cuaternario reciente (Q-al).

En el área de estudio no se determinó la presencia del Nivel de Aguas Freáticas a la profundidad explorada de 2.00m. Así mismo, no se determinó la presencia de estructuras geológicas importantes, como fallas, discordancias, grietas pronunciadas, etc.

3.8.2. Geodinámica

La Geodinámica externa en el área de estudio no presenta en la actualidad riesgo alguno como posibles aluviones, huaycos, deslizamientos de masas de tierra, inundaciones, etc.

La Litología del suelo fue caracterizado por un suelo del tipo transportado, identificándose arenas pobremente graduadas con pocos limos.

3.8.3. Sismicidad

De acuerdo al Nuevo Mapa de Zonificación Sísmica del Perú, según la nueva Norma Sismo Resistente (NTE E-030) y del Mapa de Distribución de Máximas Intensidades Sísmicas observadas en el Perú, presentado por el Dr. Ing. Jorge Alva Hurtado (1984), el cual se basa en isosistas de sismos peruanos y datos de intensidades puntuales de sismos históricos y sismos recientes; se concluye que el área en estudio se encuentra dentro de la zona de Alta Sismicidad (Zona 4), existiendo la posibilidad de que ocurran sismos de intensidades tan considerables como VIII a IX den la escala de Mercali Modificada. Ver Figura 8.

3.8.4. Parámetros de diseño Sismorresistente

De acuerdo con la nueva Norma Técnica NTE E-030 y el predominio del suelo, se recomienda adoptar en los diseños Sismo-Resistentes, los siguientes parámetros:

Factor de Zona

Z = 0.45

Condiciones geotécnicas:

- El suelo investigado, pertenece al perfil Tipo S2.
- Periodo de Vibración del Suelo

Tp=0.6seg

- Período que define el inicio de la zona del factor C con desplazamiento constante
 T_L=2.0seg
- Factor de Amplificación del Suelo Tipo S₂. S=1.05

Figura 2

Zonas Sísmicas del Perú

Nota. Norma Sismo-Resistente E.030. Parámetro para el presente diseño, Zona 4, Z=0.45.

3.9. Trabajos de Campo

Se realizaron exploraciones del suelo, mediante la excavación de calicatas y muestreo del suelo.

3.9.1. Calicatas

Se excavaron diez (10) calicatas o pozos exploratorios a cielo abierto, ubicadas convenientemente a lo largo de la zona en estudio, asignándolas las nomenclaturas: C-1, C-2, C-3, C-4, C-5, C-6, C-7, C-8, C-9 y C-10.

El respectivo registro de la estratigrafía de las 10 calicatas, se presentan en el Capítulo correspondiente de ANEXOS. Ver *Anexo N°03: PERFILES ESTRATIGRÁFICOS*.

Tabla 15

Ubicación de Calicatas

N° CALICATA	MUESTRA	PROFUNDIDAD	UBICACIÓN
1	C-1	2.00 m	Intersección Av. Federico Villarreal con Carretera Industrial
2	C-2	2.00 m	Frente a Sedalib S.A.
3	C-3	2.00 m	Intersección Av. Federico Villarreal con Av. Honorio Delgado
4	C-4	2.00 m	Intersección Av. Federico Villarreal con Calle Juan del Corral
5	C-5	2.00 m	Intersección Av. Federico Villarreal con Av. Perú
6	C-6	2.00 m	Intersección Av. Federico Villarreal con Jirón Pucará
7	C-7	2.00 m	Av. Federico Villarreal, frontis Mercado La Hermelinda
8	C-8	2.00 m	Frente al CC. Las Malvinas (Hermelinda)
9	C-9	2.00 m	Intersección Av. Federico Villarreal con Av. Kunturwasi
10	C-10	2.00 m	Intersección Av. Federico Villarreal con Av. Tupac Amaru

Nota. Se realizaron 10 calicatas a lo largo de la zona de estudio.

3.9.2. Muestreo

De cada uno de los perfiles representativos de suelos, se extrajeron muestras alteradas que debidamente identificadas se remitieron al laboratorio para los ensayos correspondientes para la identificación y clasificación de suelos.

3.10. Ensayos de Laboratorio

- Análisis Granulométricos por Tamizado (Norma ASTM D422)
- Límite Líquido (Norma ASTM D423)
- Límite Plástico (Norma ASTM D424)
- Contenido de Humedad (ASTM D2216)
- Determinación del C.B.R. (California Bearing Ratio)
- Ensayo de Proctor Modificado/Densidad Seca Máxima.

Sales Solubles Totales (Ex Itintec).

3.11. Trabajos de Gabinete

3.11.1. Perfil Estratigráfico

Los perfiles estratigráficos obtenidos de los trabajos de campo y de los ensayos de laboratorio se adjuntan en el Capítulo correspondiente de ANEXOS. Ver *Anexo N°03: PERFILES ESTRATIGRÁFICOS*.

3.11.2. Conformación del Subsuelo

Calicata C-1:

0.00-0.70: Material de relleno conformado por suelo orgánico, arena y algunas piedras.

0.70-2.00: Finalmente encontramos arena pobremente graduada con pocos limos (SP-SM) de color beige pardo a amarillo claro, de compacidad media, poca plasticidad y regular humedad. No se encontró el NAF hasta la profundidad explorada.

Calicata C-2:

0.00-1.00: Material de relleno conformado por suelo orgánico, arena y algunas piedras.

1.00-2.00: Finalmente encontramos arena pobremente graduada con pocos limos (SP-SM) de color beige pardo a amarillo claro, de compacidad media, poca plasticidad y regular humedad. No se encontró el NAF hasta la profundidad explorada.

Calicata C-3:

0.00-0.40: Material de relleno conformado por suelo orgánico, arena y algunas piedras.

0.40-2.00: Finalmente encontramos arena pobremente graduada con pocos limos (SP-SM) de color beige pardo a amarillo claro, de compacidad media, poca plasticidad y regular humedad. No se encontró el NAF hasta la profundidad explorada.

Calicata C-4:

0.00-1.00: Material de relleno conformado por suelo orgánico, arena y algunas piedras.

1.00-2.00: Finalmente encontramos arena arcillosa (SC) de color marrón claro, de compacidad media, poca plasticidad y regular humedad. No se encontró NAF hasta la profundidad explorada.

Calicata C-5:

0.00-0.40: Material de relleno conformado por suelo orgánico, arena y algunas piedras.

0.40-2.00: Finalmente encontramos arena pobremente graduada con pocos limos (SP-SM) de color beige pardo a amarillo claro, de compacidad media, poca plasticidad y regular humedad. No se encontró el NAF hasta la profundidad explorada.

Calicata C-6:

0.00-1.20: Material de relleno conformado por suelo orgánico, arena y algunas piedras.

1.20-2.00: Finalmente encontramos arena pobremente graduada con pocos limos (SP-SM) de color beige pardo a amarillo claro, de compacidad media, poca plasticidad y regular humedad. No se encontró el NAF hasta la profundidad explorada.

Calicata C-7:

0.00-1.20: Material de relleno conformado por suelo orgánico, arena y algunas piedras.

1.20-2.00: Finalmente encontramos arena pobremente graduada con pocos limos (SP-SM) de color beige pardo a amarillo claro, de compacidad media, poca plasticidad y regular humedad. No se encontró el NAF hasta la profundidad explorada.

Calicata C-8:

0.00-1.00: Material de relleno conformado por suelo orgánico, arena y algunas piedras.

1.00-2.00: Finalmente encontramos arena arcillosa (SC) de color marrón claro, de compacidad media, poca plasticidad y regular humedad. No se encontró el NAF hasta la profundidad explorada.

Calicata C-9:

0.00-1.00: Material de relleno conformado por suelo orgánico, arena y algunas piedras.

1.00-2.00: Finalmente encontramos arena pobremente graduada con pocos limos (SP-SM) de color beige pardo a amarillo claro, de compacidad media, poca plasticidad y regular humedad. No se encontró el NAF hasta la profundidad explorada.

Calicata C-10:

0.00-1.00: Material de relleno conformado por suelo orgánico, arena y algunas piedras.

1.00-2.00: Finalmente encontramos arena pobremente graduada con pocos limos (SP-SM) de color beige pardo a amarillo claro, de compacidad media, poca plasticidad y regular humedad. No se encontró el NAF hasta la profundidad explorada.

3.11.3. Presencia del Nivel Freático

No se encontró el nivel de agua freática hasta la profundidad máxima de exploración 2.00m. (enero del 2022).

3.12. Estudio de Tráfico

Para el estudio de tráfico realizamos el conteo de vehículos en la zona de estudio del proyecto en el transcurso de 7 días consecutivos durante las 24 horas del día, posteriormente se realizó el procesamiento de datos para obtener el IMD y el número de repeticiones de ejes equivalentes (EE) de 8.2 tn, se realizaron en base a las recomendaciones del "Reglamento Nacional de Edificaciones:

Norma CE.010 Pavimentos urbanos, 2010" y del "Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos, 2014".

Se consideraron 7 puntos de control para el conteo de vehículos que identificaremos a continuación:

- Punto de Control N°1: Intersección entre la "Av. Túpac
 Amaru II" y la "Av. Federico Villarreal".
- Punto de Control N°2: Intersección entre "Av. Kunturwasi"
 y la "Av. Federico Villarreal".
- Punto de Control N°3: Intersección entre la "Av. 8 de Octubre" (Mercado La Hermelinda) y la "Av. Federico Villarreal".
- Punto de Control N°4: Intersección entre "Av. Miraflores" y la "Av. Federico Villarreal".
- Punto de Control N°5: Intersección entre "Prolongación Unión" y la "Av. Federico Villarreal".
- Punto de Control N°6: Intersección entre "Calle Juan del Corral y Calmet" y la "Av. Federico Villarreal".
- Punto de Control N°7: Intersección entre "Carretera Industrial" y la "Av. Federico Villarreal".

Los días de conteo se realizaron de la siguiente manera:

- Punto de Control N°1: martes 7 de diciembre del 2021.
- Punto de Control N°2: sábado 11 de diciembre del 2021.
- Punto de Control N°3: miércoles 8 de diciembre del 2021.
- Punto de Control N°4: lunes 6 de diciembre del 2021.
- Punto de Control N°5: domingo 12 de diciembre del 2021.
- Punto de Control N°6: viernes 10 de diciembre del 2021.
- Punto de Control N°7: jueves 9 de diciembre del 2021.

Figura 3

Ubicación geográfica del tramo en estudio

Leyenda				
	Punto de Control N°1			
	Punto de Control N°2			
0	Punto de Control N°3			
	Punto de Control N°4			
	Punto de Control N°5			
0	Punto de Control N°6			
•	Punto de Control N°7			

Nota. Ubicación de puntos de control a lo largo del tramo de estudio.

3.12.1. Conteo Vehicular

El conteo vehicular se realizó en 7 puntos de control distribuidos en los 5Km del tramo en estudio de la Av. Federico Villarreal, por el transcurso de 7 días durante las 24 horas del día, desde el 06 de diciembre del 2021 hasta el 12 de diciembre de 2021.

Tabla 16

Conteo de Vehículos

	ESTACION:		Lunes 06/12/2021	Martes 07/12/2021	Miércoles 08/12/2021	Jueves 09/12/2021	Viernes 10/12/2021	Sábado 11/12/2021	Domingo 12/12/2021
V E H	MOTO "L3"	65	1230	1048	1055	1,097	738	760	1133
I C U L	MOTOTAXI "L5"	8	281	234	280	120	114	345	100
0 8	AUTO "M1"		6055	4935	5521	5,117	4365	4614	6283
C A M	PANEL "N1"		235	238	248	371	169	335	101
I O N E	PICK UP "N2"		1098	1105	1045	1,814	1615	871	698
T A S	RURAL COMBI "M2"		179	101	209	513	357	391	129
	В2		60	54	44	87	136	27	31
B U S	B3-1		0	5	0	4	0	0	0
	B4-1		0	0	0	0	0	0	0
С	C2		470	421	538	631	488	528	224
A M I O	С3		181	90	101	238	264	125	80
N	C4	****	10	10	7	11	17	7	9

	T2S1		3	2	2	2	3	2	1
S	T2S2	6 6 00	1	6	4	42	11	1	5
M I T	T2S3	0:000	1	1	0	3	2	1	0
R A I L	T3S1	6-501 0	0	0	0	8	5	0	0
E R	T3S2	6 001 00	0	0	0	0	1	1	0
	T3S3	001 000	23	21	18	156	49	14	15
	C2R2	0000	0	0	0	1	0	0	0
T R A	C2R3		0	0	0	0	0	0	0
I L E R	C3R2	0000	0	0	0	0	0	0	0
	C3R3	0 00 0 00	0	0	0	0	2	0	0

Nota. Datos obtenidos por los 7 días de conteo vehicular realizados.

3.12.2. Cálculo del IMD's

Se toma como base los muestreos de IMD obtenidos para los días de conteo realizado. Este valor nos brinda el volumen vehicular por días de la semana.

Tabla 17Cálculo del Índice Medio Diario Semanal

	ESTACION:		Lunes 06/12/2021	Martes 07/12/2021	Miércoles 08/12/2021	Jueves 09/12/2021	Viernes 10/12/2021	Sábado 11/12/2021	Domingo 12/12/2021	IMD	IMD'S
V E	MOTO "L3"	655	1230.00	1048.00	1055.00	1097.00	738.00	760.00	1133.00	7061.00	1009.00
H I C U L O S	MOTOTAXI "L5"		281.00	234.00	280.00	120.00	114.00	345.00	100.00	1474.00	211.00
	AUTO "M1"		6055.00	4935.00	5521.00	5117.00	4365.00	4614.00	6283.00	36890.00	5270.00
C A M	PANEL "N1"		235.00	238.00	248.00	371.00	169.00	335.00	101.00	1697.00	242.00
I O N E	PICK UP "N2"		1098.00	1105.00	1045.00	1814.00	1615.00	871.00	698.00	8246.00	1178.00
T A S	RURAL COMBI "M2"		179.00	101.00	209.00	513.00	357.00	391.00	129.00	1879.00	268.00
B	B2		60.00	54.00	44.00	87.00	136.00	27.00	31.00	439.00	63.00
s	B3-1		0.00	5.00	0.00	4.00	0.00	0.00	0.00	9.00	1.00
С	C2	<u> </u>	470.00	421.00	538.00	631.00	488.00	528.00	224.00	3300.00	471.00
A M I O	C3		181.00	90.00	101.00	238.00	264.00	125.00	80.00	1079.00	154.00
N	C4		10.00	10.00	7.00	11.00	17.00	7.00	9.00	71.00	10.00
	T2S1		3.00	2.00	2.00	2.00	3.00	2.00	1.00	15.00	2.00
S E M	T2S2	0 0 1 00	1.00	6.00	4.00	42.00	11.00	1.00	5.00	70.00	10.00
T R A	T2S3	1 000	1.00	1.00	0.00	3.00	2.00	1.00	0.00	8.00	1.00
L E R	T3S1		0.00	0.00	0.00	8.00	5.00	0.00	0.00	13.00	2.00
	T3S3	0 00 000	23.00	21.00	18.00	156.00	49.00	14.00	15.00	296.00	42.00

Nota. Se expresa valores del IMD y IMD's obtenidos del conteo vehicular.

3.12.3. Factor de crecimiento acumulado (Fca)

Para realizar la propuesta de diseño estructural de pavimento rígido y flexible para la Av. Federico Villarreal entre los tramos de la carretera industrial y la Av. Túpac Amaru, se estableció un periodo de diseño de 20 años.

La tasa de crecimiento promedio anual que se consideró para la estimación del crecimiento de la población de Trujillo es del 2%.

Tabla 18

Tasa de crecimiento promedio anual de la población censada, según provincia, 1981-1993, 1993-2007 y 2007 y 2017

Provincia	Tasa de crecimiento promedio anual (%)				
Provincia	1981 – 1993 1993 – 2007		2007 – 2017		
Total	2.2	1.7	1		
Trujillo	3.2	2.2	1.8		
Ascope	0.2	0.5	0		
Bolívar	1.7	-0.1	-1.4		
Chepén	1.5	1.8	0.3		
Julcán	-	-0.8	-1.6		
Otuzco	0.3	0.4	-1.3		
Pacasmayo	2.5	1.3	0.9		
Pataz	0.7	1.5	0.3		
Sánchez de Carrión	2.1	1.6	0.6		
Santiago de Chuco	-1.6	0.7	-1.4		
Gran Chimú	0.5	0.3	-1.2		
Virú	3.5	5.7	1.9		

Nota. Datos obtenidos de la Oficina Departamental de Estadística e Informática La Libertad.

La (AASHTO, 1993), establece valores para el Factor de Crecimiento Acumulado (Fca) en la Tabla N°18, donde se obtuvo un valor de:

Fca = 24.30

Tabla 19

Factores de crecimiento del tráfico (Fca)

Periodo de Análisis	Factor Sin							
(años)	Crecimiento	2	4	5	6	7	8	10
1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	2.00	2.02	2.04	2.05	2.06	2.07	2.08	2.10
3	3.00	3.06	3.12	3.15	3.18	3.21	3.25	3.31
4	4.00	4.12	4.25	4.31	4.37	4.44	4.51	4.64
5	5.00	5.20	5.42	5.53	5.64	5.75	5.87	6.11
6	6.00	6.31	6.63	6.80	6.98	7.15	7.34	7.32
7	7.00	7.43	7.90	8.14	8.39	8.65	8.92	9.49
8	8.00	8.58	9.21	9.55	9.90	10.26	10.64	11.44
9	9.00	9.75	10.58	11.03	11.49	11.98	12.49	13.58
10	10.00	10.95	12.01	12.58	13.18	13.82	14.49	15.94
11	11.00	12.17	13.49	14.21	14.97	15.78	16.65	18.53
12	12.00	13.41	15.03	15.92	16.87	17.89	18.98	21.38
13	13.00	14.68	16.63	17.71	18.88	20.14	21.50	24.52
14	14.00	15.97	18.29	19.16	21.01	22.55	24.21	29.97
15	15.00	17.29	20.02	21.58	23.28	25.13	27.15	31.77
16	16.00	18.64	21.82	23.66	25.67	27.89	30.32	35.95
17	17.00	20.01	23.70	25.84	28.21	30.84	33.75	40.55
18	18.00	21.41	25.65	28.13	30.91	34.00	37.45	45.60
19	19.00	28.84	27.67	30.54	33.76	37.38	41.45	51.16
20	20.00	24.30	29.78	33.06	36.79	41.00	45.76	57.28
25	25.00	32.03	41.65	47.73	54.86	63.25	73.11	98.35
30	30.00	40.57	56.08	66.44	79.06	94.46	113.28	164.49
35	35.00	49.99	73.65	90.32	111.43	138.24	172.32	271.02

Nota. Factor de Crecimiento Anual (Fca) en base al periodo de años y la tasa de crecimiento anual. Valores según la Guía AASHTO para el Diseño Estructural del Pavimento, 1993, p. 384.

3.12.4. Factor de distribución direccional (Fd) y de carril (Fc)

En nuestro diseño se van a realizar dos calzadas con separador central, con un número de sentidos igual a dos, presentando dos carriles por sentido. En base a estos factores se determinaron los valores del (Fd) y (Fc).

La Guía AASHTO para el Diseño Estructural del Pavimento, 1993, establece valores para el Factor de Distribución Direccional (Fd) y de Carril (Fc) en la Tabla N°19, en base a lo que se pretende diseñar se obtuvo un valor de:

Fd = 0.50

Fc = 0.80

Tabla 20Factores de distribución direccional y de carril para determinar el tránsito en el carril de diseño

Número de calzadas	Número de sentidos	Número de carriles por sentido	Factor Direccional (Fd)	Factor Carril (Fc)	Factor Ponderado Fd x Fc para carril de diseño
	1 sentido	1	1.00	1.00	1.00
	1 sentido	2	1.00	0.80	0.80
1 calzada (para IMDa total	1 sentido	3	1.00	0.60	0.60
de la calzada)	1 sentido	4	1.00	0.50	0.50
,	2 sentidos	1	0.50	1.00	0.50
	2 sentidos	2	0.50	0.80	0.40
2 calzadas con	2 sentidos	1	0.50	1.00	0.50
separador central (para IMDa total	2 sentidos	2	0.50	0.80	0.40
de las dos	2 sentidos	3	0.50	0.60	0.30
calzadas)	2 sentidos	4	0.50	0.50	0.25

Nota. Los valores para Factor de Distribución Direccional y de Carril se obtiene en base al número de calzadas, sentidos y carriles por sentido del tramo en estudio.

3.12.5. Factor de Ejes Equivalentes (EE)

La guía AASHTO definió los Ejes Equivalentes (EE), al efecto de deterioro causado sobre la estructura del pavimento por un eje simple de dos ruedas convencionales cargado con 8.2tn de peso, con neumáticos a la presión de 80lbs/pulg².

Tabla 21Configuración de los ejes

Conjunto de Eje (s)	Nomenclatura	N° de Neumáticos	Gráfico
EJE SIMPLE (con rueda simple)	1RS	2	
EJE SIMPLE (con rueda doble)	1RD	4	
EJE TANDEM (1Eje Rueda Simple + 1 Eje Rueda Doble)	1RS + 1RD	6	
EJE TANDEM (2 Ejes Rueda Doble)	2RD	8	
EJE TRIDEM (1 Rueda Simple + 2 Ejes Rueda Doble)	1RS + 2RD	10	
EJE TRIDEM (3 Ejes Rueda Doble)	3RD	12	

Nota.

RS: Rueda Simple RD: Rueda Doble

Para calcular los EE, se utilizarán las siguientes relaciones simplificadas, para las diferentes configuraciones de ejes de vehículos pesados (buses y camiones) y tipo de pavimento.

Tabla 22Relación de cargas por eje para determinar Ejes Equivalentes (EE) para pavimentos flexibles

Tipo de Eje	Eje Equivalente (EE 8.2 tn)
Eje Simple de ruedas simples (EE _{S1})	$EE_{S1} = [P/6.6]^{4.0}$
Eje Simple de ruedas simples (EE _{S2})	$EE_{S2} = [P/8.2]^{4.0}$
Eje Tándem (1 eje ruedas dobles + 1 eje rueda simples) (EE _{TA1})	$EE_{TA1} = [P / 14.8]^{4.0}$
Eje Tándem (2 ejes ruedas dobles) (EE _{TA2})	$EE_{TA2} = [P / 15.1]^{4.0}$
Eje Tridem (2 ejes ruedas dobles + 1 eje rueda simples) (EE _{TR1})	$EE_{TR1} = [P / 20.7]^{3.9}$
Eje Tridem (3 ejes ruedas dobles) (EE _{TR2})	$EE_{TR2} = [P / 21.8]^{3.9}$
P = peso real por eje en toneladas	

Nota. En base a correlaciones con los valores de las Tablas del apéndice D de la Guía AASHTO, 1993.

Tabla 23

Relación de cargas por eje para determinar Ejes Equivalentes (EE) para pavimentos rígidos

Tipo de Eje	Eje Equivalente (EE 8.2 tn)		
Eje Simple de ruedas simples (EE _{S1})	$EE_{S1} = [P/6.6]^{4.1}$		
Eje Simple de ruedas simples (EE _{S2})	$EE_{S2} = [P/8.2]^{4.1}$		
Eje Tándem (1 eje ruedas dobles + 1 eje rueda simples) (EE _{TA1})	$EE_{TA1} = [P / 13.0]^{4.1}$		
Eje Tándem (2 ejes ruedas dobles) (EE _{TA2})	$EE_{TA2} = [P / 13.3]^{4.1}$		
Eje Tridem (2 ejes ruedas dobles + 1 eje rueda simples) (EE _{TR1})	$EE_{TR1} = [P / 16.6]^{4.0}$		
Eje Tridem (3 ejes ruedas dobles) (EE _{TR2})	$EE_{TR2} = [P / 17.5]^{4.0}$		
P = peso real por eje en toneladas			

Nota. En base a correlaciones con los valores de las Tablas del apéndice D de la Guía AASHTO, 1993.

3.12.6. Factor de Vehículo Pesado (Fvp)

Es el número de ejes equivalentes promedio por tipo de vehículo pesado.

Tabla 24Factor vehículo pesado para pavimento flexible

FACTOR	FACTOR VEHICULO CAMION C2					
El peso total del Cami	on C2 es de 18 ton.					
Configuracion Vehicular	Descripcion Grafica de los Vehiculos					
C2						
	EEs1= [P/6.6]^4.0	EEta= [P/8.2]^4.0				
Ejes	E1	E2				
Tipos de Eje	Eje Simple	Eje Simple				
Tipos de Rueda	Rueda Simple	Rueda Doble				
Peso (Ton)	7	11				
Factor E.E.	1.265	3.238				
Total Factor Camion C2	4.504					

FACTOR VEHICULO CAMION C3						
El peso total del Camion C3 es de 25 ton.						
Configuracion Vehicular	Descripcio	Descripcion Grafica de los Vehiculos				
C3						
	EEs1= [P/6.6]^4.0	EEta2= [P	/15.1]^4.0			
Ejes	E1	E2	E3			
Tipos de Eje	Eje Simple	Еје Та	andem			
Tipos de Rueda	Rueda Simple	2 Ejes de Ru	iedas Dobles			
Carga Según Censo de Carga (ton)	7	9	9			
Peso (Ton)	7 18					
Factor E.E.	1.265 2.019					
Total Factor Camion C3	3.285					

	FACTOR V	EHICULO CAM	ION C4			
El peso total del Cami	on C4 es de 30 ton.					
Configuracion Vehicular	D	Descripcion Grafica de los Vehiculos				
C4		***				
	EEs1= [P/6.6]^4.0	EEtr1= [P/20.7]^3.9				
Ejes	E1	E2	E3	E4		
Tipos de Eje	Eje Simple		Eje Tridem			
Tipos de Rueda	Rueda Simple	2 ejes ruedas dobles + 1 eje rueda simple				
Carga Según Censo de Carga (ton)	7	8	8	7		
Peso (Ton)	7	23				
Factor E.E.	1.265	1.508				
Total Factor Camion C4	2.774					

FACTOR VEHICULO SEMI TRAILER T2S1					
El peso total del SEMI	TRAILER T2S1 e	s de 29 ton.			
Configuracion Vehicular	Descripci	on Grafica de los	Vehiculos		
T2S1					
	$EEs1 = [P/6.6]^4.0$	EEs2= [P/8.2]^4.0	EEs2= [P/8.2]^4.0		
Ejes	E1	E2	E3		
Tipos de Eje	Eje Simple	Eje Simple	Eje Simple		
Tipos de Rueda	Rueda Simple	Rueda Doble	Rueda Doble		
Carga Según Censo de Carga (ton)	7	11	11		
Peso (Ton)	7	11	11		
Factor E.E.	1.265	3.238	3.238		
Total Factor Semi Trailer T2S1	7.742				

	FACTOR VEH	ICULO SEMI TRA	AILER T2S2			
El peso total del SEMI	TRAILER T2S2 e	s de 36 ton.				
Configuracion Vehicular		Descripcion Grafica de los Vehiculos				
T2S2						
	EEs1= $[P/6.6]^4.0$	EEs2= [P/8.2]^4.0	EEta2= [P/15.1]^4.0			
Ejes	E1	E2	E3	E4		
Tipos de Eje	Eje Simple	Eje Simple	Eje T	andem		
Tipos de Rueda	Rueda Simple	Rueda Doble	2 ejes de rı	iedas dobles		
Carga Según Censo de Carga (ton)	7	11	9	9		
Peso (Ton)	7	7 11 18				
Factor E.E.	1.265	3.238	2.019			
Total Factor Semi Trailer T2S2	6.523					

	FACTO	R VEHICULO S	EMI TRAILER	T2S3		
El peso total del SEM	I TRAILER T2S3	es de 43 ton.				
Configuracion Vehicular		Descripcion Grafica de los Vehiculos				
T2S3						
]	EEs1= [P/6.6]^4.0	EEs2= [P/8.2]^4.0	E	Etr2= [P/21.8]^3.9)	
Ejes	E1	E2	E3	E4	E5	
Tipos de Eje	Eje Simple	Eje Simple		Eje Tridem		
Tipos de Rueda	Rueda Simple	Rueda Doble	3	ejes de ruedas doble	:s	
Carga Según Censo de Carga (ton)	7	11	9	8	8	
Peso (Ton)	7	11		25		
Factor E.E.	1.265	3.238		1.706		
Total Factor Semi Trailer T2S3			6.210			

FACTOR VEHICULO SEMI TRAILER T3S1								
El peso total del SEMI	El peso total del SEMI TRAILER T3S1 es de 36 ton.							
Configuracion Vehicular		Descripcion Graf	ica de los Vehic	ulos				
T3S1		I II I						
	EEs1= [P/6.6]^4.0	EEta2= [P	P/15.1]^4.0	EEs2= [P/8.2]^4.0				
Ejes	E1	E2	E3	E4				
Tipos de Eje	Eje Simple	Eje Ta	andem	Eje Simple				
Tipos de Rueda	Rueda Simple	2 ejes de ru	edas dobles	Rueda doble				
Carga Según Censo de Carga (ton)	7	9	9	11				
Peso (Ton)	7	1	8	11				
Factor E.E.	1.265	2.0)19	3.238				
Total Factor Semi Trailer T3S1	6.523							

FACTOR VEHICULO SEMI TRAILER T3S3							
El peso total del SEMI	TRAILER T3S3 es	de 50 Ton					
Configuracion			Descripcion Grafic	a de los Vehiculos			
Vehicular			Descripcion Grane	a de los venicalos			
T3S3							
	EEs1= [P/6.6]^4.0	EEta2= [F	P/15.1]^4.0]	EEtr2= [P/21.8]^3.9		
Ejes	E1	E2	E3	E4	E5	E6	
Tipos de Eje	Eje Simple	Eje T	andem	Eje Tridem			
Tipos de Rueda	Rueda Simple	2 ejes de ru	edas dobles	3	ejes de ruedas dob	les	
Carga Según Censo de Carga (ton)	7	9	9	9	8	8	
Peso (Ton)	7	1	8		25		
Factor E.E.	1.265	2.0)19		1.706		
Total Factor Semi Trailer T3S3		4.991					

Nota. Número de ejes equivalentes promedio por tipo de vehículo pesado para pavimento flexible.

Tabla 25

Factor vehículo pesado para pavimento rígido

FACTOR VEHICULO CAMION C2							
	El peso total del Camion C2 es de 18 ton.						
Configuracion Vehicular	Descripcion Grafica de los Vehiculos						
C2							
	EEs1= [P/6.6]^4.1	EEta= [P/8.2]^4.1					
Ejes	E1	E2					
Tipos de Eje	Eje Simple	Eje Simple					
Tipos de Rueda	Rueda Simple	Rueda Doble					
Peso (Ton)	7	11					
Factor E.E.	1.273	3.335					
Total Factor Camion C2	4.608						

	FACTOR VEHICUL	O CAMION C3		
El peso total del Camio	on C3 es de 25 ton.			
Configuracion Vehicular	Descripcio	n Grafica de los V	ehiculos	
С3				
	EEs1= [P/6.6]^4.1	EEta2= [P/	13.3]^4.1	
Ejes	E1	E2	E3	
Tipos de Eje	Eje Simple	Eje Ta	ndem	
Tipos de Rueda	Rueda Simple	2 Ejes de Ru	edas Dobles	
Carga Según Censo de Carga (ton)	7	9	9	
Peso (Ton)	7	13	8	
Factor E.E.	1.273	3.4	58	
Total Factor Camion C3	4.731			

	FACTOR V	EHICULO CAMIO	ON C4	
El peso total del Camio	on C4 es de 30 ton.			
Configuracion Vehicular	Ι	Descripcion Grafica	de los Vehiculos	
C4				
	EEs1= [P/6.6]^4.1		EEtr1= [P/16.6]^4	
Ejes	E1	E2	E3	E4
Tipos de Eje	Eje Simple		Eje Tridem	
Tipos de Rueda	Rueda Simple	2 ejes rued	as dobles + 1 eje rue	eda simple
Carga Según Censo de Carga (ton)	7	8	8	7
Peso (Ton)	7		23	
Factor E.E.	1.273		3.685	
Total Factor Camion C4	4.958			

FACTOR VEHICULO SEMI TRAILER T2S1					
El peso total del SEMI	TRAILER T2S1 es	de 29 ton.			
Configuracion Vehicular	Descripcio	on Grafica de los V	ehiculos		
T2S1					
	EEs1= [P/6.6]^4.1	EEs2= [P/8.2]^4.1	EEs2= [P/8.2]^4.1		
Ejes	E1	E2	E3		
Tipos de Eje	Eje Simple	Eje Simple	Eje Simple		
Tipos de Rueda	Rueda Simple	Rueda Doble	Rueda Doble		
Carga Según Censo de Carga (ton)	7	11	11		
Peso (Ton)	7	11	11		
Factor E.E.	1.273	3.335	3.335		
Total Factor Semi Trailer T2S1		7.942			

	FACTOR VEH	ICULO SEMI TRAII	LER T2S2			
El peso total del SEMI	TRAILER T2S2 es	de 36 ton.				
Configuracion Vehicular]	Descripcion Grafica	de los Vehiculos			
T2S2						
	EEs1= [P/6.6]^4.1	EEs2= [P/8.2]^4.1	EEta2= [I	2/13.3]^4.1		
Ejes	E1	E2	E3	E4		
Tipos de Eje	Eje Simple	Eje Simple	Eje T	andem		
Tipos de Rueda	Rueda Simple	Rueda Doble	2 ejes de ru	ıedas dobles		
Carga Según Censo de Carga (ton)	7	11	9	9		
Peso (Ton)	7	11	1	18		
Factor E.E.	1.273	3.335	3.4	458		
Total Factor Semi Trailer T2S2	8.066					

	FACT	OR VEHICULO SE	MI TRAILER T29	83			
El peso total del SEM	TRAILER T2S3 es	de 43 ton.					
Configuracion Vehicular		Descripcion Grafica de los Vehiculos					
T2S3							
	EEs1= [P/6.6]^4.1	EEs2= [P/8.2]^4.1		EEtr2= [P/17.5]^4			
Ejes	E1	E2	E3	E4	E5		
Tipos de Eje	Eje Simple	Eje Simple		Eje Tridem			
Tipos de Rueda	Rueda Simple	Rueda Doble	3	ejes de ruedas doble	es		
Carga Según Censo de Carga (ton)	7	11	9 8		8		
Peso (Ton)	7	11		25			
Factor E.E.	1.273	3.335		4.165			
Total Factor Semi Trailer T2S3		8.773					

FACTOR VEHICULO SEMI TRAILER T3S1							
El peso total del SEMI TRAILER T3S1 es de 36 ton.							
Configuracion Vehicular]	Descripcion Grafica de los Vehiculos					
T3S1	I II I						
	EEs1= [P/6.6]^4.1	EEta2= [P/	/13.3]^4.1	EEs2= [P/8.2]^4.1			
Ejes	E1	E2	E3	E4			
Tipos de Eje	Eje Simple	Eje Ta	ndem	Eje Simple			
Tipos de Rueda	Rueda Simple	2 ejes de rue	edas dobles	Rueda doble			
Carga Según Censo de Carga (ton)	7	9	9	11			
Peso (Ton)	7	18	3	11			
Factor E.E.	1.273	3.4	58	3.335			
Total Factor Semi Trailer T3S1	8.066						

		FACTOR VEHI	CULO SEMI TRAI	LER T3S3			
El peso total del SEMI	TRAILER T3S3 es d	le 50 Ton					
Configuracion Vehicular		Ι	Descripcion Grafica	de los Vehiculos			
T3S3							
	EEs1= [P/6.6]^4.1	EEta2= [P	/13.3]^4.1]	EEtr2= [P/17.5]^4		
Ejes	E1	E2	E3	E4	E5	E6	
Tipos de Eje	Eje Simple	Eje Ta	andem	Eje Tridem			
Tipos de Rueda	Rueda Simple	2 ejes de ru	edas dobles	3 6	3 ejes de ruedas dobles		
Carga Según Censo de Carga (ton)	7	9	9	9	8	8	
Peso (Ton)	7	1	8		25		
Factor E.E.	1.273	3.458 4.165					
Total Factor Semi Trailer T3S3	8.896						

Nota. Número de ejes equivalentes promedio por tipo de vehículo pesado para pavimento rígido.

