Estudio de confluencia de ríos mediante modelo físico en laboratorio de hidráulica de la Universidad de Piura

por Guizado García, Antonio Juniors / Suyón Zapata, Andy Jonathan

Fecha de entrega: 18-jul-2023 09:48p.m. (UTC-0500)

Identificador de la entrega: 2133373527 Nombre del archivo: TESIS_V2.docx (26.5M)

Total de palabras: 11292 Total de caracteres: 60586

UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO DE INGENIERÍA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

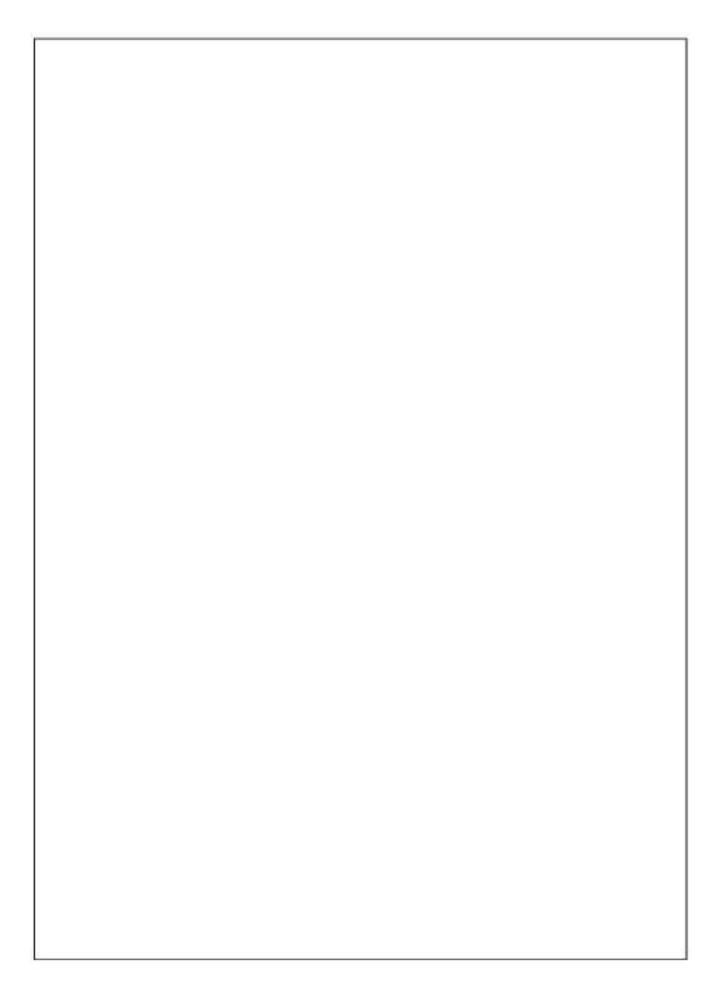
Estudio de confluencia de rios mediante modelo físico en laboratorio de hidráulica de la Universidad de Piura.

Línea de investigación: Ingeniería Civil Sub línea de investigación: Hidráulica

Autores:

Guizado García, Antonio Juniors Suyón Zapata, Andy Jonathan

Jurado Evaluador:


Presidente: Cabanillas Quiroz, Guillermo Secretario: Vértiz Malabrigo, Manuel Vocal: Salazar Perales, Álvaro

Asesor:

García Rivera, Juan Pablo
Código ORCID: https://orcid.org/0000-0003-3498-7934

Piura – Perú 2023

Fecha de Sustentación: 2023/07/24

UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO DE INGENIERÍA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Estudio de confluencia de rios mediante modelo físico en laboratorio de hidráulica de la Universidad de Piura.

Línea de investigación: Ingeniería Civil Sub línea de investigación: Hidráulica

Autores:

Guizado García, Antonio Juniors Suyón Zapata, Andy Jonathan

Jurado Evaluador:

Presidente: Cabanillas Quiroz, Guillermo Secretario: Vértiz Malabrigo, Manuel Vocal: Salazar Perales, Álvaro

Asesor:

García Rivera, Juan Pablo
Código ORCID: https://orcid.org/0000-0003-3498-7934

Piura – Perú 2023

Fecha de Sustentación: 2023/07/24

Dedicatoria

A Dios por guiarme y cuidarme en cada momento. A mis padres y sares queridos por el apoyo constante en cada etapa de mi vida. A mis abuelos que desde el cielo me cuidan.

Br. Antonio Juniors Guizado Garcia

Con todo mi aprecio dedico esta tesis a mi familia por el constante apoyo brindado en cada etapa de mi vida.

Br. Andy Jonathan Suyon Zapata.

Agradecimiento

Agradezco a Dios por ser mi soporte espiritual y darme fuerzas para salir adelante en mi vida. También agradezco a mis padres por apoyarme en cada paso de mi formación profesional y bridarme su sabiduría para tomar las mejores decisiones. Además, agradezco a mi enamorada por el apoyo emocional y motivarme cuando más lo necesitaba. Así mismo agradezco a mis compañeros de clases, docentes y amigos que estuvieron apoyándome a lo largo de mi etapa universitaria. Y un agradecimiento especial a nuestro asesor y mentor el Ingeniero Juan Pablo Garcia Rivera por el acompañamiento en todo el proceso de la investigación, con su conocimiento y sabiduría enriqueciendo a la misma.

Br. Antonio Juniors Guizado Garcia

Agradezco a Dios, a mi madre, abuela, hermana, tias y primas, por ser esa inspiración y fortaleza que dia a dia me impulsa a continuar creciendo. Así mismo agradezco a muchas personas que coadyuvaron directa e indirectamente a mi formación y progreso personal, académico y profesional: amigos/as, docentes, compañeros/as; también a esas personas que hoy ya no están, pero, con seguridad, estarían orgullosos de seguir acompañando mis pasos. Agradezco infinitamente al lng. Juan Pablo García Rivera, nuestro asesor, por su disposición, apoyo y aportes compartidos, por ser nuestro guía en este largo y provechoso proceso de investigación. Al Dr.-lng. Juan Pedro Martín Vide y al Dr.-lng. Carles Ferrer Boix por sus valiosos y enriquecedores aportes en la oportunidad de permitirme participar y colaborar con la investigación experimental en el marco de la tesis doctoral de nuestro asesor.

Br. Andy Jonathan Suyon Zapata.

Resumen

El presente trabajo de investigación llamado "Estudio de confluencia de ríos mediante modelo fisico en laboratorio de hidráulica de la Universidad de Piura" tiene como objetivo el estudio de la confluencia de ríos para comprender el comportamiento de los caudales ensayados y la importancia de estos modelos en proyectos similares. La metodología empleada en esta investigación fue de un estudio con enfoque cuantitativo, tipo aplicado, nivel descriptivo y con un diseño no experimental longitudinal. En cuanto a la población se consideró los modelos físicos de ríos y como muestra se eligió al modelo físico de confluencia de ríos presente en el laboratorio de hidráulica de la Universidad de Plura dado que este representa nuestro interés por trabajar con caudales presentes en una confluencia y con diferentes combinaciones de aporte de flujo para los rios involucrados. En cuanto a los resultados obtenidos en esta investigación, se puede mencionar que los caudales observados en los ensayos se asemejan a los datos de caudales calculados teóricamente, y esto, a su vez, es resultado del eficiente diseño y construcción del modelo fisico. Asimismo, se llega a la conclusión que, si es posible representar eficientemente un modelo físico hidráulico con las estrategias planteadas que nos permita trabajar con caudales fielmente semejantes a la realidad, ya que se observó que esta confluencia presenta un flujo de carácter turbulento y comportamiento bidimensional tanto en el modelo como en el prototipo.

Palabras clave: Modelo físico hidráutico, Confluencia de ríos, Caudales, Laboratorio de hidráutica, Prototipo.

Abstract

The present research called "Study of river confluence through a physical model in the hydraulics laboratory of the University of Plura" has as its objective the study of the confluence of rivers to understand the behaviour of the tested flows and the importance of these models in similar projects. The methodology used in this research was a study with a quantitative approach, applied type, descriptive level, and a longitudinal nonexperimental design. Regarding the population, the physical models of rivers were considered and the physical model of river confluence present in the hydraulics laboratory of the University of Piura was chosen as a sample since this represents our interest in working with flows present at a confluence and with different combinations of flow contribution for the rivers involved. Regarding the results obtained in this research, it can be mentioned that the flows observed in the tests are similar to the theoretically calculated flow data and at the same time it is the result of the efficient design and construction of the physical model. Likewise, it is concluded that it is possible to efficiently represent a physical hydraulic model with the proposed strategies that allow us to work with flows faithfully similar to reality since it was observed that this confluence presents a turbulent flow and two-dimensional behaviour both in the model and in the prototype.

Keywords: Hydraulic physical model, River confluence, Flows, Hydraulics Laboratory, Prototype.

Presentación

Distinguidos señores miembros del jurado:

En cumplimiento y de conformidad con los requerimientos establecidos en el Reglamento de Grados y Títulos de la Universidad Privada Antenor Orrego, así como también los estipulados en la Facultad de Ingeniería, Escuela Profesional de Ingeniería Civil. Presentamos ante ustedes, con la finalidad de obtener el título profesional de Ingeniero Civil, la tesis títulada: "ESTUDIO DE CONFLUENCIA DE RÍOS MEDIANTE MODELO FÍSICO EN LABORATORIO DE HIDRÁULICA DE LA UNIVERSIDAD DE PIURA".

La presente investigación se ha desarrollado con la finalidad de brindar un aporte cuantitativo, a la comunidad científica, con respecto al comportamiento de los caudales en una confluencia de ríos y el debido análisis de estos, de tal manera que el alcance de la información propuesta pueda servir de guía para proyectos futuros.

Se contó en todo momento con el valioso aporte y la experiencia de nuestro asesor, así mismo con el provecho de toda la bibliografía a nuestro alcance.

Los autores.

Índice de contenido

Dedical	ioria	N
Agrade	cimiento	y
Resum	en	w
Abstrac	ct	vii
Present	tación	viii
Índice	de contenido	
Índice d	de Tablas	xi
Índice d	de Figuras	xiii
I. INT	RODUCCIÓN	1
1.1 Rea	nlidad Problemática	
1.1.1.	Problema de investigación	1
1.2. Ob	bjetivos	2
1.2.1.	Objetivo General	2
1.2.2.	Objetivos Especificos	2
1.3. Ju	ıstificación	2
II. MAI	RCO DE REFERENCIA	3
	ntecedentes del estudio	
2.2. Ma	arco Teórico	
2.2.1.		
2.2.2.		
2.3. Ma	arco conceptual	7
2.3.1.	Modelo fisico	7
2.3.2.	Confluencia	8
2.3.3.	Fenómenos hidrodinámicos	8
2.3.4.	Escala	8
2.3.5.	Caudal	8
2.3.6.	Vertedero	<i>B</i>
2.3.7.	Limnimetro	
2.3.8.	Correntómetro o Molinete	
2.3.9.	Contador digital	
2.4. Sis	stema de Hipôtesis	
2.4.1.	Hipótesis general	
	Variables e indicadores	
III. MET	TODOLOGÍA EMPLEADA	10
3.1. Tu	po v nivel de investigación	10

Tipo de investigación: Aplicada	10
Nivel de investigación: Descriptiva	10
oblación y muestra de estudio	10
Población	10
Muestra	10
seño de investigación	10
ócnicas e instrumentos de investigación	10
ocesamiento y Análisis de datos	11
Cálculo de la escala	16
ESENTACIÓN DE RESULTADOS	21
nálisis e Interpretación de Resultados	21
Planos del modelo	21
Arquitectura 3D del Modelo Hidráulico	21
Plano topográfico de secciones de construcción	23
Modelo Construido	25
Caudales Obtenidos	27
USIONES	35
ENCIAS BIBLIOGRÁFICAS	37
05	39
	Nivel de investigación: Descriptiva pblación y muestra de estudio Población Muestra seño de investigación scricas e instrumentos de investigación rocesamiento y Análisis de datos Revisión de información del prototipo Cálculo de la escala Medición de velocidad con un correntómetro ESENTACIÓN DE RESULTADOS nálisis e Interpretación de Resultados

Índice de Tablas

Tabla 1. Resumen de caudales para vertedero 1 correspondiente al río Allipén29
Tabla 2. Resumen de caudales para vertedero 2 correspondiente al rio Toltén 30
Tabla 3. Cálculo de caudales para vertedero 1 que representa el río Alfipén31
Tabla 4. Cálculo de caudales para vertedero 2 que representa el río Toltén32
Tabla 5. Cálculo de escala para modelo hidráulico
Tabla 6. Cálculo del caudal igual a 35 m3/s para vertedero 1 que representa el río Allipén
Tabla 7 Cálculo del caudal igual a 27 m3/s para vertedero 1 que representa el río Allipén
Tabla 8. Cálculo del caudal igual a 26 m3/s para vertedero 1 que representa el río Altipén
Tabla 9. Cálculo del caudal igual a 25 m3/s para vertedero 1 que representa el río Altipén
Tabla 10. Cálculo del caudal igual a 28 m3/s para vertedero 1 que representa el río Alipén
Tabla 11. Cálculo del caudal igual a 8 m3/s para vertedero 1 que representa el río Altipén
Tabla 12. Cálculo del caudal igual a 7 m3/s para vertedero 1 que representa el río Allipén
Tabla 13. Cálculo del caudal igual a 50 m3/s para vertedero 1 que representa el río Alīpén
Tabla 14. Cálculo del caudal igual a 95 m3/s para vertedero 1 que representa el río Alipén
Tabla 15. Cálculo del caudal igual a 104 m3/s para vertedero 1 que representa el río Alipén
Tabla 16. Cálculo del caudal igual a 53 m3/s para vertedero 1 que representa el rio Alipén
Tabla 17. Cálculo del caudal igual a 63 m3/s para vertedero 1 que representa el río Alipén
Tabla 18. Cálculo del caudal igual a 23 m3/s para vertedero 1 que representa el rio Alipén 54
Tabla 19. Cálculo del caudal igual a 22 m3/s para vertedero 1 que representa el río Alipén
Tabla 20. Cálculo del caudal igual a 22 m3/s para vertedero 1 que representa el rio Alipén
Tabla 21 . Cálculo del caudal igual a 42 m3/s para vertedero 2 que representa el ric Tollén
Tabla 22. Cálculo del caudal igual a 36 m3/s para vertedero 2 que representa el rio Toltén

Tabla 23. Cálculo del caudal igual a 25 m3/s para vertedero 2 que representa el río Toltén
Tabla 24. Cálculo del caudal igual a 23 m3/s para vertedero 2 que representa el río Toltén
Tabla 25. Cálculo del caudal igual a 12 m3/s para vertedero 2 que representa el rio Toltén
Tabla 26. Cálculo del caudal igual a 12 m3/s para vertedero 2 que representa el rio Toltén
Tabla 27. Cálculo del caudal igual a 60 m3/s para vertedero 2 que representa el río Toltén
Tabla 28. Cálculo del caudal igual a 71 m3/s para vertedero 2 que representa el rio Toltén
Tabla 29. Cálculo del caudal igual a 68 m3/s para vertedero 2 que representa el río Toltén
Tabla 30. Cálculo del caudal igual a 103 m3/s para vertedero 2 que representa el río Toltén
Tabla 31. Cálculo del caudal igual a 18 m3/s para vertedero 2 que representa el río Toltén
Tabla 32. Cálculo del caudal igual a 14 m3/s para vertedero 2 que representa el rio Toltén
Tabla 33. Cálculo del caudal igual a 129 m3/s para vertedero 2 que representa el río Toltén
Tabla 34. Cálculo del caudal igual a 49 m3/s para vertedero 2 que representa el río Toltén
Tabla 35. Cálculo del caudal igual a 60 m3/s para vertedero 2 que representa el rio Toltén

Índice de Figuras

Figura 1. Fotografía del limnimetro utilizado en el vertedero 2	7
Figura 2. Plano topográfico con curvas de nivel y delimitación de la zona para el	
estudio	
Figura 3. Talweg de la zona a estudiar: confluencia y entradas de los rios toltén y	/
allipén	13
Figura 4. Curvas de nivel con dirección de flujos principal y tributario hacia la	
	ráfico con curvas de nivel y delimitación de la zona para el 12 a zona a estudiar: confluencia y entradas de los ríos toltén y 13 nivel con dirección de flujos principal y tributario hacia la 13 neversal de construcción. 14 caudales recolectados durante el periodo de estudio 15 e tirantes en puntos de cambio de pendiente de la sección de 14 tro con hétice 85018-1 en color amarillo. 18 tel vertedero 1 en proceso de calibración. 19 tibre para colocar el limnimetro (I=>5h). 20 tel caudales haciendo uso de correntómetro de hétice y contador 21 encuente modelo físico hidráulico de confluencia de ríos en vista 3d. 22 el modelo físico hidráulico de confluencia de ríos. 24 tropia). 24 tropia). 25 de condete físico en el área de modelos hidráulicos del dráutica de la universidad de piura. 26 trior del modelo físico en el área de modelos hidráulicos del frieulos de confluencia de ríos construido en el campus inversidad de piura. 2022. 26 rior del modelo construido durante ensayos de medición de 27 caudales correspondientes a vertedero 1 - río allipén. 29 caudales correspondientes a vertedero 2 - rio toltén. 30 elocidades para hétice "1" resultantes de la calibración del spondiente a los modelos físicos del laboratorio de hidráulica de rios entre total destinada para nuestro modelo físico. 72 tento del muro de albantilería de la poza de aquietamiento del río ne de las muros existente para levantar los muros de albantilería de la miento del río toltén. 75 tento del muro de albantilería de la poza de aquietamiento del río bombas del laboratorio de hidráulica de la universidad de piura 76 bombas del laboratorio de hidráulica de la universidad de piura 76 bombas del laboratorio de hidráulica de la universidad de piura 76 bombas del laboratorio de hidráulica de la universidad de piura 76 bombas del laboratorio de hidráulica de la universidad de piura 76 bombas del laboratorio de hidráulica de la universidad de piura 76 bombas del laboratorio de hidráulica de la universidad de piura 77 la del muro perimetrales de nuestro modelo
Figura 5. Sección transversal de construcción	
Figura 6. Gráfico de caudales recolectados durante el periodo de estudio	
Figura 7. Medición de tirantes en puntos de cambio de pendiente de la sección o	de
Figura 8. Correntómetro con hélice 85018-1 en color amarillo	
Figura 9. Fotografía del vertedero 1 en proceso de calibración	
Figura 10. Distancia libre para colocar el limnimetro (l=>5h)	
Figura 11. Medición de caudales haciendo uso de correntómetro de hélice y cont digital.	
Figura 12. Plano de nuestro modelo físico hidráulico de confluencia de ríos en vis	sta 3d.
Figura 13. Vista 3d de modelo físico hidráulico de confluencia de ríos	
Figura 14. Plano de secciones transversales para construcción de modelo físico.	
fuente: (elaboración propia)	
Figura 15. Construcción de modelo físico en el área de modelos hidráulicos del	
Figura 17. Vista superior del modelo construido durante ensayos de medición de	
correntómetro	an.
Figura 24. Levantamiento topográfico de los elementos existentes en el área a tra	abajar.
Figura 25. Levantamiento del mum de albañileria de la noza de aquietamiento de	e/ rio
마른티, 보통의 보다보면 하면 BELEBERT (BELEBERT EL BERT EL	
Figure 28. Cuarto de hombas del laboratorio de hidráulica de la universidad de n	nura
Figura 29. Construcción de muros perimetrales de nuestro modelo fisco en el	inne e f
laboratorio de hidráulica de la udep.	78
Tenoromiento una continuación del	T O

T	reveno con material de la zona para area de confidencia de los nos en ro modelo físico	8
Figura 31.	Levantamiento topográfico de puntos críticos de la confluencia de ríos en e lo físico	V
Figura 32.	Tarrajeo e impermeabilización del reservorio del rio toltén	9
Figura 33. Figura 34.	Tarrajeo e impermeabilización del reservorio del río allipén	0
Figura 35.	versales en el modelo físico	
hidrái		1
	Construcción de secciones transversales del modelo físico en el modelo	_
	иico	
	Levantamiento de puntos topográficos para la construcción de las seccione versales en el modelo físico	
Figura 38.	Construcción de secciones transversales en el modelo físico	3
	Instalación de vitroven en la salida del reservorio del rio allipén	
	Instalación de vitroven en la salida del reservorio del rio toltén	
	Nivelación de puntos para la medición del tirante en los diferentes cambios	
de pe	ndiente	5
Figura 42.	Calibración del limnimetro en el reservorio del rio allipén,	6
	Calibración del limnimetro en el reservorio del rio allipén8	
	Proceso de conteo de las revoluciones con el correntómetro de hélice	
85018		8
	Proceso de conteo de las revoluciones del molinete con el contador digital.	7
Figura 46.	Medición de las revoluciones con el correntómetro de hélice 85018-1 y	50
	dor digital en una sección de confluencia en el modelo físico	0
	Confluencia de los rios allipén y toltén a un caudal determinado en el	
- 0.000.000	ilo tísico. 9	1
Figura 48.	Prueba hidráulica del modelo fisico sin condición de borde	2

I. INTRODUCCIÓN

1.1 Realidad Problemática

A lo largo de los años la orientación empírica ha ido variando en múltiples disciplinas, esto debido al progreso paulatino de técnicas y teorias desarrolladas en las ciencias de la ingeniería en diversas investigaciones y en diferentes especialidades de la misma. Es así que los ensayos de laboratorio en modelos físicos hidráulicos a escala no se encuentran exentos de estos avances en la ingeniería y por consiguiente se ha hecho más frecuente el uso de estos en distintos proyectos, sin embargo, es escasa la bibliografía disponible sobre un tema tan trascendental e interesante como lo son los caudales en las confluencias de ríos de fondo discordante.

El desarrollo de esta investigación nace precisamente a partir de esa incertidumbre que existe en el campo de la hidráulica sobre la medición de caudales en los modelos físicos. Así que, indagando, podemos observar que las obras hidráulicas, generalmente las más complejas, necesitan modelamiento físico y el uso de herramientas para la medición apropiada de sus caudales, ya que al poder acceder a este tipo de investigaciones se logra el estudio de fenómenos que no sería posible representar en modelos riuméricos y ecuaciones matemáticas, de tal modo que puedan encontrarse soluciones técnicas y monetarias que de otra manera no podrían ser anticipadas y estudiadas como si lo permite la representación de la realidad en los modelos físicos hidráulicos. Este modelo en cuestión se llevará a cabo mediante ciertos principios de semejanza hidráulica para su respectiva geometria, velocidad y caudal, a través de las condiciones de "Reynolds" y "Froude". Por otro lado, nuestro modelo en estudio, de carácter hidráulico, será capaz de medir variables sustanciales que favorezcan la compresión de lo que acontece en la confluencia y, la información recolectada, podrá servir para el amplio estudio de investigaciones posteriores, para ello convendrà representar adecuadamente la topografía y los caudales liquidos transportados por ambos ríos, haciendo posible el estudio de diferentes escenarios para su correcta interpretación.

1.1.1. Problema de investigación

¿De qué manera el estudio de confluencia de rios mediante modelo físico en laboratorio de hidráulica de la Universidad de Piura permitirà analizar y comprender el comportamiento de los caudales en la confluencia?

1.2. Objetivos

1.2.1. Objetivo General

Estudiar la confluencia de rios mediante modelo fisico en laboratorio de hidráulica de la Universidad de Plura para la calibración de caudales en estudios posteriores y afines.

1.2.2. Objetivos Específicos

- Determinar la escala geométrica, de velocidad y caudal del modelo hidráulico.
- Dibujar los planos de construcción del modelo físico.
- Construir el modelo fisico a la escala de diseño.
- Medir los caudales mediante correntómetro de laboratorio.
- Calibrar los vertederos comparando datos teóricos con caudales observados.

1.3. Justificación

El presente proyecto de investigación se ejecuta con el propósito de generar conocimiento sobre el estudio de caudales en modelos físicos hidráulicos. El empleo de modelos hidráulicos syuda a entender diferentes fenómenos que ocurren en los ríos, lo cual sirve de mucha ayuda al momento de implementar, mayormente, proyectos grandes o de gran impacto, debido a la observación previa del comportamiento hidráulico presente en estos escenarios; además, el costo-beneficio resulta ser mayor en comparación a tener que enfrentar el escenario de mitigar posibles desastres naturales cuando las obras hidráulicas se implementan solamente en base a cálculos teóricos.

En general, la construcción e implementación de modelos fisicos en confluencias no ha sido ampliamente estudiada, es por eso que nuestra investigación, basada en la medición de caudales en la confluencia de ríos será de gran valor científico y experimental para la comunidad académica y profesional de ingeniería civil en el Perú y el mundo. El uso de este modelo puede ser aprovechado para diferentes investigaciones, es decir, no se limitan a un solo estudio en específico. Y, concretamente hablando, el hecho de poder estudiar los caudales en este tipo de confluencias ayudará a comprender de una mejor manera el comportamiento hidráulico del flujo en la mencionada zona donde los cauces de los dos ríos ya se han juntado.

II. MARCO DE REFERENCIA

2.1. Antecedentes del estudio

Tesis Internacional: "Análisis de Caudales en la Confluencia del Río Teusaca al Río Bogotá".

Autor: Muñoz Mahecha, Sheyda Stefania.

Año: 2016.

Universidad: Universidad Militar Nueva Granada, Bogotá – Colombia – Pregrado.

Aporte: Nos ilustra que mundialmente es posible observar una notoria modificación en los cuerpos hidricos respecto a sus condiciones originarias influenciado de manera mayoritaria por las operaciones humanas, lo cual puede verse reflejado en: la contaminación derivada de las personas, actividades industriales, mineras, etc., y solo se ha tratado de aminorar esto, sin embargo, jamás se ha hecho un estudio exhaustivo de los resultados que sufren los cuerpos hídricos como resultado de estas actividades. La disminución o aumento de niveles en parte de los caudales es también un factor primordial de lo que se posee insuficiente información, es decir del porqué han acontecido dichas alteraciones en estas formas hídricas.

Tesis Nacional: "Estudio en modelo físico reducido, aplicación: presa derivadora Los Ejidos".

Autor: Luque Romero, Patricia Ysabel.

Año: 2004.

Universidad: Universidad Nacional de ingenieria, Lima - Pregrado.

Aporte: Luque nos ilustra que en su investigación de tesis se comprende como casi siempre una descripción matemática detallada de los sucesos hidráulicos es muy complicada de comprender o interpretar, por lo cual se hace fundamental realizar experimentos científicos mediante ejemplos o modelos hidráulicos a escala reducida. Esto básicamente es ensayar en un sistema de magnitudes reducidas conocido como 'modelo' relacionado a similitud con otro sistema de la realidad en verdadera dimensión, denominado 'prototipo'. Actualmente casi todas las obras hidráulicas siguen requiriendo ser estudiadas previamente en modelos físicos

reducidos que concedan al diseñador ensayar su funcionamiento, descubrir posibles inconvenientes futuros y realizar los cambios precisos en la etapa de diseño, es decir, previo al inicio de ejecución de las obras; asimismo, durante la construcción e inclusive en la etapa operativa se podrían exigir innovaciones al diseño inicial, datos extras para diversas condiciones hidráulicas, y todo eso puede estudiarse en un modelo físico hidráulico.

Tesis Local: "Investigación hidráulica y sedimentológica en modelo físico del vertedero de servicio de la presa Sabana Yegua".

Autor: Guerrero Asmad, Leo Raymundo.

Año: 2014.

Universidad: Universidad de Piura - Pregrado.

Aporte: Nos menciona que los modelos físicos hidráulicos representan la realidad y son usados para hallar soluciones técnicas y económicas en complicaciones de ingeniería hidráulica. Pero, quizás existan desigualdades significativas entre los parámetros del modelo y el prototipo, debido a diversas fuentes de error como la etapa constructiva y operativa del modelo en la que se origina la inexacta caracterización de los detalles del prototipo como: geometria, caudal, o las propiedades del fluido. Así mismo otra fuente de error son los "efectos de escala": este factor surge de la incapacidad de mantener la correlación entre las fuerzas presentes en el prototipo y el modelo de ensayo. Además, todos los "efectos en la toma de datos" se deben a que las técnicas utilizadas en el muestreo de datos en el modelo y en el prototipo son diferentes.

2.2. Marco Teórico

2.2.1. Modelo Físico

A menudo los diferentes profesionales deben dar soluciones viables a variados problemas que se presentan en sus campos laborales. En el caso de los ingenieros debemos decidir técnicas, métodos o enfoques convenientes para casos ingenieriles particulares. Ciertas veces las soluciones consiguen ser sencillas cuando está bien definida la parte técnica y la parte económica. Otras veces, las complicaciones son más complejas, como lograr determinar la forma en que actúan las velocidades y los caudales en confluencias de fondo discordante. En este caso para estudiar dicha incertidumbre se toma como medio de solución el proceso de modelación física. La modelación física involucra representar un tenómeno existente, de tal manera que se pueda conceptualizar y simplificar.

Un modelo físico hidráulico es un prototipo reducido que nos permite medir ciertos fenómenos que no pueden representarse en la modelación numérica. En un modelo de vertientes naturales, por lo general, la forma de calibración radica mediante un procedimiento repetitivo en el cual se varía la rugosidad del cauce hasta lograr que las curvas de tirante-caudal del modelo y del prototipo sean equivalentes en sus secciones de medición correspondientes.

Por lo explicado en los párrafos precedentes, la elaboración del prototipo reducido de la presente tesis está bien justificada, pues se presenta una gran incertidumbre sobre la circulación de caudales de carácter sólido y líquido, y diversos fenómenos hidrodinámicos en una confluencia. El modelo a escala reducida, propuesto para nuestra investigación, permite la medición de caudales, para lo cual se hace necesario calibrar el modelo antes de iniciar la medición de datos, lo que nos hace ajustar las condiciones hidráulicas y fisicas, como rugosidad y niveles de agua con las del modelo real. Todo este proceso nos dará provechosa información, que de realizarse en modelo numérico no seria capaz de brindar un análisis tan observable y palpable.

2.2.2. Medición de caudal

a) Método velocidad/superficie

Este procedimiento obedece al cálculo de la velocidad promedio que proviene de la corriente y del área de la sección transversal de la superficie del modelo; es calculada a través de la siguiente fórmula: Q(m²/s) = A(m²) x V(m/s). La unidad de medida es m³/s, pero cuando las corrientes son pequeñas se mide en litros por segundo (l/s).

Una forma casual de estimar la velocidad se resume en computar el tiempo que demora un objeto fluctuante en viajar cierta distancia determinada yendo corriente abajo.