3.12.7. Factor de ajuste por presión de neumáticos (Fp)

Es el número de ejes equivalentes promedio por tipo de vehículo pesado.

Para el cálculo del Número de Repeticiones de Ejes Equivalentes, se consideró el factor de ajuste por presión de neumáticos, con la finalidad de calcular el efecto que produce la presión del neumático sobre el pavimento.

Para ambos casos, tanto pavimento flexible y pavimento rígido, se consideró el factor de ajuste por presión de neumáticos de:

$$Fp = 1.00$$

3.12.8. Cálculo de Ejes Equivalentes día – carril

Para obtener el diseño estructural del pavimento se necesita los Ejes Equivalentes por cada tipo de vehículo pesado, por día para el carril de diseño. Al realizar un análisis comparativo del pavimento flexible y rígido, se obtendrán 2 diferentes EE día – carril debido a que el Factor Vehículo Pesado varía en el diseño del pavimento flexible y rígido.

EE_{dia-carril} = Ejes Equivalentes por cada tipo de vehículo pesado, por día para el carril de diseño. Resulta del IMD por cada tipo de vehículo pesado, por el Factor Direccional, por el Factor Carril de diseño, por el Factor Vehículo Pesado del tipo seleccionado y por el Factor de Presión de neumáticos. Para cada tipo de vehículo pesado, se aplica la siguiente relación:

EEdia-carril = IMDpi x Fd x Fc x Fvpi x Fpi

donde:

IMDp: corresponde al Índice Medio Diario según tipo de vehículo pesado seleccionado (i)

Fd: Factor Direccional,

Fc: Factor Carril de diseño.

Fvp: Factor vehículo pesado del tipo seleccionado (i) calculado según su composición de ejes. Representa el número de ejes equivalentes promedio por tipo de vehículo pesado (bus o camión), y el promedio se obtiene dividiendo el total de ejes equivalentes (EE) de un determinado tipo de vehículo pesado entre el número total del tipo de vehículo pesado seleccionado.

Fp: Factor de Presión de neumáticos,

Tabla 26 *Ejes Equivalentes día - carril para pavimento flexible*

					BLE			
	ESTACION:			FACTOR DIRECCIONAL (Fd)	FACTOR CARRIL (Fc)	FACTOR VEHICULO PESADO (Fvp)	PACTOR DE AJUSTE POR PRESION DE NEUMATICOS (Fp)	EEdia-carril
V E H	MOTO "L3"	65	1009	0.50	0.80	0.0000	1.00	0.000
C U	MOTOTAXI "L5"		211	0.50	0.80	0.0000	1.00	0.000
L O S	AUTO "M1"		5270	0.50	0.80	0.0011	1.00	1.111
C A M	PANEL "N1"		242	0.50	0.80	0.0011	1.00	0.051
I O N E	PICK UP "N2"		1178	0.50	0.80	0.0169	1.00	3.973
T A S	RURAL COMBI "M2"		268	0.50	0.80	0.0169	1.00	0.904
B U	B2		63	0.50	0.80	4.5037	1.00	56.746
S	B3-1		1	0.50	0.80	2.6313	1.00	0.526
С	C2		471	0.50	0.80	4.5037	1.00	424.244
A M I O	С3		154	0.50	0.80	3.2846	1.00	101.165
N	C4		10	0.50	0.80	2.7736	1.00	5.547
S E	T2S1		2	0.50	0.80	7.7419	1.00	3.097
M I	T2S2		10	0.50	0.80	6.5229	1.00	13.046
T R	T2S3	0:000	1	0.50	0.80	6.2097	1.00	1.242
A I L	T3S1		2	0.50	0.80	6.5229	1.00	2.609
E R	Т3S3	0 00 000	42	0.50	0.80	4.9906	1.00	41.921
							ΣΕΕ día - carril	656.183

Nota. En la Tabla N°26 se muestra el valor de EE día – carril, obtenido de multiplicar el IMD de cada tipo de vehículo pesado, por el Factor Direccional, Factor Carril, Factor Vehículo Pesado y Factor de Ajuste por Presión de Neumáticos obtenidos anteriormente.

Tabla 27Ejes Equivalentes día-carril para pavimento rígido

			PAVIMENTO RIGIC			00		
ESTACION:		IMD	FACTOR DIRECCIONAL (Fd)	FACTOR CARRIL (Fc)	FACTOR VEHICULO PESADO (Fvp)	FACTOR DE AJUSTE POR PRESION DE NEUMATICOS (Fp)	EEdia-carril	
V E	MOTO "L3"		1009	0.50	0.80	0.0000	1.00	0.000
H C U	MOTOTAXI "L5"		211	0.50	0.80	0.0000	1.00	0.000
L O S	AUTO "M1"		5270	0.50	0.80	0.0009	1.00	0.920
C A M	PANEL "N1"		242	0.50	0.80	0.0009	1.00	0.042
O N E	PICK UP "N2"		1178	0.50	0.80	0.0150	1.00	3.526
T A S	RURAL COMBI "M2"		268	0.50	0.80	0.0150	1.00	0.802
В	B2		63	0.50	0.80	4.6077	1.00	58.057
S	B3-1		1	0.50	0.80	3.6156	1.00	0.723
С	C2		471	0.50	0.80	4.6077	1.00	434.042
A M I	C3		154	0.50	0.80	4.7308	1.00	145.710
N	C4		10	0.50	0.80	4.9582	1.00	9.916
	T2S1		2	0.50	0.80	7.9425	1.00	3.177
S E M I	T2S2	0 00	10	0.50	0.80	8.0657	1.00	16.131
T R A	T2S3	0 000	1	0.50	0.80	8.7726	1.00	1.755
I L E R	T3S1		2	0.50	0.80	8.0657	1.00	3.226
K	Т3\$3	0-00-000	42	0.50	0.80	8.8958	1.00	74.724
			•				ΣEE día - carril	752.752

Nota. En la Tabla N°27 se muestra el valor de EE día – carril, obtenido de multiplicar el IMD de cada tipo de vehículo pesado, por el Factor Direccional, Factor Carril, Factor Vehículo Pesado y Factor de Ajuste por Presión de Neumáticos obtenidos anteriormente.

3.12.9. Número de repeticiones de Ejes Equivalentes de 8.2tn

Se obtuvo el número de repeticiones de eje equivalente de 8.2 Tn, al multiplicar el Factor de crecimiento acumulado obtenido anteriormente multiplicado por los 365 días del año y por los Ejes Equivalentes día – carril. Lo cual representa un parámetro necesario en el diseño estructural del pavimento flexible y rígido.

Tabla 28

Número de repeticiones de EE. De 8.2tn para pavimento flexible

TRAMO AV. FEDERICO VILLARREAL	Nrep EE de 8.2 Tn	
Ambos Sentidos	5,820,011.01	EAL o W18

Nota. EAL de 8.2Tn valor necesario en el diseño estructural de pavimento flexible.

Tabla 29

Número de repeticiones de E.E. de 8.2tn para pavimento rígido

TRAMO AV. FEDERICO VILLARREAL	Nrep EE de 8.2 Tn	
Ambos Sentidos	6,676,529.56	EAL o W18

Nota. EAL de 8.2Tn valor necesario en el diseño estructural de pavimento rígido.

3.13. Estudio de Mecánica de Suelos

Para el presente proyecto, se realizaron diez (10) pozos exploratorios (calicatas) con una profundidad de 2.0m respecto a la superficie actual del terreno.

Obtenidas e identificadas las muestras, se llevaron al laboratorio obteniéndose los siguientes resultados:

3.13.1. Contenido de humedad

Este ensayo permite determinar el contenido de agua del suelo con el fin de obtener un probable comportamiento del suelo frente a una construcción civil.

Tabla 30

Contenido de humedad

N° CALICATA	MUESTRA	CONTENIDO DE HUMEDAD (%)
1	C-1	12.99
2	C-2	12.61
3	C-3	13.37
4	C-4	12.65
5	C-5	12.51
6	C-6	13.67
7	C-7	12.69
8	C-8	13.43
9	C-9	12.72
10	C-10	13.17

Nota. No se encontró nivel de agua freática hasta la profundidad máxima de exploración de 2.00 m.

3.13.2. Análisis granulométrico

Este ensayo permite determinar la distribución de partículas de suelo y así la curva granulométrica del mismo, de manera que se puedan obtener características que permitan clasificar el suelo en análisis por alguno de los sistemas de clasificación de suelos existentes.

Tabla 31 *Análisis granulométrico*

N° CALICATA	MUESTRA	% GRAVA(3/4)	% ARENA(N°4)	% FINO(N°200)
1	C-1	4.71	16.29	93.76
2	C-2	1.64	14.16	94.19
3	C-3	0.47	13.11	93.87
4	C-4	0.00	9.22	84.02
5	C-5	1.26	17.77	94.71
6	C-6	4.71	16.14	94.51
7	C-7	0.68	14.22	93.61
8	C-8	0.00	10.87	84.54
9	C-9	2.49	19.28	94.48
10	C-10	0.00	13.62	94.02

Nota. La litología del suelo fue caracterizada por un suelo del tipo transportado identificándose arenas pobremente graduadas con pocos limos.

3.13.3. Límite liquido

Se emplea para determinar el contenido de agua con el cual el suelo adquiere una consistencia de lodo capaz de fluir con esfuerzos bajos.

Tabla 32 *Límite liquido*

N° CALICATA	MUESTRA	LÍMITE LIQUIDO
1	C-1	21.28
2	C-2	20.03
3	C-3	21.57
4	C-4	24.33
5	C-5	19.71
6	C-6	20.95
7	C-7	20.23
8	C-8	24.42
9	C-9	20.48
10	C-10	19.66

Nota. Valores obtenidos del ensayo de Mecánica de Suelos realizado para el presente estudio.

3.13.4. Límite plástico

Este ensayo permitió determinar el porcentaje de contenido de humedad con que un suelo cambia al disminuir su humedad de la consistencia plástica a la semisólida, o, al aumentar su humedad, de la consistencia semisólida a la plástica. El límite plástico es el límite inferior del estado plástico.

Tabla 33
Límite plástico

N° CALICATA	MUESTRA	LÍMITE PLASTICO
1	C-1	15.44
2	C-2	16.00
3	C-3	15.46
4	C-4	16.51
5	C-5	15.29
6	C-6	15.98
7	C-7	15.01
8	C-8	16.18
9	C-9	15.97

10	C-10	14.94	
----	------	-------	--

Nota. Valores obtenidos del ensayo de Mecánica de Suelos realizado para el presente estudio.

3.13.5. Índice de plasticidad

El índice de plasticidad se expresa con el porcentaje del peso en seco de la muestra de suelo, e indica el tamaño del intervalo de variación del contenido de humedad con el cual el suelo se mantiene plástico. Mientras mayor sea el IP, mayor será la compresibilidad del suelo.

Tabla 34

Índice de plasticidad

N° CALICATA	MUESTRA	ÍNDICE PLASTICIDAD
1	C-1	5.84
2	C-2	4.03
3	C-3	6.11
4	C-4	7.82
5	C-5	4.42
6	C-6	4.97
7	C-7	5.22
8	C-8	8.24
9	C-9	4.52
10	C-10	4.71

Nota. Valores obtenidos del ensayo de Mecánica de Suelos realizado para el presente estudio.

3.13.6. CBR

El Ensayo CBR (California Bearing Ratio: Ensayo de Relación de Soporte de California) es un parámetro del suelo que cuantifica su capacidad resistente como subrasante, sub base y base en el diseño de pavimentos. Es un ensayo empírico que se efectúa bajo condiciones controladas de humedad y densidad.

Tabla 35
CBR

N° CALICATA	MUESTRA	CBR (%)
1	C-1	12.52
2	C-2	13.56
3	C-3	13.23

4	C-4	12.28
5	C-5	12.70
6	C-6	12.22
7	C-7	13.12
8	C-8	10.11
9	C-9	13.71
10	C-10	12.99

Nota. Valores obtenidos del ensayo de Mecánica de Suelos realizado para el presente estudio.

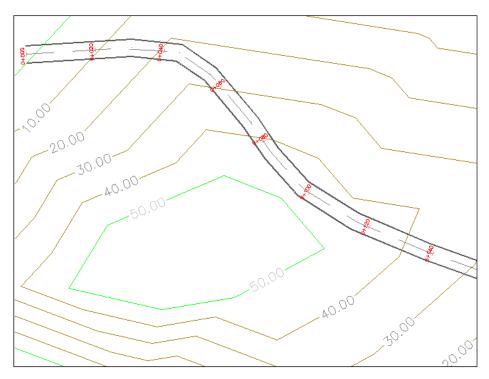
Según los valores de CBR obtenido de las 10 calicatas, para determinar el CBR de diseño de la subrasante, consideraremos el promedio de los mismos.

3.13.7. Proctor modificado

Se emplea para determinar la relación densidad seca - humedad de compactación de los materiales a utilizar en explanadas y en capas de firmes, y como referencia para el control de calidad de la compactación en obra.

Tabla 36

Proctor modificado


N°		CLASIFICA	CIÓN
CALICATA	MUESTRA	DENSIDAD SECA MÁXIMA (g/cm³)	HUMEDAD ÓPTIMA (%)
1	C-1	2.17	7.4
2	C-2	2.18	7.1
3	C-3	2.17	7.7
4	C-4	2.16	7.2
5	C-5	2.15	8.0
6	C-6	2.18	7.2
7	C-7	2.16	7.6
8	C-8	2.15	7.7
9	C-9	2.19	7.4
10	C-10	2.16	7.8

Nota. Valores obtenidos del ensayo de Mecánica de Suelos realizado para el presente estudio.

3.14. Levantamiento Topográfico

Figura 7

Curvas de Nivel

Nota. El levantamiento topográfico determinó que la topografía del tramo en estudio es plana.

3.15. Perfil Estratigráfico

Tabla 37Perfil Estratigráfico

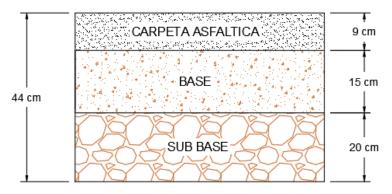
		PROFUNDIDAD	CLASIFICACIÓN			
N° CALICATA	MUESTRA (m)		DESCRIPCIÓN DEL MATERIAL	SUCS	SIMBOLO	
1	C-1	2.00	Arenas pobremente graduadas con pocos limos	SP-SM	4 4 4	
2	C-2	2.00	Arenas pobremente graduadas con pocos limos	SP-SM	4 4 4	
3	C-3	2.00	Arenas pobremente graduadas con pocos limos	SP-SM	4 4 4	

4	C-4	2.00	Arenas arcillosa de color marrón claro	S-C	
5	C-5	2.00	Arenas pobremente graduadas con pocos limos	SP-SM	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
6	C-6	2.00	Arenas pobremente graduadas con pocos limos	SP-SM	4
7	C-7	2.00	Arenas pobremente graduadas con pocos limos	SP-SM	4 4 4 4
8	C-8	2.00	Arenas arcillosa de color marrón claro	S-C	
9	C-9	2.00	Arenas pobremente graduadas con pocos limos		
10	C-10	2.00	Arenas pobremente graduadas con pocos limos	SP-SM	4 4 4

Nota. Conformación del sub suelo, muestras obtenidas de 10 calicatas o pozos exploratorios a cielo abierto.

Se adjunta en el Capítulo de Anexos, correspondiente al *Anexo N°03: PERFILES ESTRATIGRÁFICO*, el Registro Estratigráfico de las (10) diez calicatas realizadas.

IV. PRESENTACIÓN DE RESULTADOS


4.1. Propuesta de investigación

Al realizar una inspección visual de la vía, a lo largo del tramo en estudio, podemos observar que se encuentra en muy mal estado, esto debido al desgaste natural del pavimento, condiciones climáticas, entre otros, lo que han afectado directamente a la condición del asfalto, observándose erosiones causadas por el paso del tiempo, fallas como piel de cocodrilo, grietas longitudinales, transversales, huecos, lo que dificulta la transitabilidad a lo largo de la vía.

Motivo por el cuál, se decidió proponer dos alternativas solución, calcular el diseño estructural de pavimento flexible y pavimento rígido, posteriormente realizar un análisis técnico y económico de ambas propuestas para el tramo en estudio.

Realizado el cálculo, la estructura de diseño obtenida es la siguiente:


Figura 8
Sección de Pavimento Flexible

Nota. Propuesta de diseño estructural para Pavimento Flexible: carpeta asfáltica = 9cm, base = 15cm y sub base = 20cm.

Figura 9
Sección de Pavimento Rígido

ESTRUCTURA PAVIMENTO RIGIDO

Nota. Propuesta de diseño estructural para Pavimento Rígido: losa de concreto = 23cm y sub base = 15cm.

4.2. Análisis e interpretación de resultados

A. Diseño de pavimento flexible, según Guía AASHTO 93

Para el estudio de la presente tesis se ha optado por realizar los cálculos del diseño estructural de pavimento según los procedimientos de mayor uso actualmente en el país. Son los siguientes:

- Método AASHTO Guide for Design of Pavement Structures 1993
- Análisis de la Performance o Comportamiento del Pavimento durante el período de diseño.

Además, teniendo en cuenta los siguientes dos parámetros básicos:

- Cargas de tráfico vehicular impuestas al pavimento.
- Características de la sub rasante sobre la que se asienta el pavimento.

La ecuación básica para el diseño de la estructura de un pavimento flexible es la siguiente:

Figura 10

Ecuación de diseño de pavimento flexible

$$\log_{10} Wt18 = Z_R * S_o + 9.36 * \log_{10} (SN + 1) - 0.20 + \frac{\log_{10} \left[\frac{\Delta PSI}{4.2 - 1.5} \right]}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 * \log_{10} M_R - 8.07$$

Nota. Ecuación de diseño de pavimento flexible, según la guía AASHTO para el diseño estructural del pavimento 1993, p. 25.

Para poder resolver esta ecuación tenemos los siguientes datos:

a.1) Periodo de diseño

a.2) Número de repeticiones de Ejes Equivalentes de 8.2tn (W18)
 De acuerdo a los datos obtenidos previamente en el tramo en estudio,
 tenemos que el EAL o W18 para el pavimento flexible es:

$$W18 = 5,820,011.01$$

a.3) Módulo de Resiliencia (MR)

El Módulo de Resiliencia nos permite identificar la rigidez del suelo de sub rasante, el cual deberá determinarse mediante el ensayo de resiliencia o en función al CBR del suelo.

Para efectos de cálculos de la presente tesis, el CBR obtenido de los ensayos de laboratorio es de 12.64%, el cual se considera un suelo de sub rasante buena.

Tabla 38

Categoría de sub rasante

CATEGORÍAS DE SUB RASANTE	CBR
S0 : Sub rasante Inadecuada	CBR < 3%
S1 : Sub rasante Insuficiente	De CBR ≥ 3% A CBR < 6%
S2 : Sub rasante Regular	De CBR ≥ 6% A CBR < 10%
S3 : Sub rasante Buena	De CBR ≥ 10% A CBR < 20%
S4 : Sub rasante Muy Buena	De CBR ≥ 20% A CBR < 30%
S5 : Sub rasante Excelente	CBR ≥ 30%

Nota. Para CBR de diseño 12.64% corresponde una categoría de sub rasante S3 : Sub rasante Buena. En base a datos del Manual de Carreteras Suelos Geología, Geotecnia y Pavimentos R.D. N°10 – 2014 – MTC/14.

El Reglamento Nacional de Edificaciones: Norma CE.010 Pavimentos urbanos, establece la siguiente expresión para el cálculo del Módulo de Resiliencia:

$$M_R(psi) = 1500 x CBR$$

Reemplazando datos se obtuvo:

$$M_R(psi) = 1500 x 12.64$$

$$M_R(psi) = 18,960$$

a.4) Nivel de confiabilidad (%R)

El nivel de confiabilidad expresa la probabilidad de que la duración real de la estructura de pavimento sea al menos igual a la del periodo que fue diseñada.

Tabla 39 *Nivel de confiabilidad en función a la clase de vía*

TABLA F2 Ejemplos de EALs de Diseño ¹					
Clase de Vía	EALsª	Nivel de	Factor de	EALs de diseñoª	
Clase de Via	(millones)	Confiab.b (%)	Confiabil.(Fr)	(millones)	
Expresas	7,5	90	3,775	28,4	
Arteriales	2,8	85	2,929	8,3	
Colectoras	1,3	80	2,390	3,0	
Locales	0,43	75	2,010	0,84	
NI-4					

Notas:

Nota. En base al Reglamento Nacional de Edificaciones: Norma CE.010 Pavimentos urbanos, nos índica un valor para el nivel de confiabilidad en relación a la clase de vía.

$$R = 85\%$$

a.5) Coeficiente estadístico de Desviación Normal Estándar (Zr)

La confiabilidad no es un parámetro de ingreso directo en la Ecuación de Diseño, para ello debe usarse el coeficiente estadístico conocido como Desviación Normal Estándar (Zr).

Basados en una vida de diseño de 20 años, 4% de crecimiento, 50% de tráfico direccional

Basada en una desviación estándar de 0,45.

Tabla 40

Coeficiente Estadístico de la Desviación Estándar Normal (Zr) Según el Nivel de Confiabilidad seleccionado y el Rango de Tráfico (W18)

TIPO DE CAMINOS	TRÁFICO	EJES EQUI ACUMU	DESVIACIÓN ESTÁNDAR NORMAL (Zr)	
	T _{P0}	75,000	150,000	-0.385
Caminos de Bajo	T _{P1}	150,001	300,000	-0.524
Volumen de	T _{P2}	300,001	500,00	-0.674
Tránsito	Трз	500,001	750,00	-0.842
	T _{P4}	750,001	1,000,000	-0.842
	T _{P5}	1,000,001	1,500,000	-1.036
	T _{P6}	1,500,001	3,000,000	-1.036
	T _{P7}	3,000,001	5,000,000	-1.036
	T _{P8}	5,000,001	7,500,000	-1.282
	T _{P9}	7,500,001	10'000,000	-1.282
Resto de Caminos	T _{P10}	10'000,001	12'500,000	-1.282
	T _{P11}	12'500,001	15'000,000	-1.282
	T _{P12}	15'000,001	20'000,000	-1.645
	T _{P13}	20'000,001	25'000,000	-1.645
	T _{P14}	25'000,001	30'000,000	-1.645
	T _{P15}	> 30'0	-1.645	

Nota. Para un EAL = 5'820,011.01 corresponde un valor de Desviación Estándar Normal = -1.282. Considerando datos del Manual de Carreteras Suelos Geología, Geotecnia y Pavimentos R.D. N°10 – 2014 – MTC/14.

$$Zr = -1.282$$

a.6) Desviación Estándar Combinada (So)

La Desviación Estándar Combinada (So), es un valor que toma en cuenta la variación esperada del tránsito y de otros factores como: construcción, medio ambiente, incertidumbre del diseño, que afectan el comportamiento del pavimento.

Según la metodología usada en el país y teniendo en cuenta a lo indicado en el Manual de Carreteras, Suelos, Geotecnia y Pavimentos 2014, se adopta para los diseños recomendados el valor de 0.45.

$$So = 0.45$$

a.7) Índice de Serviciabilidad (ΔPSI)

El índice de Serviciabilidad representa la comodidad de circulación ofrecida al usuario. Se obtiene con la diferencia entre el índice de Serviciabilidad inicial y final, como se indica a continuación:

$$\Delta PSI = \rho_o - \rho_t$$

Índice de serviciabilidad inicial (ρ₀)

Es la condición inmediata del pavimento después de su construcción o rehabilitación.

El Reglamento Nacional de Edificaciones: Norma CE.010 Pavimentos urbanos, establece que para pavimentos flexibles el valor del índice de serviciabilidad inicial a usar es:

$$\rho_{o} = 4.20$$

- Índice de serviciabilidad final (ρ_t)

Es la condición del pavimento en la que no cumple con las expectativas de comodidad y seguridad exigidas por el usuario.

$$\rho_t = 2.50$$

Tabla 41 *Índice de serviciabilidad final* (ρ_t)

ρt	Tipo de Vía		
3.00	Expresas		
2.50	Arteriales		
2.25	Colectoras		
2.00	Locales y estacionamientos		

Nota. Consideración en base a datos del Reglamento Nacional de Edificaciones: Norma CE.010 Pavimentos urbanos, 2010.

Tenemos:

 ρ_0 : índice de serviciabilidad inicial = 4.20

 ρ_t : índice de serviciabilidad final = 2.50

$$\Delta PSI = 1.70$$

a.8) Cálculo del número estructural (SN)

• De forma Analítica

$$\log_{10}Wt18 = Z_R * S_o + 9.36 * \log_{10}(SN + 1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{\left(SN + 1\right)^{5.19}}} + 2.32 * \log_{10}M_R - 8.07$$

Datos:

$$W18 = 5,820,011.01$$

$$Zr = -1.282$$

$$So = 0.45$$

$$\Delta PSI = 1.70$$

$$M_R = 18,960$$

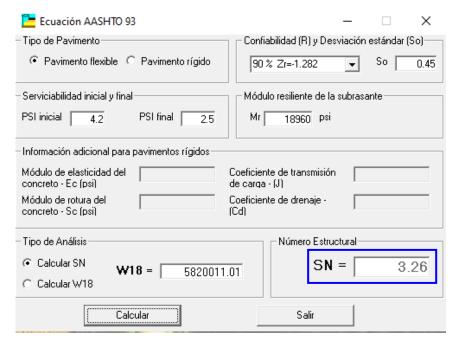
$$R = 85\%$$

Resolviendo la ecuación:

$$6.76492 = -0.57690 + 9.36*log_{10}(SN+1) - 0.20 + \frac{-0.20091}{0.40 + \frac{1094}{(SN+1)^{5.19}}} +$$

1.85458

6.76492 = 6.75836

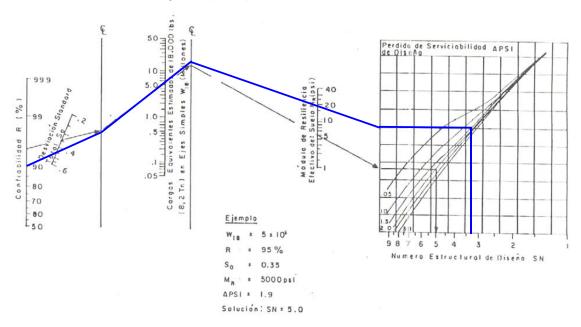

El Numero Estructural sería:

SN = 3.25

• Usando el programa de cálculo "Ecuación AASHTO 93"

Figura 11

Cálculo del SN, en programa "Ecuación AASHTO 93"



Nota. Cálculo del Número Estructural "SN" para pavimento flexible utilizando el programa "Ecuación AASHTO 93".

• Con uso del nomograma

Figura 12

Cálculo del SN en nomograma para pavimentos flexibles

Nota. Estimación del Número Estructural "SN" para pavimento flexible utilizando nomograma.

$$SN = 3.30$$

En nuestro caso, para el diseño estructural de pavimento flexible consideraremos al SN analítico, debido a que se obtuvo un valor más exacto, en comparación a los otros métodos.

$$SN = 3.25$$

a.9) Coeficientes estructurales de las capas del pavimento

En base al Manual de Carreteras, Suelos, Geotecnia y Pavimentos 2014, los coeficientes estructurales de pavimento se calculan según la tabla, a continuación:

Tabla 42

Coeficientes Estructurales de las Capas del Pavimento a₁, a₂, a₃

COMPONENTE DEL PAVIMENTO	COEFICIENTE	VALOR COEFICIENTE ESTRUCTURAL a _i (cm)	OBSERVACIÓN
CAPA SUPERFICIAL			
Carpeta Asfáltica en Caliente, módulo 2,965 MPa (430,00 PSI) a 20 °C (68 °F)	a ₁	0.170 / cm	Capa Superficial recomendada para todos los tipos de Tráfico
Carpeta Asfáltica en Frío, mezcla asfáltica con emulsión.	a ₁	0.125 / cm	Capa Superficial recomendada para Tráfico ≤ 1'000,000 EE
Micropavimento 25 mm	a ₁	0.130 / cm	Capa Superficial recomendada para Tráfico ≤ 1'000,000 EE
Tratamiento Superficial Bicapa.	a ₁	(*)	Capa Superficial recomendada para Tráfico ≤ 500,000 EE. No aplica en tramos con pendiente mayor a 8%; y, en vías con curvas pronunciadas, curvas de volteo, curvas y contracurvas, y en tramos que obliguen al frenado de vehículos
Lechada asfáltica (slurry seal) de 12 mm.	a ₁	(*)	Capa Superficial recomendada para Tráfico ≤ 500,000 EE. No aplica en tramos con pendiente mayor a 8%; y, en tramos que obliguen al frenado de vehículos
(*) no se considera por no tener aporte estructural			
BASE			
Base Granular CBR 80 %, compactada al 100 % de la MDS	a ₂	0.052 / cm	Capa de Base recomendada para Tráfico ≤ 10'000,000 EE
Base Granular CBR 100 %, compactada al 100 % de la MDS	a ₂	0.054 / cm	Capa de Base recomendada para Tráfico > 10'000,000 EE
Base Granular tratada con Asfalto, (Estabilidad Marshal = 1500 lb)	a _{2a}	0.115 / cm	Capa de Base recomendada para todos los tipos de Tráfico
Base Granular Tratada con Cemento (resistencia a la compresión 7 días = 35 kg/cm²)	a _{2b}	0.070 cm	Capa de Base recomendada para todos los tipos de Tráfico
Base Granular Tratada con Cemento (resistencia a la compresión 7 días = 12 kg/cm²)	a _{2c}	0.080 cm	Capa de Base recomendada para todos los tipos de Tráfico
SUB BASE			
Subbase Granular CBR 40% compactada al 100% de la MDS	a ₃	0.047 / cm	Capa de Subbase recomendada con CBR mínimo 40%, para todos los tipos de Tráfico

Nota. Valores recomendados para capa superficial, base y sub base en relación al tipo de tráfico o Ejes Equivalentes.

Basándonos en la Tabla 42, tenemos:

a₁ = 0.170/cm (Para carpeta asfáltica en caliente)

 $a_2 = 0.052/cm$ (Para agregados de CBR $\ge 80\%$)

 $a_3 = 0.047$ /cm (Para agregados de CBR $\ge 40\%$)

a.10) Coeficiente de drenaje

Para el valor del coeficiente de drenaje se considera dos variables en base a:

- a. La calidad del drenaje
- b. Exposición a la saturación, que es el porcentaje de tiempo durante el año en que un pavimento está expuesto a niveles de humedad que se aproximan a la saturación.

Tabla 43Calidad de drenaje

CALIDAD DEL DRENAJE	TIEMPO EN QUE TARDA EL AGUA EN SER EVACUADA		
Excelente	2 horas		
Bueno	1 día		
Mediano	1 semana		
Malo	1 mes		
Muy malo	El agua no evacua		

Nota. La Tabla 43, presenta valores de calidad de drenaje con el tiempo en que tarda el agua en ser evacuada.

Tabla 44Valores recomendados del Coeficiente de Drenaje m1, para bases y subbases granulares no tratadas en Pavimentos Flexibles

CALIDAD DEL	P=% DEL TIEMPO EN QUE EL PAVIMENTO ESTÁ EXPUESTO A NIVELES DE HUMEDAD CERCANO A LA SATURACIÓN				
DRENAJE	MENOR QUE 1%	1% - 5%	5% - 25%	MAYOR QUE 25%	
Excelente	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20	
Bueno	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00	
Mediano	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80	
Pobre	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60	
Muy pobre	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40	

Nota. La Tabla 44, presenta valores de coeficiente de drenaje m1, para porcentajes del tiempo en que la estructura del pavimento está expuesta a niveles de humedad próximos a la saturación y calidad del drenaje.

Según las tablas anteriores, el Manual de Carreteras, Suelos, Geotecnia y Pavimentos, 2014 indica, que el coeficiente de drenaje para las capas de base y subbase, asumido en el país será de 1.00.

$$m_2 = m_3 = 1.00$$

a.11) Cálculo de los espesores del pavimento

Los datos procesados y obtenidos anteriormente, se aplicarán en la ecuación de diseño AASHTO, que relaciona el número estructural SN, con los espesores del pavimento a₁, a₂, a₃, d₁, d₂, d₃.

Figura 13

Ecuación de diseño AASHTO para cálculo de espesores

Nota. La ecuación de diseño relaciona el número estructural con los espesores del pavimento.

Desarrollando la ecuación, tenemos:

$$SN = a_1*d_1 + a_2*d_2*m_2 + a_3*d_3*m_3$$
$$3.25 = 0.170*d_1 + 0.052*d_2*1.00 + 0.047*d_3*1.00$$

Propuesta N°1:

3.25 = 3.39

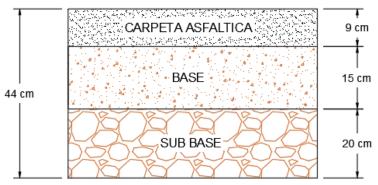
Asumiendo: d1 = 10cm, d2 = 10cm y d3 = 25cm

Reemplazando se obtuvo:

108

Propuesta N°2:

Asumiendo: d1 = 9cm, d2 = 15cm y d3 = 20cm


Reemplazando se obtuvo:

$$3.25 = 0.170^{*}9 + 0.052^{*}15 + 0.047^{*}20$$

3.25 = 3.25

De lo desarrollado anteriormente podemos concluir que la "Propuesta N°2", sería la opción a considerar en nuestro diseño.

Figura 14
Sección de pavimento flexible

Nota. Propuesta de diseño estructural para pavimento flexible.

B. Diseño de pavimento rígido, según metodología AASHTO 93

Los pavimentos de concreto reciben el nombre de "rígidos". Debido a su naturaleza rígida, la losa de concreto absorbe casi la totalidad de los esfuerzos producidos por las repeticiones de los ejes de tránsito, proyectando así en menor intensidad estos esfuerzos a las capas inferiores del pavimento rígido.

El método AASHTO 93, ofrece la siguiente expresión analítica, en el cuál mediante un proceso iterativo, se asumen espesores de la losa de concreto hasta que la ecuación llegue a un equilibrio.

Figura 15

Ecuación de diseño de pavimento rígido

$$log_{10}(W_{18}) = Z_R S_O + 7.35 log_{10}(D + 25.4) - 10.39 + \frac{log_{10}\left(\frac{\Delta PSI}{4.5 - 1.5}\right)}{1 + \frac{1.25 \times 10^{19}}{(D + 25.4)^{8.46}}} + (4.22 - 0.32P_t) \times log_{10}\left(\frac{M_r C_{dx}(0.09D^{0.75} - 1.132)}{1.51 \times J\left(0.09D^{0.75} - \frac{7.38}{(E_c/k)^{0.25}}\right)}\right)$$

Nota. Ecuación de diseño de pavimento rígido, según la guía AASHTO para el diseño estructural del pavimento.

Donde:

 $W_{8.2}$ = número de cargas previstas de ejes equivalentes de 8.2 toneladas.