Para determinar la velocidad con más exactitud se utiliza el molinete tipo hélice que gira sobre su eje horizontal. Las velocidades de giro del molinete son proporcionales a las velocidades de las corrientes, por ello se mide la cantidad de revoluciones para un tiempo establecido, esto se realiza con un contador digital o con golpes escuchados en auriculares que lleva puestos la persona quien lo maniobra. Este molinete permite medir las velocidades en diferentes puntos a diversas profundidades y anchos de agua que transcurren en el modelo, para eso se elabora en Excel una hoja de cálculo donde se acopian todas las medidas y, con ayuda de ciertas fórmulas, se obtiene un caudal promedio para los diferentes puntos de medición.

b) Estación de aforo

Una estación de aforo es aquella sección donde se recopilan datos y se verifican, de acuerdo al tema en estudio, según las fórmulas y cálculos apropiados.

Se considera que una estación de aforo está respectivamente graduada cuando el agua que fluye en varias profundidades en el modelo, conocido como nível de agua respecto a la profundidad del flujo de las diferentes corrientes, ha llegado hasta una determinada cresta del caudal. Estos controles se usan para bosquejar un gráfico de caudales en contraste con las profundidades de la corriente del agua al realizar comprobaciones de caudales por la técnica del molinete.

c) Vertedero de medición

Consiste en una pared transversal de sección delgada inserta ante una corriente o flujo, de tal manera que se consigue una caida de agua que logra pasar a través de una sección predeterminada.

Para el modelo de la presente tesis la sección del vertedero de medición es triangular; la cual se calibra y verifica con aforos volumétricos. La carga sobre los vertederos se mide con limnímetros de precisión de 0.1 mm. En nuestro modelo usamos un vertedero triangular que concede la obtención de medidas más precisas de las alturas de carga (H) correspondiente a caudales reducidos, esto en comparación al uso de vertederos rectangulares que aportan datos menos precisos que los vertederos triangulares. En este caso, el vertedero está construido de placas metálicas. En la práctica se utilizan singularmente los que tienen forma de triángulo rectángulo isósceles precisamente por su precisión.

d) Limnímetros

Para medir el nivel de agua durante los ensayos hidràulicos es necesario el uso de los limnimetros. El instrumento està calibrado y además se puede ajustar, de forma manual, una pequeña punta hasta que logre chocar con la superficie del agua, y asi leer en vertical una escala respectivamente graduada. Este instrumento se encuentra compuesto por una estructura de montaje que se asegura a una armazón, el cual, a su vez, se apoya sobre dos fierros de sección rectangular hueca que sirven como soporte transversal apoyado sobre las paredes de los reservorios. Dichos soportes estarán previamente nivelados. Además, el sistema de medición mediante limnímetros está compuesto de una varilla que controla la medida, la cual se ajusta o queda libre para deslizar hacia abajo y hacia arriba por encima del espejo de agua según se ajuste o afloje una perilla de rosca que cumple dicha función de controlar el movimiento de la varilla; la medición se consigue con el uso una escala auxiliar adherida en la estructura de montaje, (el tamoso nonios) y una escala principal establecida en la varilla.

Figura 1.

Fotografía del limnimetro utilizado en el vertedero 2.

2.3. Marco conceptual

2.3.1. Modelo físico

Un modelo es la representación de un objeto real que en el plano abstracto se percibe para especificarlo y poder encontrar alternativas al problema trazado, en otras palabras, que se logre satisfacer una necesidad. Los modelos de carácter físico para obras hidráulicas se identifican por ser entidades más asequibles y sencillas de manipular que un ejemplar hidráulico real. Estos nos manifiestan un comportamiento más preciso, de tal manera que los técnicos sean capaces de prevenir lo que pasará en el prototipo mediante distintos escenarios de particular interés a través de la observación del comportamiento hidráulico en el modelo.

2.3.2. Confluencia

Este término al ser utilizado en hidrología se refiere al lugar donde se juntan dos o más corrientes de agua, es decir, donde las aguas de diferentes corrientes se juntan formando un cauce común.

2.3.3. Fenómenos hidrodinámicos

Son aquellos comportamientos que se presentan en los fluidos líquidos en movimiento.

2.3.4. Escala

Es aquella línea recta que se divide en porciones equivalentes qua simbolizan metros, millas, etc., y sirve de proporción para trazar en un plano o mapa las medidas de: un terreno, edificación, etc., y para comprobar sobre el plano las dimensiones reales de lo proyectado.

2.3.5. Caudal

Se refiere a una cuantía de flujo que transita por medio de una determinada sección en particular (tubería, canal, río, etc.) mediante una unidad de tiempo.

2.3.6. Vertedero

Un vertedero es una estructura que presenta un tajo de perfil regular, por la cual mana una corriente en estado líquido en pase libre o controlado. Un vertedero colisiona la corriente de agua, produciendo una subida del nivel aguas amba, y se utiliza para regular niveles o para medir caudales.

2.3.7. Limnímetro

El limnimetro es una herramienta con la que se miden las alteraciones en el nivel de una superficie de agua, y su resultado se deriva a un mecanismo de medición de datos o registro, esto es muy útil en ríos, lagos, y en lo que refiere a la hidrología.

2.3.8. Correntómetro o Molinete

El correntómetro es un instrumento útil para medir la velocidad de corriente en ríos, modelos físicos en laboratorio, etc. Cada correntómetro debe tener un certificado de calibración en el que figura la fórmula necesaria para calcular la velocidad del agua sabiendo el número de vueltas o revoluciones de la hélice por segundo. Estos instrumentos se calibran en laboratorios de hidráulica. En el caso del correntómetro utilizado en nuestra investigación se compone de: una barra graduada al centímetro, el cuerpo aerodinámico, tuerca de sujeción a la barra y hélice.

2.3.9. Contador digital

Un contador digital es un dispositivo que nos permite ahorrar tiempo en las mediciones de flujo con molinetes. El contador logra calcular automáticamente el número de revoluciones de la hélice gracias a los impulsos del molinete, con el cual se conecta a través de unos cables con enchufe tipo banana generando la trasmisión de dichos impulsos que representan las revoluciones del molinete al contador.

2.4. Sistema de Hipótesis

2.4.1. Hipótesis general

El estudio de confluencia de ríos mediante modelo físico en laboratorio de hidráulica de la Universidad de Piura permitirá conocer las características del flujo y entender el comportamiento de los diferentes caudales de agua a ensayar.

2.4.2. Variables e Indicadores

Variable independiente: Escala.

Variable dependiente: Medición de caudales.

Variables Descripción Indicadores		Indicadores	Unidad de Instrumento de Medida Investigación	
Independiente Escala	Relación entre proporciones de una estructura y su tamaño real con respeto al dibujo.	Ancho, tirante, velocidad, topografia.	Adimensional	Wincha, Estación total Nivel de ingeniero, Civil 3D.

Dependiente Medición de caudales Proceso de medición de fluidos liquidos que consiste en determinar la cantidad de líquido o volumen que pasa por una sección en una cantidad de tiempo.

Sección transversal del vertedero.

Sección transversal de agua en diferentes ubicaciones del lecho de la confluencia. m³/s. I/s. Vertedero, limnimetro, correntómetro, Excel.

III. METODOLOGÍA EMPLEADA

- 3.1. Tipo y nivel de investigación
- 3.1.1. Tipo de investigación: Aplicada.
- 3.1.2. Nivel de investigación: Descriptiva
- 3.2. Población y muestra de estudio
- 3.2.1. Población

En nuestra investigación se consideró como población los modelos físicos de ríos.

3.2.2. Muestra

Se eligió como muestra el modelo fisico de confluencia de rios presente en el laboratorio de hidráulica de la Universidad de Piura, el cual forma parte de una investigación internacional.

3.3. Diseño de investigación

En nuestra investigación el diseño de contrastación de resultados se considera de tipo No-Experimental Longitudinal debido que a partir de la realidad existente en los ríos Toltén y Allipén de Chile, la cual ha sido plasmada en el modelo físico, podemos observar ciertos fenómenos y analizar las ocurrencias con caudales variables durante un tiempo de desarrollo aproximado de 6 meses.

3.4. Técnicas e instrumentos de investigación

En esta investigación se usan diferentes métodos y técnicas de trabajo para cada etapa del proyecto, entre las consideradas de suma importancia para el desarrollo de nuestra investigación, podemos encontrar las siguientes:

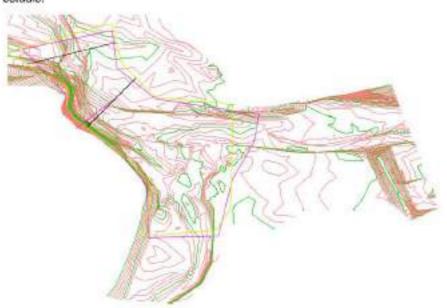
- Método del criterio de semejanza (para escalar el modelo hidráulico): consistió
 en encontrar el valor adecuado de la escala para los factores de geometria,
 velocidad y rugosidad; lo cual sirvió para medir los caudales con el tirante y el
 número de Froude adecuados, y así realizar las mediciones con la exactitud
 anhelada.
- Método tradicional de albañilería: este método ha sido empleado en la construcción del modelo físico en el área de modelos hidráulicos proporcionada por la Universidad de Píura para plasmar el prototipo en cuestión, contando siempre con el constante chequeo de niveles y cotas con un nivel topográfico, de manera que lográsemos asegurar la exactitud de las dimensiones.
- Método de integración de caudales: este método nos permitió encontrar los diferentes valores de velocidades a partir del número de revoluciones medidas por el correntómetro, y a su vez dichas velocidades nos permitieron hallar los caudales correctos mediante el método mencionado en este punto, el cual consiste en la sumatoria de las áreas que forman los datos de caudales y distancias entre puntos transversales de la sección cuando son representados sobre la forma de la sección transversal en la que se realiza la medición.
- Compilación de bibliografía: mediante esta metodología de trabajo teórico se compiló toda información fundamental sobre modelos físicos, especialmente de confluencias, que son de ayuda para la investigación.
- Procesar la información en una hoja de Excel: con ayuda de esta técnica de procesamiento de datos programamos nuestras hojas de cálculo, de acuerdo a las necesidades, para encontrar los diferentes caudales considerados importantes para la investigación.
- Realizar el informe final: como último procedimiento, considerando los resultados obtenidos y conclusiones derivadas del trabajo realizado, procedimos a elaborar nuestro informe final de la investigación.

Y entre los instrumentos de importancia, usados en nuestra investigación, podemos considerar los siguientes:

- Vertederos.
- Limnimetros.
- Correntómetro o Molinete.
- Contador digital.

3.5. Procesamiento y Análisis de datos

3.5.1. Revisión de información del prototipo


a) Procesamiento de Topografia

La finalidad del presente subcapitulo es interpretar la información del prototipo y, en este item en específico el levantamiento topográfico y batimetría correspondientes al prototipo de los ríos Allipén y Toltén de Chile, datos que fueron proporcionados por los investigadores de la Universidad Politécnica de Cataluña.

El primer paso fue la delimitación del área a estudiar, por lo cual usamos el software Civil 3D para identificar las zonas de mayor importancia en la confluencia de estos 2 ríos: la sección donde confluyen las aguas de ambas corrientes y las zonas que, aguas arriba y aguas abajo de la confluencia, influyen en el comportamiento del flujo.

Figura 2.

Plano topográfico con curvas de nivel y delimitación de la zona para el estudio.

Posteriormente se analizaron las pendientes mínimas y máximas del eje principal de los cauces, con la finalidad de tener una noción clara de cómo transcurren a través de la topografía, considerando el análisis del talweg independiente en cada río y en la zona de confluencia.

Figura 3.

Talweg de la zona a estudiar; confluencia y entradas de los ríos Toltén y Allipén.

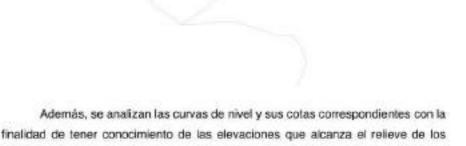
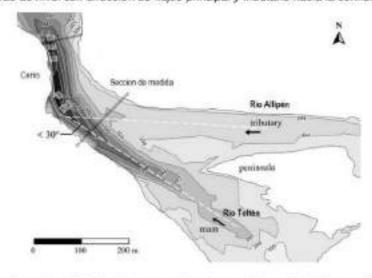
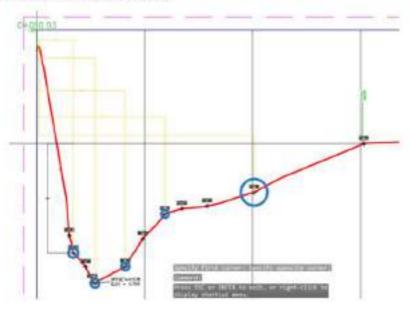



Figura 4.

Curvas de nivel con dirección de flujos principal y tributario hacia la confluencia.

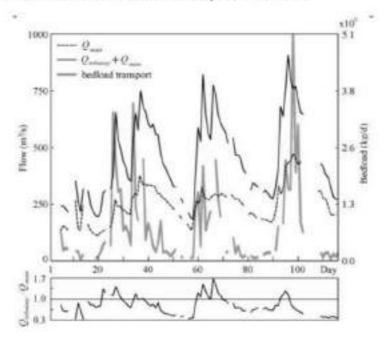
misma y aguas abajo de esta.


lechos de los rios en las zonas: aguas arriba de la confluencia, en la confluencia

Nota: Tomado de "Bedload transport in a river confluence" (p.17), por J.P. Martin-Vide, A. Plans-Casado, A. Sambola, S. Capapé, 2015, Geomorphology, 250. Con el mismo software mencionado anteriormente, Civil 3D, se interpretaron las secciones transversales de la batimetría con el objeto de observar hasta qué cotas se elevan los calados de los torrentes para diferentes caudales.

Figura 5.

Sección transversal de construcción.


Nota: esta imagen es una captura de un plano de elaboración propia en AutoCAD Civil 3D que corresponde a una sección transversal graficada para la etapa de construcción del modelo físico y en ella se señalan los puntos de cambio de pendiente que se designaron como estacas en el proceso constructivo para la representación del lecho.

b) Procesamiento de Caudales

Se analizó la data de caudales del prototipo para conocer y discernir cuales de estos caudales se representarian en el modelo para el estudio de los mismos en la zona de confluencia. El procesamiento se desarrolló evaluando el gráfico de caudales recolectados durante el tiempo de medición en campo, el cual está publicado en un articulo de la revista "Geomorphology" del año 2015 con autoría del Dr. Juan Pedro Martin Vidé, junto a otros investigadores de la Universidad Politécnica de Cataluña — Barcelona Tech, y de estos registros se eligieron diferentes combinaciones de aportes de afluente para cada río, para varios escenarios posibles, conservando el coeficiente de relación de descarga, desde aproximadamente los 200 m³/s hasta casi 1000 m³/s para prototipo, los cuales, escalados para el modelo físico hidráulico de nuestro interés son 7.84 l/s y 35.28 l/s respectivamente.

Figura 6.

Gráfico de caudales recolectados durante el periodo de estudio.

Nota: Gráfico superior: descarga total diaria (linea continua negra) calculada utilizando el método de pendiente-área, descarga total diaria de carga de fondo (linea gris) obtenida a través de mediciones de campo y descarga diaria del río principal, medida aguas arriba de la confluencia (linea negra discontinua). La abscisa abarca el periodo de estudio, desde el día 1 (16 de junio de 2013) hasta el día 117 (30 de septiembre de 2013). Gráfico inferior: tasa de descarga (afluente sobre el río principal) durante el periodo de estudio. Tomado de "Bedload transport in a river confluence" (p. 20), por J.P. Martin-Vide, A. Plana-Casado, A. Sambola, S. Capapé, 2015, Geomorphology, 250.

3.5.2. Cálculo de la escala

La escala es el factor más importante para la construcción del modelo físico y determinar que caudal circulará por este, asimismo la velocidad del flujo debe ser escalada para conocer los rangos de velocidad que podrían generarse.

La forma correcta de escalar es conservando la semejanza hidráulica y que el régimen se mantenga en turbulento tal como sucede en el prototipo, es decir el modelo escalado debe representar todos los fenómenos que suceden en la realidad.

a) La escala geométrica del modelo se determinó a partir del espacio que se tenía disponible en el área para construcción de modelos hidráulicos de la Universidad de Piura, resultando así en una escala de 57.9; esta escala es la más sencilla de calcular ya que solo obedece a dividir las medidas reales del prototipo entre la escala determinada.

$$L_{modelo} = \frac{L_{Prototipo}}{Escala}$$

 b) La velocidad del modelo se estimó conociendo la velocidad del prototipo y la escala geométrica.

$$V_{modelo} = \frac{V_{prototipo}}{Escala^{1/2}}$$

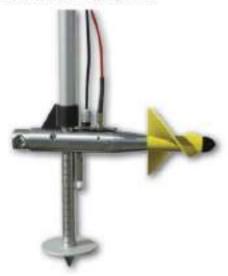
 c) El caudal del modelo que represente los caudales del prototipo se determinó aplicando la semejanza de Froude para modelos sin distorsión, mediante la siguiente fórmula.

$$Q_{modelo} = \frac{Q_{prototipo}}{Escala^{5/3}}$$

3.5.3. Medición de velocidad con un correntómetro

Este procedimiento consistió en colocar un correntómetro sumergido en el agua a una profundidad determinada (0.2h, 0.4h, 0.8h), dependiendo de la estimación según el caudal ensayado, donde "h" representa el tirante de agua que transcurre en un momento exacto en el modelo. El instrumento se colocaba de manera perpendicular al flujo en una sección transversal específica, logrando que el flujo de agua haga girar la hétice ubicada en la punta del correntómetro y, con la ayuda de un contador digital conectado al instrumento se computen las revoluciones en un tiempo de 40 segundos. Con estos datos, usando la tabla de calibración del correntómetro, se hallaba la velocidad unitaria para la sección establecida y para cada caudal ensayado con la fórmula V = 0.0553N + 0.0421; donde N representa el número de revoluciones de la hélice; para luego calcular la velocidad promedio considerando el área como un trapecio que representa el valor del caudal pasante en cada zona de la sección. Y así mismo, con la multiplicación de la "velocidad media" por el "tirante" del punto, obtener el caudal unitario de cada área entre puntos de la sección.

Figura 7.


Medición de tirantes en puntos de cambio de pendiente de la sección de medición.

Para la toma de datos se utilizó la hélice 85018-1, la cual, según la tabla de calibración, era aquella que nos permitia, con más facilidad, captar revoluciones para caudales bajos, la cual se muestra a continuación en la Figura 8.

Figura 8.

Correntómetro con hélice 85018-1 en color amarillo.

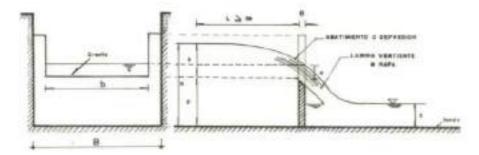
Nota: Tomado de Direct Industry, by Virtual Expo Group (https://www.directindustry.es/prod/seba-hydrometrie-gmbh-co-kg/product-63216-640768.html).

3.5.4. Calibración de vertederos

Para la presente investigación se contó con 2 vertederos, ambos independientes para el flujo de cada río, de tal manera que lográsemos simular el ingreso de caudales de los dos ríos que confluyen, es decir, el río Allipén y Toltén, correspondiéndose a estos los vertederos 1 y 2 respectivamente, los cuales estaban hechos de planchas de fierro negro de 3 mm. de espesor.

La sección del vertedero 1 que corresponde a la entrada de flujo para el río Allipén tenia la forma geométrica de un triángulo rectángulo isósceles, por lo cual, el vértice inferior poseía un ángulo interior de 90° y una altura (h₁) de 0.40 m. Mientras que la sección del vertedero 2 que corresponde a la entrada de flujo para el río Toltén tenia la forma geométrica de un triángulo equilátero, con lo cual, el vértice inferior poseía un ángulo interior de 60° y una altura (h₂) de 0.50 m.

Figura 9.
Fotografia del vertedero 1 en proceso de calibración.



Decidimos trabajar con vertederos triangulares porque son más precisos que los rectangulares para medir caudales de valores bajos, permitiendo que, para un mismo caudal, los valores de h sean mayores.

Como verificadores de altura (H), para la carga hidráulica, usamos limnimetros, con estos logramos controlar y verificar la altura de agua que pasaba a través de la sección triangular de cada vertedero, así pues, controlando la altura controlábamos el caudal ensayado. Los limnimetros se colocaron a una distancia libre desde la sección del vertedero, medido hacia atrás, en una proporción mayor a 5 veces el valor de H, ya que a esa distancia las aguas se encuentran establemente horizontales y la medida del limnimetro no se ve afectada por la cresta que se forma en la caida del agua cuando pasa a través de la pared delgada del vertedero, ni por el remanso que generan las contracciones laterales. Diferentes autores muestran valores equivalentes para L como 2.5 H, 3 H o 4H, para vertederos rectangulares. Nosotros decidimos elegir para nuestros vertederos triangulares la equivalencia de que L sea mayor o igual a 5 veces el valor de H a raíz de la observación del comportamiento del flujo al interior de los reservorios, ya que, a esa distancia equivalente, el agua se encontraba lo más horizontal posible para medir correctamente la carga hidráulica.

Figura 10.

Distancia libre para colocar el limnimetro (L=>5h).

Nota: El gráfico representa la relación de L (longitud libre para ubicación ideal del medidor de niveles, limnímetro) con respecto a h (altura de agua que pasa por el vertedero o también llamado carga hidráulica). Adaptado de Manual de Prácticas de Laboratorio de Hidráulica (p. 6), por Ramiro Marbello Pérez, 2005, Universidad Nacional de Colombia.

Los caudales calculados para la calibración de los vertederos los hallamos con la expresión Q=Cd*hsis, siendo Cd un factor adimensional conocido como coeficiente de descarga, el cuál, de entre muchos factores, depende también del ángulo interior que posee el vértice inferior de la sección del vertedero y, que puede calcularse con fórmulas comúnmente empleadas, las cuales corresponden a diferentes autores, obtenidas a raíz de una correlación de ensayos previos en otros laboratorios.

Cumpliendo con la credibilidad de todos esos parámetros, se calibraron ambos vertederos ensayando diferentes caudales en el modelo hidráulico. Es decir, hicimos correr agua en diferentes proporciones de aporte de caudal para cada rio.

Figura 11.

Medición de caudales haciendo uso de correntómetro de hélice y contador digital.

IV. PRESENTACIÓN DE RESULTADOS

4.1. Análisis e Interpretación de Resultados

4.1.1. Planos del modelo

a) Arquitectura 3D del Modelo Hidráulico

Contando con la escala geomètrica definida (1:57.9), se procede a dibujar los planos del modelo hidráulico en AutoCAD Civil 3D, es decir, a plasmar las medidas del prototipo en una escala reducida, de tal manera que el planteamiento espacial del modelo corresponda, en lo largo y ancho, a una figura que se adecua al espacio disponible en el área proporcionada para llevar a cabo el experimento. El dibujo se realizó considerando la presencia de árboles, modelos hidráulicos anteriormente ensayados en el lugar y, procurando en todo momento que la propuesta no incremente de manera significativa la economía disponible para la ejecución de la investigación.

Figura 12.

Plano de nuestro modelo fisico hidráulico de confluencia de rios en vista 3D.

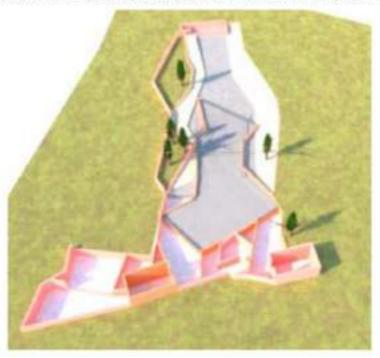


Figura 13.

Vista 3D de modelo fisico hidráulico de confluencia de ríos.

b) Plano topográfico de secciones de construcción

Como parte de las actividades de la presente tesis, uno de nuestros resultados progresivos fue la definición de las secciones de construcción del modelo físico hidráulico para que podamos plasmar el diseño del mismo en el área de modelos físicos que nos destinó el Instituto de Hidráulica de la Universidad de Piura para nuestro proyecto. Estas secciones de construcción se definieron haciendo uso del software Civil 3D. Se aplicó el comando de alineamiento a partir de una politinea en dirección al flujo, aguas abajo, etiquetadas cada 10 m., desde la entrada de las pozas de dislipación hasta el tramo final construido de la confluencia. De manera seguida se generaron las lineas de muestreo y finalmente se crearon las vistas de secciones de las diferentes progresivas del alineamiento a una escala adecuada, de modo que puedan ser apreciables sin llegar a deformar la morfología real de los ríos y la confluencia. De ese modo es que llegamos al resultado de obtener nuestro plano de secciones para la construcción del modelo.

En este subtítulo podemos apreciar el plano en planta con la distribución de secciones ya definidas, un trabajo que nos llevó a analizar estratégicamente las vistas más impactantes que nos permitieran plasmar flelmente la batimetría del prototipo en el modelo reducido sin alterar considerablemente las pendientes entre sección y sección y en diferentes direcciones.

Figura 14.

Plano de secciones transversales para construcción de modelo físico.

Nota: Plano de secciones de construcción extraído de AutoCAD.

c) Modelo Construido

El resultado de nuestros cálculos y diseño de planos se ve reflejado en la ejecución exitosa del modelo fisico hidráulico que representa al prototipo de la confluencia de los rios Toltén y Allipén.

La construcción se llevó a cabo con cautela, respetando los ángulos de quiebre entre los muros y las longitudes de los mismos. Esta labor fue realizada por diestros albañiles que, con cuidado, ejecutaron las diferentes partidas hasta la culminación de todas las obras civiles que incluyeron: demolición, corte – relieno y compactación, asentado de muros de ladrillo artesanal, vaciado de piso o losa con concreto y mortero (para simular el lecho), y tarrajeo de muros. Cada una de las actividades fue supervisada minuciosamente por los autores de la presente tesis de manos del asesor de la investigación en mención.

Así mismo se contó con la presencia de un topógrafo que pudiera llevar el control de las cotas de los diferentes tramos de muro y de las estacas que simulaban las alteraciones del terreno. Para el detalle de las cotas se consignó con anterioridad un orden en el eje X para las estacas de cada sección transversal, las cuales iban ubicadas principalmente en los puntos críticos del relieve, y se consignó también otro orden en el eje Y, para las secciones de construcción, de acuerdo a las progresivas trazadas en los ejes, tanto independientemente para cada río en sus tramos autónomos y también para el eje en que ambos ríos se juntan, es decir, las progresivas correspondientes a la confluencia.

Es así como logramos la correcta ejecución del modelo físico hidráulico según los parámetros establecidos en cuanto a alturas, distancias horizontales, forma y relieve.

Figura 15.

Construcción de modelo físico en el área de modelos hidráulicos del laboratorio de hidráulica de la Universidad de Piura.

Figura 16.

Modelo físico hidráulico de confluencia de ríos construido en el Campus principal de la Universidad de Piura, 2022.

d) Caudales Obtenidos

El agua circuló como era deseado, a través del modelo físico, luego de varias prácticas en las que logramos aprender a controlar la apertura de las válvulas y, por tanto, regular el paso del agua, de modo que consiguiéramos que las alturas estimadas en los vertederos nos representen los caudales que queríamos observar.

Tras la práctica conseguimos ensayar varios escenarios de caudales, para diferentes porcentajes de aporte y para caudales altos y bajos, siempre en base al factor de descarga correlacionado con los datos de los ensayos en los ríos prototipo.

Figura 17.
Vista superior del modelo construido durante ensayos de medición de caudales.

El modelo fisico hidráulico trabajado en nuestra investigación además de contar con toda su infraestructura de albañilería propia de la zona del modelo, cuenta con el ingreso de tuberías que aportan el agua desde un tanque elevado con capacidad de aproximadamente 60 m³ que a su vez es alimentado por una cistema con capacidad de 85 m³ aproximadamente. El agua es impulsada a través de tuberías de PVC de 12 pulgadas de diámetro desde la cistema hacia el tanque elevado por una bomba de motor eléctrico Brown Boveri que trabajaba a más del

80% de su eficiencia con una potencia mayor a 35 hp y una intensidad que oscila entre los 65 a 70 amperios, gracias a un sistema de alimentación eléctrica trifásica. El agua llega por gravedad hacia los reservorios 1 y 2, controlando su paso con válvulas manuales de compuerta de asiento. Tras llegar el agua a los reservorios, el agua pasa a través de los vertederos y va cayendo hacia las pozas de disipación, de tal manera que, cuando el fluido deba entrar hacia la sección que ya corresponde a la representación de los ríos, ingrese sin alteraciones de flujo, conservando la clinámica de las particulas lo más parecido posible a la realidad.

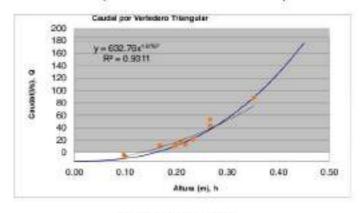
Cabe señalar que, aguas abajo de la confluencia, el modelo cumplia con una condición de salida que permitia recircular el agua nuevamente hacia la cisterna. El sistema consistía en tuberías de PVC que dirigian el flujo hacia un canal de recirculación, el cual, contaba con una malla de acero, ubica antes del reingreso de las aguas hacia la cisterna, para evitar el ingreso de basura y/o maleza hacia esta última porque de ser el caso, la válvula check de succión se veria atascada o taponeada, perjudicando la cantidad de agua capaz de ser absorbida por la bomba y terminase siendo este un factor contundente para no conservar el mismo nivel de agua en el modelo durante el tiempo que durasen los ensayo, o en el peor de los casos, si algún tipo de maleza, material u objeto pasase por la válvula check pudiese afectar la turbina; así es como trabajaba conjuntamente el sistema de bombeo y recirculación del agua en el modelo fisico hidráulico de la confluencia.

Con el trabajo conjunto de todos estos factores conseguimos registrar toda una data de caudales que se pueden apreciar a continuación de manera resumida, pero que podrán ser observadas a mayor detalle en los anexos de esta investigación.

Tabla 1.

Resumen de caudales para vertedero 1 correspondiente al rio Allipén.

CALCULO DE CAUDAL POR VERTEDERO TRIANGULAR


Rio Deposito Angulo difa Arigulo Theta Cd	Allipén 1 45 90 1.4	Según Thomson			$Q = Cdh^{\frac{5}{2}}$
Datos teórico	ris .		dates obs	servados	
1100	0.00	O)	-		
0.06	0.76	GH	0.36	4.10	
0.10	4.43	QI .	13.36	0.10	103.30
21.0	10.20	OH.	0.27	0.06	AT-704
0.20	25.04	OF	0.07	0.07	67.00
0.25	43.76	Cen	0.23	0.04	38.00
0.30	66.0t	OF .	0.88	0.03	24.50
0.35	101.45	CB.	10.28	0.03	31.43
0.40	141.47	CB	11.20	0.03	26.76
13.4h	190.18	G10	11.20	0.02	24.80
		Qnt	0.17	0.00	26.31
		O/G	0.17	0.03	25.03
		010	0.10	0.01	7.00
			0.10	0.01	70.44

Fuente: (Elaboración propia)

Nota: esta tabla muestra un compendio de datos correspondientes a los caudales teóricos calculados en Excel y los caudales ensayados en el modelo físico correspondientes al vertedero 1 que representa al río Allipén.