Z_R = desviación estándar normal

So = error estándar de todas las variables

D = espesor de la losa del pavimento rígido, en milímetros

ΔPSI = diferencia entre los índices de servicio inicial y final

Pt = serviciabilidad final.

M_r = resistencia media del concreto (Mpa)

Cd = coeficiente de drenaje

J = coeficiente de transmisión de cargas en las juntas

Ec = módulo de elasticidad del concreto (Mpa)

K = módulo de reacción (Mpa/m) de la superficie en la que se apoya el pavimento rígido

Para poder resolver esta ecuación tenemos los siguientes datos:

b.1) Periodo de diseño

20 años

b.2) Número de repeticiones de Ejes Equivalentes de 8.2tn (W18)

De acuerdo a los datos obtenidos previamente en el tramo en estudio, tenemos que el EAL o W18 para el pavimento flexible es:

$$W_{18} = 6,676,529.56$$

b.3) Índice de Serviciabilidad (ΔPSI)

El valor ΔPSI depende de la calidad de la construcción. Representa la comodidad de circulación ofrecida al usuario. Se obtiene con la diferencia entre el índice de Serviciabilidad inicial y final, como se indica a continuación:

$$\Delta PSI = \rho_o - \rho_t$$

El Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos, 2014, nos brinda la Tabla N° 45 en la que establece valores de serviciabilidad inicial (ρ_i) y valores de serviciabilidad final (ρ_t) para pavimentos rígidos en función de los ejes equivalentes acumulados W_{18} .

Tabla 45 Índice de Serviciabilidad Inicial (ρ i) e Índice de Serviciabilidad Final (ρ t), en base a Ejes Equivalentes (W_{18})

TIPO DE CAMINOS	TRAFICO	EJES EQUI ACUMU		ÍNDICE DE SERVICIABILIDAD INICIAL (ρΙ)	ÍNDICE DE SERVICIABILIDAD FINAL (ρt)	DIFERENCIAL DE SERVICIABILIDAD (ΔPSI)
	T _{P1}	150,001	300,000	4.10	2.00	2.10
Caminos de	T _{P2}	300,001	500,000	4.10	2.00	2.10
Bajo Volumen de Tránsito	T _{P3}	500,001	750,000	4.10	2.00	2.10
	T _{P4}	750,001	1,000,000	4.10	2.00	2.10
	T _{P5}	1,000,001	1,500,000	4.30	2.50	1.80
	T _{P6}	1,500,001	3,000,000	4.30	2.50	1.80
	T _{P7}	3,000,001	5,000,000	4.30	2.50	1.80
	T _{P8}	5,000,001	7,500,000	4.30	2.50	1.80
	T _{P9}	7,500,001	10'000,000	4.30	2.50	1.80
Resto de Caminos	T _{P10}	10'000,001	12'500,000	4.30	2.50	1.80
	T _{P11}	12'500,001	15'000,000	4.30	2.50	1.80
	T _{P12}	15'000,001	20'000,000	4.50	3.00	1.50
	T _{P13}	20'000,001	25'000,000	4.50	3.00	1.50
	T _{P14}	25'000,001	30'000,000	4.50	3.00	1.50
	T _{P15}	> 30'00	00,000	4.50	3.00	1.50

Nota. Valores de serviciabilidad inicial y final en función a los ejes equivalentes para un EAL = 6,676,529.56.

- Índice de serviciabilidad inicial (ρ_i)

Es la condición inmediata del pavimento después de su construcción o rehabilitación.

$$\rho_{o} = 4.30$$

- Índice de serviciabilidad final (ρ_t)

Es la condición del pavimento en la que no cumple con las expectativas de comodidad y seguridad exigidas por el usuario.

$$\rho_t = 2.50$$

Tenemos:

 ρ_0 : índice de serviciabilidad inicial = 4.30

 ρ_t : índice de serviciabilidad final = 2.50

$$\Delta PSI = 1.80$$

b.4) Nivel de confiabilidad (%R) y desviación estándar (ZR)

El Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos, 2014, nos brinda valores de confiabilidad en relación al número de repeticiones EE (W₁₈), serán los que se aplicarán para el diseño.

Tabla 46Valores recomendados de Nivel de Confiabilidad (R) y Desviación Estándar Normal (Zr), según Ejes Equivalentes (W₁₈)

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALENTES ACUMULADOS		NIVEL DE CONFIABILIDAD (R)	DESVIACIÓN ESTÁNDAR NORMAL (ZR)
	T _{P0}	100,000	150,000	65%	-0.385
Caminos de	T _{P1}	150,001	300,000	70%	-0.524
Bajo Volumen	T _{P2}	300,001	500,000	75%	-0.674
de Tránsito	T _{P3}	500,001	750,000	80%	-0.842
	T _{P4}	750,001	1,000,000	80%	-0.842
	T _{P5}	1,000,001	1,500,000	85%	-1.036
	T _{P6}	1,500,001	3,000,000	85%	-1.036
Resto de Caminos	T _{P7}	3,000,001	5,000,000	85%	-1.036
	T _{P8}	5,000,001	7,500,000	90%	-1.282
	T _{P9}	7,500,001	10'000,000	90%	-1.282

T _{P10}	10'000,001	12'500,000	90%	-1.282
T _{P11}	12'500,001	15'000,000	90%	-1.282
T _{P12}	15'000,001	20'000,000	90%	-1.282
T _{P13}	20'000,001	25'000,000	90%	-1.282
T _{P14}	25'000,001	30'000,000	90%	-1.282
T _{P15}	> 30'00	00,000	95%	-1.645

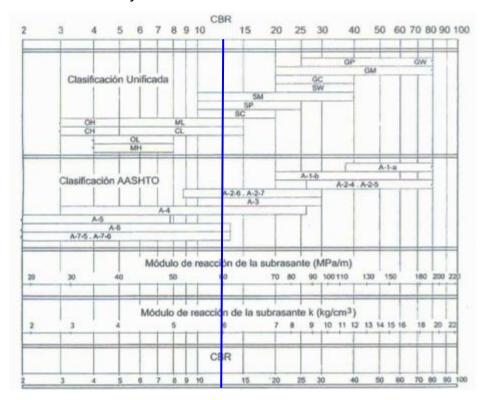
Nota. Para un EAL = 6,676,529.56 corresponde un valor de Desviación Estándar Normal = -1.282 y Nivel de Confiabilidad = 90%. Considerando datos del Manual de Carreteras Suelos Geología, Geotecnia y Pavimentos R.D. N°10 – 2014 – MTC/14.

$$R = 90\%$$
 ; $Z_R = -1.282$

b.5) Desviación estándar (S_o)

El Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos, 2014, menciona que el rango sugerido por AASHTO está comprendido entre 0.30 < So < 0.40, el manual recomienda considerar un valor de So = 0.35.

$$S_0 = 0.35$$


b.6) Efecto de las capas de apoyo (Kc)

El ensayo para determinar el módulo de reacción de la sub rasante, también conocido como ensayo de placa. Está normado en ASTM D-1196 y AASHTO T-222. Las unidades de K son Mpa/m.

El Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos, 2014, utiliza la alternativa que da AASHTO de utilizar correlaciones directas que permiten obtener el coeficiente de reacción K en función de la clasificación de suelos y el CBR; para tal efecto se presenta la siguiente figura:

Figura 16

Correlación CBR y Módulo de Reacción de la Sub rasante

Nota. Para el presente estudio se considerará un valor de CBR de 12.64%. Valor promedio obtenido de las calicatas realizadas.

Por lo tanto, el valor de K a utilizar es:

b.7) Resistencia a flexotracción del concreto (Mr)

Los pavimentos de concreto trabajan a flexión, motivo por el cual es que se considera el Módulo de Rotura en la ecuación de diseño AASHTO 93.

Tabla 47Valores recomendados de Resistencia del Concreto según rango de Tráfico

RANGOS DE TRÁFICO PESADO EXPRESADO EN EE	RESISTENCIA MINIMA A LA FLEXOTRACCIÓN DEL CONCRETO (Mr)	RESISTENCIA MINIMA EQUIVALENTE A LA COMPRENSIÓN DEL CONCRETO (f'c)
≤ 5'000.000 EE	40 kg/cm ²	280 kg/cm ²
> 5'000,000 EE ≤ 15'000,000 EE	42 kg/cm ²	300 kg/cm ²
> 15'000,000 EE	45 kg/cm ²	350 kg/cm ²

Nota. Para pavimentos rígidos los valores varían según la Tabla 47 en relación al rango de tráfico.

El módulo de rotura (Mr) se correlaciona con el módulo de compresión del concreto (f'c), mediante la siguiente regresión:

$$M_r = a\sqrt{f'c}$$
 (valores en kg/cm²)
$$M_r = 2.40689\sqrt{300}$$

$$M_r = 42$$

b.7) Módulo elástico del concreto (Ec)

La guía AASHTO 93, indica que el módulo elástico del concreto puede ser estimado usando la siguiente correlación recomendada por el ACI:

$$Ec = 57,000x(f'c)^{0.5}$$
; (f'c en PSI)
$$Ec = 3'723,365$$

b.8) Coeficiente de drenaje (Cd)

Según el Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos, 2014, el coeficiente de drenaje varía entre 0.70 y 1.25. El manual considera un coeficiente asumido de 1.00.

$$Cd = 1.00$$

Tabla 48

Coeficiente de drenaje de las capas granulares (Cd)

Calidad de	% del tiempo en que el pavimento está expuesto a niveles de humedad próximos a la saturación					
drenaje	< 1% 1 a 5% 5 a 25% > 25					
Excelente	1.25 - 1.20	1.20 - 1.15	1.15 - 1.10	1.10		
Bueno	1.20 - 1.15	1.15 - 1.10	1.10 - 1.00	1.00		
Regular	1.15 - 1.10	1.10 - 1.00	1.00 - 0.90	0.90		
Pobre	1.10 - 1.00	1.00 - 0.90	0.90 - 0.80	0.80		
Muy Pobre	1.00 - 0.90	0.90 - 0.80	0.80 - 0.70	0.70		

Nota. El manual considera in coeficiente asumido de 1.00, en base a datos del Manual de Carreteras Suelos Geología, Geotecnia y Pavimentos R.D. N°10 – 2014 – MTC/14.

b.9) Coeficiente de transferencia de cargas (J)

La transferencia de cargas, expresa como la estructura del pavimento transmite cargas entre juntas y fisuras.

El valor de (J) es directamente proporcional al valor final del espesor de losa de concreto.

$$J = 2.80$$

Tabla 49Valores de Coeficiente de Transmisión de Carga J

TIPO DE	VALORES DE COEFICIENTE DE TRANSMISIÓN DE CARGA (J)				
BERMA	GRANULAR	O ASFÁLTICA	CONCRETO	HIDRAÚLICO	
VALORES J	SI (con pasadores)	NO (sin pasadores)	SI (con pasadores)	NO (sin pasadores)	
	3.2	3.8 - 4.4	2.8	3.8	

Nota. Valores en base a datos del Manual de Carreteras Suelos Geología, Geotecnia y Pavimentos R.D. N°10 – 2014 – MTC/14.

b.10) Cálculo del espesor de la losa de concreto, (D)

• De forma analítica

$$log_{10}(W_{18}) = Z_R S_O + 7.35 log_{10}(D + 25.4) - 10.39 + \frac{log_{10}\left(\frac{\Delta PSI}{4.5 - 1.5}\right)}{1 + \frac{1.25 \times 10^{19}}{(D + 25.4)^{8.46}}} + (4.22 - 0.32P_t) \times log_{10}\left(\frac{M_r C_{dx}(0.09D^{0.75} - 1.132)}{1.51 x J\left(0.09D^{0.75} - \frac{7.38}{(E_c/k)^{0.25}}\right)}\right)$$

Datos:

$$W18 = 6'676,529.56$$

$$Zr = -1.282$$

$$So = 0.35$$

$$\Delta PSI = 1.80$$

$$R = 90\%$$

$$\rho_t = 2.50$$

$$M_R = 42$$

$$Cd = 1.00$$

$$J = 2.80$$

$$Ec = 3'723,365$$

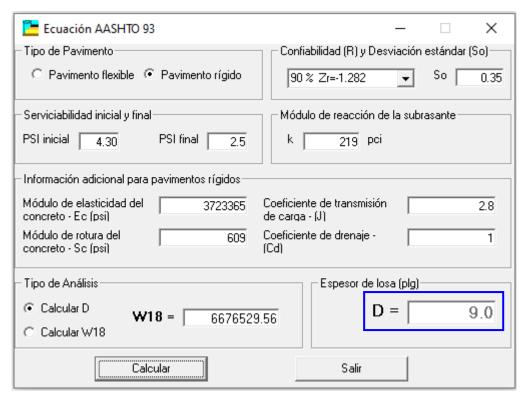
$$K = 60$$

Resolviendo la ecuación:

$$Log_{10}(W_{18}) = 6.824551 = 6.82445$$

$$6.82455 = 6.82445$$

El espesor de la losa es:

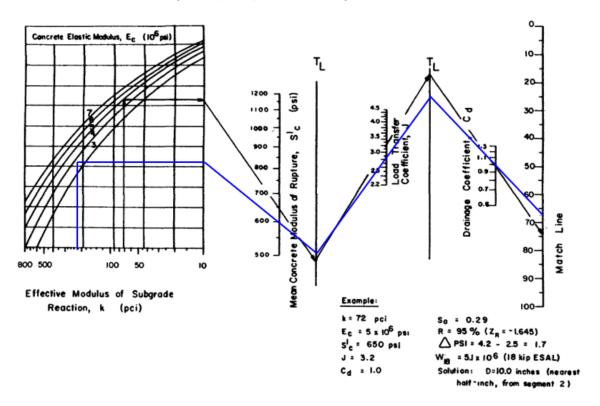

$$D = 232.22 \ (mm)$$

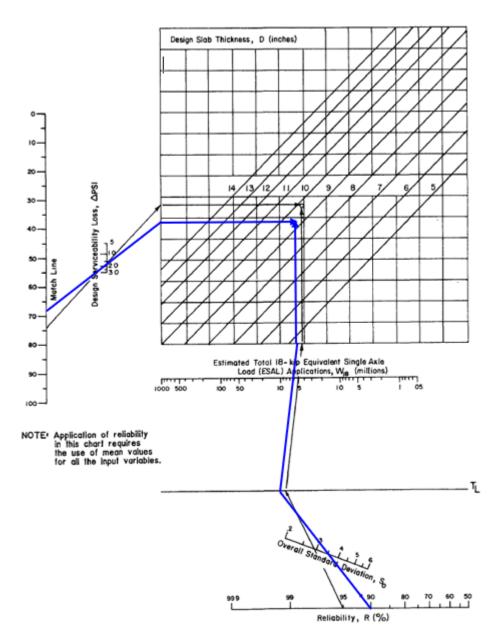
$$D = 9.14 (plgs)$$

• Usando el programa de cálculo "Ecuación AASHTO 93"

Figura 17

Cálculo del SN, en programa "Ecuación AASHTO 93"




Nota. Cálculo del Número Estructural "SN" para pavimento rígido utilizando el programa "Ecuación AASHTO 93".

• Con uso del nomograma

Figura 18

Cálculo del SN en nomograma para pavimentos rígidos

Nota. Estimación del Número Estructural "SN" para pavimento rígido utilizando nomograma.

En nuestro caso, para el diseño estructural de pavimento rígido consideraremos el D analítico, debido a que se obtuvo un valor más exacto, en comparación a los otros métodos.

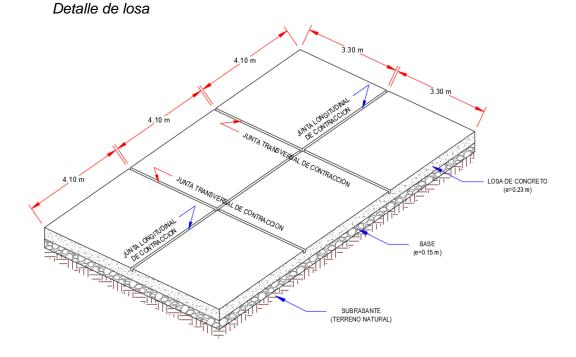
b.11) Secciones del pavimento rígido

Considerando el D del cálculo analítico, tenemos:

$$D = 9.14 \text{ plgs} = 23.22 \text{ cm} \approx 23 \text{ cm}$$

Para la base de afirmado se consideró un espesor de 15 cm, cumpliendo las consideraciones mínimas establecidas por la guía AASHTO 93.

Figura 19
Sección de pavimento rígido


ESTRUCTURA PAVIMENTO RIGIDO

Nota. Propuesta de diseño estructural para pavimento flexible.

b.12) Cálculo de juntas

Figura 20

Nota. Detalle de tipo de juntas en pavimento rígido.

El objetivo de las juntas longitudinales y transversales es controlar la fisuración y el agrietamiento que sufre la losa del pavimento, debido al comportamiento propio del concreto de contraerse por pérdida de humedad y al estar expuesto a constantes variaciones de temperatura.

Tabla 50Dimensiones de losa

ANCHO DE CARRIL(M) = ANCHO DE LOSA (M)	LONGITUD DE LOSA (M)
2.70	3.30
3.00	3.70
3.30	4.10
3.60	4.50

Nota. Según el Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos 2014, indica que la longitud de la losa no debe ser mayor a 1.25 veces el ancho y que no sea mayor a 4.50 m.

- a. Junta longitudinal de construcción
 Divide al carril en 2 secciones de 3.30m. Espesor de la junta 6mm.
- b. Junta transversal de contracción
 Construida cada 4.10m transversalmente a la línea central del pavimento. Espesor de la junta 6mm.
- c. Junta transversal de dilataciónConstruida cada 41.00m. Espesor de la junta 15mm.

b.13) Mecanismos de transferencia de carga

Busca transferir las cargas en el pavimento entre las losas adyacentes para asegurar un buen desempeño de la losa de concreto, reducir escalonamiento, despostillamiento y fisuras en las esquinas.

a. Pasadores o dowells

Según el espesor de losa calculado en el ítem b.10) Cálculo del espesor de la losa de concreto (D), del punto 4.2. Análisis e interpretación de resultados, capítulo IV. PRESENTACIÓN DE RESULTADOS, se obtuvo como resultado 23cm (230mm) de espesor de losa, por lo tanto, teniendo en cuenta la **Tabla 51** del

presente documento, corresponde usar dowells de acero liso de 1 1/4"(32mm) de diámetro.

Para el desarrollo del presente estudio, se considerará el uso de dowells de 1" de diámetro, debido a que los de 1 ¼", no es una medida comercial en el Perú. Estos tendrán una longitud de 41cm, separados entre si a 30cm.

Tabla 51Diámetros y longitudes recomendados en pasadores

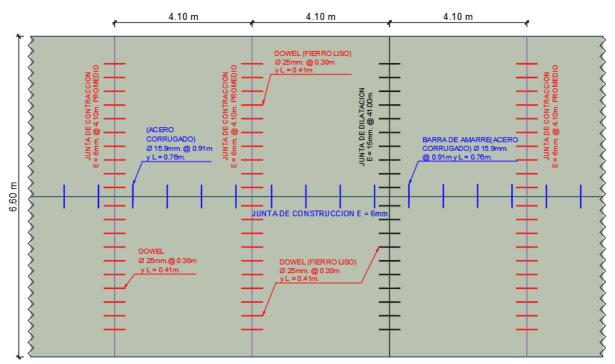
RANGO DE ESPESOR	DIA	METRO	LONGITUD DEL PASADOR	SEPARACION ENTRE	
DE LOSA (MM)	ММ	PULGADA	O DOWELLS (MM)	PASADORES (MM)	
150 - 200	25	1"	410	300	
200 - 300	32	1 1/4"	460	300	
300 - 430	38	1 1/2"	510	380	

Nota. Diámetros y longitudes recomendadas para dowells con un espesor de losa calculado de 23cm.

b. Barras de amarre

De acuerdo a la *Tabla 52*, para un espesor de losa de 23cm (230mm) se debe usar barras de amarre de acero corrugado de 1.59cm de diámetro por 76cm de longitud, distanciados entre sí a cada 91cm.

Tabla 52Diámetros y Longitudes recomendados en barras de amarre


ESPESOR DE	TAMAÑO DE	DISTANCIA DE LA JUNTA AL EXTREMO LIBRE		
LOSA (MM)	VARILLA (CM) DIAM. X LONG.	3.00 M	3.60 M	
150	1.27 x 66	@ 76 cm	@ 76 cm	
160	1.27 x 69	@ 76 cm	@ 76 cm	
170	1.27 x 70	@ 76 cm	@ 76 cm	
180	1.27 x 71	@ 76 cm	@ 76 cm	
190	1.27 x 74	@ 76 cm	@ 76 cm	
200	1.27 x 76	@ 76 cm	@ 76 cm	
210	1.27 x 78	@ 76 cm	@ 76 cm	
220	1.27 x 79	@ 76 cm	@ 76 cm	
230	1.59 x 76	@ 91 cm	@ 91 cm	

240	1.59 x 79	@ 91 cm	@ 91 cm
250	1.59 x 81	@ 91 cm	@ 91 cm
260	1.59 x 82	@ 91 cm	@ 91 cm
270	1.59 x 84	@ 91 cm	@ 91 cm
280	1.59 x 86	@ 91 cm	@ 91 cm
290	1.59 x 89	@ 91 cm	@ 91 cm
300	1.59 x 91	@ 91 cm	@ 91 cm

Nota. Diámetros y longitudes recomendadas para barras de amarre con espesor de losa calculado de 23cm.

Figura 21

Detalle de dowells y barras de amarre

Nota. Medidas, diámetros y espaciamientos de dowells y barras de amarre, obtenidos del cálculo previamente realizado.

C. Presupuesto pavimento flexible

S10 Página

Presupuesto

EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA 0201001 Presupuesto INDUSTRIAL Y LA AV. TÚPAC AMARU EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU Subpresupuesto 001

Cliente UNIVERSIDAD PRIVADA ANTENOR ORREGO 19/03/2023

LA LIBERTAD - TRUJILLO - TRUJILLO Lugar

ltem	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	PAVIMENTACION				5,482,618.7
01.01	OBRAS PRELIMINARES				164,898.7
01.01.01	LIMPIEZA DEL TERRENO MANUAL	m2	66,224.40	1.07	70,860.1
01.01.02	TRAZO Y REPLANTEO	m2	66,224.40	1.42	94,038.6
01.02	MOVIMIENTO DE TIERRAS				1,013,134.0
01.02.01	CORTE A NIVEL DE SUB RASANTE C/ EQUIPO	m3	29,138.74	7.10	206,885.0
01.02.02	ELIMINACION DE MATERIAL EXCEDENTE	m3	36,423.42	12.79	465,855.5
01.02.03	NIVELACION DE LA SUB RASANTE C/MOTONIVELADORA	m2	66,224.40	5.14	340,393.4
01.03	CAPAS: SUB BASE Y BASE				1,741,701.7
01.03.01	SUB BASE GRANULA e=0.20 m	m2	66,224.40	12.52	829,129.4
01.03.02	BASE GRANULAR E = 0.15 m	m2	66,224.40	13.78	912,572.2
01.04	PAVIMENTO FLEXIBLE				2,562,884.2
01.04.01	BARRIDO DE BASE PARA IMPRIMACION	m2	66,224.40	1.92	127,150.8
01.04.02	IMPRIMACION ASFALTICA	m2	66,224.40	4.92	325,824.0
01.04.03	CARPETA ASFALTICA EN CALIENTE e = 0.09m	m2	66,224.40	31.86	2,109,909.3
	Costo Directo				5,482,618.7

SON: CINCO MILLONES CUATROCIENTOS OCHENTIDOS MIL SEISCIENTOS DIECIOCHO Y 77/100 NUEVOS SOLES

D. Presupuesto pavimento rígido

510 Página

Presupuesto

EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU 0201002 Subpresupuesto

EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL DE

PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU
UNIVERSIDAD PRIVADA ANTENOR ORREGO Costo al 19/03/2/ 19/03/2023 Cliente LA LIBERTAD - TRUJILLO - TRUJILLO

Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	PAVIMENTACION				8,111,032.18
01.01	OBRAS PRELIMINARES				164,898.76
01.01.01	LIMPIEZA DEL TERRENO MANUAL	m2	66,224.40	1.07	70,860.11
01.01.02	TRAZO Y REPLANTEO	m2	66,224.40	1.42	94,038.65
01.02	MOVIMIENTO DE TIERRAS				1,013,134.01
01.02.01	CORTE A NIVEL DE SUB RASANTE C/ EQUIPO	m3	29,138.74	7.10	206,885.05
01.02.02	ELIMINACION DE MATERIAL EXCEDENTE	m3	36,423.42	12.79	465,855.54
01.02.03	NIVELACION DE LA SUB RASANTE CIMOTONIVELADORA	m2	66,224.40	5.14	340,393.42
01.03	CAPA: BASE DE AFIRMADO				912,572.23
01.03.01	BASE GRANULAR E = 0.15 m	m2	66,224.40	13.78	912,572.23
01.04	PAVIMENTO RIGIDO				4,369,068.79
01.04.01	LOSA DE CONCRETO PREMEZCLADO h = 0.23m, fc = 300kg/cm2	m2	66,224.40	57.70	3,821,147.88
01.04.02	ENCOFRADO Y DESENCOFRADO EN PAVIMENTO	m2	7,277.10	55.00	400,240.50
01.04.03	CURADO DE CONCRETO	m2	66,224.40	2.23	147,680.41
01.05	JUNTAS				1,651,358.39
01.05.01	JUNTAS DE CONSTRUCCION	m	5,372.40	12.01	64,522.52
01.05.02	JUNTAS DE CONTRACCION	m	26,177.60	3.24	84,815.42
01.05.03	JUNTAS CON DOWELS	kg	87,703.18	16.49	1,446,225.44
01.05.04	BARRA DE AMARRE - ACERO CORRUGADO fy=4200 kg/cm2 GRADO 60	kg	13,005.83	4.29	55,795.01
	Costo Directo				8,111,032.18

SON: OCHO MILLONES CIENTO ONCE MIL TRENTIDOS Y 18/100 NUEVOS SOLES

4.3. Docimasia de hipótesis

La hipótesis formulada mencionaba que la condición actual del pavimento entre los tramos Carretera Industrial y la Av. Túpac Amaru de la Av. Federico Villarreal se encuentra en un estado deteriorado y el nuevo diseño estructural de pavimento rígido y flexible, cumplirán los parámetros de la Norma AASHTO 93.

Los datos obtenidos en la presente investigación que corresponden a un espesor de 9cm de carpeta asfáltica, 15cm de base y 20cm de sub base para pavimento flexible; y 23cm de losa de concreto y 15cm de sub base para pavimento rígido, cumplen los parámetros de la Norma AASHTO 93 contrastada con los manuales proporcionados por el Ministerio de Transportes y Comunicaciones y la norma CE.010 Pavimentos Urbanos, para el diseño estructural de pavimentos, obteniendo así datos de diseño actualizados a la problemática que afecta constantemente al tramo en estudio.

V. DISCUSIÓN DE LOS RESULTADOS

- El levantamiento topográfico determinó que la topografía del tramo en estudio es plana.
- Se realizó el estudio de mecánica de suelos, realizándose 10 calicatas a lo largo del tramo en estudio, a una profundidad de 2.00m en las que no se encontró nivel de agua freática en los pozos de exploración. Se encontró arenas pobremente graduadas con pocos limos y arenas arcillosas como material predominante, las que resumiremos a continuación:

Tabla 53Resumen de ensayos de mecánica de suelos

N° CALICATA	MUESTRA	CONTENIDO DE HUMEDAD (%)	LÍMITE LIQUIDO	LÍMITE PLASTICO	CBR (%)	DENSIDAD SECA MÁXIMA (g/cm³)	HUMEDAD ÓPTIMA (%)
1	C-1	12.99	21.28	15.44	12.52	2.17	7.4
2	C-2	12.61	20.03	16.00	13.56	2.18	7.1
3	C-3	13.37	21.57	15.46	13.23	2.17	7.7
4	C-4	12.65	24.33	16.51	12.28	2.16	7.2
5	C-5	12.51	19.71	15.29	12.70	2.15	8.0
6	C-6	13.67	20.95	15.98	12.22	2.18	7.2
7	C-7	12.69	20.23	15.01	13.12	2.16	7.6
8	C-8	13.43	24.42	16.18	10.11	2.15	7.7
9	C-9	12.72	20.48	15.97	13.71	2.19	7.4
10	C-10	13.17	19.66	14.94	12.99	2.16	7.8

Nota. Valores obtenidos de muestras analizadas en laboratorio.

 Se realizó conteo de vehículos en 7 puntos de control a lo largo del tramo en estudio por el transcurso de 7 días consecutivos, posterior se realizó el procesamiento de datos obteniéndose un EAL de:

Tabla 54 *EAL o W18 para pavimento flexible*

TRAMO AV. FEDERICO VILLARREAL	Nrep EE de 8.2 Tn	
Ambos Sentidos	5,820,011.01	EAL o W18

Nota. EAL de 8.2Tn valor necesario en el diseño estructural de pavimento flexible.

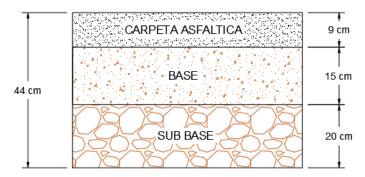
Tabla 55

EAL o W18 para pavimento rígido

TRAMO AV. FEDERICO VILLARREAL	Nrep EE de 8.2 Tn	
Ambos Sentidos	6,676,529.56	EAL o W18

Nota. EAL de 8.2Tn valor necesario en el diseño estructural de pavimento rígido.

- El diseño estructural del pavimento se realizó en base a la metodología AASHTO 93 según los parámetros brindados por el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos 2014 y la Norma CE.010 Pavimentos Urbanos, con la cual se obtuvo los siguientes parámetros de diseño:


Tabla 56Parámetros de diseño para pavimento flexible y rígido

PARAMETROS DE DISEÑO	PAVIMENTO FLEXIBLE	PAVIMENTO RIGIDO
EAL	5,820,011.01	6,676,529.56
Periodo de diseño	20 años	20 años
CBR	12.64%	12.64%
Nivel de confiabilidad	85%	90%
Desviación estándar	0.45	0.35
Serviciabilidad inicial	4.20	4.30
Serviciabilidad final	2.50	2.50
Número Estructural	3.25	-
Módulo de reacción de la subrasante	-	245.7 psi
Módulo de rotura del concreto	-	609 psi
Módulo elástico del concreto	-	3'723,365 psi
Coeficiente de drenaje	1	1
Transferencia de carga	-	2.8

Nota. Metodología para pavimento flexible en base al Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos 2014 y metodología para pavimento rígido en base a la Norma CE.010 Pavimentos Urbanos.

 De los parámetros de diseño anteriormente obtenidos, se realizó el cálculo de espesores estructural del pavimento, obtuvimos los siguientes espesores:

Figura 22
Espesores del pavimento flexible

Nota. Propuesta de diseño estructural para Pavimento Flexible: carpeta asfáltica = 9cm, base = 15cm y sub base = 20cm.

Figura 23
Espesores del pavimento rígido

Nota. Propuesta de diseño estructural para Pavimento Rígido: losa de concreto = 23cm y sub base = 15cm.

El presupuesto obtenido para el pavimento flexible es S/. 5,482,618.77 (Cinco Millones Cuatrocientos Ochenta y Dos Mil Seiscientos Dieciocho con 77/100 Soles) y para el pavimento rígido es S/. 8,111,032.18 (Ocho Millones Ciento Once Mil Treinta y Dos con 18/100 Soles) de lo que concluimos que el pavimento flexible es un 14.79% más económico que del pavimento rígido.

CONCLUSIONES

- Las condiciones actuales presentes en la Av. Federico Villarreal muestra numerosas fallas como, piel de cocodrilo, huecos, parches, agrietamiento en bloque, grietas longitudinales y transversales; lo cual evidencia una enorme necesidad de una adecuada propuesta de pavimento flexible o rígido que cumpla las condiciones actuales de tráfico.
- De acuerdo al estudio de tráfico realizado se obtuvo un IMD de 8,934 veh/dia, siendo un dato muy importante para el cálculo y toma de valores del diseño estructural tanto para el pavimento flexible y pavimento rígido, de acuerdo al manual de carreteras y metodología AASHTO 93.
- Se obtuvo una topografía plana según el levantamiento topográfico realizado en la zona de estudio, lo cual no demandará un gran movimiento de tierra.
- Se obtuvo un EAL de 5,820,011.01 para el pavimento flexible y un EAL de 6,676,529.56 para el pavimento rígido, por lo que, al culminar el periodo de diseño se debe realizar un nuevo estudio de tráfico para determinar el nuevo EAL para cada tipo de pavimento, así garantizar que la estructura trabajará en óptimas condiciones.
- Realizado el estudio de mecánica de suelos se obtuvo un suelo arcilloso de mediana plasticidad con un CBR de diseño de 12.64%, por lo que se concluye que el suelo posee una buena resistencia al esfuerzo cortante, lo cual influye directamente en el espesor de la sub base.
- Los cálculos realizados en el presente proyecto tanto para el diseño estructural del pavimento flexible como para el pavimento rígido, obedecen a parámetros del comportamiento de la zona en estudio, tomando en cuenta el estudio de tráfico, la mecánica de los materiales, condiciones climáticas, condiciones de drenaje y los niveles de serviciabilidad y confiabilidad.
- Para fines de viabilidad del proyecto, se realizó cálculos económicos de ambas propuestas, concluyéndose que el costo de ejecución del pavimento flexible es de 14.79% veces más económico que al costo del pavimento rígido.
- Se diseñó cada tipo de pavimento siguiendo las recomendaciones de la metodología AASHTO 93, en el cual, para el pavimento flexible se obtuvo una estructura de 20 cm de espesor de sub base, 15 cm para base y 9 cm

- para la carpeta asfáltica; para el pavimento rígido se obtuvo una estructura de 15 cm de espesor para la sub base y 23 cm para la losa de concreto.
- Según el Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos 2014, para un espesor de 23cm de espesor de losa de concreto, corresponde usar dowells de acero liso de 1 ¼" (32mm) de diámetro. Siendo este espesor una medida no comercial en nuestro país; para fines de cálculos se consideró el uso de dowells de 1" de diámetro.

RECOMENDACIONES

- Para el diseño de pavimentos de concreto en nuestra ciudad, se recomienda implementar un adecuado sistema de drenaje que permita evacuar el agua en condiciones extremas como es el caso del Fenómeno del Niño.
- Se recomienda el uso de tecnologías para un conteo más exacto en el estudio de tráfico, debido a que los pavimentos son diseñados para un EAL determinado y un incremento de flujo vehicular puede afectar al espesor de la carpeta de rodadura.
- Al realizar los estudios de mecánica de suelos, se obtuvo arenas arcillosas de regular humedad, para lo cual de ser necesario se recomienda realizar el ensayo por Consolidación unidireccional, según NTP 339.154 (ASTM-D2435), empleando un odómetro en laboratorio.
- El material de la base, deberá ser compactado hasta alcanzar los niveles requeridos, de acuerdo al valor del Proctor Modificado encontrado en laboratorio.
- Se recomienda que a los 20 años se debe realizar una evaluación del pavimento como medir la rugosidad, daños (agrietamientos, parchados, ahuellamiento) y deflectometría para saber el estado real de pavimento y tomar las medidas correctivas.
- Debido a que se redujo el diámetro del dowell por uno más comercial, se recomienda el uso de fibras metálicas o sintéticas para refuerzo del concreto con la finalidad de generar un compuesto más homogéneo y controlar la fisuración y agrietamiento.
- Los resultados económicos presentados en la presente tesis solamente consideran la estimación de costos de la etapa constructiva, por lo cual se recomienda incluir la etapa de operación y mantenimiento para obtener costos más exhaustivos.
- Se ha de tener en cuenta otros parámetros de diseño tales como factor climático, proceso constructivo, calidad de materiales, especificaciones técnicas, ya que por lo general estos datos presentan diversos errores, perjudicando así directamente a la durabilidad y serviciabilidad del pavimento.
- Durante la ejecución del pavimento se recomienda respetar los parámetros considerados en su diseño estructural, debido a que muchas veces se

- alteran estos datos en campo, perjudicando así el resultado final de una buena obra afectando al usuario del pavimento.
- Una vez concluida está obra de pavimentación, después de 02 meses como mínimo se recomienda sellar estos trabajos con la finalidad de impermeabilizar o vitalizar su superficie. Realizado este primer sellado, se deberá repetir estos trabajos en forma anual a fin de conservarlo siempre en buen estado.