Figura 18.

Gráfico de caudales correspondientes a vertedero 1 – río Allipén.

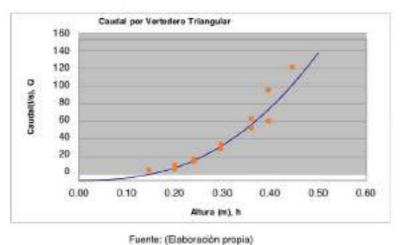
Fuente: (Elaboración propia).

Nota: Este gráfico muestra la relación de caudales (O), calculados y observados, con respecto a la altura (h) en el vertedero 1 que representa al río Allipén.

Tabla 2.

Resumen de caudales para vertedero 2 correspondiente al rio Toltén.

CALCULO DE CAUDAL POR VERTEDERO TRIANGULAR


Rio Deposito Angulo alta Angulo Theta Cd	Tolten 2 30 60 0.819	Según Thomson			Q = 0
Dates teórico	5		dates ob	servados	
0.00	0.00	91	0.296	0.041603	:41.60
0.06	0.46	GZ	0.250	0.096	36.10
0.10	259	03	0.240	0.025	25.24
0.15	7.14	04	9.240	0.023	22.56
0.20	14.65	G5	0.148	0.012	19.00
0.25	26.69	06	0.146	0.012	12.37
0.30	40.37	G?	0.060	0.060	69.91
0.25	69.35	GN	0.360	0.071	70.64
0.40	82.88	09	0.386	0.103	102.83
0.46	111.25	GIO	0.395	0.068	66.02
0.90	144.79	Qtt	9.000	0.018	18.90
		Q12	0.200	0.014	13.56
		Qts	0.445	0.129	120.62

Fuente: (Elaboración propia)

Nota: esta tabla muestra un compendio de datos correspondientes a los caudales teóricos calculados en Excel y los caudales ensayados en el modelo físico correspondientes al vertedero 2 que representa al río Toltén.

Figura 19.

Gráfico de caudales correspondientes a vertedero 2 – río Toltén.

Nota: Este gráfico muestra la relación de caudales (Q), calculados y observados,

con respecto a la altura (h) en el vertedero 2 que representa al río Toltén.

Tabla 3.

Cálculo de caudales para vertedero 1 que representa el río Allipén.

		DE CORRENT						
	Helice Coeficients	1	$N = \frac{0}{1}$	ingsmide	on setembor of (q_1+q_2)	7	10/32/1922 16:10 5.130	rtedero disci es: cho +
0.0421	b namero de rev		q = V.	0.0421	2 .0553N+	re ~	0.852	enebo-
V Vprom	n	U	7.	1 perciel	T(m)	Factor obtavo desde objeto	No Scion	Parts
0.107	1.10	43	40	0.000		0.35	1.	1
0.118 0.102	1.10	188	40	0.047	0.118	0.4	1	4.
0.104	1.13	45	4.0	0.094		0.8	1.	
0.330	1.73	48	40	0.030		9.35	2	1
0.107 0.102	1.00	307	40	0.047	0.118	0.4	2	1.
0.310	1.73	46	40	0.094	11011100	0.6	2	2
0.062	0.73	29	40	0.012	ACCOMPANY.	0.2	1	2
0.045 0.101	0.85	38	40	0.065	9.161	0.6	1	2
0.119	1.58	63	4.0	0.130	N 1039672	0.8	1	2
0.167	0.45	- 15	40	0.032		0,2	2	Z
0.092	0.65	26	40	0.065	0:161	0.6	2	2
9.338	1.50	(0)	40	0.130		0.0	2	3
0.042	0.78	29	40	0.011		0.2	1	1
0.106 0.146	1.00	48	40	0.063	0:154	0.4	1	
0.232	3.43	137	40	0.129		0.8	1	- 4
0.062	0.73	25	40	0.031	Town Acres	0.2	- 2	2
0.106 0.150	1.15	46	40	0.062	0.154	0.4	2	3
0.245	3.68	147	40	0.128		0.0	2	. 12
0.285	4.40	176	40	0.029		0.36	101	4
0.312 0.349	6.26	210	40	ODES	0.111	0.4	1.	4
0.460	7.5%	503	40	0.096		0.8	1	4
0.283	4.55	174	40	0.029		0.26	2	4
0.317 0.340	5.15	200	40	0.045	0.333	0.4	2	4
0.441	7.26	290	40	0.010		0.0	2	
0.648	10.95	438	40	0.006		0.36	1.	5
0.744 0.800	12.70	50e	40	0.010	0.004	0.0	1	2
0.812	11.92	537	40	0.067		0.0	1	
0.656	13.38	414	40	0.030		0.16	2	- 5
0.744 0.463	12.70	536	40	0.050	BERN	0.6	2	5
0.818	13.63	600	40	0.062		0.9	2	4
6.042	0.00		40	0.000	_		1.	+
0.042 0.004	0.00		40	0.000	0.036		1	
0.455	7.40	230	40	0.010		0.00	1	- 1
6543	0.00		40	0.050			2	- 1
0.043 0.290	0.00		40	0.000	0.036		2	4
0.466	2.65	236	40	0.000	1000	0.63	2	
	-					100 miles	11.5.500	
030 179						dotarda	Distancia	
	0.152	Unimetra		9		toma	desde oriita	: Traces
90		Mile		0.021	0.013	0.182		The state of
1.4		14		0.083	0.016	0.138		1
200 re3/s	0.500 (Q tewice		non	6-603	0.381	0.703	- 1
				0.021	0.039	0.368		
				0.039	0.056	9,627		
				0.011	0.000	1.007	2.903	
				0.011		2.321	9,134	

Nota: esta tabla representa el modelo usado para el cálculo de los caudales por medio de correntómetro para los ensayos del río Allipén (vertedero 1).

Tabla 4.

Cálculo de caudales para vertedero 2 que representa el río Toltén.

			CULO DE C	TO THE PER		COMPLE	TO THE THE			
iertedero		ë 🧃	COMPLETES O	ERRADAS	100		-	-		
ocha: lota:	13:45	0 - E	$(q_1 + q_2)$	D	$\theta = \frac{\partial}{\partial}$		Doeficientes	81018-2		
inche «	2,300		2	-				0.0563		
nimetra-	0.240	n v = 0	.0553N+	0.0421	y = Y, Y		b	0.0401		
			- Comment				U : nomero de rev	olymones		
Parke	Medición	Factor altura desde altajo	York	Y parcial	т	v	M	٧	Uprom	4
1	1			0.000	40		0.00	0.042		
1	(0)	0.5	0.067	0.031	40	31	0.76	0.048	0.076	0.00
1		0.85		0.055	40	31	0.85	0.089		
I	2			0.000	40		0.00	0.042		
1	2	0.5	0.063	0.031	40	- 34	0.85	0.089	0.078	0.00
1.:	2	0.05		0.053	40	- 30	0.30	0.012		
2	1	0.3		0.035	40	77	1.06	0.148		
2	1	0.5	0.109	0.055	40	85	2.13	0.160	0.159	0.00
2	1	0.6	de de de	180.0	40	115	2.88	0.201		
2	2	0.3	DESCRIPTION OF THE PARTY OF THE	0.033	40	72	1.80	0.142	25/19/201	62:20
Z	2	0.5	0.00	0.055	40	90	2.25	0.187	0.190	0.00
2	2	0.8	12000	0.087	40	120	3.00	0.208	2232.00	
3	- 4	0.35	- ROTTS	0.033	40	178	4.45	0.288	SCHOOLS SHOW	New
a.	1	0.96	0.094	0.052	4.0	183	4.58	0.296	0.276	0.00
	1	0.8		0.075	40	199	436	0.317		
2	2	0.35		0.035	40	179	4.46	0.290		
3	2	0.55	0.084	0.052	40	138	420	0.902	0.278	0.00
3	2	0.8		0.079	40	204	3.10	0.324		
4.	1			0.000	40		-0.00			
4	1	0.5	0.05	0.030	40	138	3.45	0.230	0.298	0.00
-4		0.8		0.040	40	163	1,08	0.367		
W.:	2			0.000	40		0.00			
4:	2	0.6	0.05	0.030	40	335	3.48	0.234	0.239	0.00
4	1	0.8		0.040	40	163	4.08	0.267		
	Simancia	distantia								
Trame	deste ortta	Famo	4	· a			Lintmetro	5.240		
	DD64	0.064	0.0004	0.0002			affa	63	Q =	can i
- 13		0.238	0.0074	0.0006			Cel	0.010		
	0.602	0281	0.0266	0.0061			Q teorico	0.022	mL/a	
100		D366	0.0204	0.0067				1000		
22			1	0.0069						
0.3			latest (6.003 #	an					

Nota: esta tabla representa el modelo usado para el cálculo de los caudales por medio de correntómetro para los ensayos del rio Toltén (vertedero 2).

V. DISCUCIÓN DE RESULTADOS

En la etapa de diseño fue esencial poder definir la zona de estudio en el prototipo porque la elección adecuada de este espacio definiria todo el experimento, así es pues, el área de influencia para la investigación se definió de acuerdo a la topografía y dimensiones presentes en el área destinada por UDEP para el desarrollo de los experimentos, además el diseño del modelo se realizó respetando la fauna presente y procurando adecuarnos a las estructuras existentes de modelos anteriormente desarrollados en el lugar. Todo esto condicionó la definición de un factor muy importante, la escala geométrica para el modelo, la cual se resolvió en una proporción de 1:57.9 sin distorsión porque era la opción que más asemejaba el comportamiento hidrodinámico de la confluencia. A su vez, el diseño del modelo fisico se vio influenciado por la capacidad operativa de las bombás proporcionadas para los ensayos a realizar en la investigación, es decir que estas fuesen capaces de impulsar el agua suficiente para los ensayos de mayor caudal y menor caudal sin inconvenientes.

La definición de las secciones de construcción se dio a partir de un eje trazado por el talweg; perpendicular a este trazo se generaron lineas transversales para designar las secciones de construcción. La elección de la distancia de espaciamiento entre sección y sección se dio con el criterio de representar las secciones según los cambios de nivel que fuesen considerablemente abruptos en la topografía. Para la construcción del modelo físico se decidió llevarlo a cabo mediante los procesos de albañileria tradicional dado la factibilidad de materiales, mano de obra, tiempo y economía del proyecto. Dicho lo anterior, la construcción decidimos realizarla por medio de secciones, ubicando estacas en los cambios de pendiente de estas, y para ello contamos con un nivel topográfico asegurando la permanente revisión de cotas durante el proceso de construcción del modelo. El contorno del modelo de definió en que sea de muros de ladrillo de arcilla y que el relieve estuviera representado por un piso de concreto de resistencia de 210 kg/cm².

En cuanto a los caudales, lo primero en discusión fue determinar la sección de medición, esto se decidió observando en qué sección el flujo fuese más perpendicular a la que se considere para dicho fin. Esto se complicaba debido a que el flujo tenía un comportamiento bidimensional. Posteriormente procedimos con la programación de caudales de manera teórica en orden a la función Q=f(h), la cual,

sara los dos vertederos, la fórmula reflejada es Q=c _d H ^{5/2} , donde C _d es un coeficiente
alibrado con datos recolectados en las mediciones.
34

CONCLUSIONES

Del cálculo de las escalas se concluye que siempre estará presente la tendencia a la distorsión del espacio desde su forma real hasta su forma proyectada en el modelo, lo cual nos induce a tener un porcentaje de error producto de que el espacio modelo difiere proporcionalmente del prototipo alterando la dinámica del flujo y provocando que los datos registrados discrepen un poco de los observado en la realidad de los rios. Además, la escala geométrica se trabaja en consideración al área proporcionada en el Laboratorio de Hidráulicas de la Universidad de Piura y se limita al uso de las estructuras existentes para nuestro beneficio debido a lo costoso que son estos experimentos y este factor restringe qué tanto puede extenderse el área a construir o qué tantas obras civiles se implementan. Decisivamente, en ese sentido, la escala geométrica elegida fue de 1:57.9 porque era la que mejor se acomodaba al espacio optimizado para la implementación del experimento.

Se determina que, con el método de albañillería convencional y un minucioso seguimiento topográfico diario, la construcción del modelo físico hidráulico se ejecuta eficientemente, es decir "el modelo" logrará ser lo más parecido a la realidad.

De la medición de caudales ensayados en el modelo hidráulico con el uso del correntómetro se llega a la conclusión de que el experimento ha sido exitoso porque se obtiene como resultado un compendio de datos muy similar al registro de caudales registrados que fluyen en la realidad de la confluencia.

Se concluye que el estudio de la confluencia de ríos mediante modelo fisico en el laboratorio de hidráulica de la Universidad de Piura nos permite conocer las características del flujo y entender el comportamiento de este con los diferentes caudales ensayados, resolviendo que la confluencia en estudio presenta un flujo de carácter turbulento y comportamiento bidimensional.

RECOMENDACIONES

Se recomienda la implementación de un laboratorio de hidráulica para que futuros experimentos con modelos hidráulicos puedan ser realizados en la Universidad Privada Antenor Orrego.

Se recomienda la implementación de equipos en laboratorio de hidráulica para que el alumnado acceda a su uso y tenga más conocimiento en la hidráulica experimental.

Se recomienda que esta investigación y artículos que puedan producirse a raiz de esta misma, sean publicados con el respaldo de la Universidad Privada Antenor Orrego para que se tomen como antecedentes en trabajos futuros de confluencia en rios.

Se recomienda continuar incentivando al alumnado orregino en formar parte de la investigación de proyectos hidráulicos, y no solo por parte de nuestra casa de estudios sino también en colaboración con ofras instituciones.

REFERENCIAS BIBLIOGRÁFICAS

Luque, P. (2004). Estudio en modelo fisico reducido, aplicación: presa derivadora Los Ejidos [Trabajo de suficiencia profesional, Universidad Nacional de ingeniería]. http://hdl.handle.net/20.500.14076/18931

Ashmore, P., Parker, G., (1983). Confluence scour in coarse braided streams. Water Resour. Res. 19 (2), 392–402. http://dx.doi.org/10.1029/WR019i002p00392.

Muñoz, Sh. (2016). Análisis de caudales en la confluencia del río Teusaca al río Bogotá [Trabajo de grado, Universidad Militar Nueva Granada]. http://hdl.handle.net/10654/15395

Guerrero, L. (2014). Investigación hidráulica y sedimentológica en modelo físico del vertedero de servicio de la presa Sabana Yegua [Tesis de pregrado en Ingeniería Civil. Universidad de Piura]. https://hdl.handle.net/11042/1754

N. W. Hudson (1997). Caudal. Medición sobre el terreno de la erosión del suelo y de la escorrentía Volumen 68 de Boletin de suelos de la FAO (pp. 57-81). FAO - Organización de las Naciones Unidas para la Agricultura y la Alimentación.

Ojeda, A., Tapia, J., (2011). Estudio en modelo hidráulico de las obras del trasvase del Rio Daule al Rio Vinces [Proyecto previo a la obtención del título de Ingeniero Civil. Escuela Politécnica Nacional]. http://bibdigital.epn.edu.ec/handle/15000/4007

J.P. Martin-Vide, A. Plana-Casado, A. Sambola, S. Capapé. (2015).
Bedload transport in a river confluence. *Geomorphology*, 250, 15-28.
https://www.sciencedirect.com/science/article/abs/pii/S0169555X1530088X?via%3
Dihub

Martin Vide, J.P. (Segunda Edición) (2006). Ingeniería de Ríos. Ediciones de la Universitat Politècnica de Catalunya, SL.

Marbello Pérez, R. (2005). Manual de prácticas de laboratorio de hidráulica. Instituto Privado de Investigación sobre el Cambio Climático (2017). Manual de Medición de Caudales. https://icc.org.gt/wp-content/uploads/2018/02/Manual-de-medici%C3%B3n-de-caudales-ICC.pdf

Maldonado Narváez, L.R. y Pallares Castro, D.X. (2012) Análisis en modelo hidráulico de la estructura de interconexión de las centrales Sarapullo y Alluriquin [Proyecto Previo a la Obtención del Titulo de Ingeniero Civil, Escuela Politécnica Nacional de Ecuadorj. 38

ANEXOS

Figura 20.

Certificado de calibración de correntómetro

Figura 21.

Tabla de velocidades para hélice "1" resultantes de la calibración del correntómetro.

Tabla 5.

Cálculo de escala para modelo hidráulico.

PF	ROTOTPO			MOI	DELO		
	ESCALA YERTICAL	57.9	38.6	45	57.9	20	20
PARAMETROS	ESCALA HORIZONTAL	57.9	57.0	57.9	57.9	50	60
	DISTORSIÓN	1.0	1.5	1.28667	1.000	2.5	3.0
L(m)	\$00.00	15.54	15.54	15.54	15.54	18.00	15.00
8 (ni)	150.00	2,59	2.50	2.50	2.50	3.00	2.51
H max (cm)	546.00	9.43	14.15	12.13	0.43	27.30	27.30
H min (cm)	100,00	1,73	2.58	2.22	1.73	5.00	5.00
Q max (m /s)	1,000,00	0.0392	0.0720	0.0672	0.0392	0.2236	0.1863
Q min (m/s)	500.00	0.0196	0.0360	0.0286	0.0196	0.1118	0.0932
# Reynolds	3.27.E+07	7.41E+04	1.36E+05	1.08E+05	7.41E+04	3.65E+05	3.65E+05

Tabla 6.

Cálculo del caudal igual a 35 m3/s para vertedero 1 que representa el rio Allipén.

		CA	ICULO DE C	AUDAL POR	MEDIOD	E CORRE	NTOMETRO			
emedera oraci	1 25/08/1012 12:47		$=\frac{\Sigma(q_1+q_2+q_3)}{2}$	q ₂)D	y	U T	Helico Coeficientes	85013-1		
ncho m	2.215	_ 0	- 7	-				0.0553		
ninetion	0.232			702.51	47	Y.Y	b	0.0421		
a retur	9.000	" V»	0.0553N	+0.0421			U : número de roy			
Ponto	Medición	factor altura desde abaja	Y(m)	Ypardal	1	U	N	¥	Y prom	
1	1	0.2	0.056	0.033	40		0.00			
1	1	0.6		0.034	40	251	6.25	0.389	0.336	0.01
1	1	6.6		0.045	40	364	6.60	0.407		
1	1	6.2	0.056	0.011	40 .		0.00	1817.5	1047	9 1500
1	2	6.6		0.034	40	348	630	0.385	0.332	0.03
1	2	6.8		0.045	40	260	6.50	0.402		
2	1	0.2	9.11	0.022	40		0.00			
2	1	6.4		0.044	40	320	8.00	0.485	0.415	0.04
2	1	0.8		0.088	40	336	8.40	0.507		
2	2	0.3	8.17	0.003	40		0.05	55701	0.7	1,000
2	2	6.4		0.044	40	320	8.00	0.485	0.448	0.04
2	2	6.8		0.088	40	341	853	0.514		
10	1	4.3	0.096	0.029	40	242	6.08	0.377		
3	13	0.4		0.038	40	253	6.33	0.992	0.352	0.03
1	3	0.7		0.067	40	243	6.08	0.378		
1	2	0.2	0.095	0.015	40	348	6.20	0.385	501.5	
1	2 .	0.4		0.038	40)	252	6.30	0.990	9.355	0.03
3	2	0.7		0.067	60	246	6.10	0.379		
4	1	6.2	0.043	0.005	40	_	0.00			
4	1	0.4		0.017	40		0.00		0239	0.00
4	3	6.7		0.030	40	179	4,48	0.250		
4	2	0.2	0.043	0,009	40	_	0.00	0.000	15000	7 2000
4	2	0.4		0.017	40		0.00		0.211	0.00
-1	1	6.8		0.004	40	178	1.15	0.268		
	Distancia	distancia								
Torse	desde mille	trane	q	Q			Linimetro	0.332		
- 11	0.085	0.085	0.0387	0.0008			ata	90		Q = CB
1		0.238	0.0491	0.0081			0.0	1.4		
- 3	0.604	0.281	0.0344	00t17			Q teases	0.035	mi/s	
- 9		0.368	0.0301	0.0082						
- 13	2.215	1243		9,0063						
			hint	0.035 m	3/1					

Tabla 7

Cálculo del caudal igual a 27 m3/s para vertedero 1 que representa el rio Allipén.

			ALCUILD DE	CAUDAL PO	R MEDIO	DE CORRE	TOMETRO			
enedero echa ora: echa = nimetra=	25/08/2022 25:35 2:338 0:201	Q =	$\frac{\mathbb{E}(q_1+q_2)}{2}$ $1.0553N+1$		$N = \frac{U}{7}$ $q = V, Y$		Relice Coeficientes 8 3 Número de rev	85818-1. 0.0553 0.0421 obckers		
Pueto	Medición	Factor altano desde abajo	Yent	Tymtisi	7	U		¥	V preen	q
1 1 1	I I I	0.5	0.004	0.008	40 40 60	786	6.10	0.1794	0.3120	eato
1 1 1	1 1 1	- 0.5	6.006	0.001	40 40 40	m	5.79	0.3615	0,3103	data
2 2 2	1 1	03 05 03	E204	0.0912 0.052 0.0652	80 40 40	271 181 196	6.83 7.03 7.56	0.4395 0.4306 0.4499	0.40(5	0.042
2	2 2	0.3 0.5 0.8	0.004	0.0912 0.052 0.0632	60 60 40	276 198 198	6.85 7.25 7.25	0.4208 0.4436 0.4430	0.4023	0.542
* * *	1	64 97	1.001	0.0344 0.0400	40 40 40	174	4.95 4.83	6.2821 0.3089	0.2982	0.025
5 5	1 1	9.4 9.7	Edit	0.8344 0.8602	40 40 40	167	4.18 4.95	0.2750	9.2643	4413
4 4	1 1	9.7	0.042	0.0294	40 40 40	121	1/8	62121	0.1750	0.007
4 4	1 1	6.7	1.040	0 0 0.0394	40 40 40	126	2.10	0,3195	0,3762	0.007
Trans	Distancia diodo of Ra		•	q		Universe	4 7 7 7 7		Q=Cat	
	0.309 0.59 0.88	6,298 6,295 6,368	03982 03418 03228 03074	0.0066 0.0071 0.0091 0.0066		aft; Cd Q teorico	3.4 0.424	23825	2 , , , ,	
3	2 131		L total	0.0023 0.007 H	nik/s					

Tabla 8.

Cálculo del caudal igual a 26 m3/s para vertedero 1 que representa el rio Allipén.

		- (ALCULO DE	CAUDALPO	R MEDIO	DECORRE	TOMETRO			
enedero icha ora ocha =	1 25/18/2022 16:30 2:064	0 =	$\frac{\mathbb{E}(q_1 + q_2)}{2}$	D	$K = \frac{U}{T}$		Helica Coeficientes	8525-1 00551		
nimitto-	0.218	^{re} V = 0	0553N+0	0.0421	4 = h +		h número de nav	0.0421		
Funto	Medicine	factor altura	701	Tpartial	T	ш	#	¥	Vpram	q
1	1	desde atojo		A .	45		0.00			
1	1		4.003		60		0.00		0.1360	900
1	1	0.5		0.062	40	238	5.98	0.3725		
1	1				40.		0.00	7777		
1	1		0.084		40		0.00		0.3129	0.00
1	1	0.5	12000	0.082	40	134	5.85	9.3656		
7	1	9.3		0.0035	40	249	6.23	0.3863		4,53
2	1	85	1.05	0.0525	45	m	6.80	0.4181	6.3838	0.046
2	1	0.8	- 1000	0.084	40	181	7.08	9.4333	D. GASSAGE	1.555
2	1	0.3		0.0003	40	246	0.15	0.3123		
2	1	0.5	0.385	0.0525	40	580	7.00	0.4292	6.3827	0.040
2	1	0.8		0.084	40	190	7.05	0.4320		
3	1		_		40			9.1001		
3	1	0.35	0.000	0.0300	40	170	4.75	0.2771	0.2540	0.02
3	1	- 0.2		0.0602	45	187	A.68	0.3006		
- 1	1				60					
3	1	0.35	0.000	0.0500	40	477	4.48	0.2868	0.2755	0.025
3	2	0.7		0.0002	40	190	4,80	0.3075		
4	1		Telle.	C1088722	40	124		-0000	10000	0000
4	1		0.045		40				0.3688	0.00
40	1	0.65	- 100	0.02925	40	ton	2.70	0.2924	1.0000	
4	1				40					
4	1		0.045		40				0.3685	0.007
4	1	0.65		0.02925	40	100	2.73	0.2328		
157	Distancia	distance	- 22	4						
Trane	disce of la	framo		0					0-0	4.1
- 1	0.067	0.067	0.8201	6,0007		tininetro	0.218		Race	200
- 2	0.305	0.238	0.0401	0.0012		atte	00			
3		0.261	0.0236	0.0085		Ca	3.4			
. 4	0.954	0.368	0.0071	0.0056		Q teorico	0.031	m3/s		
- 1	2.094	134		0.0041				200		

Tabla 9. Cálculo del caudal igual a 25 m3/s para vertedero 1 que representa el rio Allipén.

	1 0065 2 0363	0.065	0006	0.0006		Unimetro	6.198		$Q = C \delta$	43
Traveo	Distancia decis ordis	distancia transc		Q						5
4	1	0.7		00308	46	126	3.15	0.2363		
4	1		0.044		40				0,1784	0.00
4	1	White:	-335	10-03/0 III	40		1000	10000	200	GV
4	1	0.7		00308	40	118	2.95	0.2052		
4	1		0.044		43				0.3693	0.00
6	1		-		461					
1	1	0.7		00002	60	161	4.08	0.2676		
1	1	0.4	0.085	00344	40	154	3.65	0.2550	0.2051	6.00
1	1	- 561		310001	40	154	1.05	0.2356		
-	1	0.7	1000	00002	40	162	4.05	0.2861	2.25	***
3.	1	0.4	1000	00344	40	169	4.00	0.2651	0.2882	9.00
2	2	0.8		00778	63	194	7.10	\$4341		
2	1	0.1	0.097	00982	40	195	7.13	0.4361	0.30%	0.01
2	1	0.1	Name of the Owner	00291	40	261	601	0.4005	O Glave	riggs
2	1	0.8		00778	40:	385	7,11	5.4361		
2	1	0.6	0.097	0.0542	40	神	7.22	0.4416	0.3963	0.00
2	1	0.3		00291	40	100	6.70	0.4126		
1	1	0.8	100000000000000000000000000000000000000	0055	40	755	5.89	9.3641	248.00C	1130
1	1		1005		42				0.3095	991
1	2		Lesin T		45				-0.04000	- 383
1	1	0.6		0.013	85	210	5.75	0.3603		
1	1		0.065		40				0.3661	0.01
1	1				40.					
Funto	Medicine	Factor altura desde abajo	2 (10)	Y parcial	7	u		¥	Vprsei	q
ter	0.058		0553N + 0	0421		0:	número de revi	luciones		
ireto:	0158		ances The		$A = b \cdot b$			0.0421		
chen	2005	n V=	2	_				0.0558		
tac	15 02		$\Sigma(q_1+q_2)$)D	$N = \frac{1}{7}$		Conficientes			
the	05/08/2022				, U		Heliza	85008-1		
codes	S 30		in retencion en	salida						
		-								
		- (ALCULO DE	CAUDALPO	REPORTED AND A SECOND CO.	OF EXHIBITA	DECEMBER 1 KGC			

Traveo	Distancia deute critis	distancia trans		Q			
	0.065	0.065	0.0068	0.0006			Q = C49
	0363	0.298	0.0382	0.0066	Unimetro	0.198	
- 3	0584	0.293	0.0204	0.0082	afa	90	
- 3	0.952	0.368	0.0077	0.0052	Cd	1.4	
-	2015	1.123		0,0043	Q toorico	0.524 m3/s	
		n	neul .	0.005 m3/s			

Tabla 10. Cálculo del caudal igual a 28 m3/s para vertedero 1 que representa el rio Allipén.

					00000000					
enidere			on retencion er	abilia						
cha	05/08/2022			22.16	, U		Heles	85215-1		
300	11.02		$\frac{\Sigma(q_1+q_2)}{2}$	2)D	$K = \frac{D}{7}$		Coeficientes			
nche n	2.465		7					0.0553		
ninetra:	0158				4 = kT			0.0423		
lita»	6014	m = V = 0.	0553N + 0	0.0421		U:	número de ravi	elucionas :		
		Ractor attura								
Punto	Medicide	desde abajo	7 (m)	Y partial	1	U	. 11	V	Vprom	q
1	1				40					
1	1	0.5	0.064	0.083	40	163	4.08	0.2674	0.2395	0.015
1	1	0.7		0.0448	40	171	4.35	9.2813		
1	1	19200		022220	40	District	8/2525	52.25	1155,275	11280
1	1	0.5	0.064	0.052	40	157	3,99	0.2590	0.2123	0.00
1	1	0.7		0.0448	40:	107	4.1F	0.2730		
2	1	0.25		0.02825	40:	179	4.25	0.2771		
2	- 1	0.6	0.313	4.0678	40	199	4.98	0.3545	0,2796	946
2	1	0.8	_	0.0004	40:	199	4.83	5.3005		
2	1	0.25	1000001	0.02825	45	171	4.35	0.2827	55007	262
2	2	0.6	0.111	0.0678	40	306	5.13	0.1255	0.2871	0.050
2	1	0.1		0.0904	45	194	4.98	03171		
3	1	0.3		0.0297	40	164	4.10	0.7688		
1	1	0.6	0.099	0.0534	60:	166	4:15	0.2716	0.534	9.02
- 1	1	0.8	_	0.0792	45	188	4.23	0.2757		
3	1	0.3	10000	60097	40	162	4.05	0.2661	frame.	4.49
	1	0.5	1199	0.0584	40	163	4.08	0.2674	0.2485	0.02
3	1	0.8		0.0792	40	167	4.15	0.2750		
4			0.052		40				0.2556	0.00
20		0.8	ALL STORY	90002	45	136	3.40	0.2301	4,2130	991
4	2	0.9	_	-9000X	45	1.29-	3.46	9.4300		
4	1		0.052		40				0.2980	0.00
	1	73.5	star.	00002	40	138	3.45	0.2329	0,2190	441
-	-	W.		9004	46	100	2794	V-C34.3		
20.015	Distancia	distancia		400						
Trans	descentile	trane	4	Q						
	0.053	0.093	0.0050	0.0007		Unimetro	0.21			
- 33	0.333	0.218	0.0326	0.0066		affa.	90		11140	1
- 3	0613	0.291	0.0347	8.0090		CH .	. 14		2:	Call ²
100	1 138	0.368	0.000	0.0064		() teorico	0.028	male.		