REFERENCIAS BIBLIOGRÁFICAS

- AASHTO, A. A. (1993). Guide for desing of paviment structures. Estados Unidos.
- Benites Alayo, M. A. (2014). Evaluación de las condiciones actuales y diseño estructural del pavimento utilizando conceptos urbanísticos modernos para el proyecto de rehabilitación y mejoramiento de las vías en la Urbanización Santa Edelmira Trujillo. (Tesis de pregrado), Universidad Privada Antenor Orrego, Trujillo, Perú.
- Ccasani Bravo, M. J., & Ferro Moina, Y. I. (2017). Evaluación y Análisis de Pavimentos en la Ciudad de Abancay, para Proponer una Mejor Alternativa Estructural en el Diseño de Pavimentos. (Tesis de pregrado), Universidad Tecnológica De Los Andes, Abancay, Perú.
- Escobar Bellido, L., & Huincho Ochoa, J. (2017). Diseño De Pavimento Flexible,
 Bajo Influencia De Parámetros De Diseño Debido Al Deterioro Del
 Pavimento En Santa Rosa Sachapite, Huancavelica 2017. (Tesis de pregrado), Universidad Nacional De Huancavelica, Huancavelica, Perú.
- Harumi Rengifo Arakaki, K. K. (2014). Diseño De Los Pavimentos De La Nueva Carretera Panamericana Norte En El Tramo De Huacho A Pativilca (Km 188 A 189). (Tesis de pregrado), Pontificia Universidad Católica Del Perú, Lima.
- Menéndez Acurio, J. R. (2016). *Ingeniería de Pavimentos Materiales, Diseño y Conservación* (5ta ed., Vol. 1). Lima: Fondo Editorial ICG.
- Ministerio de Transportes y Comunicaciones. (2014). *Manual de Carreteras Suelos, Geología, Geotecnía y Pavimentos 2014.* Obtenido de https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/manual es.html
- Ministerio de Transportes y Comunicaciones. (2018). *Manual de Carreteras: Diseño Geométrico DG 2018.* Dirección General de Caminos y
 Ferrocarriles, Lima, Lima. Obtenido de
 https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/docum
 entos/manuales/Manual.de.Carreteras.DG-2018.pdf

- Ministerio de Vivienda Construcción y Saneamiento. (2010). Norma CE.010

 Pavimentos Urbanos Reglamento Nacional de Edificaciones RNE.

 Servicio Nacional de Capacitación para la Industria de la Construcción SENCICO. Lima: Industrial Gráfica Apolo S.A.C. Obtenido de https://www.sencico.gob.pe/descargar.php?idFile=182
- Vega Pérrigo, D. A. (2018). *Diseño De Los Pavimentos De La Carretera De Acceso Al Nuevo Puerto De Yurimaguas (Km 1+000 A 2+000).* (Tesis De Pregrado), Pontificia Universidad Católica Del Perú, Lima, Perú.

ANEXOS

ANEXO N°01: PLANO DE UBICACIÓN GEOGRÁFICA

ANEXO N°02: CONTEO VEHICULAR

	I			1	~		1	0 "			~ .								ı			
DÍA	Moto	Mototaxi	Auto		Camionetas			Omnibus			Camion	I		I		rayle rs	l	T			vlers	
				Panel	Pick Up	Rural	B2	B3-1	B4-1	C2	C3	C4	T2S1	T2S2	T2S3	T3S1	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3
Punto 4:	A STATE OF THE STA	ATP								A		_ A										
Lunes	6	0		EA-	-	0-0		0	00 00	2 		000 0	0 0 0	88 8 8 8	999 6 9	0 80 0	~ 41	000 80 0	0000	50 0 0 0	0 00 0	00 0 00 0
06/12/2021																T						
00:00 - 01:00	9	0	62	0	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:00 - 02:00	8	0	49	0	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:00 - 03:00	11	0	57	0	29	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
03:00 - 04:00	18	0	91	0	34	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0
04:00 - 05:00	32	2	173	4	52	0	0	0	0	13	2	1	2	0	0	0	0	0	0	0	0	0
05:00 - 06:00	51	9	232	9	65	2	0	0	0	17	7	1	1	1	0	0	0	0	0	0	0	0
06:00 - 07:00	62	13	292	11	57	9	3	0	0	21	10	1	0	0	0	0	0	2	0	0	0	0
07:00 - 08:00	75	21	375	14	69	12	5	0	0	28	13	1	0	0	1	0	0	4	0	0	0	0
08:00 - 09:00	86	27	401	19	74	12	7	0	0	31	19	1	0	0	0	0	0	2	0	0	0	0
09:00 - 10:00	79	19	362	21	69	15	8	0	0	33	17	1	0	0	0	0	0	1	0	0	0	0
10:00 - 11:00	70	20	335	19	63	10	6	0	0	28	11	1	0	0	0	0	0	1	0	0	0	0
11:00 - 12:00	60	16	301	15	52	4	1	0	0	25	7	0	0	0	0	0	0	0	0	0	0	0
12:00 - 13:00	55	13	289	14	45	7	1	0	0	20	5	0	0	0	0	0	0	1	0	0	0	0
13:00 - 14:00	53	13	301	12	58	11	3	0	0	19	3	1	0	0	0	0	0	0	0	0	0	0
14:00 - 15:00	57	14	262	13	49	10	3	0	0	25	3	0	0	0	0	0	0	0	0	0	0	0
15:00 - 16:00	61	23	321	17	53	16	5	0	0	32	10	0	0	0	0	0	0	2	0	0	0	0
16:00 - 17:00	74	21	348	25	47	28	7	0	0	26	15	1	0	0	0	0	0	5	0	0	0	0
17:00 - 18:00	87	28	405	16	63	20	5	0	0	45	21	0	0	0	0	0	0	3	0	0	0	0
18:00 - 19:00	70	20	387	17	68	13	4	0	0	37	17	0	0	0	0	0	0	2	0	0	0	0
19:00 - 20:00	61	13	311	7	40	8	2	0	0	23	10	1	0	0	0	0	0	0	0	0	0	0
20:00 - 21:00	57	7	285	2	29	2	0	0	0	25	8	0	0	0	0	0	0	0	0	0	0	0
21:00 - 22:00	45	2	224	0	13	0	0	0	0	10	3	0	0	0	0	0	0	0	0	0	0	0
22:00 - 23:00	30	0	115	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23:00 - 24:00	19	0	77	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	1230	281	6055	235	1098	179	60	0	0	470	181	10	3	1	1	0	0	23	0	0	0	0

DÍA.					Camionetas			Omnibus			Camion				Semit	raylers				Tray	ylers	
DÍA	Moto	Mototaxi	Auto	Panel	Pick Up	Rural	B2	B3-1	B4-1	C2	C3	C4	T2S1	T2S2	T2S3	T3S1	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3
Punto 1:	*				40-	40 ED		(11111		Δ	Δ	Δ	•	Λ	L		V		Δ	Δ	Δ	V
Martes	603					-0-0	0:1-0	01.00	00 00	2 	∞ 0	-000 O	0 0 0	00 6 0	000 8 0	0 000	~ ~ ~	000 00 0	*****	70 0 0 0	~~~	*************************************
07/12/2021																						
00:00 - 01:00	9	0	61	0	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:00 - 02:00	7	0	49	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:00 - 03:00	9	0	55	0	31	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
03:00 - 04:00	15	0	72	0	33	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0
04:00 - 05:00	20	2	141	7	51	0	0	0	0	13	2	1	1	0	0	0	0	0	0	0	0	0
05:00 - 06:00	30	5	210	9	61	2	0	0	0	17	5	1	0	0	0	0	0	0	0	0	0	0
06:00 - 07:00	38	7	270	10	58	10	3	0	0	21	12	1	1	0	0	0	0	2	0	0	0	0
07:00 - 08:00	65	11	305	14	69	12	5	0	0	26	10	1	0	2	1	0	0	4	0	0	0	0
08:00 - 09:00	68	22	330	19	75	15	7	0	0	30	6	2	0	0	0	0	0	3	0	0	0	0
09:00 - 10:00	70	17	310	17	68	11	8	0	0	33	9	1	0	0	0	0	0	2	0	0	0	0
10:00 - 11:00	67	20	324	21	64	5	6	2	0	28	11	0	0	1	0	0	0	1	0	0	0	0
11:00 - 12:00	56	16	280	14	52	3	1	0	0	25	5	0	0	1	0	0	0	0	0	0	0	0
12:00 - 13:00	45	13	251	15	46	2	1	0	0	20	2	0	0	1	0	0	0	1	0	0	0	0
13:00 - 14:00	59	10	173	11	41	1	0	1	0	17	1	0	0	0	0	0	0	0	0	0	0	0
14:00 - 15:00	52	12	230	12	48	3	3	0	0	23	0	0	0	0	0	0	0	0	0	0	0	0
15:00 - 16:00	61	21	267	19	53	5	5	0	0	31	5	0	0	0	0	0	0	0	0	0	0	0
16:00 - 17:00	69	26	289	17	62	7	4	2	0	28	7	1	0	1	0	0	0	4	0	0	0	0
17:00 - 18:00	74	22	301	23	71	10	5	0	0	32	6	1	0	0	0	0	0	2	0	0	0	0
18:00 - 19:00	60	17	290	17	68	8	4	0	0	25	5	0	0	0	0	0	0	0	0	0	0	0
19:00 - 20:00	51	10	227	9	37	5	2	0	0	18	3	1	0	0	0	0	0	2	0	0	0	0
20:00 - 21:00	45	3	181	3	29	2	0	0	0	13	1	0	0	0	0	0	0	0	0	0	0	0
21:00 - 22:00	35	0	162	1	13	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0
22:00 - 23:00	28	0	85	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23:00 - 24:00	15	0	72	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	1048	234	4935	238	1105	101	54	5	0	421	90	10	2	6	1	0	0	21	0	0	0	0

DÍA		35.4.4.			Camionetas			Omnibus			Camion				Semit	raylers				Tray	ylers	
DIA	Moto	Mototaxi	Auto	Panel	Pick Up	Rural	B2	B3-1	B4-1	C2	C3	C4	T2S1	T2S2	T2S3	T3S1	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3
Punto 3: Miércoles 08/12/2021	605					50.0		0 00	00 00	₽	**		· •		****	· ***		*******		30 € 5 ♣		55 5 5
00:00 - 01:00	2	0	52	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:00 - 02:00	5	0	49	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:00 - 03:00	10	0	57	0	27	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
03:00 - 04:00	16	9	89	0	37	0	0	0	0	32	6	0	0	0	0	0	0	0	0	0	0	0
04:00 - 05:00	30	16	173	7	45	0	0	0	0	42	11	1	1	0	0	0	0	2	0	0	0	0
05:00 - 06:00	55	13	254	11	49	3	0	0	0	23	9	1	0	1	0	0	0	3	0	0	0	0
06:00 - 07:00	63	16	304	17	54	10	3	0	0	25	8	1	1	0	0	0	0	1	0	0	0	0
07:00 - 08:00	75	25	331	20	60	14	5	0	0	33	6	0	0	2	0	0	0	2	0	0	0	0
08:00 - 09:00	79	17	354	27	69	23	4	0	0	40	10	2	0	0	0	0	0	1	0	0	0	0
09:00 - 10:00	67	18	321	21	65	21	6	0	0	36	8	0	0	0	0	0	0	0	0	0	0	0
10:00 - 11:00	60	21	318	19	60	15	3	0	0	31	7	0	0	0	0	0	0	1	0	0	0	0
11:00 - 12:00	54	16	299	15	52	10	2	0	0	25	3	0	0	0	0	0	0	0	0	0	0	0
12:00 - 13:00	49	13	267	14	46	8	1	0	0	22	1	0	0	0	0	0	0	1	0	0	0	0
13:00 - 14:00	34	10	210	11	41	6	0	0	0	19	1	0	0	0	0	0	0	0	0	0	0	0
14:00 - 15:00	46	14	258	12	48	10	0	0	0	25	0	0	0	0	0	0	0	0	0	0	0	0
15:00 - 16:00	55	17	312	14	57	17	5	0	0	31	4	0	0	0	0	0	0	0	0	0	0	0
16:00 - 17:00	66	23	319	21	66	22	7	0	0	37	8	2	0	0	0	0	0	3	0	0	0	0
17:00 - 18:00	70	18	325	18	68	26	2	0	0	40	10	0	0	1	0	0	0	2	0	0	0	0
18:00 - 19:00	61	16	307	12	57	15	4	0	0	32	5	0	0	0	0	0	0	0	0	0	0	0
19:00 - 20:00	57	12	297	6	38	7	2	0	0	21	3	0	0	0	0	0	0	2	0	0	0	0
20:00 - 21:00	45	6	274	3	30	2	0	0	0	14	1	0	0	0	0	0	0	0	0	0	0	0
21:00 - 22:00	31	0	198	0	14	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0
22:00 - 23:00	17	0	92	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23:00 - 24:00	8	0	61	0	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	1055	280	5521	248	1045	209	44	0	0	538	101	7	2	4	0	0	0	18	0	0	0	0

DÍA					Camionetas			Omnibus			Camion				Semit	raylers				Tray	ylers	
DÍA	Moto	Mototaxi	Auto	Panel	Pick Up	Rural	B2	B3-1	B4-1	C2	C3	C4	T2S1	T2S2	T2S3	T3S1	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3
Punto 7: Jueves 09/12/2021						0.0		0 00	00 00	~ [··· ••	· ***		**************************************		50 e 5 d	••••••••••••••••••••••••••••••••••••••	
00:00 - 01:00	17	0	103	0	47	0	0	0	0	7	1	0	0	0	0	0	0	0	0	0	0	0
01:00 - 02:00	15	2	83	0	40	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0
02:00 - 03:00	13	0	77	0	37	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
03:00 - 04:00	21	0	81	0	51	0	0	0	0	13	7	0	0	0	0	0	0	2	0	0	0	0
04:00 - 05:00	29	1	110	7	53	7	1	0	0	14	8	1	1	1	0	1	0	5	0	0	0	0
05:00 - 06:00	37	2	150	9	81	9	0	0	0	18	11	1	0	2	1	0	0	1	0	0	0	0
06:00 - 07:00	43	2	221	15	78	29	6	1	0	29	12	1	1	1	0	1	0	7	0	0	0	0
07:00 - 08:00	62	9	270	25	87	36	5	0	0	37	13	1	0	3	0	1	0	10	0	0	0	0
08:00 - 09:00	72	10	285	31	96	41	7	0	0	41	19	2	0	4	1	0	0	14	1	0	0	0
09:00 - 10:00	65	8	272	28	93	37	6	0	0	39	15	1	0	4	0	1	0	12	0	0	0	0
10:00 - 11:00	61	7	280	29	91	31	8	0	0	38	13	0	0	3	0	0	0	9	0	0	0	0
11:00 - 12:00	54	9	260	21	86	32	6	0	0	37	15	0	0	2	1	0	0	11	0	0	0	0
12:00 - 13:00	52	7	268	19	79	35	4	0	0	34	12	1	0	1	0	1	0	10	0	0	0	0
13:00 - 14:00	48	6	245	17	81	28	4	0	0	29	13	1	0	0	0	0	0	8	0	0	0	0
14:00 - 15:00	57	9	257	21	88	31	5	0	0	31	12	0	0	1	0	0	0	8	0	0	0	0
15:00 - 16:00	63	10	269	27	88	34	7	0	0	36	14	0	0	4	0	1	0	11	0	0	0	0
16:00 - 17:00	70	8	280	30	95	41	6	0	0	39	17	0	0	5	0	1	0	13	0	0	0	0
17:00 - 18:00	68	11	283	27	98	43	6	0	0	41	21	1	0	5	0	1	0	14	0	0	0	0
18:00 - 19:00	62	8	270	25	91	35	7	0	0	37	13	0	0	3	0	0	0	10	0	0	0	0
19:00 - 20:00	53	7	263	21	85	19	4	1	0	31	11	1	0	2	0	0	0	7	0	0	0	0
20:00 - 21:00	47	3	241	18	79	25	5	2	0	29	7	0	0	0	0	0	0	3	0	0	0	0
21:00 - 22:00	41	1	213	1	69	0	0	0	0	21	4	0	0	1	0	0	0	1	0	0	0	0
22:00 - 23:00	28	0	186	0	63	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0
23:00 - 24:00	19	0	150	0	58	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	1097	120	5117	371	1814	513	87	4	0	631	238	11	2	42	3	8	0	156	1	0	0	0

DÍA					Camionetas			Omnibus			Camion				Semit	raylers				Tray	lers	
DÍA	Moto	Mototaxi	Auto	Panel	Pick Up	Rural	B2	B3-1	B4-1	C2	C3	C4	T2S1	T2S2	T2S3	T3S1	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3
Punto 6: Viernes 10/12/2021	65					000		(a)	000	, [~	 ↓		*****	***************************************	· **	,, ,,	··· ***		***	*****	***************************************
00:00 - 01:00	6	0	61	0	33	0	0	0	0	3	1	0	0	0	0	0	0	0	0	0	0	0
01:00 - 02:00	5	0	49	0	35	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0
02:00 - 03:00	9	0	52	0	37	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
03:00 - 04:00	15	0	69	0	51	0	0	0	0	13	7	0	0	0	0	0	0	0	0	0	0	0
04:00 - 05:00	23	1	98	7	62	7	1	0	0	14	8	2	1	1	0	1	0	3	0	0	0	0
05:00 - 06:00	31	2	138	9	79	9	1	0	0	17	11	1	0	1	0	0	0	1	0	0	0	0
06:00 - 07:00	37	2	219	10	85	24	6	0	0	21	12	1	1	0	0	1	0	2	0	0	0	0
07:00 - 08:00	48	9	249	12	93	34	9	0	0	26	13	1	0	0	0	1	0	4	0	0	0	0
08:00 - 09:00	51	10	270	14	101	41	15	0	0	30	19	2	0	3	1	0	0	7	0	0	0	0
09:00 - 10:00	49	8	261	17	97	38	10	0	0	33	15	1	0	0	0	1	0	7	0	0	0	0
10:00 - 11:00	46	10	255	13	93	33	14	0	0	29	25	0	0	0	0	0	0	6	0	0	0	0
11:00 - 12:00	44	11	250	13	91	31	12	0	0	27	20	0	1	0	1	0	0	4	0	0	0	1
12:00 - 13:00	39	7	238	8	85	23	10	0	0	33	13	2	0	0	0	1	0	0	0	0	0	0
13:00 - 14:00	33	3	235	5	77	18	8	0	0	29	10	1	0	0	0	0	0	0	0	0	0	0
14:00 - 15:00	35	5	221	6	70	15	6	0	0	23	12	0	0	1	0	0	0	2	0	0	0	0
15:00 - 16:00	40	10	248	10	65	17	7	0	0	28	14	0	0	0	0	0	0	3	0	0	0	0
16:00 - 17:00	37	12	243	11	62	12	9	0	0	27	13	1	0	1	0	0	1	0	0	0	0	1
17:00 - 18:00	48	9	250	12	71	19	11	0	0	33	21	1	0	2	0	0	0	5	0	0	0	0
18:00 - 19:00	43	8	245	10	68	14	9	0	0	25	13	0	0	1	0	0	0	3	0	0	0	0
19:00 - 20:00	31	5	221	8	53	12	5	0	0	19	11	1	0	1	0	0	0	2	0	0	0	0
20:00 - 21:00	29	2	178	3	61	10	3	0	0	17	12	0	0	0	0	0	0	0	0	0	0	0
21:00 - 22:00	21	0	152	1	55	0	0	0	0	17	9	1	0	0	0	0	0	0	0	0	0	0
22:00 - 23:00	11	0	90	0	49	0	0	0	0	11	2	2	0	0	0	0	0	0	0	0	0	0
23:00 - 24:00	7	0	73	0	42	0	0	0	0	6	3	0	0	0	0	0	0	0	0	0	0	0
TOTAL	738	114	4365	169	1615	357	136	0	0	488	264	17	3	11	2	5	1	49	0	0	0	2

DÍA		35			Camionetas			Omnibus			Camion				Semitr	aylers				Tray	ylers	
DÍA	Moto	Mototaxi	Auto	Panel	Pick Up	Rural	B2	B3-1	B4-1	C2	C3	C4	T2S1	T2S2	T2S3	T3S1	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3
Punto 2: Sábado 11/12/2021								<u> </u>	00 00	, ∫	~	 ↓	<u> </u>	***	000 8 0		,, , ,	***************************************		*****	••••	
00:00 - 01:00	6	0	57	0	13	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
01:00 - 02:00	1	0	45	0	15	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
02:00 - 03:00	4	0	48	0	20	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0
03:00 - 04:00	12	3	79	2	32	6	0	0	0	19	4	0	0	0	0	0	0	0	0	0	0	0
04:00 - 05:00	25	10	142	10	38	10	1	0	0	25	7	2	1	1	0	0	0	2	0	0	0	0
05:00 - 06:00	30	19	214	16	43	21	0	0	0	31	8	1	0	0	0	0	0	0	0	0	0	0
06:00 - 07:00	35	17	221	20	45	23	3	0	0	31	10	0	1	0	0	0	0	1	0	0	0	0
07:00 - 08:00	48	25	244	27	50	32	6	0	0	36	12	1	0	0	1	0	0	1	0	0	0	0
08:00 - 09:00	51	30	270	35	53	41	2	0	0	41	14	0	0	0	0	0	0	3	0	0	0	0
09:00 - 10:00	59	37	263	28	48	38	4	0	0	38	10	1	0	0	0	0	0	2	0	0	0	0
10:00 - 11:00	61	33	255	30	36	35	2	0	0	33	8	0	0	0	0	0	0	0	0	0	0	0
11:00 - 12:00	48	21	247	21	30	30	2	0	0	28	3	0	0	0	0	0	0	1	0	0	0	0
12:00 - 13:00	40	21	278	17	32	28	0	0	0	20	2	0	0	0	0	0	0	0	0	0	0	0
13:00 - 14:00	35	23	256	11	37	23	0	0	0	17	1	0	0	0	0	0	0	0	0	0	0	0
14:00 - 15:00	38	11	231	15	31	16	1	0	0	26	4	0	0	0	0	0	0	0	0	0	0	0
15:00 - 16:00	40	18	250	24	39	20	3	0	0	30	9	0	0	0	0	0	0	2	0	0	0	0
16:00 - 17:00	37	29	265	28	47	17	0	0	0	28	12	1	0	0	0	0	1	1	0	0	0	0
17:00 - 18:00	48	21	277	23	55	19	2	0	0	35	10	0	0	0	0	0	0	1	0	0	0	0
18:00 - 19:00	43	16	254	18	50	15	1	0	0	24	7	0	0	0	0	0	0	0	0	0	0	0
19:00 - 20:00	31	8	227	7	43	10	0	0	0	19	2	1	0	0	0	0	0	0	0	0	0	0
20:00 - 21:00	29	2	180	2	38	7	0	0	0	14	1	0	0	0	0	0	0	0	0	0	0	0
21:00 - 22:00	21	0	158	0	31	0	0	0	0	9	1	0	0	0	0	0	0	0	0	0	0	0
22:00 - 23:00	11	1	85	1	27	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0
23:00 - 24:00 TOTAL	7 760	0 345	68 4614	0 335	18 871	0 391	0 27	0	0	528	0 125	7	0 2	0	0	0	0	0 14	0	0	0	0

DÍA		35			Camionetas			Omnibus			Camion				Semit	raylers				Tra	ylers	
DÍA	Moto	Mototaxi	Auto	Panel	Pick Up	Rural	B2	B3-1	B4-1	C2	С3	C4	T2S1	T2S2	T2S3	T3S1	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3
Punto 5: Domingo 12/12/2021	606							000	00 00	₽			- 	~ 7	000 8	, ",	, ,	**************************************		***	*****	∞ ∞ ∞ •
00:00 - 01:00	9	0	61	0	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:00 - 02:00	7	0	52	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:00 - 03:00	9	0	60	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:00 - 04:00	18	0	91	0	30	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0
04:00 - 05:00	32	0	231	3	35	0	0	0	0	10	2	0	0	0	0	0	0	0	0	0	0	0
05:00 - 06:00	41	4	278	5	38	2	0	0	0	14	5	1	0	0	0	0	0	0	0	0	0	0
06:00 - 07:00	52	5	304	8	46	9	1	0	0	17	10	1	1	0	0	0	0	2	0	0	0	0
07:00 - 08:00	68	7	365	12	50	12	2	0	0	19	9	2	0	1	0	0	0	4	0	0	0	0
08:00 - 09:00	77	8	347	10	51	15	4	0	0	23	5	1	0	0	0	0	0	2	0	0	0	0
09:00 - 10:00	63	10	351	7	47	11	5	0	0	25	8	1	0	0	0	0	0	2	0	0	0	0
10:00 - 11:00	69	8	337	9	39	5	3	0	0	17	10	0	0	1	0	0	0	0	0	0	0	0
11:00 - 12:00	61	3	333	6	29	12	1	0	0	8	2	1	0	1	0	0	0	0	0	0	0	0
12:00 - 13:00	57	3	351	4	25	9	0	0	0	5	0	0	0	1	0	0	0	0	0	0	0	0
13:00 - 14:00	48	1	313	2	10	7	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
14:00 - 15:00	51	7	344	3	13	11	0	0	0	5	1	0	0	0	0	0	0	0	0	0	0	0
15:00 - 16:00	70	7	374	6	27	4	0	0	0	9	6	1	0	0	0	0	0	0	0	0	0	0
16:00 - 17:00	71	9	378	8	34	7	4	0	0	15	7	0	0	1	0	0	0	2	0	0	0	0
17:00 - 18:00	77	11	383	9	41	10	5	0	0	17	6	0	0	0	0	0	0	1	0	0	0	0
18:00 - 19:00	68	8	360	7	37	8	4	0	0	12	5	0	0	0	0	0	0	0	0	0	0	0
19:00 - 20:00	57	6	321	2	30	5	2	0	0	10	3	1	0	0	0	0	0	2	0	0	0	0
20:00 - 21:00	50	3	275	0	21	2	0	0	0	8	1	0	0	0	0	0	0	0	0	0	0	0
21:00 - 22:00	35	0	189	0	17	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0
22:00 - 23:00	28	0	113	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23:00 - 24:00	15	0	72	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	1133	100	6283	101	698	129	31	0	0	224	80	9	1	5	0	0	0	15	0	0	0	0

RESUMEN DE CONTEO DE VEHÍCULOS EN LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU

CONTROL DE VEHÍCULOS X DÍA						
LUNES	9827					
MARTES	8271					
MIERCOLES	9072					
JUEVES	10215					
VIERNES	8336					
SABADO	8022					
DOMINGO	8809					
TOTAL	62552					

ORDEN SEGÚN TRÁFICO VEHICULAR						
SABADO	8022					
MARTES	8271					
VIERNES	8336					
DOMINGO	8809					
MIERCOLES	9072					
LUNES	9827					
JUEVES	10215					

ANEXO N°03: PERFILES ESTRATIGRÁFICOS

REGISTRO ESTRATIGRAFICO

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES

ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL

DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU".

FECHA : ENERO DEL 2022 CALICATA : C-1

NIVEL FREATICO: ---

PROF. (m)	TIPO DE EXCAVACION	MUESTRA	DESCRIPCION DEL MATERIAL	CLASIFICACION (SUCS)	SIMBOLO
0.70	Q		Material de relleno conformado por suelo orgánico, arena y algunas piedras.		
2.00	A CIELO ABIERTO	M - 1	Arenas pobremente graduadas con pocos limos, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el NAF.	SP-SM	

NIVEL FREATICO: ---

: 2.00 m.

: C-2

PROFUNDIDAD

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES

ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL

DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU".

COTA TERRENO : --**FECHA** : ENERO DEL 2022 CALICATA

TIPO DE CLASIFICACION PROF. MUESTRA DESCRIPCION DEL MATERIAL SIMBOLO EXCAVACION (SUCS) (m) Material de relleno conformado por suelo orgánico, arena y algunas piedras. CIELO ABIERTO 1.00 C) a b A Q Δ Arenas pobremente graduadas con pocos limos, de color beige pardo a a Q. 0 0 ۵ amarillo claro, de M - 1 SP-SM Ď. consistencia media Δ ۵ y regular humedad. αa Q Ь No se encontró el ۵ NAF. Ь ď C) ۵ D ø ø 2.00 Д

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES

ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL

DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA

CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU".

: ENERO DEL 2022 **FECHA**

CALICA			:	C.	_
UCS)		SIN	/BO	LO	
	0 0	2		a a	Δ
	.53	3	0 00	a d	۵
	a .	- A	à	0	D

NIVEL FREATICO: ---

PROFUNDIDAD : 2.00 m.

PROF. TIPO DE CLASIF DESCRIPCION DEL MATERIAL MUESTRA **EXCAVACION** (S (m) Material de relleno conformado por suelo orgánico, arena y algunas piedras. 0.40 CIELO ABIERTO Arenas pobremente graduadas con pocos a O П limos, de color M - 1D beige pardo a amarillo claro, de SP-SM Ц ۵ consistencia media y regular humedad. Qb. No se encontró el 0 0 A NAF. ۵ 6 ۵ 00 O ۵ 0 а а 2.00 13

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES

ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL

DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA

CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU".

FECHA: ENERO DEL 2022

NIVEL FREATICO: --PROFUNDIDAD : 2.00 m.
COTA TERRENO : --

CALICATA : C-4

PROF.	TIPO DE EXCAVACION	MUESTRA	DESCRIPCION DEL MATERIAL	CLASIFICACION (SUCS)	SIMBOLO
1.00	ABIERTO		Material de relleno conformado por suelo orgánico, arena y algunas piedras.		
2.00	A CIELO	M - 1	Arenas arcillosa de color marrón claro, de consistencia media y regular humedad. No se encontró el NAF.	sc	

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES

ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL

DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA

CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU".

FECHA : ENERO DEL 2022 CALICATA : C-5

NIVEL FREATICO: ---

COTA TERRENO : --

PROF. (m)	TIPO DE EXCAVACION	MUESTRA	DESCRIPCION DEL MATERIAL	CLASIFICACION (SUCS)	SIMBOLO
0.40			Material de relleno conformado por suelo orgánico, arena y algunas piedras.		
2.00	A CIELO ABIERTO	M - 1	Arenas pobremente graduadas con pocos limos, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el NAF.	SP-SM	

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES

ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL

DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA

CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU".

FECHA: ENERO DEL 2022

NIVEL FREATICO: --PROFUNDIDAD : 2.00 m.
COTA TERRENO : --

CALICATA : C-6

PROF. (m)	TIPO DE EXCAVACION	MUESTRA	DESCRIPCION DEL MATERIAL	CLASIFICACION (SUCS)	SIMBOLO
1.20	CIELO ABIERTO		Material de relleno conformado por suelo orgánico, arena y algunas piedras.		
2.00	A CIE	M - 1	Arenas pobremente graduadas con pocos limos, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el NAF.	SP-SM	

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES

ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL

DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA

CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU".

FECHA ENERO DEL 2022 CALICATA C - 7

NIVEL FREATICO: ---

COTA TERRENO : --

PROF. (m)	TIPO DE EXCAVACION	MUESTRA	DESCRIPCION DEL MATERIAL	CLASIFICACION (SUCS)	SIMBOLO
1.20	CIELO ABIERTO		Material de relleno conformado por suelo orgánico, arena y algunas piedras.		
2.00	A CIE	M - 1	Arenas pobremente graduadas con pocos limos, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el NAF.	SP-SM	

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES

ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL

DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA

CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU".

COTA TERRENO : --: ENERO DEL 2022 CALICATA : C-8 **FECHA**

NIVEL FREATICO: ---

PROF. (m)	TIPO DE EXCAVACION	MUESTRA	DESCRIPCION DEL MATERIAL	CLASIFICACION (SUCS)	SIMBOLO
1.00	ABIERTO		Material de relleno conformado por suelo orgánico, arena y algunas piedras.		
2.00	A CIELO	M - 1	Arenas arcillosa de color marrón claro, de consistencia media y regular humedad. No se encontró el NAF.	SC	

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES

ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL

DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA

CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU".

FECHA : ENERO DEL 2022 CALICATA : C-9

NIVEL FREATICO: ---

PROF.	TIPO DE EXCAVACION	MUESTRA	DESCRIPCION DEL MATERIAL	CLASIFICACION (SUCS)	SIMBOLO
1.00	ABIERTO		Material de relleno conformado por suelo orgánico, arena y algunas piedras.		
2.00	A CIELO	M - 1	Arenas pobremente graduadas con pocos limos, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el NAF.	SP-SM	

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

FECHA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES

ACTUALES Y PROPUESTA DE DISEÑO ESTRUCTURAL

DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU".

: ENERO DEL 2022 CALICATA : C - 10

NIVEL FREATICO:

: 2.00 m.

PROFUNDIDAD

PROF. TIPO DE CLASIFICACION DESCRIPCION DEL MATERIAL MUESTRA SIMBOLO **EXCAVACION** (m) (SUCS) Material de relleno conformado por suelo orgánico, arena y algunas piedras. CIELO ABIERTO 1.00 a ď a Q Д ۵ 30 Arenas pobremente ۵ graduadas con pocos limos, de color beige pardo a G q O Δ amarillo claro, de M - 1 SP-SM ۵ q consistencia media Δ ۵ y regular humedad. ďa ø α Ь No se encontró el Ď C) NAF. ø Ь a ۵ C) Ь Q 2.00 C)

ANEXO N°04: ENSAYOS DE LABORATORIO

CONTENIDO DE HUMEDAD

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022

Calicata NO :		1		
Calicata Nº :		1		
Profundidad :	2.00	0 m.		
Lata N° :	1	2		
Peso de la muestra húmeda + lata (gr)	65.33	72.49		
Peso de la muestra seca + lata (gr)	59.91	65.71		
Peso del agua (gr)	5.42	6.78		
Peso de la lata (gr)	16.00	16.00		
Peso de la muestra seca (gr)	43.91	49.71		
Contenido de humedad (%)	12.34	13.64		
Contenido de humedad Promedio (%)	12	.99		

Calicata Nº :	2	
Profundidad :	2.00	0 m.
Lata N°:	3	4
Peso de la muestra húmeda + lata (gr)	74.16	80.42
Peso de la muestra seca + lata (gr)	67.33	73.09
Peso del agua (gr)	6.83 7.	
Peso de la lata (gr)	14.00 14.	
Peso de la muestra seca (gr)	53.33	59.09
Contenido de humedad (%) 12.81		12.40
Contenido de humedad Promedio (%)	12.61	

Calicata Nº :	3	
Profundidad :	2.00 m.	
Lata N°:	5	6
Peso de la muestra húmeda + lata (gr)	65.49	58.29
Peso de la muestra seca + lata (gr)	59.45	53.04
Peso del agua (gr)	6.04	5.25
Peso de la lata (gr)	14.00	14.00
Peso de la muestra seca (gr)	45.45	39.04
Contenido de humedad (%)	13.29	13.45
Contenido de humedad Promedio (%)	13	.37

Calicata Nº :	4	
Profundidad :	2.00 m.	
Lata N° :	7 8	
Peso de la muestra húmeda + lata (gr)	79.32	67.21
Peso de la muestra seca + lata (gr)	72.02	61.21
Peso del agua (gr)	7.30	6.00
Peso de la lata (gr)	14.00	14.00
Peso de la muestra seca (gr)	58.02	47.21
Contenido de humedad (%)	12.58	12.71
Contenido de humedad Promedio (%)	12	.65

Calicata Nº :	5	
Profundidad :	2.00 m.	
Lata N°:	9 10	
Peso de la muestra húmeda + lata (gr)	70.61	72.38
Peso de la muestra seca + lata (gr)	64.27	65.94
Peso del agua (gr)	6.34	6.44
Peso de la lata (gr)	14.00	14.00
Peso de la muestra seca (gr)	50.27	51.94
Contenido de humedad (%)	12.61	12.40
Contenido de humedad Promedio (%)	12	.51

Calicata Nº :	6		
Profundidad :	2.00 m.		
Lata N°:	11 12		
Peso de la muestra húmeda + lata (gr)	64.59	62.10	
Peso de la muestra seca + lata (gr)	58.94	55.91	
Peso del agua (gr)	5.65	6.19	
Peso de la lata (gr)	14.00	14.00	
Peso de la muestra seca (gr)	44.94	41.91	
Contenido de humedad (%)	12.57	14.77	
Contenido de humedad Promedio (%)	13.67		

Calicata Nº :	7	
Profundidad :	2.00 m.	
Lata N° :	13 14	
Peso de la muestra húmeda + lata (gr)	59.61	73.01
Peso de la muestra seca + lata (gr)	54.49	66.34
Peso del agua (gr)	5.12	6.67
Peso de la lata (gr)	14.00	14.00
Peso de la muestra seca (gr)	40.49	52.34
Contenido de humedad (%)	12.65	12.74
Contenido de humedad Promedio (%)	12.69	

Calicata Nº :	8	
Profundidad :	2.00 m.	
Lata N° :	15	16
Peso de la muestra húmeda + lata (gr)	64.62	66.82
Peso de la muestra seca + lata (gr)	58.73	60.46
Peso del agua (gr)	5.89	6.36
Peso de la lata (gr)	14.00	14.00
Peso de la muestra seca (gr)	44.73	46.46
Contenido de humedad (%)	13.17	13.69
Contenido de humedad Promedio (%)	13.43	

Calicata Nº :	9		
Profundidad :	2.00 m.		
Lata N°:	17 18		
Peso de la muestra húmeda + lata (gr)	65.49	70.50	
Peso de la muestra seca + lata (gr)	59.39	64.21	
Peso del agua (gr)	6.10	6.29	
Peso de la lata (gr)	13.00	13.00	
Peso de la muestra seca (gr)	46.39	51.21	
Contenido de humedad (%)	13.15	12.28	
Contenido de humedad Promedio (%)	12.72		

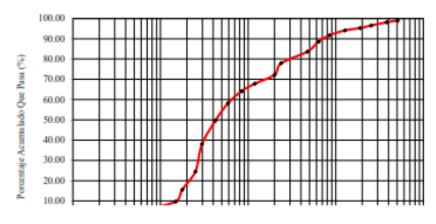
Calicata Nº:	10	
Profundidad :	2.00 m.	
Lata N°:	19	20
Peso de la muestra húmeda + lata (g	54.28	50.44
Peso de la muestra seca + lata (gr)	49.67	45.91
Peso del agua (gr)	4.61	4.53
Peso de la lata (gr)	13.00	13.00
Peso de la muestra seca (gr)	36.67	32.91
Contenido de humedad (%)	12.57	13.76
Contenido de humedad Promedio (%	% 13.17	

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.


FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

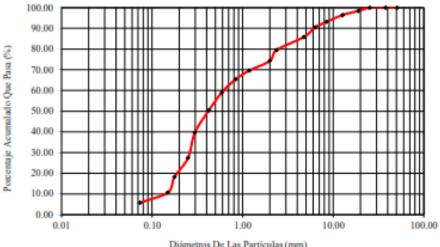
FECHA: ENERO DEL 2022 CALICATA: C-1 Prof.: 2.00 m.

TAMIZ	ABERTURA	PESO	%PESO	PESO RETENID	%QUE
N°	mm	RETENIDO	RETENIDO	ACUMULADO	PASA
2"	50.80	21.65	0.99	0.99	99.01
1 1/2"	35.10	19.62	0.90	1.89	98.11
1"	25.40	34.16	1.56	3.45	96.55
3/4"	19.00	27.44	1.26	4.71	95.29
1/2"	12.70	25.63	1.17	5.88	94.12
3/6"	8.46	52.81	2.42	8.30	91.70
1/4"	6.35	68.29	3.13	11.43	88.57
Nº 4	4.76	106.32	4.87	16.29	ō3.71
Nº ö	2.35	126.34	5.78	22.08	77.92
Nº 10	2.00	124.29	5.69	27.77	72.23
Nº 16	1.19	96.34	4.41	32.18	67.82
Nº 20	0.84	81.16	3.72	35.89	64.11
Nº 30	0.59	128.59	5.89	41.78	55.22
Nº 40	0.425	184.94	8.47	50.25	49.75
Nº 50	0.297	254.76	11.66	61.91	35.09
Nº 60	0.250	294.66	13.49	75.40	24.60
Nº 80	0.177	195.35	5.94	54.35	15.65
Nº 100	0.149	129.33	5.92	90.27	9.73
Nº 200	0.074	76.34	3.49	93.76	6.24
Recipiente	-	136.26	6.24	100.00	0.00
Sumatoria		2184.31	100.00		
D10= 0.150	D10= 0.150 D30=0.269 D60=0.666				
Clasificación SUSC: SP -SM (Arena mal graduada con pocos limos)					LP: 15.44
Clasificación AASHTO: A-1-b					IP: 5.84

	0.028	0.267	0.047	5.40	0.25	1.78
	5.92	0.150	13.49	0.269	5.89	0.666
cu	4.	42997722				
CC	0.	72246639				

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK


"EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE PROYECTO:

> DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

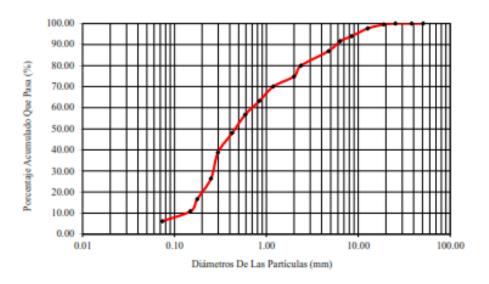
ENERO DEL 2022 FECHA: CALICATA: C-2 2.00 m. Prof.:

TAMIZ	ABERTURA	PESO	%PESO	PESO RETENID	%QUE
N°	mm	RETENIDO	RETENIDO	ACUMULADO	PASA
2"	50.80	0.00	0.00	0.00	100.00
1 1/2"	38.10	0.00	0.00	0.00	100.00
1"	25.40	0.00	0.00	0.00	100.00
3/4"	19.00	36.26	1.64	1.64	95.35
1/2"	12.70	42.16	1.90	3.54	96.46
3/5"	5.46	73.57	3.32	6.87	93.13
1/4"	6.35	55.24	2.63	9.50	90.50
Nº 4	4.76	103.26	4.67	14.16	85.84
Nº ö	2.35	135.49	6.26	20.42	79.58
Nº 10	2.00	116.95	5.28	25.71	74.29
Nº 16	1.19	102.35	4.62	30.33	69.67
Nº 20	0.84	94.56	4.27	34.60	65.40
Nº 30	0.59	139.64	6.31	40.91	59.09
Nº 40	0.425	192.54	8.70	49.61	50.39
Nº 50	0.297	237.16	10.72	60.33	39.67
Nº 60	0.250	270.28	12.21	72.54	27.46
Nº 80	0.177	203.64	9.20	81.74	18.26
Nº 100	0.149	167.29	7.56	89.30	10.70
Nº 200	0.074	105.29	4.89	94.19	5.61
Recipiente	-	128.49	5.81	100.00	0.00
Sumatoria		2213.17	100.00		
D10= 0.138 D30=0.260 D60=0.626					LL: 20.03
Clasificación SUSC: SP -SM (Arena mal graduada con pocos limos)					LP: 16.00
Clasificación AASHTO: A-2-4					IP: 4.03

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE


DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

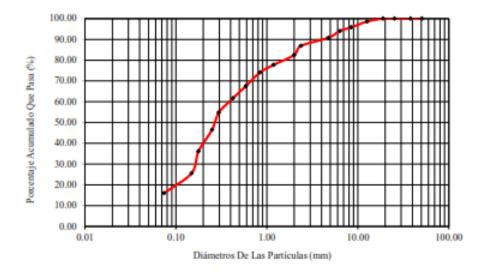
FECHA: ENERO DEL 2022 CALICATA: C-3 Prof.: 2.00 m.

TAMIZ	ABERTURA	PESO	%PESO	PESO RETENID	%QUE
N°	mm	RETENIDO	RETENIDO	ACUMULADO	PASA
2"	50.80	0.00	0.00	0.00	100.00
1 1/2"	35.10	0.00	0.00	0.00	100.00
1"	25.40	0.00	0.00	0.00	100.00
3/4"	19.00	10.35	0.47	0.47	99.53
1/2"	12.70	42.57	1.91	2.35	97.62
3/6"	8.46	82.11	3.69	6.07	93.93
1/4"	6.35	53.16	2.39	5.47	91.53
Nº 4	4.76	103.26	4.64	13.11	86.89
Nº 8	2.38	154.26	6.94	20.05	79.95
Nº 10	2.00	113.67	5.11	25.16	74.54
Nº 16	1.19	105.87	4.76	29.92	70.08
Nº 20	0.84	152.46	6.86	36.75	63.22
Nº 30	0.59	143.91	6.47	43.25	56.75
Nº 40	0.425	194.26	5.74	51.99	48.01
Nº 50	0.297	205.64	9.25	61.24	35.76
Nº 60	0.250	274.85	12.36	73.60	26.40
Nº 80	0.177	215.64	9.70	83.30	16.70
Nº 100	0.149	125.49	5.78	89.08	10.92
Nº 200	0.074	105.34	4.78	93.87	6.13
Recipiente	-	135.37	6.13	100.00	0.00
Sumatoria		2223.22	100.00		
D10= 0.135	LL: 21.57				
Clasificación S	LP: 15.45				
	AASHTO: A-1				IP: 6.11

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE


DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

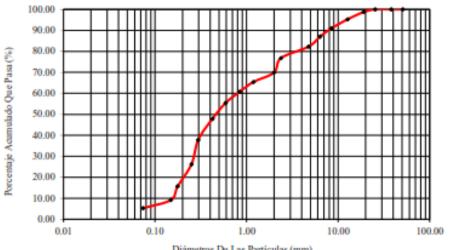
FECHA: ENERO DEL 2022 CALICATA: C-4 Prof.: 2.00 m.

TAMIZ	ABERTURA	PESO	%PESO	PESO RETENID	%QUE
N°	mm	RETENIDO	RETENIDO	ACUMULADO	PASA
2"	50.80	0.00	0.00	0.00	100.00
1 1/2"	38.10	0.00	0.00	0.00	100.00
1"	25.40	0.00	0.00	0.00	100.00
3/4*	19.00	0.00	0.00	0.00	100.00
1/2"	12.70	39.64	1.39	1.39	95.61
3/5"	8.46	81.06	2.83	4.22	95.78
1/4"	6.35	50.25	1.76	5.98	94.02
Nº 4	4.76	92.61	3.24	9.22	90.78
Nº 8	2.35	110.36	3.86	13.07	86.93
Nº 10	2.00	127.49	4.46	17.53	82.47
Nº 16	1.19	135.29	4.73	22.26	77.74
Nº 20	0.84	105.26	3.68	25.94	74.06
Nº 30	0.59	186.37	6.52	32.46	67.54
Nº 40	0.425	167.42	5.85	35.31	61.69
Nº 50	0.297	196.25	6.86	45.17	54.63
Nº 60	0.250	238.56	ō.34	53.51	46.49
Nº 80	0.177	294.56	10.30	63.81	36.19
Nº 100	0.149	302.49	10.58	74.39	25.61
Nº 200	0.074	275.46	9.63	54.02	15.98
Recipiente	-	457.19	15.98	100.00	0.00
Sumatoria		2860.32	100.00		
D10=	LL: 24.33				
Clasificación S	LP: 16.51				
Clasificación	IP: 7.82				

BR. BAZÁN ALAYO CLAUDIA FERNANDA SOLICITANTE:

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

"EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE PROYECTO:


DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

ENERO DEL 2022 C-5 2.00 m. FECHA: CALICATA: Prof.:

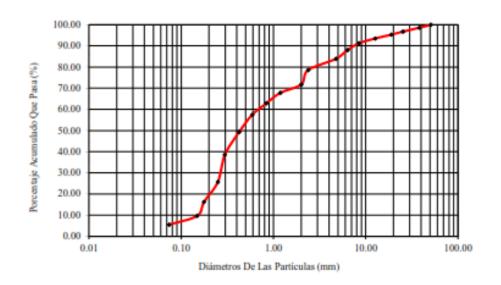
TAMIZ	ABERTURA	PESO	%PESO	PESO RETENID	%QUE
N°	mm	RETENIDO	RETENIDO	ACUMULADO	PASA
2"	50.80	0.00	0.00	0.00	100.00
1 1/2"	35.10	0.00	0.00	0.00	100.00
1"	25.40	0.00	0.00	0.00	100.00
3/4"	19.00	29.64	1.26	1.26	95.74
1/2"	12.70	82.16	3.45	4.74	95.26
3/8"	8.46	102.34	4.34	9.07	90.93
1/4"	6.35	92.16	3.90	12.95	87.02
Nº 4	4.76	113.07	4.79	17.77	ō2.23
N° ō	2.35	125.49	5.44	23.21	76.79
Nº 10	2.00	162.34	6.00	30.09	69.91
Nº 16	1.19	106.37	4.51	34.59	65.41
Nº 20	0.84	110.79	4.69	39.29	60.71
Nº 30	0.59	125.46	5.32	44.60	55.40
Nº 40	0.425	176.33	7.47	52.07	47.93
Nº 50	0.297	235.29	10.10	62.17	37.53
Nº 60	0.250	275.16	11.66	73.83	26.17
Nº 80	0.177	245.31	10.44	54.25	15.74
Nº 100	0.149	154.26	6.54	90.80	9.20
Nº 200	0.074	92.46	3.92	94.71	5.29
Recipiente	-	124.76	5.29	100.00	0.00
Sumatoria		2360.39	100.00		
D10= 0.152	LL: 19.71				
Clasificación S	LP: 15.29				
Clasificación	IP: 4.42				

Diámetros De Las Particulas (mm)

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE


DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

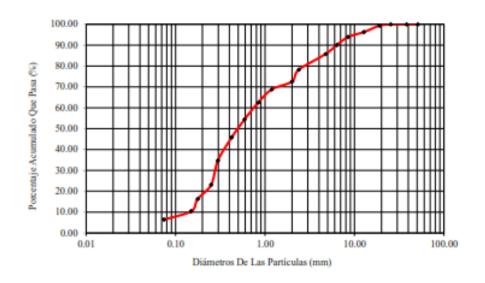
Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C-6 Prof.: 2.00 m.

TAMIZ	ABERTURA	PESO	%PESO	PESO RETENID	%QUE
N°	mm	RETENIDO	RETENIDO	ACUMULADO	PASA
2*	50.80	0.00	0.00	0.00	100.00
1 1/2"	38.10	36.29	1.43	1.43	98.57
1"	25.40	46.28	1.82	3.25	96.75
3/4"	19.00	37.16	1.46	4.71	95.29
1/2"	12.70	46.25	1.82	6.53	93.47
3/8"	5.46	56.31	2.21	8.74	91.26
1/4"	6.35	82.10	3.23	11.97	88.03
Nº 4	4.76	105.25	4.18	16.14	83.86
Nº 8	2.35	135.26	5.32	21.46	78.54
Nº 10	2.00	172.17	6.77	25.23	71.77
Nº 16	1.19	100.79	3.96	32.19	67.81
Nº 20	0.84	125.46	4.93	37.12	62.88
Nº 30	0.59	135.26	5.44	42.56	57.44
Nº 40	0.425	206.54	ō.12	50.68	49.32
Nº 50	0.297	274.19	10.78	61.46	38.54
Nº 60	0.250	327.16	12.86	74.32	25.68
Nº 80	0.177	240.02	9.44	83.75	16.25
Nº 100	0.149	167.29	6.58	90.33	9.67
Nº 200	0.074	106.33	4.10	94.51	5.49
Recipiente	-	139.67	5.49	100.00	0.00
Sumatoria		2543.84	100.00		
D10= 0.150	LL: 20.95				
Clasificación SI	LP: 15.98				
Clasificación a	IP: 4.97				

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK


PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.
FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

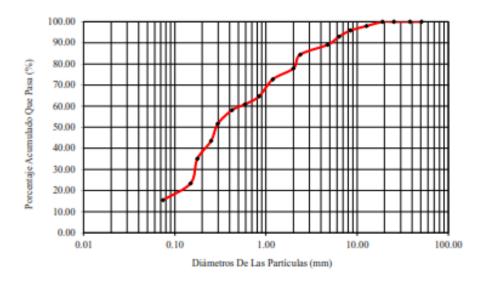
FECHA: ENERO DEL 2022 CALICATA: C-7 Prof.: 2.00 m.

TAMIZ	ABERTURA	PESO	%PESO	PESO RETENID	%QUE		
Nº	mm	RETENIDO	RETENIDO	ACUMULADO	PASA		
2"	50.80	0.00	0.00	0.00	100.00		
1 1/2"	35.10	0.00	0.00	0.00	100.00		
1*	25.40	0.00	0.00	0.00	100.00		
3/4"	19.00	16.35	0.68	0.68	99.32		
1/2"	12.70	72.16	2.98	3.65	96.35		
3/6"	5.46	55.49	2.41	6.07	93.93		
1/4"	6.35	92.34	3.81	9.88	90.12		
Nº 4	4.76	105.26	4.34	14.22	85.78		
Nº ö	2.35	182.46	7.53	21.75	78.25		
Nº 10	2.00	137.56	5.68	27.43	72.57		
Nº 16	1.19	90.46	3.73	31.16	68.84		
Nº 20	0.84	152.49	6.29	37.46	62.54		
Nº 30	0.59	197.46	8.15	45.61	54.39		
Nº 40	0.425	205.49	8.52	54.13	45.87		
Nº 50	0.297	271.05	11.19	65.32	34.65		
Nº 60	0.250	280.16	11.56	76.88	23.12		
Nº 80	0.177	165.34	6.82	83.70	16.30		
Nº 100	0.149	142.68	5.89	89.59	10.41		
Nº 200	0.074	97.46	4.02	93.61	6.39		
Recipiente	-	154.72	6.39	100.00	0.00		
Sumatoria		2422.96	100.00				
D10= 0.141	D10= 0.141 D30=0.278 D60=0.762						
Clasificación S	LP: 15.01						
Clasificación	IP: 5.22						

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE


DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

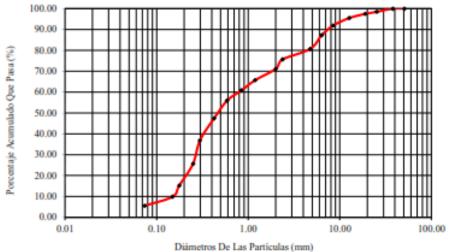
Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C-8 Prof.: 2.00 m.

TAMIZ	ABERTURA	PESO	%PESO	PESO RETENID	%QUE
N°	mm	RETENIDO	RETENIDO	ACUMULADO	PASA
2*	50.80	0.00	0.00	0.00	100.00
1 1/2"	38.10	0.00	0.00	0.00	100.00
1"	25.40	0.00	0.00	0.00	100.00
3/4"	19.00	0.00	0.00	0.00	100.00
1/2"	12.70	49.61	2.04	2.04	97.96
3/8"	5.46	50.27	2.07	4.11	95.59
1/4"	6.35	72.16	2.97	7.07	92.93
Nº 4	4.76	92.47	3.80	10.87	ō9.13
Nº 8	2.35	113.64	4.67	15.55	84.45
Nº 10	2.00	155.29	6.51	22.05	77.95
Nº 16	1.19	126.57	5.20	27.26	72.74
Nº 20	0.84	196.60	8.08	35.34	64.66
Nº 30	0.59	92.16	3.79	39.13	60.87
Nº 40	0.425	67.16	2.76	41.89	55.11
Nº 50	0.297	157.16	6.46	48.35	51.65
Nº 60	0.250	198.25	8.15	56.50	43.50
Nº 80	0.177	204.16	5.39	64.89	35.11
Nº 100	0.149	284.59	11.70	76.59	23.41
Nº 200	0.074	193.25	7.95	84.54	15.46
Recipiente	-	376.16	15.46	100.00	0.00
Sumatoria		2432.53	100.00		
D10=	LL: 24.42				
Clasificación SU	LP: 16.18				
Clasificación A	IP: 5.24				

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK


"EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE PROYECTO:

> DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

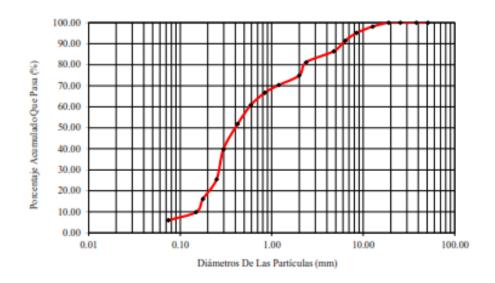
Y LA AV. TÚPAC AMARU"

ENERO DEL 2022 C-9 2.00 m. FECHA: CALICATA: Prof.:

TAMIZ	ABERTURA	PESO	%PESO	PESO RETENID	%QUE	
N°	mm	RETENIDO	RETENIDO	ACUMULADO	PASA	
2"	50.80	0.00	0.00	0.00	100.00	
1 1/2"	38.10	0.00	0.00	0.00	100.00	
1"	25.40	34.19	1.45	1.48	98.52	
3/4"	19.00	23.16	1.00	2.49	97.51	
1/2"	12.70	46.35	2.01	4.50	95.50	
3/8"	8.46	82.45	3.57	5.07	91.93	
1/4"	6.35	106.34	4.61	12.68	87.32	
Nº 4	4.76	152.46	6.61	19.25	80.72	
Nº ö	2.35	116.34	5.04	24.33	75.67	
Nº 10	2.00	105.29	4.56	25.59	71.11	
Nº 16	1.19	124.94	5.41	34.30	65.70	
Nº 20	0.84	113.85	4.93	39.24	60.76	
Nº 30	0.59	110.26	4.78	44.02	55.98	
Nº 40	0.425	196.00	5.49	52.51	47.49	
Nº 50	0.297	246.73	10.69	63.20	36.80	
Nº 60	0.250	255.74	11.21	74.41	25.59	
Nº 80	0.177	238.56	10.34	84.75	15.25	
Nº 100	0.149	124.16	5.38	90.13	9.87	
Nº 200	0.074	100.19	4.34	94.45	5.52	
Recipiente	-	127.49	5.52	100.00	0.00	
Sumatoria		2307.53	100.00			
D10= 0.150	LL: 20.48					
Clasificación SI	LP: 15.97					
Clasificación /	Clasificación AASHTO: A-1-b					

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK


PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.
FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C-10 Prof.: 2.00 m.

TAMIZ	ABERTURA	PESO	%PESO	PESO RETENID	%QUE
Nº	mm	RETENIDO	RETENIDO	ACUMULADO	PASA
2*	50.80	0.00	0.00	0.00	100.00
1 1/2"	38.10	0.00	0.00	0.00	100.00
1*	25.40	0.00	0.00	0.00	100.00
3/4*	19.00	0.00	0.00	0.00	100.00
1/2"	12.70	41.09	1.86	1.86	95.14
3/5"	5.46	67.29	3.05	4.91	95.09
1/4"	6.35	82.04	3.71	8.62	91.38
Nº 4	4.76	110.49	5.00	13.62	86.38
Nº 8	2.35	115.49	5.23	18.85	81.15
Nº 10	2.00	137.28	6.22	25.07	74.93
Nº 16	1.19	102.19	4.63	29.70	70.30
Nº 20	0.84	80.64	3.65	33.35	66.65
Nº 30	0.59	130.27	5.90	39.24	60.76
Nº 40	0.425	196.39	8.89	48.14	51.86
Nº 50	0.297	267.49	12.11	60.25	39.75
Nº 60	0.250	315.47	14.28	74.53	25.47
Nº 80	0.177	205.49	9.35	83.88	16.12
Nº 100	0.149	137.54	6.23	90.11	9.59
Nº 200	0.074	86.34	3.91	94.02	5.98
Recipiente	-	132.18	5.98	100.00	0.00
Sumatoria		2208.68	100.00		
D10= 0.150	LL: 19.66				
Clasificación S	LP: 14.94				
Clasificación	IP: 4.71				

(NORMA AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

SOLICITANTE : BR. BAZÁN ALAYO CLAUDIA FERNANDA Y BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO

ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE

LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU"

CALICATA : C-1 PROFUNDIDAD: 2.00 m. FECHA : ENERO DEL 2022

LIMITE LIQUIDO						
Nº TARRO		1	3	5		
PESO TARRO + SUELO HUMEDO		38.64	41.97	52.37		
PESO TARRO + SUELO SECO	(g)	32.92	37.16	47.59		
PESO DE AGUA	(g)	5.72	4.81	4.78		
PESO DEL TARRO	(g)	16.00	16.00	16.00		
PESO DEL SUELO SECO	(g)	16.92	21.16	31.59		
CONTENIDO DE HUMEDAD	(%)	33.81	22.73	15.13	23.89	
NUMERO DE GOLPES		14	23	31		

LIMITE PLASTICO						
Nº TARRO		6	7			
PESO TARRO + SUELO HUMEDO	(g)	30.06	31.19			
PESO TARRO + SUELO SECO	(g)	28.16	29.18			
PESO DE AGUA	(g)	1.90	2.01			
PESO DEL TARRO	(g)	16.00	16.00			
PESO DEL SUELO SECO	(g)	12.16	13.18			
CONTENIDO DE DE HUMEDAD	(%)	15.63	15.25		15.44	

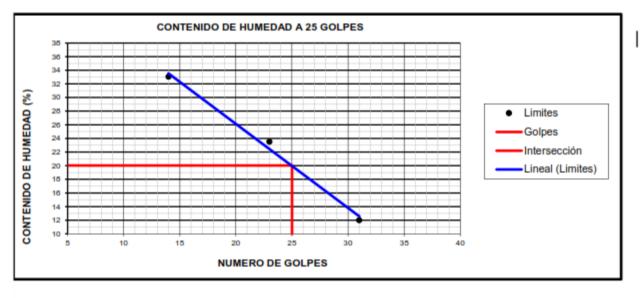
TES FISICAS DE LA MUESTRA	
LIMITE LIQUIDO	21.28
LIMITE PLASTICO	15.44
INDICE DE PLASTICIDAD	5.84

(NORMA AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

SOLICITANTE : BR. BAZÁN ALAYO CLAUDIA FERNANDA Y BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO


ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE

LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU"

CALICATA : C-2 PROFUNDIDAD: 2.00 m. FECHA : ENERO DEL 2022

LIMITE LIQUIDO						
Nº TARRO		2	5	8		
PESO TARRO + SUELO HUMEDO		35.61	38.49	43.16		
PESO TARRO + SUELO SECO	(g)	30.74	34.21	40.25		
PESO DE AGUA	(g)	4.87	4.28	2.91		
PESO DEL TARRO	(g)	16.00	16.00	16.00		
PESO DEL SUELO SECO	(g)	14.74	18.21	24.25		
CONTENIDO DE HUMEDAD	(%)	33.04	23.50	12.00	22.85	
NUMERO DE GOLPES		14	23	31		

LIMITE PLASTICO					
N° TARRO		11	15		
PESO TARRO + SUELO HUMEDO	(g)	34.16	30.19		
PESO TARRO + SUELO SECO	(g)	31.71	28.19		
PESO DE AGUA	(g)	2.45	2.00		
PESO DEL TARRO	(g)	16.00	16.00		
PESO DEL SUELO SECO	(g)	15.71	12.19		
CONTENIDO DE DE HUMEDAD	(%)	15.60	16.41		16.00

TES FISICAS DE LA MUESTRA			
LIMITE LIQUIDO	20.03		
LIMITE PLASTICO	16.00		
INDICE OF DI ASTICIDAD	4.00		

(NORMA AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

SOLICITANTE : BR. BAZÁN ALAYO CLAUDIA FERNANDA Y BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO

ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE

LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU"

CALICATA : C-3 PROFUNDIDAD: 2.00 m. FECHA : ENERO DEL 2022

LIMITE LIQUIDO					
Nº TARRO		1	7	10	
PESO TARRO + SUELO HUMEDO		36.72	40.51	48.97	
PESO TARRO + SUELO SECO	(g)	31.19	35.92	45.27	
PESO DE AGUA	(g)	5.53	4.59	3.70	
PESO DEL TARRO	(g)	16.00	16.00	16.00	
PESO DEL SUELO SECO	(g)	15.19	19.92	29.27	
CONTENIDO DE HUMEDAD	(%)	36.41	23.04	12.64	24.03
NUMERO DE GOLPES		13	24	32	

LIMITE PLASTICO					
Nº TARRO		3	6		
PESO TARRO + SUELO HUMEDO	(g)	26.79	32.15		
PESO TARRO + SUELO SECO	(g)	25.37	29.95		
PESO DE AGUA	(g)	1.42	2.20		
PESO DEL TARRO	(g)	16.00	16.00		
PESO DEL SUELO SECO	(g)	9.37	13.95		
CONTENIDO DE DE HUMEDAD	(%)	15.15	15.77		15.46

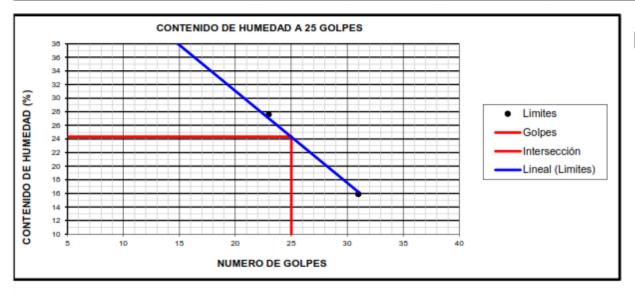
TES FISICAS DE LA MUESTRA	
LIMITE LIQUIDO	21.57
LIMITE PLASTICO	15.46
INDICE DE DI ACTICIDAD	0 44

(NORMA AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

SOLICITANTE : BR. BAZÁN ALAYO CLAUDIA FERNANDA Y BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO


ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE

LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU"

CALICATA : C-4 PROFUNDIDAD: 2.00 m. FECHA : ENERO DEL 2022

LIMITE LIQUIDO					
Nº TARRO		2	3	5	
PESO TARRO + SUELO HUMEDO		30.85	35.61	43.24	
PESO TARRO + SUELO SECO	(g)	26.69	31.37	39.51	
PESO DE AGUA	(g)	4.16	4.24	3.73	
PESO DEL TARRO	(g)	16.00	16.00	16.00	
PESO DEL SUELO SECO	(g)	10.69	15.37	23.51	
CONTENIDO DE HUMEDAD	(%)	38.91	27.59	15.87	27.46
NUMERO DE GOLPES		14	23	31	

LIMITE PLASTICO					
Nº TARRO		8	9		
PESO TARRO + SUELO HUMEDO	(g)	35.24	34.05		
PESO TARRO + SUELO SECO	(g)	32.57	31.44		
PESO DE AGUA	(g)	2.67	2.61		
PESO DEL TARRO	(g)	16.00	16.00		
PESO DEL SUELO SECO	(g)	16.57	15.44		
CONTENIDO DE DE HUMEDAD	(%)	16.11	16.90		16.51

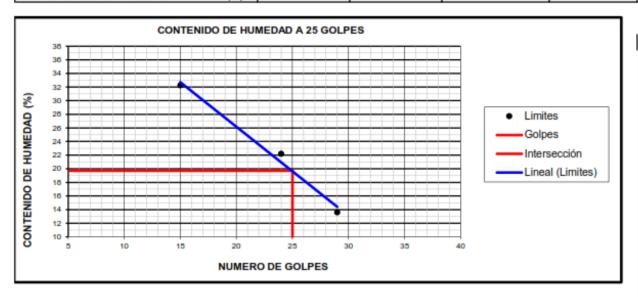
TES FISICAS DE LA MUESTRA				
LIMITE LIQUIDO	24.33			
LIMITE PLASTICO	16.51			
INDICE DE DI ACTICIDAD	7.00			

(NORMA AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

SOLICITANTE : BR. BAZÁN ALAYO CLAUDIA FERNANDA Y BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO


ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE

LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU"

CALICATA : C-5 PROFUNDIDAD: 2.00 m. FECHA : ENERO DEL 2022

LIMITE LIQUIDO						
Nº TARRO 1 3 4						
PESO TARRO + SUELO HUMEDO		40.11	43.58	45.72		
PESO TARRO + SUELO SECO	(g)	34.23	38.57	42.16		
PESO DE AGUA	(g)	5.88	5.01	3.56		
PESO DEL TARRO	(g)	16.00	16.00	16.00		
PESO DEL SUELO SECO	(g)	18.23	22.57	26.16		
CONTENIDO DE HUMEDAD	(%)	32.25	22.20	13.61	22.69	
NUMERO DE GOLPES		15	24	29		

LIMITE PLASTICO					
Nº TARRO		10	12		
PESO TARRO + SUELO HUMEDO	(g)	23.64	20.16		
PESO TARRO + SUELO SECO	(g)	22.57	19.64		
PESO DE AGUA	(g)	1.07	0.52		
PESO DEL TARRO	(g)	16.00	16.00		
PESO DEL SUELO SECO	(g)	6.57	3.64		
CONTENIDO DE DE HUMEDAD	(%)	16.29	14.29		15.29

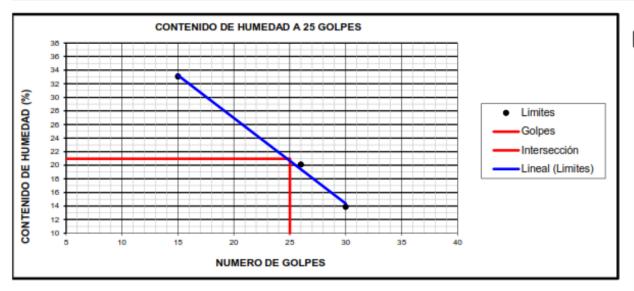
TES FISICAS DE LA MUESTRA	
LIMITE LIQUIDO	19.71
LIMITE PLASTICO	15.29
INDICE DE DI ACTICIDAD	4.43

(NORMA AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

SOLICITANTE : BR. BAZÁN ALAYO CLAUDIA FERNANDA Y BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO


ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE

LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU"

CALICATA : C-6 PROFUNDIDAD: 2.00 m. FECHA : ENERO DEL 2022

LIMITE LIQUIDO					
Nº TARRO		1	4	7	
PESO TARRO + SUELO HUMEDO		35.28	39.14	43.61	
PESO TARRO + SUELO SECO	(g)	30.49	35.27	40.25	
PESO DE AGUA	(g)	4.79	3.87	3.36	
PESO DEL TARRO	(g)	16.00	16.00	16.00	
PESO DEL SUELO SECO	(g)	14.49	19.27	24.25	
CONTENIDO DE HUMEDAD	(%)	33.06	20.08	13.86	22.33
NUMERO DE GOLPES		15	26	30	