Trans		istanda sõrofila	distancia trame		Q			
- 1	1	0.053	0.093	0.0050	0.0007	Linimetro	0.21	
- 83	2	0.333	0.238	0.0320	0.0096	affa	90	i i uwal
- 6	1	0.612	0.291	0.5342	0.0090	63	1.4	Q = Ca
- 1	1	0.56	0.368	0.0102	0.0064	-Q teorico	0.028 #3/s	
- 9		2465	1.485		0.00%			
				otal	0.038 m3/s			

Tabla 11.

Cálculo del caudal igual a 8 m3/s para vertedero 1 que representa el rio Allipén.

		(CALCULOD	E CAUDAL PO	R MEDIO DE	CORRE	ENTOMETRO			
Venedero	1		orrretencion	ensalida						
Fecha:	05/08/2022	- 1	l vaeta valba	à garde	_ #		Helice	8503-1		
Horac.	16:12		$E(q_1 + \epsilon)$	$g_{\alpha})D$	$K = \frac{U}{T}$		Coeficientes			
Ancha =	1964	n Q=	-(41	12/-				0.0553		
Lininetto:	0100	m.	2		q = V.Y			00421		
elda:	0049	m V = 0	.0553N+	0.0421		3	J: número de rei	oluciones .		
		Factor altura								
Panto	Medición	desde abajo	T [m]	if partial	T	U	2.0	V	Vprom	q
1	1				40					
1	1		0.045		40:				0.0839	0.004
1	1	0.65		0.02925	40	42	1.05	0.2002		
1	2	0020		-100000	40:	- 0.0	10000			
1	1		0.045		40				0.0982	0.000
1	1	0.65	- 200	0.02925	40	50	1.25	0,1112	176.00	-0.0
2	1	0314		0.029202	40	54	1.35	0.1168	1	
2	1	0.5	0.093	0.0558	40	55	1.38	0.1181	0.3137	0.000
2	1	0.8		00744	40:	68	1.58	0.1290		
2	1	0314		0.029202	40	51	1.45	0.1223		
2	1	0.5	0.093	00558	40	58	1.48	0.1237	0.1155	0.001
. 7	1	0.8		0.0781	40	61	1.60	0.1306		
3	1				40					
3	1	0373	0.078	0.029094	40	25	0.48	0.0684	0.0700	0.006
3	1	0.7	1000	00546	40	33	0.83	0.0677	7 - 270-26	11000
- 3	1	20000	-	50000000	40		50.70	5884	550007	(80)
3	1	0373	0.078	0.029094	40	-22	0.55	0.0725	0.0702	0.005
3	1	0.7		0.0546	40	25	0.79	0.0822		

Tramo	Distancia disceptifia	distancia trame	ę	Q	Unimetro	0.091	0.509	7
9	0.057	0.057	0.0040	0.0001	alle	90		$Q = Cabe^{\frac{C}{2}}$
- 3	0.255	0.238	0.0006	0.0017	Cd	1.4		
- 6	4516	0.291	0.0055	0,0033	Q teorico	0,004 m3	ls:	
	1964	1388		0.0038				

Qtotal 0.008 m3/s

Tabla 12.

Cálculo del caudal igual a 7 m3/s para vertedero 1 que representa el rio Allipén

				N MEDIO	DE COMME	TOMETRO			
0100	$m Q = \frac{\Sigma}{m}$ $m V = 0$	$(q_1 + q_2)L$	grande) -			Reika Coeficientes 2 5 minnoro de nos	03931 03421 04421 okricess		
Medición		Time	Famil	1	U	N	W.	Varion	
		-	A DATE OF THE PARTY OF THE PART	40	-	-	11000		
		1,23		45					
1			0	40					
1			ē	45					
2		1.03	0	40					
			0	40					
1			0	40					
1	0.40	0.074	0.03034	40:	128	3.20	02191	0.2025	0.005
1	0.7		0.0518	40	137	3.43	02315		
1				45		1			
1	0.41	0.074	0.03834	45	129	3.23	0.2204	0.1965	0.015
1	0.7		0.0538	40	130	3.75	02218		
1				60-		0.00			
1		0.06		40		0.00		0.0429	0.003
-1	0.5		0.03	40	5	0.13	00490		
1			600	40				320.00	7014
1		0.06	0	40				0.0405	0.000
1	0.5		0.03	40	3.	0.08	0.0462		
Distancia	distancia	-							
deste of la	trano				Linimetro	0.1			1
0.265	0.265	0.015	0.002		alu	90		Q = Cah	1
0.546	0.281	0.001	0.002		Ćá	1.4		111	
1483	0.917		0.061		Q teorico	0.004	må/s		
		late!	0.007 m	sk.					
	05/08/2022 15:55 1483 4100 4018 Medicide 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08/08/2822 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Description Description

Tabla 13.

Càlculo del caudal igual a 50 m3/s para vertedero 1 que representa el rio Allipén

				Aprillering						
rradore cha sts:	90/12/08/22 15/08		in returnion on decode $aabaa$ $(q_1+q_2)I$	grande	$N = \frac{0}{T}$		Helica Coefficientes	85018-1		
ethe=	5.130	# Q = -	41 . 42/4	2			4.	0.0553		
vinetto=	#350		2		q = V.Y			15100		
lida-	0.003		0553N + 0	.0421		u	: mirrenta de tevo	ductories		
		Factor altura	-		1	- 1		100	4000	0.0
Funto	Medicies	desde abajo	7(10)	Yparcal	40	- U	1.38	41181	Tpon	
1	1	925 04	0.111	0.02815 0.046	40	55	140	G1195	0.11.50	part :
1	1	08	O.L.	1:090 1:090	40	0	150	0.1251	0.1120	000
1	1	025	_	0.02015	40	9	1.32	01150		
1	2	B4	0.115	1046	40	55	138	0.1181	0.1122	0.213
1	2	08	MARK:	9.092	40	99	146	41237	0.032	Mari
2	1	02		1/37	140	50.	125	91111		
1	1	04	400	1004	10	-	1.53	01361	6.1213	patr
1	1	0.6		8 126	46	70	1.75	0.1389	2.015	
2	2	02		1632	40	58	1.39	01154		
1	1	04	0.16	0.004	40	84	1.53	0.1384	0.1234	Date
2	2	0.8	***	8.128	40	70	1.80	0.1416	7.5	777
1	1	02		0.029	80	52	18	01151		
3	1	04	0.145	E654	40	94	1.35	91168	0.1189	000
3	1	08	1000	0.318	40	60	179	0.1375	-100	77.7
3	2	0.2	_	1.025	40	58	1.39	01154		
2	1	0.6	DAM	5.058	600	#	1.60	0.1395	0.3107	0.00
3	7	0.8		1.116	40	69	1.79	0.1375		
4.7	1::	03		4.00125	:40	66	166	@1333		
4	1	04	0.100	0.040	40	77.	1.80	0.1426	0.1302	0.005
4	1	60		0.084	40	9.	2.38	41679		
4	1	03		0.0015	40	60.	1.55	0.1378		
4	8	04	0.105	6943	40	Ti.	1.78	@1485	0.3412	0.013
4	2	0.6		1.084	40	98	2.45	0.1776		
5.	1	04		8.028	-40	125	3.00	0.2080		
5	2	06	0.07	0.041	40	122	3.30	02246	0.1084	DOL
5	1	8.0		1/056	40	135	3.48	0.2343		
5	1	04	200-07	1/028	40	337	2.98	02039	0-505	200
5	2	06.	0.00	1041	40	134	3.35	0.2274	6.1998	000
5	1	0.6	70000	2254	40	3/5	1.67	0.2426	-3350	10%
SALE	Distancia	distancia	55	U.2						
Trans	deads of lia	TATE		q						91
1	9,382	7,500,000	0.013	6801					0=0	Tage I
- 1	0.0	0.138	0.029	0.004		Unimetro	0.352			
1	9,300	0.181	0.017	0.005		ata	90			
	1.003	0.586	0.015	tidos-		Cif	1.4			
3	1.890	0.827	0.014	0.01.2		Q teertoo	0.103	20/1		
- 6	5.121	3.228		0822						
			I total	0.000 m	Ale:					

Tabla 14.

Càlculo del caudal igual a 95 m3/s para vertedero 1 que representa el rio Allipén

	85038-6	Helico				o returnine as		1000000000	che.
A.	00018-0	Coeffeiensen		No.		Expelhe ve Bulle		30/12/20125	TOTAL STREET
	0.0553	D. S. C.			.	$(q_1 + q_2)I$	- A D	16:50	ribi -
	40421			$a_i = V_i$		2		0.832	dividige
		rimuno de reve			0421	0553N + 0		932	Sta-
2000				750			Factor others		
Taron			ų.	*	Y merely!	TO46	chryde streps	Medicine	Ports
2000	0.1671	1.18	67	40.	1.036		835	1.	1
0.2023	0.0160	1.38	58	40	BUSET	0.118	0.4	8.0	1.
250225	0.1693	1.13	460	400	2,6584	- Kree	ON:	1	1
No. all and the last of the la	01098	1.23	46	40	9.050		0.25	- 1	1
6.8002	0.1671	1.10	401	40	8.887	0.118	0.4	X	1
	9,1095	1.32	40	40	5,094		0.8	1	1
	0.0635	0.79	297	40	0.020		0.2	3	2
6.2008	0.0990	0.05	200	(80)	6.000	0.162	D4	2	2.7
	0.1292	1.56	-9-	- 60	1.120		0.8	_	
	0(879	10.65	- 10	(11)	0.081		62	1	3.
6.0018: 0	0.0199	0.68	36	40	6.901	0.168	04	8.	800
	41392	1.56	62	40.	2136		0.0	2	2
	0.0635	0.73	20	46	1479.4		0.3	3	3
E:4607: E	6.1300	1.00	-	887	8.096Z	0.334	104	2.	
	3222	3.45	12	40	1,521		09:	1	3
	0.0022	11.10	39	127	0.081		0.0	1	1
0.2504.	93857	1.15	46	40	0.963	0.334	0.4	3	3
55247	(23/5)	7.62	1.67	100	8,523	The state of the s	U.S.	2	-20-
	0.3821	8.00	176	330	2,024		9.26	4	100
8.3892	G-81000	9.25	700	-880	0.083	0.130	11.6	1	*:
	0.4595	7.55	902	40	0.000		06:	10.00	4
	8.3927	4.35	179	40	1/125		8.36	2	
D-8004	0.0389	535	206	40	6.041	0.114	64	2	4
91000	44430	7.38	395	4(0)	8,500	- 0000	04	2	4.1
	94976	30.00	438	630)	0.010		0.16	1	10.0
0.8600	0.7444	32.79	SW	40	81000	0.084	Q6.	1	50
	35189	13.91	357	40	6-96T		68:	1	- 5
	0.6559	3539	696	40	6.626		6.36	2.5	5
0.66-12	0.7666	32.75	Na	460	5,654	0.066	06	333	500
	98122	12.03	507	.60	8.66T		0.0	2	6.7
				(0)				4	8:
0.3030				40		0.038		100	6
90012	84855	7.66	266	60.	9.676		8.97	3	6
10.133	350 W	111975		960	111			1	6
6.3686				360.		0.036		3	64
	d-both)	TAK	100	(11)	2,018		3.81	3	
					a		distancia	States of the	Trave
		0.004	porero.		0.001	0.012	0.00		-
9 1		00	ata.		0.000	0.012	0.138		3
200		2.4	C#		0.000	0.018	0.286		- 4
	-0.0	9.103	Q teerioo		0.011	0.039	0.566		4
	may 1	9.100	TT 1001 100						
					0.035	0.013	0.877	1,895	6

Tabla 15.

Càlculo del caudal igual a 104 m3/s para vertedero 1 que representa el río Allipén.

deno	1 13/12/2022 16:30	- 9	anvetencios Il quelta va bi	lo grande	$N = \frac{U}{T}$		Helica Conficientes	85818-1		
	5,130	- 0-1	$(q_1 + q_2)$	D				0.0503		
etro-	0.952	V -	2		q = V, Y		6	0.0413		
in .	0.13		0553A+	0.0421			a dimensi de res			
		Factor attars								
Nata -	Medicion	deads about	Y (m)	T patcial	7	u	104.3		Vipron	9
1:	1	0.25		0.030	40	43	1.18	0.307		
1	1	6.4	0.118	8,947	40	28	1.36	0.135	0.102	993
1	1.	1.8		0.094	40	45	1.13	0.304		
1		0.25		0.000	40	-43	1.23	0.130		
1	- 1	6.4	0.118	0.047	40	8.7	1.18	0.307	0.102	9.95
1	- 1	1.8		0.094	40	48	1.23	0.130		
10	- 1	1.2		0.003	40	28	6.73	0.082		
2	1	0.4	0.183	0.005	40	28	0.55	0.095	0.300	0.00
2	1	0.8		0.350	40	60	1.58	0.125		
1	. 1	0.2	12000	0.000	40	19	0.45	0.067	104.9	
2	1.2	8.8	0.195	0.065	40	26	0.65	9,078	0.097	0.02
2		6.8		4,330	40	63	1.58	0.120		
1	- 1	0.2	00000	0.051	40	28	0.73	0.062	ANSON.	-0-01
3	T	6.4	0.154	9,951	40	48	1.29	0.108	0.146	992
1	2.4	6.8	Table 1	0.523	10	337	1.0	6.342	X1505	- 000
1	2.	82	CHES	0.082	90	28	8.73	0.282	67628	-
1	2	2.4	0.154	0.063	40	46	1.15	0.306	0.152	6.62
1	1	0.8		0.123	40	347	3.88	0.245	93005	
4	1	0.26		0.625	40	176	4.40	9.285		
4	1.	0.0	0.00	0.065	40	210	6.35	0.335	0.348	6.69
4	- 1	3.8		0.000	40	102	1.55	0.460		
4	2	0.26		0.629	40	174	4.35	0.285		
4		6.4	0.111	0,045	40	206	5.35	0.127	0.340	0.03
4	- 1	5.8		0,000	40	250	1.25	0.445		
5	1	0.36		0.090	40	438	30.95	0.648	CALCUT.	
5	1	0.6	0.004	0.000	40	500	12.70	0.744	0,680	0.02
3	1	0.1		0.057	40	357	23,93	0.832		
5	- 4	0.36		0.086	40	418	21.10	0.656		
1	. *	4.4	0.004	0.050	40	930	12.70	0.744	0.663	0.00
5		- 13		0.067	. 40	557	:11,93	0,832		
	- 1				40					
*	1	nm.	0.038	. 1000	40	200	7.44	20.000	0.388	0.00
6	- 1	38.0	_	7,496	46	299	7,48	0.455		
	3		Ø 1110		40				0.044	
	2	0.81	0.036	A river	40	300	7.65	0.465	0.272	0.03
•		0.03	_	9,050	41	300	1,62	0,452		
	Distancia	distance								
D-METER .	desde orifle	irem.		G		Linkmetre	0.362		1	
- 1		0.182	0.013	0.001		afa	90	g = 0	100.4	
2		0.238	0.010	0.003		oi .	. 14			
3		0.281	0.029	0.006		Qterrito	0.108	relit/s		
4	1,009	0.368	0.039	0.011		6		335		
5		0.817	0.056	0.009						
+	2,908	1.067	0.010	0.083						
- 7		4.215		0.911						

Tabla 16.