LIMITE PLASTICO					
Nº TARRO		9	15		
PESO TARRO + SUELO HUMEDO	(g)	35.44	33.68		
PESO TARRO + SUELO SECO	(g)	32.81	31.20		
PESO DE AGUA	(g)	2.63	2.48		
PESO DEL TARRO	(g)	16.00	16.00		
PESO DEL SUELO SECO	(g)	16.81	15.20		
CONTENIDO DE DE HUMEDAD	(%)	15.65	16.32		15.98

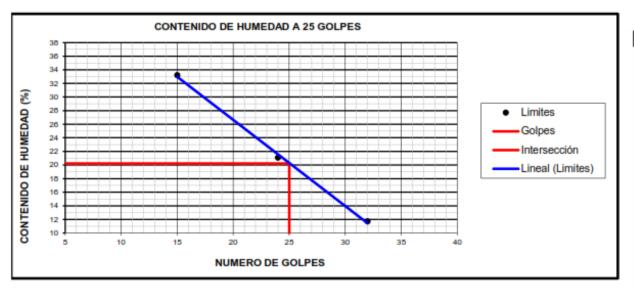
TES FISICAS DE LA MUESTRA	
LIMITE LIQUIDO	20.95
LIMITE PLASTICO	15.98
INDICE DE DI ACTICIDAD	4.07

(NORMA AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

SOLICITANTE : BR. BAZÁN ALAYO CLAUDIA FERNANDA Y BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO


ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE

LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU"

CALICATA : C-7 PROFUNDIDAD: 2.00 m. FECHA : ENERO DEL 2022

LIMITE LIQUIDO					
Nº TARRO		2	4	5	
PESO TARRO + SUELO HUMEDO		35.62	40.18	47.69	
PESO TARRO + SUELO SECO	(g)	30.73	35.97	44.37	
PESO DE AGUA	(g)	4.89	4.21	3.32	
PESO DEL TARRO	(g)	16.00	16.00	16.00	
PESO DEL SUELO SECO	(g)	14.73	19.97	28.37	
CONTENIDO DE HUMEDAD	(%)	33.20	21.08	11.70	21.99
NUMERO DE GOLPES		15	24	32	

LIMITE PLASTICO					
Nº TARRO		12	14		
PESO TARRO + SUELO HUMEDO	(g)	26.77	35.62		
PESO TARRO + SUELO SECO	(g)	25.37	33.05		
PESO DE AGUA	(g)	1.40	2.57		
PESO DEL TARRO	(g)	16.00	16.00		
PESO DEL SUELO SECO	(g)	9.37	17.05		
CONTENIDO DE DE HUMEDAD	(%)	14.94	15.07		15.01

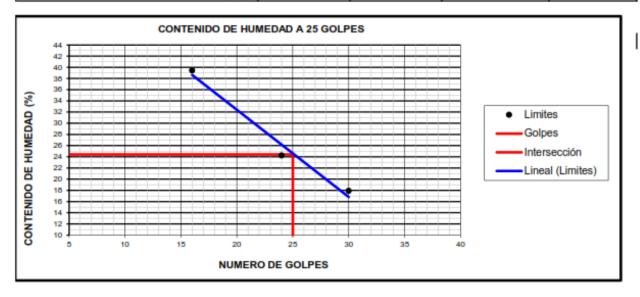
TES FISICAS DE LA MUESTRA			
LIMITE LIQUIDO	20.23		
LIMITE PLASTICO	15.01		
INDICE DE DI ACTICIDAD	E 22		

(NORMA AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

SOLICITANTE : BR. BAZÁN ALAYO CLAUDIA FERNANDA Y BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO


ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE

LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU"

CALICATA : C-8 PROFUNDIDAD: 2.00 m. FECHA : ENERO DEL 2022

LIMITE LIQUIDO					
Nº TARRO		1	2	3	
PESO TARRO + SUELO HUMEDO		45.26	48.62	53.16	
PESO TARRO + SUELO SECO	(g)	36.98	42.25	47.51	
PESO DE AGUA	(g)	8.28	6.37	5.65	
PESO DEL TARRO	(g)	16.00	16.00	16.00	
PESO DEL SUELO SECO	(g)	20.98	26.25	31.51	
CONTENIDO DE HUMEDAD	(%)	39.47	24.27	17.93	27.22
NUMERO DE GOLPES		16	24	30	

LIMITE PLASTICO					
Nº TARRO		5	9		
PESO TARRO + SUELO HUMEDO	(g)	34.28	30.22		
PESO TARRO + SUELO SECO	(g)	31.57	28.37		
PESO DE AGUA	(g)	2.71	1.85		
PESO DEL TARRO	(g)	16.00	16.00		
PESO DEL SUELO SECO	(g)	15.57	12.37		
CONTENIDO DE DE HUMEDAD	(%)	17.41	14.96		16.18

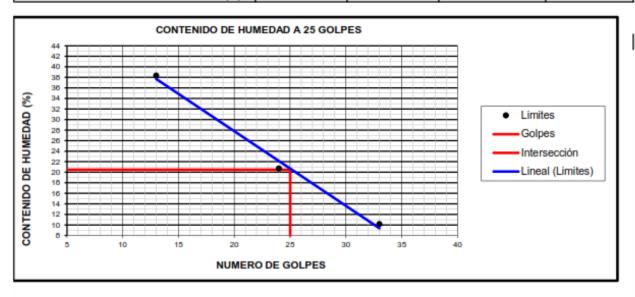
TES FISICAS DE LA MUESTRA			
LIMITE LIQUIDO	24.42		
LIMITE PLASTICO	16.18		
INDICE DE DI ACTICIDAD	0.24		

(NORMA AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

SOLICITANTE : BR. BAZÁN ALAYO CLAUDIA FERNANDA Y BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO


ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE

LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU"

CALICATA : C-9 PROFUNDIDAD: 2.00 m. FECHA : ENERO DEL 2022

LIMITE LIQUIDO					
Nº TARRO		1	3	5	
PESO TARRO + SUELO HUMEDO		33.76	39.66	40.51	
PESO TARRO + SUELO SECO	(g)	28.84	35.60	38.25	
PESO DE AGUA	(g)	4.92	4.06	2.26	
PESO DEL TARRO	(g)	16.00	16.00	16.00	
PESO DEL SUELO SECO	(g)	12.84	19.60	22.25	
CONTENIDO DE HUMEDAD	(%)	38.32	20.71	10.16	23.06
NUMERO DE GOLPES		13	24	33	

LIMITE PLASTICO					
Nº TARRO		6	7		
PESO TARRO + SUELO HUMEDO	(g)	34.27	31.59		
PESO TARRO + SUELO SECO	(g)	31.89	29.33		
PESO DE AGUA	(g)	2.38	2.26		
PESO DEL TARRO	(g)	16.00	16.00		
PESO DEL SUELO SECO	(g)	15.89	13.33		
CONTENIDO DE DE HUMEDAD	(%)	14.98	16.95		15.97

TES FISICAS DE LA MUESTRA	
LIMITE LIQUIDO	20.48
LIMITE PLASTICO	15.97
INDICE DE DI ACTICIDAD	4 50

(NORMA AASHTO T-89, T-90, ASTM D 4318)

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

SOLICITANTE : BR. BAZÁN ALAYO CLAUDIA FERNANDA Y BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO : "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE DISEÑO

ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE

LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU"

CALICATA : C-10 PROFUNDIDAD: 2.00 m. FECHA : ENERO DEL 2022

LIMITE LIQUIDO					
Nº TARRO		5	8	11	
PESO TARRO + SUELO HUMEDO		42.76	49.91	52.11	
PESO TARRO + SUELO SECO	(g)	35.62	43.27	47.92	
PESO DE AGUA	(g)	7.14	6.64	4.19	
PESO DEL TARRO	(g)	16.00	16.00	16.00	
PESO DEL SUELO SECO	(g)	19.62	27.27	31.92	
CONTENIDO DE HUMEDAD	(%)	36.39	24.35	13.13	24.62
NUMERO DE GOLPES		15	22	29	

LIMITE PLASTICO								
Nº TARRO		3	4					
PESO TARRO + SUELO HUMEDO	(g)	36.49	26.98					
PESO TARRO + SUELO SECO	(g)	33.85	25.54					
PESO DE AGUA	(g)	2.64	1.44					
PESO DEL TARRO	(g)	16.00	16.00					
PESO DEL SUELO SECO	(g)	17.85	9.54					
CONTENIDO DE DE HUMEDAD	(%)	14.79	15.09		14.94			

TES FISICAS DE LA MUESTRA					
LIMITE LIQUIDO	19.66				
LIMITE PLASTICO	14.94				
INDICE DE DI ASTICIDAD	4 74				

ENSAYO DE CBR

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

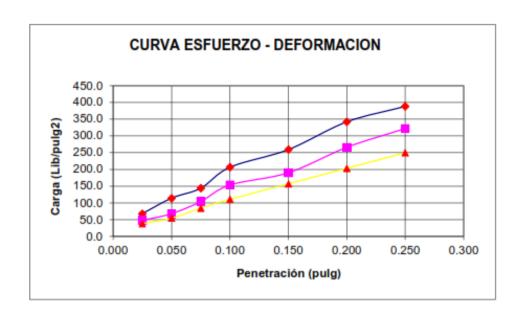
PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

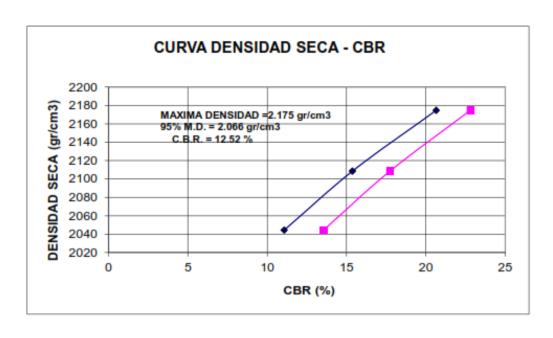
Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C-1 PROFUND.: 1.00 m.


		COMP. 56 GOLPES			GOLPES	COMP. 13 GOLPES			
	DETERMINACION	MOLDEO	SATURADO	MOLDEO	SATURADO	MOLDEO	SATURADO		
1	PESO MOLDE +MUESTRA gr.	9115	9510	8915	9305	8790	9225		
2	PESO DEL MOLDE gr.	4175	4175	4175	4175	4175	4175		
3	PESO DE LA MUESTRA gr.	4940	5335	4740	5130	4615	5050		
4	DENSIDAD HUMEDA gr./cc.	2.333	2.520	2.239	2.423	2.180	2.385		
5	DENSIDAD SECA gr./cc.	2.175	2.067	2.109	2.038	2.044	1.975		
	CONTENIDO DE HUMEDAD								
6	PESO DE LA TARA gr.	41.20	41.75	40.10	39.65	42.15	39.50		
7	TARA+SUELO HUMEDO gr.	351.25	461.39	372.10	482.44	356.98	496.13		
8	TARA +SUELO SECO gr.	330.16	385.91	352.76	411.97	337.41	417.55		
9	PESO DEL AGUA gr.	21.09	75.48	19.34	70.47	19.57	78.58		
10	PESO DEL SUELO SECO gr.	288.96	344.16	312.66	372.32	295.26	378.05		
11	CONT. DE HUMEDAD %	7.30	21.93	6.19	18.93	6.63	20.79		

PENETRACION

PENET.	COMP. 56 GOLPES			COMP. 25 GOLPES			COMP. 13 GOLPES		
PUL-	LECTURA			LECTURA			LECTURA		
GADAS	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2
0.025	15	203.3	67.8	9	143.8	47.9	6	114.1	38.0
0.050	29	342.1	114.0	15	203.3	67.8	11	163.7	54.6
0.075	38	431.3	143.8	26	312.3	104.1	20	252.9	84.3
0.100	57	619.6	206.5	41	461.0	153.7	28	332.2	110.7
0.150	73	778.2	259.4	52	570.0	190.0	42	470.9	157.0
0.200	98	1026.0	342.0	75	798.0	266.0	56	609.7	203.2
0.250	112	1164.7	388.2	92	966.5	322.2	70	748.4	249.5


EXPANSIÓN

HORAS	L. DIAL	mm.	%	L. DIAL	mm.	%	L. DIAL	mm.	%
0.00	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
96.00	0	0	0.00	0	0	0.0	0	0	0.0

Carga Unitaria	Lbs/plg ²	C.B.R (%)
0.1"	206.5	20.65
0.2"	342.0	22.8
0.1"	153.7	15.37
0.2"	266.0	17.73
0.1"	110.7	11.07
0.2"	203.2	13.55

Densidad Seca(gr/cm3)		2044	2109	2175
Numero de Golpes		13	25	56
C.B.R	0.1"	11.07	15.37	20.65
O.B.K	0.2"	13.55	17.73	22.8

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

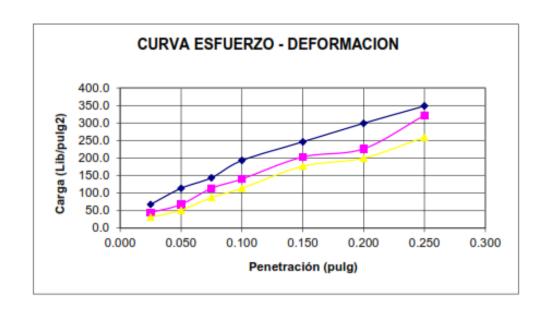
BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

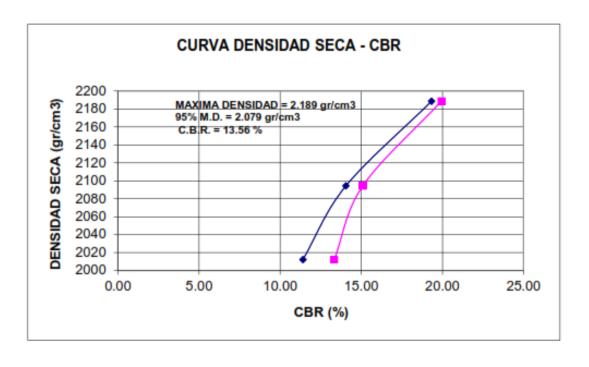
FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"


FECHA: ENERO DEL 2022 CALICATA: C-2 PROFUND.: 1.20 m.

		COMP. 56	GOLPES	COMP. 25	GOLPES	COMP. 1	3 GOLPES
	DETERMINACION	MOLDEO	SATURADO	MOLDEO	SATURADO	MOLDEO	SATURADO
1	PESO MOLDE +MUESTRA gr.	9130	9545	8960	9125	8735	9065
2	PESO DEL MOLDE gr.	4175	4175	4175	4175	4175	4175
3	PESO DE LA MUESTRA gr.	4955	5370	4785	4950	4560	4890
4	DENSIDAD HUMEDA gr./cc.	2.341	2.537	2.260	2.338	2.154	2.310
5	DENSIDAD SECA gr./cc.	2.189	2.102	2.094	1.919	2.012	1.939
		CONTENI	DO DE HU	MEDAD			
6	PESO DE LA TARA gr.	40.75	41.25	42.3	41.85	40.6	40.15
7	TARA+SUELO HUMEDO gr.	391.24	485.61	326.59	428.53	400.11	527.43
8	TARA +SUELO SECO gr.	368.49	409.43	305.72	359.21	376.45	449.2
9	PESO DEL AGUA gr.	22.75	76.18	20.87	69.32	23.66	78.23
10	PESO DEL SUELO SECO gr.	327.74	368.18	263.42	317.36	335.85	409.05
11	CONT. DE HUMEDAD %	6.94	20.69	7.92	21.84	7.04	19.12

PENETRACION


PENET.	CC	COMP. 56 GOLPES		COMP. 25 GOLPES			COMP. 13 GOLPES		
PUL-	LECTURA			LECTURA			LECTURA		
GADAS	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2
0.025	15	203.3	67.8	8	133.9	44.6	4	94.3	31.4
0.050	29	342.1	114.0	15	203.3	67.8	10	153.7	51.2
0.075	38	431.3	143.8	29	342.1	114.0	21	262.8	87.6
0.100	53	579.9	193.3	37	421.4	140.5	29	342.1	114.0
0.150	69	738.5	246.2	56	609.7	203.2	48	530.4	176.8
0.200	85	897.1	299.0	63	679.1	226.4	55	599.8	199.9
0.250	100	1045.8	348.6	92	966.5	322.2	73	778.2	259.4

HORAS	L. DIAL	mm.	%	L. DIAL	mm.	%	L. DIAL	mm.	%
0.00	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
96.00	0	0	0.00	0	0	0.0	0	0	0.0

Carga Unitaria	Lbs/plg ²	C.B.R (%)
0.1"	193.3	19.33
0.2"	299.0	19.94
0.1"	140.5	14.05
0.2"	226.4	15.09
0.1"	114.0	11.4
0.2"	199.9	13.33

Densidad Seca(gr/cm3)		2012	2094	2189
Numero de Golpes		13	25	56
C.B.R	O.B.D 0.1"		14.05	19.33
C.B.K	0.2"	13.33	15.09	19.94

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

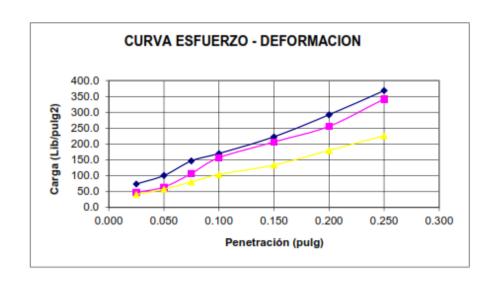
BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"


FECHA: ENERO DEL 2022 CALICATA: C-3 PROFUND.: 1.00 m.

		COMP. 50	6 GOLPES	COMP. 25	GOLPES	COMP. 1	13 GOLPES
	DETERMINACION	MOLDEO	SATURADO	MOLDEO	SATURADO	MOLDEO	SATURADO
1	PESO MOLDE +MUESTRA gr.	9110	9610	8950	9175	8710	9005
2	PESO DEL MOLDE gr.	4175	4175	4175	4175	4175	4175
3	PESO DE LA MUESTRA gr.	4935	5435	4775	5000	4535	4830
4	DENSIDAD HUMEDA gr./cc.	2.331	2.567	2.256	2.362	2.142	2.282
5	DENSIDAD SECA gr./cc.	2.170	2.094	2.114	1.955	2.002	1.891
		CONTENI	DO DE HU	MEDAD			
6	PESO DE LA TARA gr.	40	39.6	41.22	45.3	44.7	40.28
7	TARA+SUELO HUMEDO gr.	362.54	482.16	372.16	497.68	372.16	500.46
8	TARA +SUELO SECO gr.	340.29	400.59	351.42	419.67	350.74	421.68
9	PESO DEL AGUA gr.	22.25	81.57	20.74	78.01	21.42	78.78
10	PESO DEL SUELO SECO gr.	300.29	360.99	310.20	374.37	306.04	381.40
11	CONT. DE HUMEDAD %	7.41	22.60	6.69	20.84	7.00	20.66

PENETRACION


PENET.	CC	COMP. 56 GOLPES		COMP. 25 GOLPES			COMP. 13 GOLPES		
PUL-	LECTURA			LECTURA			LECTURA		
GADAS	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2
0.025	17	223.1	74.4	9	143.8	47.9	7	124.0	41.3
0.050	25	302.4	100.8	14	193.4	64.5	12	173.6	57.9
0.075	39	441.2	147.1	27	322.2	107.4	19	242.9	81.0
0.100	46	510.6	170.2	42	470.9	157.0	26	312.3	104.1
0.150	62	669.2	223.1	57	619.6	206.5	35	401.5	133.8
0.200	83	877.3	292.4	72	768.3	256.1	49	540.3	180.1
0.250	106	1105.3	368.4	98	1026.0	342.0	63	679.1	226.4

HORAS	L. DIAL	mm.	%	L. DIAL	mm.	%	L. DIAL	mm.	%
0.00	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
96.00	0	0	0.00	0	0	0.0	0	0	0.0

Carga Unitaria	Lbs/plg ²	C.B.R (%)	
0.1"	170.2	17.02	
0.2"	292.4	19.5	
0.1"	157.0	15.7	
0.2"	256.1	17.07	
0.1"	104.1	10.41	
0.2"	180.1	12.01	

Densidad Seca(gr/cm3)		2002	2114	2170
Numero de Golpes		13	25	56
C.B.R	0.1"	10.41	15.7	17.02
C.B.K	0.2"	12.01	17.07	19.50

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

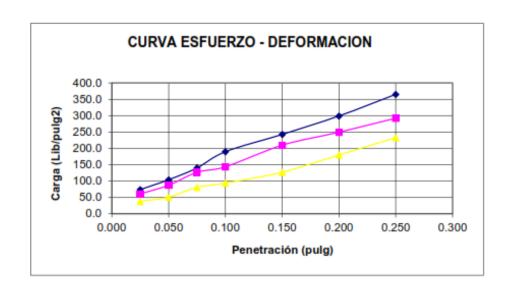
BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

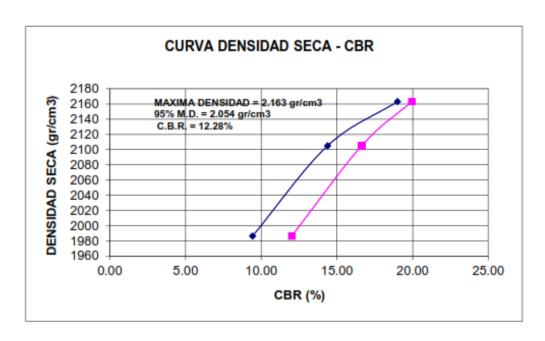
FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"


FECHA: ENERO DEL 2022 CALICATA: C-4 PROFUND.: 1.20 m.

		COMP. 56 GOLPES		COMP. 25 GOLPES		COMP. 13 GOLPES	
	DETERMINACION	MOLDEO	SATURADO	MOLDEO	SATURADO	MOLDEO	SATURADO
1	PESO MOLDE +MUESTRA gr.	9105	9555	8900	9170	8725	8930
2	PESO DEL MOLDE gr.	4175	4175	4175	4175	4175	4175
3	PESO DE LA MUESTRA gr.	4930	5380	4725	4995	4550	4755
4	DENSIDAD HUMEDA gr./cc.	2.329	2.541	2.232	2.359	2.149	2.246
5	DENSIDAD SECA gr./cc.	2.163	2.100	2.105	1.987	1.986	1.833
		CONTENI	DO DE HU	MEDAD			
6	PESO DE LA TARA gr.	41	42.3	40	41.75	42.1	39.85
7	TARA+SUELO HUMEDO gr.	335.22	462.12	425.16	574.21	394.26	458.49
8	TARA +SUELO SECO gr.	314.29	389.16	403.27	490.16	367.57	381.46
9	PESO DEL AGUA gr.	20.93	72.96	21.89	84.05	26.69	77.03
10	PESO DEL SUELO SECO gr.	273.29	346.86	363.27	448.41	325.47	341.61
11	CONT. DE HUMEDAD %	7.66	21.03	6.03	18.74	8.20	22.55

PENETRACION


PENET.	CC	COMP. 56 GOLPES			COMP. 25 GOLPES			COMP. 13 GOLPES		
PUL-	LECTURA			LECTURA			LECTURA			
GADAS	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	
0.025	17	223.1	74.4	13	183.5	61.2	6	114.1	38.0	
0.050	26	312.3	104.1	21	262.8	87.6	10	153.7	51.2	
0.075	37	421.4	140.5	33	381.7	127.2	19	242.9	81.0	
0.100	52	570.0	190.0	38	431.3	143.8	23	282.6	94.2	
0.150	68	728.6	242.9	58	629.5	209.8	33	381.7	127.2	
0.200	85	897.1	299.0	70	748.4	249.5	49	540.3	180.1	
0.250	105	1095.4	365.1	83	877.3	292.4	65	698.9	233.0	

HORAS	L. DIAL	mm.	%	L. DIAL	mm.	%	L. DIAL	mm.	%
0.00	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
96.00	0	0	0.00	0	0	0.0	0	0	0.0

Carga Unitaria	Lbs/plg ²	C.B.R (%)
0.1"	190.0	19
0.2"	299.0	19.94
0.1"	143.8	14.38
0.2"	249.5	16.63
0.1"	94.2	9.42
0.2"	180.1	12.01

Densidad S	eca(gr/cm3)	1986	2105	2163
Numero d	de Golpes	13	25	56
C.B.R	0.1"	9.42	14.38	19
C.B.K	0.2"	12.01	16.63	19.94

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

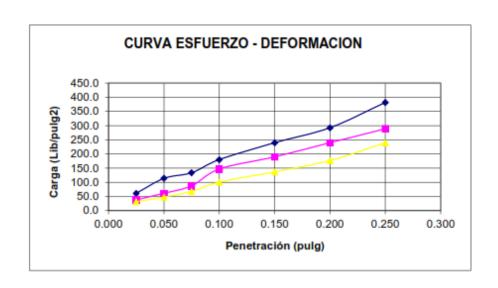
BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

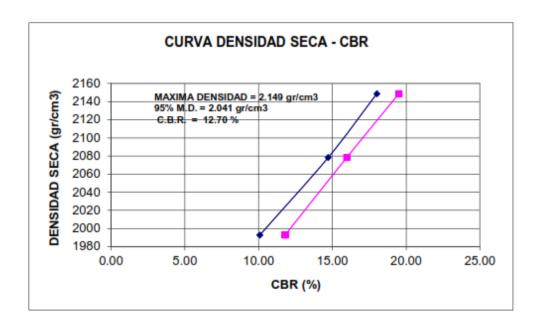
FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"


FECHA: ENERO DEL 2022 CALICATA: C-5 PROFUND.: 1.00 m.

		22112 5		0.0145.05	001000	22112	
		COMP. 50	6 GOLPES	COMP. 25 GOLPES		COMP. 13 GOLPES	
	DETERMINACION	MOLDEO	SATURADO	MOLDEO	SATURADO	MOLDEO	SATURADO
1	PESO MOLDE +MUESTRA gr.	9090	9455	8805	9150	8720	8930
2	PESO DEL MOLDE gr.	4175	4175	4175	4175	4175	4175
3	PESO DE LA MUESTRA gr.	4915	5280	4630	4975	4545	4755
4	DENSIDAD HUMEDA gr./cc.	2.322	2.494	2.187	2.350	2.147	2.246
5	DENSIDAD SECA gr./cc.	2.149	2.034	2.078	1.967	1.993	1.893
		CONTENI	DO DE HU	MEDAD			
6	PESO DE LA TARA gr.	40.32	37.52	40	37.97	40	38.5
7	TARA+SUELO HUMEDO gr.	316.02	395.46	352.49	427.46	375.15	502.46
8	TARA +SUELO SECO gr.	295.46	329.44	336.94	363.97	351.08	429.61
9	PESO DEL AGUA gr.	20.56	66.02	15.55	63.49	24.07	72.85
10	PESO DEL SUELO SECO gr.	255.14	291.92	296.94	326.00	311.08	391.11
11	CONT. DE HUMEDAD %	8.06	22.62	5.24	19.48	7.74	18.63

PENETRACION


PENET.	CC	MP. 56 GOLP	ES	COMP. 25 GOLPES			COMP. 13 GOLPES		
PUL-	LECTURA			LECTURA			LECTURA		
GADAS	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2
0.025	13	183.5	61.2	6	114.1	38.0	4	94.3	31.4
0.050	29	342.1	114.0	13	183.5	61.2	9	143.8	47.9
0.075	35	401.5	133.8	21	262.8	87.6	15	203.3	67.8
0.100	49	540.3	180.1	39	441.2	147.1	25	302.4	100.8
0.150	67	718.7	239.6	52	570.0	190.0	36	411.4	137.1
0.200	83	877.3	292.4	67	718.7	239.6	48	530.4	176.8
0.250	110	1144.9	381.6	82	867.4	289.1	67	718.7	239.6

					•••				
HORAS	L. DIAL	mm.	%	L. DIAL	mm.	%	L. DIAL	mm.	%
0.00	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
96.00	0	0	0.00	0	0	0.0	0	0	0.0

Carga Unitaria	Lbs/plg ²	C.B.R (%)
0.1"	180.1	18.01
0.2"	292.4	19.5
0.1"	147.1	14.71
0.2"	239.6	15.97
0.1"	100.8	10.08
0.2"	176.8	11.79

Densidad S	eca(gr/cm3)	1993	2078	2149
Numero o	de Golpes	13	25	56
C.B.R	0.1"	10.08	14.71	18.01
C.B.K	0.2"	11.79	15.97	19.5

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

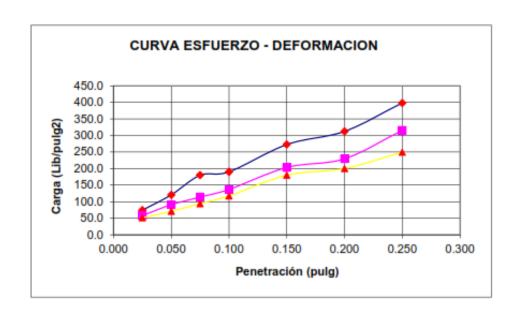
BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

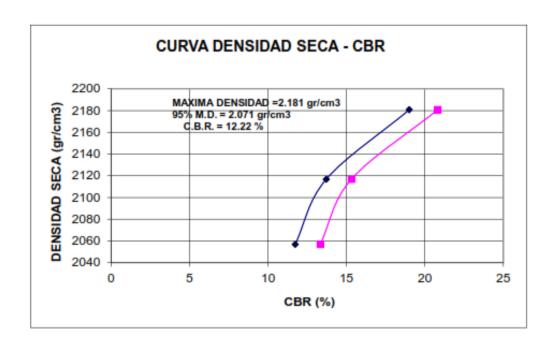
FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"


FECHA: ENERO DEL 2022 CALICATA: C-6 PROFUND.: 1.30 m.

		COMP. 56 GOLPES		COMP. 25 GOLPES		COMP. 1	13 GOLPES
	DETERMINACION	MOLDEO	SATURADO	MOLDEO	SATURADO	MOLDEO	SATURADO
1	PESO MOLDE +MUESTRA gr.	9125	9575	9030	9325	8855	9130
2	PESO DEL MOLDE gr.	4175	4175	4175	4175	4175	4175
3	PESO DE LA MUESTRA gr.	4950	5400	4855	5150	4680	4955
4	DENSIDAD HUMEDA gr./cc.	2.338	2.551	2.293	2.433	2.211	2.341
5	DENSIDAD SECA gr./cc.	2.181	2.076	2.117	2.013	2.057	1.937
		CONTENI	DO DE HU	MEDAD			
6	PESO DE LA TARA gr.	40.00	36.80	40.00	37.97	40.00	38.50
7	TARA+SUELO HUMEDO gr.	351.24	457.82	316.39	426.55	310.46	391.25
8	TARA +SUELO SECO gr.	330.29	379.51	295.11	359.52	291.64	330.49
9	PESO DEL AGUA gr.	20.95	78.31	21.28	67.03	18.82	60.76
10	PESO DEL SUELO SECO gr.	290.29	342.71	255.11	321.55	251.64	291.99
11	CONT. DE HUMEDAD %	7.22	22.85	8.34	20.85	7.48	20.81

PENETRACION


PENET.	С	COMP. 56 GOLPES			MP. 25 GOLPE	ES	COMP. 13 GOLPES		
PUL-	LECTURA			LECTURA			LECTURA		
GADAS	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2
0.025	17	223.1	74.4	12	173.6	57.9	10	153.7	51.2
0.050	31	361.9	120.6	22	272.7	90.9	16	213.2	71.1
0.075	49	540.3	180.1	29	342.1	114.0	23	282.6	94.2
0.100	52	570.0	190.0	36	411.4	137.1	30	352.0	117.3
0.150	77	817.8	272.6	56	609.7	203.2	49	540.3	180.1
0.200	89	936.8	312.3	64	689.0	229.7	55	599.8	199.9
0.250	115	1194.5	398.2	90	946.7	315.6	70	748.4	249.5

EXT PROPERTY									
HORAS	L. DIAL	mm.	%	L. DIAL	mm.	%	L. DIAL	mm.	%
0.00	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
96.00	0	0	0.00	0	0	0.0	0	0	0.0

Carga Unitaria	Lbs/plg ²	C.B.R (%)
0.1"	190.0	19
0.2"	312.3	20.82
0.1"	137.1	13.71
0.2"	229.7	15.31
0.1"	117.3	11.73
0.2"	199.9	13.33

Densidad S	eca(gr/cm3)	2057	2117	2181
Numero o	de Golpes	13	25	56
C.B.R	0.1"	11.73	13.71	19
C.B.K	0.2"	13.33	15.31	20.82

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

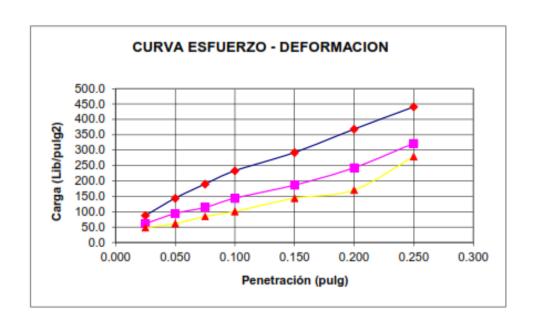
BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

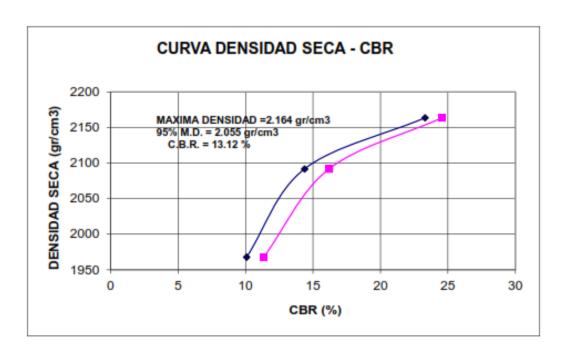
FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"


FECHA: ENERO DEL 2022 CALICATA: C-7 PROFUND.: 1.30 m.

		COMP. 50	6 GOLPES	COMP. 25	GOLPES	COMP. 1	13 GOLPES		
	DETERMINACION	MOLDEO	SATURADO	MOLDEO	SATURADO	MOLDEO	SATURADO		
1	PESO MOLDE +MUESTRA gr.	9070	9425	8930	9200	8610	9035		
2	PESO DEL MOLDE gr.	4175	4175	4175	4175	4175	4175		
3	PESO DE LA MUESTRA gr.	4895	5250	4755	5025	4435	4860		
4	DENSIDAD HUMEDA gr./cc.	2.312	2.480	2.246	2.374	2.095	2.296		
5	DENSIDAD SECA gr./cc.	2.164	2.072	2.092	1.960	1.968	1.903		
	CONTENIDO DE HUMEDAD								
6	PESO DE LA TARA gr.	41.20	40.50	43.20	40.50	41.20	40.60		
7	TARA+SUELO HUMEDO gr.	385.60	435.10	390.00	440.58	401.25	463.10		
8	TARA +SUELO SECO gr.	363.46	370.16	366.16	370.82	379.40	390.90		
9	PESO DEL AGUA gr.	22.14	64.94	23.84	69.76	21.85	72.20		
10	PESO DEL SUELO SECO gr.	322.26	329.66	322.96	330.32	338.20	350.30		
11	CONT. DE HUMEDAD %	6.87	19.70	7.38	21.12	6.46	20.61		

PENETRACION


PENET.	COMP. 56 GOLPES			CC	COMP. 25 GOLPES			COMP. 13 GOLPES		
PUL-	LECTURA			LECTURA			LECTURA			
GADAS	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	
0.025	21	262.8	87.6	13	183.5	61.2	9	143.8	47.9	
0.050	38	431.3	143.8	23	282.6	94.2	13	183.5	61.2	
0.075	52	570.0	190.0	29	342.1	114.0	20	252.9	84.3	
0.100	65	698.9	233.0	38	431.3	143.8	25	302.4	100.8	
0.150	83	877.3	292.4	51	560.1	186.7	38	431.3	143.8	
0.200	106	1105.3	368.4	68	728.6	242.9	46	510.6	170.2	
0.250	128	1323.3	441.1	92	966.5	322.2	79	837.6	279.2	

HORAS	L. DIAL	mm.	%	L. DIAL	mm.	%	L. DIAL	mm.	%
0.00	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
96.00	0	0	0.00	0	0	0.0	0	0	0.0

Carga Unitaria	Lbs/plg ²	C.B.R (%)
0.1"	233.0	23.3
0.2"	368.4	24.56
0.1"	143.8	14.38
0.2"	242.9	16.19
0.1"	100.8	10.08
0.2"	170.2	11.35

Densidad S	eca(gr/cm3)	1968	2092	2164
Numero o	de Golpes	13	25	56
C.B.R	0.1"	10.08	14.38	23.3
C.B.R	0.2"	11.35	16.19	24.56

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

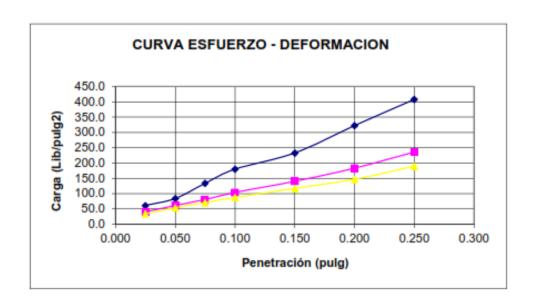
BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

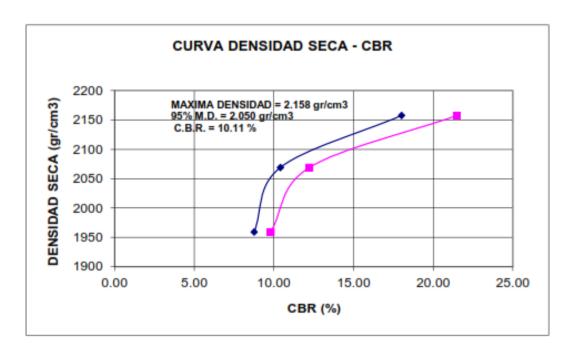
FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"


FECHA: ENERO DEL 2022 CALICATA: C-8 PROFUND.: 1.20 m.

		COMP. 5	6 GOLPES	COMP. 25	GOLPES	COMP. 1	COMP. 13 GOLPES		
	DETERMINACION	MOLDEO	SATURADO	MOLDEO	SATURADO	MOLDEO	SATURADO		
1	PESO MOLDE +MUESTRA gr.	9060	9605	8935	9225	8620	8885		
2	PESO DEL MOLDE gr.	4175	4175	4175	4175	4175	4175		
3	PESO DE LA MUESTRA gr.	4885	5430	4760	5050	4445	4710		
4	DENSIDAD HUMEDA gr./cc.	2.308	2.565	2.248	2.385	2.100	2.225		
5	DENSIDAD SECA gr./cc.	2.158	2.092	2.069	1.986	1.959	1.848		
	CONTENIDO DE HUMEDAD								
6	PESO DE LA TARA gr.	40	36.8	40	37.97	40	38.5		
7	TARA+SUELO HUMEDO gr.	402.16	483.7	410.79	488.38	403.28	474.78		
8	TARA +SUELO SECO gr.	378.62	401.32	381.2	413.02	379	400.95		
0	DEGG DEL AGUA	23.54	82.38	29.59	75.36	24.28	73.83		
9	PESO DEL AGUA gr.	25.04	02.30	25.05	70.00	24.20	70.00		
	PESO DEL AGUA gr. PESO DEL SUELO SECO gr.	338.62				339.00			

PENETRACION


PENET.	COMP. 56 GOLPES			CC	COMP. 25 GOLPES			COMP. 13 GOLPES		
PUL-	LECTURA			LECTURA			LECTURA			
GADAS	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	
0.025	13	183.5	61.2	7	124.0	41.3	5	104.2	34.7	
0.050	20	252.9	84.3	13	183.5	61.2	11	163.7	54.6	
0.075	35	401.5	133.8	19	242.9	81.0	16	213.2	71.1	
0.100	49	540.3	180.1	26	312.3	104.1	21	262.8	87.6	
0.150	65	698.9	233.0	37	421.4	140.5	30	352.0	117.3	
0.200	92	966.5	322.2	50	550.2	183.4	39	441.2	147.1	
0.250	118	1224.2	408.1	66	708.8	236.3	52	570.0	190.0	

HORAS	L. DIAL	mm.	%	L. DIAL	mm.	%	L. DIAL	mm.	%
0.00	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
96.00	0	0	0.00	0	0	0.0	0	0	0.0

Carga Unitaria	Lbs/plg ²	C.B.R (%)
0.1"	180.1	18.01
0.2"	322.2	21.48
0.1"	104.1	10.41
0.2"	183.4	12.23
0.1"	87.6	8.76
0.2"	147.1	9.8

Densidad Seca(gr/cm3)		1959	2069	2158
Numero de Golpes		13	25	56
C.B.R	0.1"	8.76	10.41	18.01
C.B.K	0.2"	9.8	12.23	21.48

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

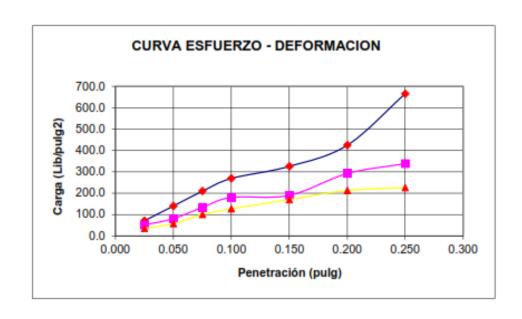
PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

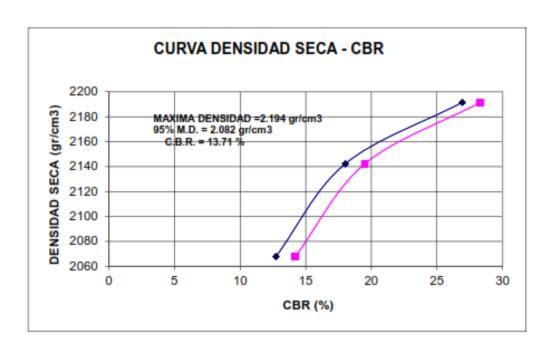
Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C-9 PROFUND.: 1.20 m.


		COMP. 50	6 GOLPES	COMP. 25 GOLPES		COMP. 13 GOLPES	
	DETERMINACION	MOLDEO	SATURADO	MOLDEO	SATURADO	MOLDEO	SATURADO
1	PESO MOLDE +MUESTRA gr.	9105	9520	9015	9345	8853	9260
2	PESO DEL MOLDE gr.	4175	4175	4175	4175	4175	4175
3	PESO DE LA MUESTRA gr.	4930	5345	4840	5170	4678	5085
4	DENSIDAD HUMEDA gr./cc.	2.329	2.525	2.286	2.442	2.210	2.402
5	DENSIDAD SECA gr./cc.	2.191	2.080	2.142	2.036	2.068	1.955
		CONTENI	DO DE HU	MEDAD			
6	PESO DE LA TARA gr.	38.51	40.25	35.60	42.10	39.50	38.35
7	TARA+SUELO HUMEDO gr.	332.64	410.51	372.16	458.94	316.28	452.79
8	TARA +SUELO SECO gr.	315.29	345.22	350.94	389.54	298.51	375.66
9	PESO DEL AGUA gr.	17.35	65.29	21.22	69.40	17.77	77.13
10	PESO DEL SUELO SECO gr.	276.78	304.97	315.34	347.44	259.01	337.31
11	CONT. DE HUMEDAD %	6.27	21.41	6.73	19.97	6.86	22.87

PENETRACION

PENET.	С	OMP. 56 GOL	PES	COMP. 25 GOLPES			COMP. 13 GOLPES		
PUL-	LECTURA			LECTURA			LECTURA		
GADAS	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2
0.025	16	213.2	71.1	10	153.7	51.2	5	104.2	34.7
0.050	37	421.4	140.5	19	242.9	81.0	12	173.6	57.9
0.075	58	629.5	209.8	35	401.5	133.8	25	302.4	100.8
0.100	76	807.9	269.3	49	540.3	180.1	33	381.7	127.2
0.150	93	976.4	325.5	52	570.0	190.0	46	510.6	170.2
0.200	123	1273.8	424.6	83	877.3	292.4	59	639.4	213.1
0.250	196	1997.3	665.8	97	1016.1	338.7	63	679.1	226.4


EXPANSION

HORAS	L. DIAL	mm.	%	L. DIAL	mm.	%	L. DIAL	mm.	%
0.00	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
96.00	0	0	0.00	0	0	0.0	0	0	0.0

Carga Unitaria	Lbs/plg ²	C.B.R (%)
0.1"	269.3	26.93
0.2"	424.6	28.31
0.1"	180.1	18.01
0.2"	292.4	19.5
0.1"	127.2	12.72
0.2"	213.1	14.21

Densidad Seca(gr/cm3)		2068	2142	2191
Numero de Golpes		13	25	56
CBR	0.1"	12.72	18.01	26.93
C.B.K	0.2"	14.21	19.5	28.31

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

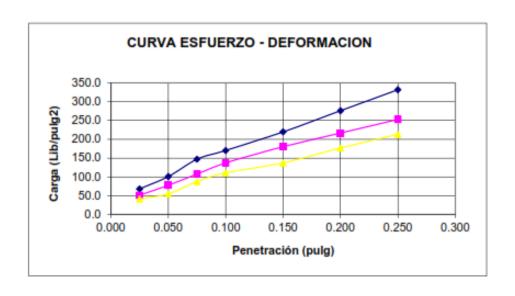
BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

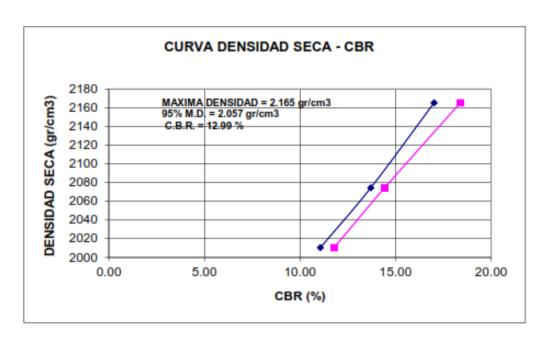
FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"


FECHA: ENERO DEL 2022 CALICATA: C-10 PROFUND.: 1.20 m.

		COMP. 5	6 GOLPES	COMP. 25 GOLPES		COMP. 13 GOLPES	
	DETERMINACION	MOLDEO	SATURADO	MOLDEO	SATURADO	MOLDEO	SATURADO
1	PESO MOLDE +MUESTRA gr.	9020	9450	8940	9260	8715	8945
2	PESO DEL MOLDE gr.	4175	4175	4175	4175	4175	4175
3	PESO DE LA MUESTRA gr.	4845	5275	4765	5085	4540	4770
4	DENSIDAD HUMEDA gr./cc.	2.289	2.492	2.251	2.402	2.145	2.253
5	DENSIDAD SECA gr./cc.	2.165	2.086	2.075	1.999	2.011	1.877
		CONTENI	DO DE HUI	MEDAD			
6	PESO DE LA TARA gr.	41	42.1	40.55	39.6	40.758	41.2
7	TARA+SUELO HUMEDO gr.	362.49	428.51	310.25	400.78	351.06	502.64
8	TARA +SUELO SECO gr.	345.19	365.66	289.13	340.16	331.67	425.59
9	PESO DEL AGUA gr.	17.30	62.85	21.12	60.62	19.39	77.05
10	PESO DEL SUELO SECO gr.	304.19	323.56	248.58	300.56	290.91	384.39
11	CONT. DE HUMEDAD %	5.69	19.42	8.50	20.17	6.67	20.04

PENETRACION


PENET.	COMP. 56 GOLPES			COMP. 25 GOLPES			COMP. 13 GOLPES		
PUL-	LECTURA			LECTURA			LECTURA		
GADAS	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2	DIAL	LIBRAS	Libs./Pulg.2
0.025	15	203.3	67.8	10	153.7	51.2	7	124.0	41.3
0.050	25	302.4	100.8	18	233.0	77.7	11	163.7	54.6
0.075	39	441.2	147.1	27	322.2	107.4	21	262.8	87.6
0.100	46	510.6	170.2	36	411.4	137.1	28	332.2	110.7
0.150	61	659.2	219.7	49	540.3	180.1	36	411.4	137.1
0.200	78	827.7	275.9	60	649.3	216.4	48	530.4	176.8
0.250	95	996.2	332.1	71	758.4	252.8	59	639.4	213.1

	HORAS	L. DIAL	mm.	%	L. DIAL	mm.	%	L. DIAL	mm.	%
I	0.00	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
1	96.00	0	0	0.00	0	0	0.0	0	0	0.0

Carga Unitaria	Lbs/plg ²	C.B.R (%)
0.1"	170.2	17.02
0.2"	275.9	18.39
0.1"	137.1	13.71
0.2"	216.4	14.43
0.1"	110.7	11.07
0.2"	176.8	11.79

Densidad Seca(gr/cm3)		2011	2075	2165
Numero de Golpes		13	25	56
C.B.R	0.1"	11.07	13.71	17.02
C.B.IX	0.2"	11.79	14.43	18.39

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

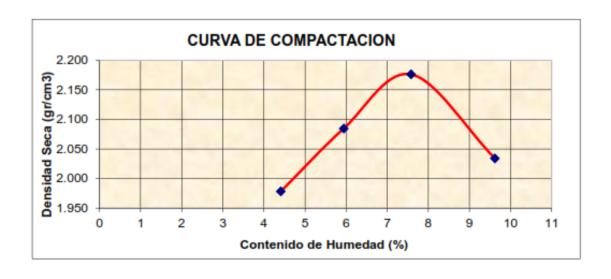
PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C-1


PROCTOR MODIFICADO

DETERMINACION	Nº	1	2	3	4
PESO MOLDE +MUESTRA	gr.	3940	4075	4200	4095
PESO DEL MOLDE	gr.	1990	1990	1990	1990
PESO DE LA MUESTRA	gr.	1950	2085	2210	2105
DENSIDAD HUMEDA	gr./cc.	2.066	2.209	2.341	2.230
DENSIDAD SECA	gr./cc.	1.978	2.085	2.176	2.034

CONTENIDO DE HUMEDAD

TARA	Nº	1	II	III	IV
PESO DE LA TARA	gr.	18.5	18.1	18.4	18
PESO TARA+SUELO HUMEDO gr.		76.5	82.45	76.3	92.54
PESO TARA +SUELO	SECO gr.	74.05	78.84	72.22	86
PESO DEL AGUA	gr.	2.45	3.61	4.08	6.54
PESO DEL SUELO SE	CO gr.	55.55	60.74	53.82	68.00
CONTENIDO DE HUM	IEDAD %	4.41	5.94	7.58	9.62

CONTENIDO DE HUMEDAD OPTIMO : 7.4 % DENSIDAD MAXIMA : 2.17 (gr/cm3)

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

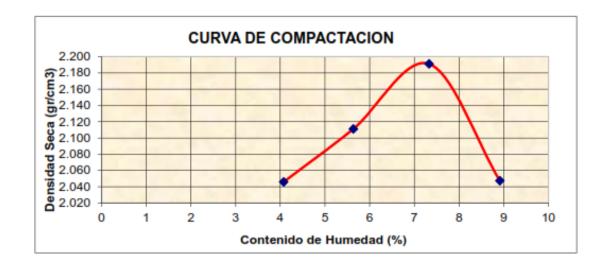
PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C - 2


PROCTOR MODIFICADO

DETERMINACION	Nº	1	2	3	4
PESO MOLDE +MUESTRA	gr.	4000	4095	4210	4095
PESO DEL MOLDE	gr.	1990	1990	1990	1990
PESO DE LA MUESTRA	gr.	2010	2105	2220	2105
DENSIDAD HUMEDA	gr./cc.	2.129	2.230	2.352	2.230
DENSIDAD SECA	gr./cc.	2.046	2.111	2.191	2.047

CONTENIDO DE HUMEDAD

TARA №	1	II	III	IV
PESO DE LA TARA gr.	18.4	18	18.3	18.2
PESO TARA+SUELO HUMEDO gr.	76.35	83.45	92.1	91.65
PESO TARA +SUELO SECO gr.	74.08	79.96	87.06	85.64
PESO DEL AGUA gr.	2.27	3.49	5.04	6.01
PESO DEL SUELO SECO gr.	55.68	61.96	68.76	67.44
CONTENIDO DE HUMEDAD %	4.08	5.63	7.33	8.91

CONTENIDO DE HUMEDAD OPTIMO : 7.1 % DENSIDAD MAXIMA : 2.18 gr/cm3)

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

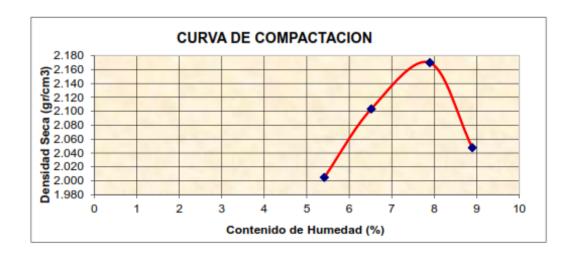
PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C - 3


PROCTOR MODIFICADO

DETERMINACION	Nº	1	2	3	4
PESO MOLDE +MUESTRA	gr.	3985	4105	4200	4095
PESO DEL MOLDE	gr.	1990	1990	1990	1990
PESO DE LA MUESTRA	gr.	1995	2115	2210	2105
DENSIDAD HUMEDA	gr./cc.	2.113	2.240	2.341	2.230
DENSIDAD SECA	gr./cc.	2.005	2.103	2.170	2.048

CONTENIDO DE HUMEDAD

TARA	Nº	T I	II	III	IV
PESO DE LA TARA	gr.	18.3	18.1	18.5	19
PESO TARA+SUELO HUMEDO gr.		76.54	82.16	92.45	90.01
PESO TARA +SUELO S	SECO gr.	73.55	78.24	87.04	84.21
PESO DEL AGUA	gr.	2.99	3.92	5.41	5.80
PESO DEL SUELO SE	CO gr.	55.25	60.14	68.54	65.21
CONTENIDO DE HUMI	EDAD %	5.41	6.52	7.89	8.89

CONTENIDO DE HUMEDAD OPTIMO : 7.7 % DENSIDAD MAXIMA : 2.17 gr/cm3)

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

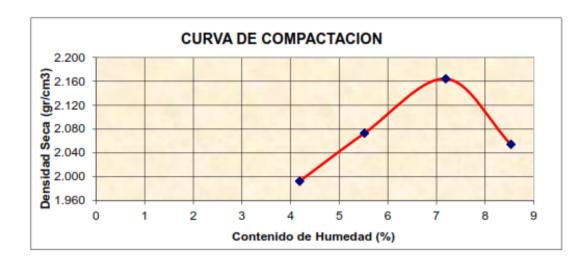
PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C - 4


PROCTOR MODIFICADO

DETERMINACION	Nº	1	2	3	4
PESO MOLDE +MUESTRA	gr.	3950	4055	4180	4095
PESO DEL MOLDE	gr.	1990	1990	1990	1990
PESO DE LA MUESTRA	gr.	1960	2065	2190	2105
DENSIDAD HUMEDA	gr./cc.	2.076	2.188	2.320	2.230
DENSIDAD SECA	gr./cc.	1.993	2.073	2.164	2.055

CONTENIDO DE HUMEDAD

TARA	Nº	I	II	III	IV
PESO DE LA TARA	gr.	19.1	18.6	18.5	18
PESO TARA+SUELO HUMEDO gr.		85.3	83.24	75.16	79.34
PESO TARA +SUEL	O SECO gr.	82.64	79.86	71.36	74.52
PESO DEL AGUA	gr.	2.66	3.38	3.80	4.82
PESO DEL SUELO :	SECO gr.	63.54	61.26	52.86	56.52
CONTENIDO DE HU	JMEDAD %	4.19	5.52	7.19	8.53

CONTENIDO DE HUMEDAD OPTIMO : 7.2 % DENSIDAD MAXIMA : 2.16 (gr/cm3)

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

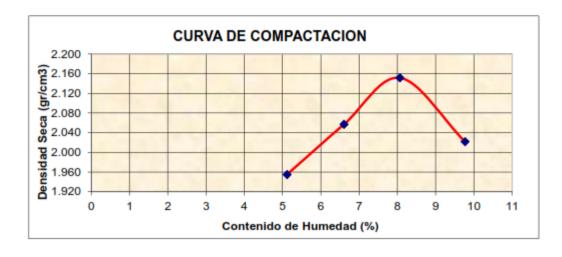
PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C - 5


PROCTOR MODIFICADO

DETERMINACION	Nº	1	2	3	4
PESO MOLDE +MUESTRA	gr.	3930	4060	4185	4085
PESO DEL MOLDE	gr.	1990	1990	1990	1990
PESO DE LA MUESTRA	gr.	1940	2070	2195	2095
DENSIDAD HUMEDA	gr./cc.	2.055	2.193	2.325	2.219
DENSIDAD SECA	gr./cc.	1.955	2.057	2.152	2.022

CONTENIDO DE HUMEDAD

TARA	Nº	1	II	III	IV
PESO DE LA TARA	gr.	19.05	19.05	19.05	19.05
PESO TARA+SUELO HUMEDO gr.		89.34	91.85	87.24	91.74
PESO TARA +SUELO	O SECO gr.	85.92	87.34	82.15	85.27
PESO DEL AGUA	gr.	3.42	4.51	5.09	6.47
PESO DEL SUELO S	ECO gr.	66.87	68.29	63.10	66.22
CONTENIDO DE HU	MEDAD %	5.11	6.60	8.07	9.77

CONTENIDO DE HUMEDAD OPTIMO : 8.00% DENSIDAD MAXIMA : 2.15 (gr/cm3)

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C - 6

PROCTOR MODIFICADO

DETERMINACION	Nº	1	2	3	4
PESO MOLDE +MUESTRA	gr.	3930	4065	4210	4055
PESO DEL MOLDE	gr.	1990	1990	1990	1990
PESO DE LA MUESTRA	gr.	1940	2075	2220	2065
DENSIDAD HUMEDA	gr./cc.	2.055	2.198	2.352	2.188
DENSIDAD SECA	gr./cc.	1.970	2.085	2.192	2.016

CONTENIDO DE HUMEDAD

TARA	Nº	T I	II	III	IV
PESO DE LA TARA	gr.	19.02	19.02	19	19.05
PESO TARA+SUELO HUMEDO gr.		85.6	80.3	90.4	92.1
PESO TARA +SUELO SE	CO gr.	82.85	77.15	85.55	86.37
PESO DEL AGUA	gr.	2.75	3.15	4.85	5.73
PESO DEL SUELO SECO	gr.	63.83	58.13	66.55	67.32
CONTENIDO DE HUMED	AD %	4.31	5.42	7.29	8.51

CONTENIDO DE HUMEDAD OPTIMO : 7.2 % DENSIDAD MAXIMA : 2.18 gr/cm3)

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

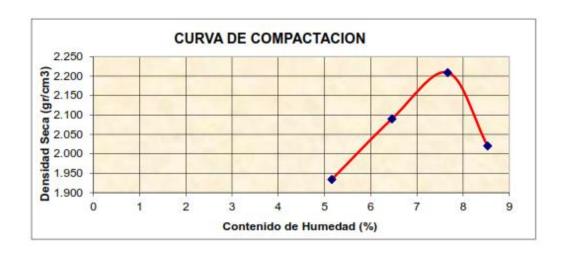
PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C-7


PROCTOR MODIFICADO

DETERMINACION	Nº	1	2	3	4
PESO MOLDE +MUESTRA	gr.	3910	4090	4235	4060
PESO DEL MOLDE	gr.	1990	1990	1990	1990
PESO DE LA MUESTRA	gr.	1920	2100	2245	2070
DENSIDAD HUMEDA	gr./cc.	2.034	2.225	2.378	2.193
DENSIDAD SECA	gr./cc.	1.934	2.090	2.209	2.020

CONTENIDO DE HUMEDAD

TARA	No.	1	11	HI	IV
PESO DE LA TARA	gr.	18.8	19.1	18.7	18.8
PESO TARA+SUELO H	HUMEDO gr.	84.25	85.36	79.94	83.31
PESO TARA +SUELO	SECO gr.	81.04	81.34	75.58	78.24
PESO DEL AGUA	gr.	3.21	4.02	4.36	5.07
PESO DEL SUELO SE	CO gr.	62.24	62.24	56.88	59.44
CONTENIDO DE HUM		5.16	6.46	7.67	8.53

CONTENIDO DE HUMEDAD OPTIMO : 7.6 % DENSIDAD MAXIMA : 2.16 (gr/cm3)

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

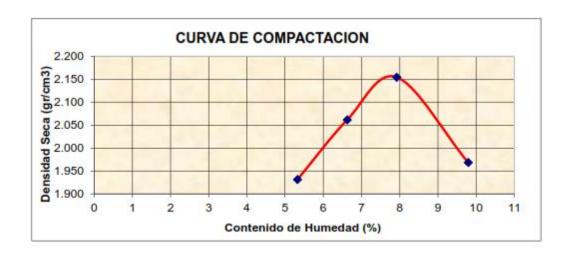
PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C - 8


PROCTOR MODIFICADO

DETERMINACION	Nº	1	2	3	4
PESO MOLDE +MUESTRA	gr.	3910	4065	4185	4030
PESO DEL MOLDE	gr.	1990	1990	1990	1990
PESO DE LA MUESTRA	gr.	1920	2075	2195	2040
DENSIDAD HUMEDA	gr./cc.	2.034	2.198	2.325	2.161
DENSIDAD SECA	gr./cc.	1.931	2.062	2.155	1.968

CONTENIDO DE HUMEDAD

TARA	No.	1	11	HII	IV
PESO DE LA TARA	gr.	18.7	18.35	19	18.95
PESO TARA+SUELO	HUMEDO gr.	95.1	86.26	94.05	90.25
PESO TARA +SUELO	SECO gr.	91.24	82.04	88.54	83.89
PESO DEL AGUA	gr.	3.86	4.22	5.51	6.36
PESO DEL SUELO SE	CO gr.	72.54	63.69	69.54	64.94
CONTENIDO DE HUN	MEDAD %	5.32	6.63	7.92	9.79

CONTENIDO DE HUMEDAD OPTIMO : 7.7 % DENSIDAD MAXIMA : 2.15 gr/cm3)

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

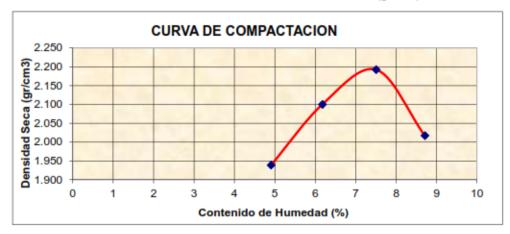
PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C-9


PROCTOR MODIFICADO

DETERMINACION	Nº	1	2	3	4
PESO MOLDE +MUESTRA	gr.	3910	4095	4215	4060
PESO DEL MOLDE	gr.	1990	1990	1990	1990
PESO DE LA MUESTRA	gr.	1920	2105	2225	2070
DENSIDAD HUMEDA	gr./cc.	2.034	2.230	2.357	2.193
DENSIDAD SECA	gr./cc.	1.939	2.100	2.192	2.017

CONTENIDO DE HUMEDAD

TARA	Nº		ll ll	III	IV
Inion	.,	<u>'</u>	"		.,,
PESO DE LA TARA	gr.	18.65	17.35	18.1	17.24
PESO TARA+SUELO HU	MEDO gr.	84.95	85.94	81.25	84
PESO TARA +SUELO SE	CO gr.	81.85	81.95	76.84	78.65
PESO DEL AGUA	gr.	3.10	3.99	4.41	5.35
PESO DEL SUELO SECO	gr.	63.20	64.60	58.74	61.41
CONTENIDO DE HUMED	AD %	4.91	6.18	7.51	8.71

CONTENIDO DE HUMEDAD OPTIMO : 7.4 % DENSIDAD MAXIMA : 2.19 (gr/cm3)

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

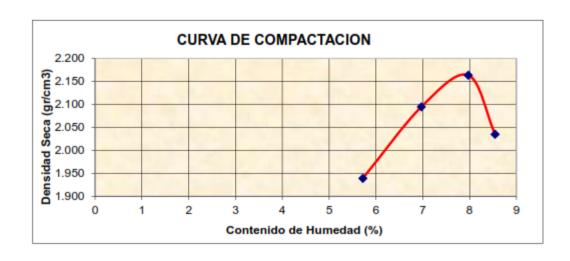
PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022 CALICATA: C - 10


PROCTOR MODIFICADO

DETERMINACION	Nº	1	2	3	4
PESO MOLDE +MUESTRA	gr.	3925	4105	4195	4075
PESO DEL MOLDE	gr.	1990	1990	1990	1990
PESO DE LA MUESTRA	gr.	1935	2115	2205	2085
DENSIDAD HUMEDA	gr./cc.	2.050	2.240	2.336	2.209
DENSIDAD SECA	gr./cc.	1.939	2.094	2.163	2.035

CONTENIDO DE HUMEDAD

TARA	Nº	T.	II	III	IV
PESO DE LA TARA	gr.	18.75	19.1	19.65	17.28
PESO TARA+SUELO HUN	MEDO gr.	92.13	95.23	94.57	82.45
PESO TARA +SUELO SEG	CO gr.	88.16	90.27	89.04	77.32
PESO DEL AGUA	gr.	3.97	4.96	5.53	5.13
PESO DEL SUELO SECO	gr.	69.41	71.17	69.39	60.04
CONTENIDO DE HUMEDA	AD %	5.72	6.97	7.97	8.54

CONTENIDO DE HUMEDAD OPTIMO : 7.8 % DENSIDAD MAXIMA : 2.16 gr/cm3)

SOLICITANTE: BR. BAZÁN ALAYO CLAUDIA FERNANDA

BR. TUCTO LÓPEZ CRISTHIAN PATRICK

PROYECTO: "EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE

DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV.

FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL

Y LA AV. TÚPAC AMARU"

FECHA: ENERO DEL 2022

CONTENIDO DE SALES SOLUBLES TOTALES

Calicata No:	1		
Profundidad :	2.00	0 m.	
Lata N°:	1	2	
Peso del recipiente vacío (gr)	116.90	116.90	
Peso recip.+ Peso agua destilada + sales (gr)	179.00	180.00	
Peso del recipiente + sales (gr)	117.50	117.52	
Peso de la sal (gr)	0.60		
Contenido de Sales (%)	0.97	0.98	
Contenido Promedio de Sales (%)	0.	97	

Calicata Nº :	2		
Profundidad :	2.00 m.		
Lata N°:	3	4	
Peso del recipiente vacío (gr)	116.90		
Peso recip.+ Peso agua destilada + sales (gr)	180.00		
Peso del recipíente + sales (gr)	117.48		
Peso de la sal (gr)	0.58	0.63	
Contenido de Sales (%)	0.92	1.01	
Contenido Promedio de Sales (%)	0.	96	

Calicata Nº :	3		
Profundidad :	2.00 m.		
Lata N° :	5	6	
Peso del recipiente vacío (gr)	116.90	116.90	
Peso recip.+ Peso agua destilada + sales (gr)	181.00	179.00	
Peso del recipíente + sales (gr)	117.45	117.53	
Peso de la sal (gr)	0.55	0.63	
Contenido de Sales (%)	0.86	1.01	
Contenido Promedio de Sales (%)	0.94		

Calicata Nº :	4		
Profundidad :	2.00	0 m.	
Lata N° :	7	8	
Peso del recipiente vacío (gr)	116.90		
Peso recip.+ Peso agua destilada + sales (gr)	180.00		
Peso del recipíente + sales (gr)	117.54	117.53	
Peso de la sal (gr)	0.64	0.63	
Contenido de Sales (%)	1.01	1.01	
Contenido Promedio de Sales (%)	1.	1.01	

Calicata Nº :	5		
Profundidad :	2.00 m.		
Lata N° :	9	10	
Peso del recipiente vacío (gr)	116.90	116.90	
Peso recip.+ Peso agua destilada + sales (gr)	178.14	177.00	
Peso del recipíente + sales (gr)	117.49	117.51	
Peso de la sal (gr)	0.59	0.61	
Contenido de Sales (%)	0.96	1.01	
Contenido Promedio de Sales (%)	0.	99	

Calicata Nº :	6	
Profundidad :	2.00 m.	
Lata N°:	11	12
Peso del recipiente vacío (gr)	116.90	116.90
Peso recip.+ Peso agua destilada + sales (gr)	181.20	180.00
Peso del recipíente + sales (gr)	117.59	117.57
Peso de la sal (gr)	0.69	0.67
Contenido de Sales (%)	1.07	1.06
Contenido Promedio de Sales (%)	1.07	

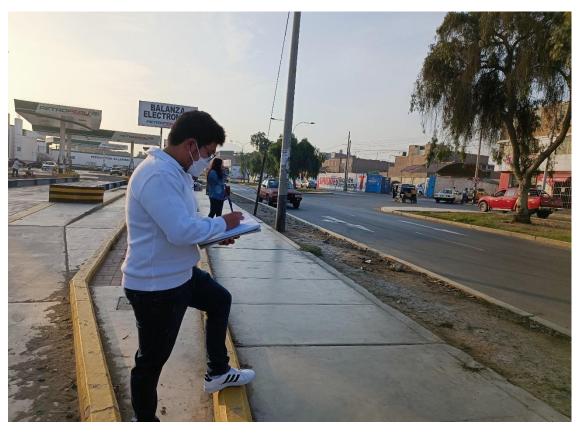
Calicata Nº:	7	
Profundidad :	2.00 m.	
Lata N°:	13	14
Peso del recipiente vacío (gr)	116.90	116.90
Peso recip.+ Peso agua destilada + sales (gr)	178.65	177.92
Peso del recipíente + sales (gr)	117.48	117.46
Peso de la sal (gr)	0.58	0.56
Contenido de Sales (%)	0.94	0.92
Contenido Promedio de Sales (%)	0.	93

Calicata Nº :	8	
Profundidad :	2.00 m.	
Lata N°:	15	16
Peso del recipiente vacío (gr)	116.87	116.94
Peso recip.+ Peso agua destilada + sales (gr)	179.68	181.20
Peso del recipíente + sales (gr)	117.50	117.56
Peso de la sal (gr)	0.63	0.62
Contenido de Sales (%)	1.00	0.96
Contenido Promedio de Sales (%)	0.9	98

Calicata Nº :	9	
Profundidad :	2.00 m.	
Lata N°:	17	18
Peso del recipiente vacío (gr)	116.90	116.90
Peso recip.+ Peso agua destilada + sales (gr)	179.11	180.00
Peso del recipíente + sales (gr)	117.53	117.55
Peso de la sal (gr)	0.63	0.65
Contenido de Sales (%)	1.01	1.03
Contenido Promedio de Sales (%)	1.	02

Calicata No:	10	
Profundidad :	2.00 m.	
Lata N° :	19	20
Peso del recipiente vacío (gr)	116.90	116.90
Peso recip.+ Peso agua destilada + sales (gr)	175.05	177.00
Peso del recipíente + sales (gr)	117.44	117.49
Peso de la sal (gr)	0.54	0.59
Contenido de Sales (%)	0.93	0.98
Contenido Promedio de Sales (%)	0.	96

ANEXO N°05: FOTOGRAFÍAS


Conteo vehicular en la intersección de la Av. Federico Villarreal y Av. César Vallejo

Conteo vehicular en la Av. Federico Villarreal cerca al mercado Hermelinda

Conteo vehicular en la Av. Federico Villarreal intersección con la Carretera Industrial

Conteo vehicular en la Av. Federico Villarreal intersección con Calle Juan de Corral

Fallas en el pavimento de la zona de estudio como ahuellamiento, hundimiento, agrietamiento, fisuras longitudinales, transversales, en bloques de severidad alta

Fallas en el pavimento en el tramo de la Av. Federico Villarreal y Prol. Unión tales como ahuellamiento, hundimiento, piel de cocodrilo, baches


Baches asfalticos de gran diámetro (severidad alta) en el tramo de la Av. Federico Villarreal cerca al mercado Hermelinda

Excavación de calicata en la zona de estudio

Vista del perfil estratigráfico de la calicata **C-1,** nótese en la superficie el material de relleno conformado suelo orgánico, arena y algunas piedras. A continuación, se encontró un estrato de Arenas pobremente graduadas con pocos limos **(SP-SM)**, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el Nivel de aguas freáticas (NAF).

Vista del perfil estratigráfico de la calicata **C-2**, nótese en la superficie el material de relleno conformado suelo orgánico, arena y algunas piedras. A continuación, se encontró un estrato de Arenas pobremente graduadas con pocos limos **(SP-SM)**, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el Nivel de aguas freáticas (NAF).

Vista de la calicata **C-3**, nótese en la superficie el material de relleno conformado suelo orgánico, arena y algunas piedras. A continuación, se encontró un estrato de Arenas pobremente graduadas con pocos limos **(SP-SM)**, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el Nivel de aguas freáticas (NAF).

Vista de la calicata **C-4**, nótese en la superficie el material de relleno conformado suelo orgánico, arena y algunas piedras. A continuación, se encontró un estrato de Arenas arcillosas **(SC)** de color marrón claro, de consistencia media y regular humedad. No se encontró el Nivel de aguas freáticas (NAF).

Vista del perfil estratigráfico de la calicata **C-5**, nótese en la superficie el material de relleno conformado suelo orgánico, arena y algunas piedras. A continuación, se encontró un estrato de Arenas pobremente graduadas con pocos limos **(SP-SM)**, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el Nivel de aguas freáticas (NAF).

Vistas de la calicata **C-6**, nótese en la superficie el material de relleno conformado suelo orgánico, arena y algunas piedras. A continuación, se encontró un estrato de Arenas pobremente graduadas con pocos limos **(SP-SM)**, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el Nivel de aguas freáticas (NAF).

Vista del perfil estratigráfico de la calicata **C-7**, nótese en la superficie el material de relleno conformado suelo orgánico, arena y algunas piedras. A continuación, se encontró un estrato de Arenas pobremente graduadas con pocos limos **(SP-SM)**, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el Nivel de aguas freáticas (NAF).

Vista panorámica de la calicata **C-8,** nótese en la superficie el material de relleno conformado suelo orgánico, arena y algunas piedras. A continuación, se encontró un estrato de Arenas arcillosas **(SC)** de color marrón claro, de consistencia media y regular humedad. No se encontró el Nivel de aguas freáticas (NAF).

Vista del perfil estratigráfico de la calicata **C-9**, nótese en la superficie el material de relleno conformado suelo orgánico, arena y algunas piedras. A continuación, se encontró un estrato de Arenas pobremente graduadas con pocos limos **(SP-SM)**, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el Nivel de aguas freáticas (NAF).

Vista del perfil estratigráfico de la calicata **C-10**, nótese en la superficie el material de relleno conformado suelo orgánico, arena y algunas piedras. A continuación, se encontró un estrato de Arenas pobremente graduadas con pocos limos **(SP-SM)**, de color beige pardo a amarillo claro, de consistencia media y regular humedad. No se encontró el Nivel de aguas freáticas (NAF).

ANEXO N°06: HOJA DE CÁLCULO DISEÑO DE PAVIMENTO FLEXIBLE

DISEÑO DE PAVIMENTO FLEXIBLE

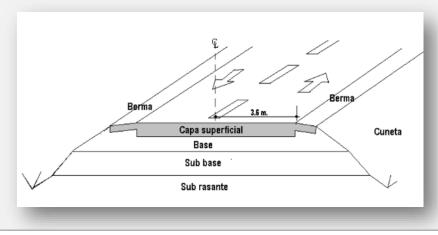
Modificar datos:	Cálculos automáticos		Resultados		
Cargas de tráfico vehicular impues			I I	ESAL(W18)	5,820,011.11
Suelo de la subrasante	parameter			CBR =	12.64 %
Módulo de resiliencia de la subras	ante Mr	(psi) = 1500	0xCBR	MR (psi)=	18960.00
Tipo de tráfico		VERDADERO		Tipo:	TP8
Número de etapas				Etapas:	1
Nivel de confiabilidad				conf.	90.0 %
Coeficiente estadústico de desviac	ción estandar normal			ZR	-1.282
Desviación estandar combinado				So	0.45
Indice de serviciabilidad Inicial seg	gún rango de tráfico			Pi	4.20
Indice de serviciabilidad final segú	n rango de tráfico			Pt	2.50
Diferencial de serviciabilidad segú	n rango de tráfico			ΔPSI	1.70

$$log_{10}(W_{18}) = Z_R S_0 + 9.36 log_{10}(SN+1) - 0.2 + \frac{log_{10}(\frac{\Delta PSI}{4.2 - 1.5})}{0.4 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 log_{10}(M_R) - 8.07$$

Número estructural requerido		Calcular SN	SNR=	3.250

Coeficientes estructurales de las capas

CAPA SUPERFICIAL	BASE	SUBBASE		
a1	a2	a3		
Carpeta Asfáltica en Caliente, módulo 2,965 MPa (430,000 PSI) a 20 °C (68 oF)	Base Granular CBR 80%, compactada al 100% de la MDS	Sub Base Granular CBR 40%, compactada al 100% de la MDS		
Capa Superficial recomendada para todos los tipos de Tráfico	Capa de Base recomendada para Tráfico ≤ 10'000,000 EE	Capa de Subbase recomendada con CBR mínimo 40%, para todos los tipos de Tráfico		
0.170	0.052	0.047		


Coeficientes de drenaje para Bases y SubBases granulares no tratadas en pavimentos flexibles

m2	m3
1	1

$$SNR = a_1 * d_1 + a_2 * d_2 * m_2 + a_3 * d_3 * m_3$$

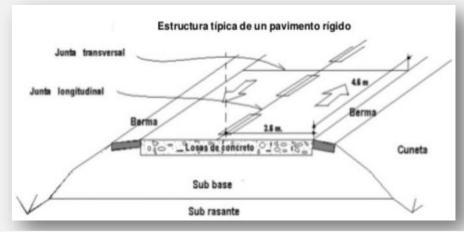
Cálculo de espesores de las capas									
d1	d2	d3							
9 cm	15 cm	20 cm							
Capa superficial	Base	SubBase							

SNR (Requerido)	3.250	Debe cumplir SNR (Resultado) > SNR (Requerido)
SNR (Resultado)	3.25	SI CUMPLE

ANEXO N°07: HOJA DE CÁLCULO DISEÑO DE PAVIMENTO RÍGIDO

DISEÑO DE PAVIMENTO RÍGIDO

Modificar datos: Cálculos	automáticos			Resultados		
Cargas de tráfico vehicular impuestos al pavi	ESAL(W18)	6,676,529.56				
CBR de la subrasante (%)					CBR =	12.64 %
Resistencia del concreto (Kg/cm2)					(F'c)	300
Módulo elástico del concreto (PSI)	E = 570	$000x(fc)^2$;(fc en	PSI)	Ec	3,723,365.48
Resistencia media del concreto a flexo tracció	ón a los 28 dí	as(Kg/cm2)	$M_r = c$	$\sqrt{f'c}$	Mr	42
Modulo de reacción de la subrasante (Mpa/n					Ko	60.00
CBR mínimo de la subbase (%)		VERDADERO			CBR(subB.) =	40.0 %
CBR mínimo de la subbase - definido (%)					CBR DEF.	50.0 %
Modulo de reacción de la subbase granular (N	Mpa/m)				K1(subB.) =	140.00
Espesor de la subbase granular (cm) recomen	dado por la l	МТС			h=	15.00
Coeficiente de reacción combinado (Mpa)	$K_c = \left(\right.$	$1 + \left(\frac{h}{38}\right)^2$	$x\left(\frac{K_1}{K_0}\right)^{\frac{2}{3}}$	x K ₀	Kc	67.73
Tipo de tráfico					Tipo:	TP8
Indice de serviciabilidad Inicial según rango d	le tráfico				Pi	4.30
Indice de serviciabilidad final según rango de	tráfico				Pt	2.50
Diferencial de serviciabilidad según rango de	tráfico				Δ PSI	1.80
Desviación estandar combinado					So	0.35
Nivel de confiabilidad					conf.	90.0 %
Coeficiente estadústico de desviación estand	ar normal				ZR	-1.282
Condiciones de drenaje					cd	1.0
Coeficiente de transmisión de carga en las jur	ntas				ī	2.8
Concreto hidráulico con pasadores					J	2.0


$$log_{10}(W_{18}) = Z_R S_O + 7.35 log_{10}(D+25.4) - 10.39 + \frac{log_{10}\left(\frac{\Delta PSI}{4.5-1.5}\right)}{1 + \frac{1.25 \times 10^{19}}{(D+25.4)^{8.46}}} + (4.22 - 0.32 P_t) \times log_{10}\left(\frac{M_r C_{dx}(0.09 D^{0.75} - 1.13)}{1.51 \times J\left(0.09 D^{0.75} - \frac{7.38}{(E_C/k)^{10}}\right)}\right)$$

Espesor de pavimento de concreto en milímetros (mm)

Calcular D

D= 232.22

D-0	D-1
23 cm	15 cm
Capa superficial (Losa de concreto)	SubBase Granular

ANEXO N°08: ANÁLISIS DE PRECIOS UNITARIOS DEL PAVIMENTO FLEXIBLE

Página: 1

Presupuesto	0201001	Y FLEXIBLE PARA LA	ISIS DE LAS CONDICIONE A AV. FEDERICO VILLARI					
Subpresupuesto	001	DISEÑO ESTRUCTUR FEDERICO VILLARRE	LISIS DE LAS CONDICIO LAL DE PAVIMENTO RÍ AL ENTRE LOS TRAMOS	GIDO Y FLEX	IBLE PARA I	_A AV.	Fecha presupues to	19/03/2023
Partida	01.01.01	LA AV. TÜPAC AMARU LIMPIEZA DEL	TERRENO MANUAL					
Rendimiento	m2/DIA	MO. 140.0000	EQ. 140.0000			Costo unitario di	recto por : m2	1.07
Código	Descripcio	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0101010003	OPERARIO	Mano de Obra		hh	0.1000	0.0057	21.95	0.13
0101010005	PEON			hh	1.0000	0.0571	15.86	0.91 1.04
0301010006	HERRAMI	Equipos ENTAS MANUALES		%mo		3.0000	1.04	0.03 0.03
Partida	01.01.02	TRAZO Y REPI	ANTEO					
Rendimiento	m2/DIA	MO. 600.0000	EQ. 600.0000			Costo unitario di	recto por : m2	1.42
Código	Descripcio	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0101010005	PEON	mano de Obra		hh	2.0000	0.0267	15.86	0.42
01010300000005	OPERARIO	O TOPOGRAFO		hh	1.0000	0.0133	21.95	0.29 0.71
00420200040000	VEGO BOI	Materiales		1		0.0450	40.00	0.45
02130300010002 0231040001		DE MADERA		bol und		0.0150 1.0000	10.00 0.26	0.15 0.26
0240020001	PINTURA			gal		0.0050	38.00	0.19
		Equipos						0.60
0301000002		POGRAFICO		día	1.0000	0.0017	50.00	0.09
03014900010001	CORDEL			rll		0.0020	8.00	0.02 0.11
Partida	01.02.01	CORTE A NIVE	L DE SUB RASANTE CI E	QUIPO				
Rendimiento	m3/DIA	MO. 190.0000	EQ. 190.0000			Costo unitario di	recto por : m3	7.10
Código	Descripcio	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0101010003	OPERARIO			hh	0.1000	0.0042	21.95	0.09
0101010005	PEON			hh	1.0000	0.0421	15.86	0.67
		Equipos						0.76
0301010006	HERRAMI	ENTAS MANUALES		%mo		3.0000	0.76	0.02
03011800020004	TRACTOR	DE ORUGAS DE 140-16	i0 HP	hm	1.0000	0.0421	150.00	6.32 6.34
Partida	01.02.02	ELIMINACION	DE MATERIAL EXCEDENT	E				2
Rendimiento	m3/DIA	MO. 460.0000	EQ. 460.0000			Costo unitario di	recto por : m3	12.79
Código	Descripcio	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0101010003	OPERARIO	Mano de Obra		hh	1.0000	0.0174	21.95	0.38
0101010005	PEON	-		hh	2.0000	0.0348	15.86	0.55
		Equipos						0.93
0301010006	HERRAMI	ENTAS MANUALES		%mo		3.0000	0.93	0.03
03011600010004		OR SOBRE LLANTAS DE	160-195 HP 3.5 yd3	hm	1.0000	0.0174	200.00	3.48
03012200040001	CAMION \	/OLQUETE DE 15 m3		hm	4.0000	0.0696	120.00	8.35 11.86

Presupuesto	0201001		SIS DE LAS CONDICIONES AV. FEDERICO VILLARR					
Subpresupuesto	001	DISEÑO ESTRUCTURA	ISIS DE LAS CONDICION AL DE PAVIMENTO RÍO IL ENTRE LOS TRAMOS	IBLE PARA LA	A AV.	Fecha presupuesto	19/03/202	
Partida	01.02.03		LA SUB RASANTE C <i>i</i> mo	TONIVELADOI	RA			
Rendimiento	m2/DIA	MO. 800.0000	EQ. 800.0000			Costo unitario d	irecto por : m2	5.14
Código	Descripció			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial Si
0101010003	OPERARIO	Mano de Obra		hh	0.5000	0.0050	21.95	0.1
0101010005	PEON			hh	2.0000	0.0200	15.86	0.3
								0.4
		Equipos						0.000
0301010006	HERRAMIE	NTAS MANUALES		%mo		3.0000	0.43	0.0
03011000060002	RODILLO L	ISO VIBRATORIO AUTOI	PROPULSADO 7-9 ton	hm	1.0000	0.0100	160.00	1.60
03012000010001	MOTONIVE	LADORA 130 - 135 HP		hm	1.0000	0.0100	180.00	1.80
03012200050002	CAMION CI	STERNA (3,500 GLNS.)		hm	1.0000	0.0100	130.00	1.30
								4.7
Partida	01.03.01	SUB BASE GRA	NULA e=0.20 m					
Rendimiento	m2/DIA	MO. 800.0000	EQ. 800.0000			Costo unitario d	irecto por : m2	12.52
Código	Descripció	n Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial Si
0101010004	OFICIAL			hh	1.0000	0.0100	17.59	0.18
0101010005	PEON			hh	2.0000	0.0200	15.86	0.3
								0.50
		Materiales						
02070400010001	MATERIAL	GRANULAR PARA SUB-	BASE	m3		0.1850	40.00	7.40
		24.5						7.40
0301010006	HEDDAMIE	Equipos NTAS MANUALES		%mo		3.0000	0.50	0.03
0301010000		ISO VIBRATORIO AUTOI	DRODIII SADO 7- 0 ton	hm	1.0000	0.0100	160.00	1.60
03012000010001		LADORA 130 - 135 HP	NOI OLOADO 1- 9 ton	hm	1.0000	0.0100	180.00	1.80
03012000010001		STERNA (2,500 GLNS.)		hm	1.0000	0.0100	120.00	1.20
	or the ort	51 E.N. V. (E,000 5E.10.)		1,2	1.000	0.0100	120.00	4.62
Partida	01.03.02	BASE GRANULA	AR E = 0.15 m					
Rendimiento	m2/DIA	MO. 800.0000	EQ. 800.0000			Costo unitario d	irecto por : m2	13.78
Código	Descripció			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial Si
0101010004	OFICIAL	Mano de Obra		hh	1.0000	0.0100	17.59	0.18
0101010004	PEON			hh	4.0000	0.0400	15.86	0.63
0.01010000	, LON				1.0000	3.0700	10.00	0.8
0007040004005	NA TES. ()	Materiales	ę.	•			45.00	
02070400010002	MATERIAL	GRANULAR PARA BASE		m3		0.1850	45.00	8.33 8.33
0301010006	HERRAMIE	Equipos NTAS MANUALES		%mo		5.0000	0.81	0.04
0301010000		ISO VIBRATORIO AUTOI	PROPULSADO 7- 9 ton	hm	1.0000	0.0100	160.00	1.60
03012000010001		LADORA 130 - 135 HP	ROI GEORGO 1- 8 IOII	hm	1.0000	0.0100	180.00	1.80
03012000010001		STERNA (2,500 GLNS.)		hm	1.0000	0.0100	120.00	1.20
- 50 0000000 1	57 NIN OIN OI	(2,000 OLINO.)		****	1.0000	0.0100	120.00	1.20

Presupuesto	0201001	EVALUACIÓN Y ANÁLIS Y FLEXIBLE PARA LA AMARU	SIS DE LAS CONDICIONE AV. FEDERICO VILLARI					
Subpresupuesto	001	EVALUACIÓN Y ANÁLI DISEÑO ESTRUCTURA	SIS DE LAS CONDICIO L DE PAVIMENTO RÍ LENTRE LOS TRAMOS	GIDO Y FLEX	IBLE PARA L	A AV.	Fecha presupuesto	19/03/2023
Partida	01.04.01	LA AV. TÚPAC AMARU	ASE PARA IMPRIMACION					-
Tallida	01.04.01	BARRIDO DE BA	OE FARA IMPRIMACION					
Rendimiento	m2/DIA	MO. 2,700.0000	EQ. 2,700.0000			Costo unitario d	recto por : m2	1.92
Código	Descripció	on Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0101010004	OFICIAL	Mario de Obra		hh	2.0000	0.0059	17.59	0.10
0101010005	PEON			hh	8.0000	0.0237	15.86	0.38
								0.48
0290130005	ESCOBAS	Materiales		und		0.0010	5.00	0.01
0200100000	LOGODAG			unu		0.0010	0.00	0.01
		Equipos						
03012200040001	CAMION V	OLQUETE DE 15 m3		hm	4.0000	0.0119	120.00	1.43
								1.43
Partida	01.04.02	IMPRIMACION A	SFALTICA					
Rendimiento	m2/DIA	MO. 1,600.0000	EQ. 1,600.0000			Costo unitario d	recto por : m2	4.92
Código	Descripció	on Recurso		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0101010002	CAPATAZ	Mano de Obra		hh	1.0000	0.0050	24.11	0.12
0101010002	OFICIAL			hh	1.0000	0.0050	17.59	0.12
0101010005	PEON			hh	3.0000	0.0150	15.86	0.24
								0.45
000404000	KEDOOEN	Materiales		221		0.0000	42.00	0.70
0201040002 02010500010001	ASFALTO	E INDUSTRIAL R.C250		gal gal		0.0600 0.2400	13.00 13.00	0.78 3.12
02010300010001	AOIALIO	110-230		gai		0.2400	13.00	3.90
		Equipos						
0301010006		ENTAS MANUALES		%mo		5.0000	0.45	0.02
03013900080002	COCINA D	E ASFALTO 320 gl		hm	1.0000	0.0050	110.00	0.55 0.57
-				27 - 160 - 180				
Partida	01.04.03	CARPETA ASFA	LTICA EN CALIENTE e =	: 0.09m				
Rendimiento	m2/DIA	MO. 1,300.0000	EQ. 1,300.0000			Costo unitario d	recto por : m2	31.86
Código	Descripció	on Recurso		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0101010002	CAPATAZ	Mano de Obra		hh	0.5000	0.0031	24.11	0.07
0101010002	OPERARIO)		hh	3.0000	0.0185	21.95	0.41
0101010004	OFICIAL			hh	3.0000	0.0185	17.59	0.33
0101010005	PEON			hh	8.0000	0.0492	15.86	0.78
								1.59
02010500050005	MEZCLA A	Materiales ASFALTICA EN CALIENTE		m3		0.0600	320.00	19.20
02070200010001				m3		0.0800	25.00	2.00
								21.20
0204040202	LIEDDAL	Equipos		0/		F 0000	4.50	0.00
0301010006 03011000040001		ENTAS MÁNÚALES NEUMATICO AUTOPREPI	II SADO 5.5. 20 ton	%mo hm	1.0000	5.0000 0.0062	1.59 350.00	0.08 2.17
03011000040001		TANDEM EST 8-10 ton	7LOADO 3.3 - 20 (0)1	hm	1.0000	0.0062	550.00	3.41
		ADORA SOBRE ORUGAS	69 HP 10-16'	hm	1.0000	0.0062	550.00	3.41
								9.07
) -								

ANEXO N°09: ANÁLISIS DE PRECIOS UNITARIOS DEL PAVIMENTO RÍGIDO

Presupuesto	0201002		XIBLE PARA L						RUCTURAL DE PAVIM RA INDUSTRIAL Y L	
Subpresupuesto	001	EVALI DISEÑ FEDER	UACIÓN Y ANA 10 estructu	RAL DE PA EAL ENTRE	VIMENTO RÍ	GIDO Y FLEX	S Y PROPUES IBLE PARA L <i>i</i> Etera industi	A AV.	Fecha presupuesto	19/03/2023
Partida	01.01.01	271710	LIMPIEZA DE		MANUAL					
Rendimiento	m2/DIA	MO.	140.0000	EQ.	140.0000			Costo unitario d	irecto por : m2	1.07
Código	Descripció		ırso ıno de Obra			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/
0101010003	OPERARIO)				hh	0.1000	0.0057	21.95	0.13
0101010005	PEON					hh	1.0000	0.0571	15.86	0.9 ⁻ 1.0 4
0301010006	HERRAMI		Equipos MANUALES			%mo		3.0000	1.04	0.00
0001010000	TILITI O CIVIL	LITTAG	INITATOREEO			74110		5.0000	1.04	0.03
Partida	01.01.02		TRAZO Y REF	PLANTEO						
Rendimiento	m2/DIA	MO.	600.0000	EQ.	600.0000			Costo unitario d	irecto por : m2	1.42
Código	Descripció		ırso ıno de Obra			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI
0101010005	PEON	IVIA	illo de Obla			hh	2.0000	0.0267	15.86	0.42
01010300000005	OPERARIO	о торо	GRAFO			hh	1.0000	0.0133	21.95	0.29
			Vateriales							0.71
02130300010002	YESO BOL					bol		0.0150	10.00	0.15
0231040001	ESTACAS		N-0			und		1.0000	0.26	0.20
0240020001	PINTURA I	ESMALT	TE			gal		0.0050	38.00	0.19
			4 3							0.60
0301000002	NIVEL TOP		Equipos FICO			día	1.0000	0.0017	50.00	0.09
03014900010001	CORDEL	00101	1100			rll	1.0000	0.0020	8.00	0.02
										0.11
Partida	01.02.01		CORTE A NIV	EL DE SUB F	RASANTE CI E	QUIPO				
Rendimiento	m3/DIA	MO.	190.0000	EQ.	190.0000			Costo unitario d	7.10	
Código	Descripció		ırso ıno de Obra			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S/
0101010003	OPERARIO		illo de Obla			hh	0.1000	0.0042	21.95	0.09
0101010005	PEON					hh	1.0000	0.0421	15.86	0.6
			Faculty							0.76
0301010006	HERRAMIE		Equipos Manuales			%mo		3.0000	0.76	0.02
03011800020004	TRACTOR	DE OR	UGAS DE 140-1	160 HP		hm	1.0000	0.0421	150.00	6.32
										6.34
Partida	01.02.02		ELIMINACION	I DE MATERI	AL EXCEDENT	ΓE				
Rendimiento	m3/DIA	MO.	460.0000	EQ.	460.0000			Costo unitario d	irecto por : m3	12.79
Código	Descripció		ırso ıno de Obra			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI
0101010003	OPERARIO		40 0018			hh	1.0000	0.0174	21.95	0.38
0101010005	PEON					hh	2.0000	0.0348	15.86	0.55 0.9 3
0301010008	HEDDARAII		Equipos Manuales			0/200		2 0000	0.93	
0301010006 03011600010004			MANUALES RE LLANTAS D	F 160-195 HD	3.5 vd3	%mo hm	1.0000	3.0000 0.0174	200.00	0.03 3.48
03012200040001			TE DE 15 m3	_ 100 100 HF	J.0 740	hm	4.0000	0.0696	120.00	8.35

Presupuesto		Y FLEXIBLE PARA LA	SIS DE LAS CONDICIONES AV. FEDERICO VILLARE	S ACTUALES	PROPUESTA I			
Subpresupuesto	001	DISEÑO ESTRUCTURA	ISIS DE LAS CONDICION AL DE PAVIMENTO RÍG AL ENTRE LOS TRAMOS	IDO Y FLEX	IBLE PARA LA	A AV.	Fecha presupuesto	19/03/2023
Partida	01.02.03		E LA SUB RASANTE C <i>I</i> MO	TONIVELADO	RA			
Rendimiento	m2/DIA	MO. 800.0000	EQ. 800.0000			Costo unitario di	recto por : m2	5.14
Código	Descripción	n Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0101010003	OPERARIO			hh	0.5000	0.0050	21.95	0.11
0101010005	PEON			hh	2.0000	0.0200	15.86	0.32
								0.43
000101000	LIEDDALIIE	Equipos		21		0.000	0.40	
0301010006		NTAS MANUALES	DD ODLII OADO 7 A 1	%mo	4.0000	3.0000	0.43	0.01
03011000060002		ISO VIBRATORIO AUTO	PROPULSADO 1-9 ton	hm	1.0000	0.0100	160.00	1.60
03012000010001		LADORA 130 - 135 HP		hm hm	1.0000 1.0000	0.0100 0.0100	180.00 130.00	1.80 1.30
03012200030002	CAMION CI-	STERNA (3,500 GLNS.)		nco	1.0000	0.0100	130.00	4.71
Partida	01.03.01	BASE GRANUL	AR E = 0.15 m					
Rendimiento	m2/DIA	MO. 800.0000	EQ. 800.0000			Costo unitario di	recto por : m2	13.78
Código	Descripción	Date.		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
Coulgo	Descripcion	Mano de Obra		Omuau	Cuauriia	Cantidad	Trecto or.	i aiviai or.
0101010004	OFICIAL			hh	1.0000	0.0100	17.59	0.18
0101010005	PEON			hh	4.0000	0.0400	15.86	0.63
								0.81
02070400010001	MATERIAL	Materiales GRANULAR PARA SUB-	RASE	m3		0.1850	45.00	8.33
02070400010001	WATENIAL	ONANGLAN FANA SOD	BAGE	IIIS		0.1030	45.00	8.33
		Equipos						3.33
0301010006	HERRAMIE	NTAS MANUALES		%mo		5.0000	0.81	0.04
03011000060002	RODILLO LI	SO VIBRATORIO AUTO	PROPULSADO 7-9 ton	hm	1.0000	0.0100	160.00	1.60
03012000010001		LADORA 130 - 135 HP		hm	1.0000	0.0100	180.00	1.80
03012200050001	CAMION CI	STERNA (2,500 GLNS.)		hm	1.0000	0.0100	120.00	1.20
ş								4.64
Partida	01.04.01	LOSA DE CONC	CRETO PREMEZCLADO h	= 0.23m, fc = 3	00kg/cm2			
Rendimiento	m2/DIA	MO. 121.5000	EQ. 121.5000			Costo unitario di	recto por : m2	57.70
Código	Descripción	n Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0101010002	CAPATAZ	mano ao obia		hh	0.1000	0.0066	24.11	0.16
0101010003	OPERARIO			hh	2.0000	0.1317	21.95	2.89
0101010004	OFICIAL			hh	1.0000	0.0658	17.59	1.16
0101010005	PEON			hh	2.0000	0.1317	15.86	2.09
								6.30
00400400040004	CONCRETO	Materiales	200 L/ 2 CON CEMENTA) T I2		0.0400	225.00	40.25
02190100010024	CONCRET	FREIWIEZOLADO F'OS	300 kg/cm2 CON CEMENT() 1-IIII3		0.2100	235.00	49.35 49.35
0004040200	LIEDEALUS	Equipos		0/		0.000	2.22	
0301010006		NTAS MANUALES		%mo	4 0000	3.0000	6.30	0.19
0301290001		PARA CONCRETO		hm	1.0000	0.0658	5.54	0.36
0304010003	POINRY DE	CONCRETO 10m3/h		m3		0.1000	15.00	1.50 2.05
								2.03

St0 Página 3

Presupuesto	Ŷ	/ FLEX	(IBLE PARA	ÁLISIS DE LAS		S ACTUALES Y			RUCTURAL DE PAVIM RA INDUSTRIAL Y L	
Subpresupuesto	001 E C F	DISEÑO FEDER	ACIÓN Y AN O ESTRUCTO	ural de p <i>a</i> Real entre	VIMENTO RÍ	GIDO Y FLEXI	S Y PROPUES IBLE PARA LA ETERA INDUSTI	A AV.	Fecha presupuesto	19/03/2023
Partida	01.04.02			O Y DESENCO	FRADO EN PA	VIMENTO				
Rendimiento	m2/DIA	MO.	19.0000	EQ.	19.0000			Costo unitario d	irecto por : m2	55.00
Código	Descripción		rso no de Obra			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI
0101010003	OPERARIO	IVIAI	IO UE ODIA			hh	0.5000	0.2105	21.95	4.62
0101010004	OFICIAL					hh	1.0000	0.4211	17.59	7.41
0101010005	PEON					hh	2.0000	0.8421	15.86	13.36 25.3 9
			ateriales							
02040100020001	ALAMBRE N					kg		1.0000	2.54	2.54
02041200010003				CABEZA DE 2"		kg		0.3227	3.20	1.03
0231010001	MADERA TO					p2		3.8000	4.50	17.10
02310500010005	TRIPLAY DE	1.20X	2.40 m X 18 m	nm		und		0.0850	96.20	8.18 28.8 5
		E	Equipos							
0301010006	HERRAMIEN	ITAS N	MANUALES			%mo		3.0000	25.39	0.76
										0.76
Partida	01.04.03		CURADO DE	CONCRETO						
Rendimiento	m2/DIA	MO.	400.0000	EQ.	400.0000	00.0000 Costo unitario directo por : m2				
Código	Descripción					Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI.
0101010005	PEON	Ivian	no de Obra			hh	2.0000	0.0400	15.86	0.63
										0.63
		M	ateriales							
0207070002	AGUA					m3		0.0300	4.24	0.13
0222030005	ANTISOL S					I		0.1800	8.05	1.45 1.58
000404000	LIEDDALHEN		quipos			0.000		0.0000		
0301010006	HERRAMIEN	NIAS IV	MANUALES			%mo		3.0000	0.63	0.02 0.02
Partida	01.05.01		JUNTAS DE	CONSTRUCC	ON					
Rendimiento	m/DIA	MO.	100.0000	EQ.	100.0000			Costo unitario	directo por : m	12.01
Código	Descripción	VPOM				Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial SI
	~		no de Obra							
0101010004	OFICIAL					hh	1.0000	0.0800	17.59 15.86	1.41
0404040005	PEON					hh	3.0000	0.2400	15.86	3.81 5.22
0101010005										
	ASEAL TO PO		ateriales			nal		በ 1330	48 NN	6.28
02010500010001	ASFALTO RO	C-250	ateriales			gal m3		0.1330 0.0023	48.00 67.00	
		C-250	ateriales			gal m3		0.1330 0.0023	48.00 67.00	6.38 0.15 6. 53
02010500010001		C-250 JESA E	Equipos							0.15

		Y FLE		AV. FEDE	RICO VILLAR	REAL ENTRE I	OS TRAMOS D	E LA CARRETE	RA INDUSTRIAL Y L	A AV. TÚPAC
Subpresupuesto	001 EVALUACIÓN Y ANÁLISIS DE LAS CONDICIONES ACTUALES Y PROPUESTA DE Fecha presupuesto DISEÑO ESTRUCTURAL DE PAVIMENTO RÍGIDO Y FLEXIBLE PARA LA AV. FEDERICO VILLARREAL ENTRE LOS TRAMOS DE LA CARRETERA INDUSTRIAL Y LA AV. TÚPAC AMARU									19/03/2023
Partida	01.05.02	LAA	JUNTAS DE CO	NTRACCIO	N					
Rendimiento	m/DIA	MO.	500.0000	EQ.	500.0000			Costo unitario	directo por : m	3.24
Código	Descripció		irso ino de Obra			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial Si
0101010002	CAPATAZ					hh	0.1000	0.0016	24.11	0.04
0101010005	PEON					hh	3.0000	0.0480	15.86	0.70
		_								0.8
0207070001	AGUA PUE		Materiales N OBRA			m3		0.1200	12.00	1.4
0201010001	7,007,102		, 05,0,					0.1200	12.00	1.4
0001010000	LIEDS * * **		Equipos			0/		F 0000		
0301010006			MANUALES	DIGGG		%mo		5.0000	0.80	0.04
03013300030007	CORTADO	KA DE	PAVIMENTO INC.	DISCO		hm	6.0000	0.0960	10.00	0.90 1.0 0
Partida	01.05.03		JUNTAS CON D	OWELS						1.0
Rendimiento	kg/DIA	MO.	250.0000	EQ.	250.0000			Costo unitario d	lirecto por : kg	16.49
	No. 100 100 100								5 110	
Código	Descripció		irso ino de Obra			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial S
0101010002	CAPATAZ	31134	40 02.4			hh	0.1000	0.0032	24.11	0.0
0101010004	OFICIAL					hh	1.0000	0.0320	17.59	0.5
0101010005	PEON					hh	1.0000	0.0320	15.86	0.5
										1.15
02040600010006	ACEROLIS		Materiales VARILLAS DE 1" X	6 m		var		1.0500	2.45	2.5
0240070001	PINTURA A			UIII		gal		0.2000	63.53	12.7
0240070001	FINTOKA	4141100	INNOSIVA			yaı		0.2000	05.55	15.2
			Equipos							
0301010006	HERRAMIE	ENTAS	MANUALES			%mo		5.0000	1.15	0.0
										0.0
Partida	01.05.04		BARRA DE AMA	ARRE - ACI	RO CORRUG	ADO fy=4200 kg	/cm2 GRADO 6	D		
Rendimiento	kg/DIA	MO.	250.0000	EQ.	250.0000			Costo unitario d	lirecto por : kg	4.29
Código	Descripció		irso ino de Obra			Unidad	Cuadrilla	Cantidad	Precio SI.	Parcial Si
0101010003	OPERARIO					hh	1.0000	0.0320	21.95	0.7
0101010004	OFICIAL					hh	1.0000	0.0320	17.59	0.50
0101010005	PEON					hh	1.0000	0.0320	15.86	0.5
			Matarialas							1.7
0204030001	ACERO CO		Materiales ADO fy = 4200 kg/	cm2 GRAD	O 60	kg		1.0500	2.31	2.4
										2.4
0301010006			Equipos						1.77	6.6
			MANUALES			%mo		5.0000		0.0