Càlculo del caudal igual a 53 m3/s para vertedero 1 que representa el rio Allipén

		c	ALCULO DE	CAUDAL POI	RIMEDIO	DE CORREN	TOMETRO			
niedere cha en: cha = ine tro: lita=	13/10/3822 09:50 2.825 0.366 2.883	$Q = \frac{1}{2}$	on retencion e 1 vonto es bui $(q_1 + q_2)I$ 2 0.553N + 0	granda O	$N = \frac{0}{T}$ $q \approx V, Y$	81	Helico Coeficientes a b	8018-1 00155 00421		
ets.	1447	Factor altura	W555W + 4	.0421			: marmens de revo	a actions s		
Pinto	Medicin	ciride abajo	T(n0 :	Y partial	T	U	N.	V.	Tpon	- 3
1	1	0.55		1,027	40	350	5.78	9,2303		
1	1	0.4	0.066	0.035	40	159	3.96	0.2619	6,2363	0001
1	1	C.S.		8.076	40	510	4.08	0.2647		
1	1	0.33		8:025	40	- 34	3.70	02467		
1	2	0.4	0.088	8,051	40	384	4.10	0.2888	0.3454	1110
1	2	80		8.076	40	179	4.39	0.2813		
2	1	622		1,029	40	318	4.30	02144		
2	1	64	0.13	1/052	40	180	4.58	0.2510	0.2774	0236
2	1	08		0.104	40	150	4.90	63075		
2	2	822		0.029	40	153	4.08	0.2874		0.00
2	2	04	0.05	\$451	40	130	4.75	0.3048	0.2912	Dass
2	1	08		8 104	40	219	5.30	43366		
3	1	0.25		1.079	40	167	418	0.2130	300101	55.0
3	1	64	0.116	5.946	40	3%	4.90	03181	0.3805	0538
3	1	08.		0.090	40	282	7.05	0.4320	1,000	
1	1	425	_	5.028	40	385	4.17	0.2100		
3	2	0.4	0.136	5,046	40	187	4.68	43006	6.3225	0.087
3	1	0.5	State.	1.091	40	275	6.88	0.4223	4-36.62	0.00
4	10	04		0.029	40	325	8.08	24888		
4	i	06	0.079	0.044	40	341	8.57	05135	6.4738	0.055
2	1	08	State-	1/058	10	399	9.88	05854	670.24	Distri
6	1	04	_	1025	400	117	7.90	0.6864		
4	2	06	0.074	1,044	40	155	8.00	45129	E.4756	0.035
	2	08	Julia .	1058	40	3%	9.90	95899	E.MI 30	0450
5	1	99.		B106	40	376	2.00	9,7679		
5	1		0.042		40				6:1784	0.007
5	- 1	07	STATE OF THE PARTY	0.025	40	176	3.15	02161	6.71.04	0001
5	1	07	_	RIGHT.	40	109	3.13	94,189		
	2		0.042		40				0.1864	0.000
5	1	07	Section 1	1.025	40	133	3.33	0.2250	41804	0.000
-2	-	97	_	RYLET .	-92	120	2.20	911777		
Trans	Oktancia	distancia		q						
	desde ariita	Yane	117							
- 1	9,109	0.134	0.022	0,001		250000	10000			
- 2	1352		0.037	0.807		innero	0.266			
1	5.631		0.018	nati		atts:	50			
4	1.001	0,368	0.035	0013		Cd	1.4			Q=00
3	1,826		0.008	DOLT		Q teorico	0.051	ar2/1		Mr Call
	3.835	0.99		0004						

Tabla 17.

Càlculo del caudal igual a 63 m3/s para vertedero 1 que representa el rio Allipén

/emodern										
echa echa locu	13/10/2022 13.13		inn retencion er rue to kalbula j	garde	$N = \frac{0}{T}$		Helica Coeficientes	85018-1		
lacho =	2.550	n n = 1	$(q_1+q_2)l$		3,0			0.0553		
ininetro	0.266	- V	2		q=1/3		6	0.0421		
alde:	1,074	n V = 0.	0553N + 0	.0421		0	nimero de rev	ductories		
		Factor alture								
Porto	Medición	ciesde abajo	T(m)	Ypercial	T	U	N	٧	Toron	
1	1	0.34		8929	40	220	5.50	0.3463		
1	1	0.55	0.085	3,041	40	246	6.15	0.5822	0.5836	0.008
1	1	0.8		8068	40	235	5.98	43125		
1	1	0.34		1/025	40	512	5.48	0.3421		
1	2.	0.55	0.085	B-04T	40	248	6.29	63863	0.3813	0.029
1	1	08		1068	40	-28	5.88	63670		
2	4	6.24	V svano	1/36	40	276	6.90	0.4237	14888	13.05
2	1	0.5	0.129	1,067	10	281	7.09	0.4306	6,4226	0.053
2	1	08		1004	40	321	8.08	0.4659		
2	1	0.24		£636	40	274	6.85	0.4209		
2	2	05	0.123	1061	40	276	6.95	0.4164	6.4175	0.053
7	1	08		1/998	40	315	7.90	0.4790	SCSUB	7,575
3	1	0.28		1,025	40	274	6.85	0.4309		
3	1	05	0.104	8/05/2	40	394	7.60	0.4624	0.4187	0.344
3	1	08		1083	40	308	7.70	0.4679		
3	1	0.28		L/025	40	265	6.63	0.4685		
3	1	65	0.104	1.057	40	255	7.38	0.4499	0.4105	0.043
3	1	68		1083	-40	3%	7.65	44651		
4	1				10					
4	1	845	0.065	1/025	40	372	8.88	05329	0.4959	0.083
4	1	07		1046	40	395	9,85	05868		
4	1	1,4040	Haves	100000	40		72005	10.0000	120000	5000
4	2	9.45	0.065	0.025	10	362	9.00	95412	0.5009	0.093
- 6	2	07		0.046	40	3%	9.90	05895	2.07.0	
	Distancia	distancia								
Traveo	desde crifia	reme		q		innero	0.166			
1	1.101	0.101	0.0788	10001		iti	90			2 = Cak
7		0.138	0.0516	0010		Cit	3.4		- 2	5.500
1		0.781	6,0433	0013		Q teorico	0.051	#3/i		
	1.558	0.968	0.0824	0.014						
3	2.55			6025						
			Ltotal	0.062 m						

Tabla 18.

Càlculo del caudal igual a 23 m3/s para vertedero 1 que representa el rio Allipén

		850084	Helice Conficientes		$N = \frac{0}{3}$	grande	o retencion en 4 voeto relibelo $(q_1+q_2)D$	\$ D	1 15/16/2022 15:31 2:000	Vertedoro richa lota: larko :
		0.0421			0 = V.		2	V	0,368	nireto:
		April 100 Total	nimero de revo		. 4	0421	0553N + 0.		1,045	elde
		100000	***********				200000000000000000000000000000000000000	Factor altura		-
4	¥ prom	W	N	u	T	Y partial	T(n)	desde abajo	Medicide	Punto
					40	5.000	-	- 7	1	1
0.013	0.2958				40	2000	0.045		Y	1
		43532	5.68	225	40	0.025		0.65	1	1
		-	77701	-	40	1000		25.000	E.	1
0.013	0.2888				40	0.000	0,045		2	1
		03449	5.48	213	40	1425		465	2	1
		43573	5.70	278	40	0.029		03	1	2
0.083	0.303	0,3891	6.28	251	40	1,048	0.095	0.5	1	2
		0.3698	5.99	237	40	0.076		08	1	2
		03642	5.88	233	40	1,029		83	2	2
0.033	0.3458	03545	638	253	40	1,048	0.055	05	2	2
		03794	6.00	244	40	1076		8.0	1	1
		17.17.1	200		40	0.000		***	1	1
0.014	0.1686	0.1776	2.45	98	40	0,025	0.063	435	1	1
		0.1900	2.68	307	40	1050		06	1	3
					40	1,000			1	3
0.004	0.1745	01837	2.58	301	40	1029	0.083	0.35	2	3
		0.1583	2.89	113	40	1056		06	2	1
								distancia	Distancia	
						q		trans	doots orita	Trans
• Cah	100		0.168	inimetro		0000	0.0132	0.062	1.062	1
* C26*	£		90	efa		0.005	0.0329	0.238	0.5	1
			1.4	Cd		0007	0.0142	0.281	2.581	1
		m3/4	0.016	Q teorico		0010		1.419	1	- 1
						0000				5

Tabla 19.

Cálculo del caudal igual a 22 m3/s para vertedero 1 que representa el rio Allipén

			ALCULO DE I	CANDOME LOL	n MEDIO	DE COMMEN	TOMETHO			
rendero ecta	120000000		on retencion e		100		Helica	85018-2		
tos:	13/50/2022		2 yeelta valbula	0.00	$N = \frac{D}{T}$		Coeficientes	20078-5		
lache =	2,450	= 0 = 1	$(q_1 + q_2)I$)	1.0		2	00553		
renetro-	1.368	V -	2		g=V.5	63	b	0.0421		
alde:	6.67		0553N + 0	0421		ti.	nimen de rev	10 Y C PO T F		
CARGO I		Factor atura	****	0000000		100	echinology.	40000		
Punto	Medicite	riesde abajo	T(n)	Y partial		U	N	V	T prom	
1	1	ACTOROGOUTH		0.000	40		0.00		-	
1	1		0.056	8.000	40		0.00		P.1340	0.008
1	1	857		8/025	40	8	2.09	0.1541		
1	2.5			1506	40		0.00	11,000		
1	1		0.056	0.000	40		0.00		0.1403	0.008
1	T.	0.52		0025	-40	86	2.15	01699		
2	1	0.26		0.029	40	18	3.48	0.2343		
2	1	0.46	0.112	1051	40	34	3.65	0.2439	6.327E	9.035
2	1	08.		1096	40	150	3.78	63509	URAD:	1000
2	1	0.26		5:076	40	10	1.58	0.2384		
2	1	0.46	0.112	1/057	40	345	3.52	0.2370	0.3050	0.075
2	1	C#		1000	80	10	3.68	@2453		
3	1	03		0.025	40	128	3.29	0.7354		
3	1	0.5	0.095	0.048	10	130	3,25	0.2738	0.2178	0.023
3	1	0.8		1076	10	197	3.00	4.2592		
3	1	03	1120285	8/025	10	130	3.75	0.2118	15.40	1.5500
3	2	0.5	0.065	1.048	10	128	3.20	0,2191	0.2176	0.021
- 3	1	08		1476	10	157	399	0.2592		
4	1				18					
*	1	V. 2 La	0.052	2440	40	71350	0.1447	2015	0.3500	0.000
- 6	1	0.55		1676	300	103	258	01845		
4	2		0.053		40				4 4700	6300
	1	are	(IIIE)	0.000	10	444	268	*****	6.1539	928
- 6	1	455		1035	ALI	107	218	01600		
Trans	Distancia	detseda	4	Q		247507	9292			
CHICAGO	desde erilla	trans	-3000	- 1000		Snimetro	0.168			, i
1	0.091		0.0077	0.000		afa	90		6	= Cate ³
2	2,329		0.0254	0.004		Cit	1.4			
3	0.61		0.0207	0.006		Q teorico	0.016	#8/I		
4	0,578		0.0084	0.005						
5	2.45	1.472		0.006						
			I total	0.017 +	30					
				-	775					

Tabla 20.

Cálculo del caudal igual a 22 m3/s para vertedero 1 que representa el rio Allipén

medere	1	12 99	on retunden e	1000						
stha.	10/12/3022				$N = \frac{\partial}{\Gamma}$		Helice	84627-3		
089	15:47	0 -	$\frac{\Sigma(q_1+q_2)}{2}$	2/10	. T		Coefficiences			
ntho t	1.900		2		a marille			0.389.2		
remetro-	2.176				q=V.T		b	0.0219		
		The second second second	0553N+	0.0421			U: namaro de ree	thuc ples		
Porte	Medición	Fector áttura desde oboja	Y (m)	Ypercial	7	v	N	¥	V prore	9
1	3				40					
1	3	120	0.051	4.44	40	100	12/02/	0000	0.212	0.001
1	1	0.6	_	0.031	40	-AT	138	0317		
1	2		2007		40				10000	9330
4	2	93	0.011	2.72	40	350	6967	2000	0.217	0.000
1	2	0.5		100.0	40	46	125	0.330		
3	30	22	10000		40	-	100			
2	1	0.4	0.094	0.038	40	55	138	0.367	0.317	0.001
2	1	0.6		0.058	40	- 54	135	0,360		
2	2				40		Total Control			
2	2	6.4	0.096	0.038	40	51	1.43	0.379	0.338	0.097
2	2	0.6	_	0.058	40	等	140	0.373		
1	1	20	Yaas	2320	40	1361	12827	GW.	1.2532	0.00
1	1	0.4	0.001	0.032	46	TN.	0.65	0.188	0.161	0.003
1	1	4,6	_	0,049	.40	24	0.60	0.173		
3	2	6.2	883	9,036	40		92.5		10165	893
3	2	94	0.081	260.0	40	20	0.73	9.205	0.179	0.014
1	1	6.7		0.057	A6	27	000	0.192	_	
4	3				40					
+	1		0.036		40		- Carrier		0.298	0.011
- 4	- 1	0,8	_	0.029	40	- 56	147	0.373		
4	2		9300		40				UTDEASON THE	15000
+	2	24	0.036	* ***	40	3447	32927	0.000	0.308	0.001
4	2	68	_	0.029	A5	58	1.6	0.385		
5	1		WASTER		40					
5	1		0.013		40					
3	1		_		40					
4	2		maid		40					
5	2		0.011		40					
A :-			_		- OLY					
	Distancia	distancia								
Tone	desde artifa	trave	q	0			Lintmetto	0.276	0.0	= Cdh
Turso	The state of the s		4 0.0112	0.0003			afa	90		C-UM
	0.200		0.0019	0.0051			C#	1.4		
-			0.0118	0.0064			O teorico	33.5370	m3/s	
- 85			0.0119	0.0004			T HOLES	4.414	STAPE .	
	1.98		WHILE.	D-0058						
		70000	D THEM	0.022 4	44					

Tabla 21.

Cálculo del caudal igual a 42 m3/s para vertedero 2 que representa el rio Toltén.

CALCULO DE CAUDAL POR MEDIO DE CORRENTOMETRO COMPUERTAS ARIBITAS Vertedore Fedia: 25/08/2022 Helice $\Sigma(q_1+q_2)D$ Q = 2 12:47 Coeficientes Hora: 2.460 m. Ancho+ 0.0553 q = f, f'b 0.0421 Dremetro-0.2% m V = 0.0553N + 0.0421If it mame so de revoluciones Factor attura Medición Ponte Yimi **Ypartial** Ţ H Vigram. desde abaja 0,000 40 0.00 0.067 104 0.178 0.002 0.5 0.034 40 2.60 0.386 1 1 6.8 9,054 40 340 4 0.000 40 0.00 1 2 6.5 0.067 0.094 40 107 2.68 0.190 0.179 0.012 4.4 0.054 45 134 0.227 135 6.3 0.035 40 175 4.35 0.284 0.115 40 0.032 2 1 4.5 9.058 194 485 0.310 0.214 6.8 0.002 40 185 4.63 0.258 2 9.3 0.085 40 183 4.58 9.255 0.115 6.5 0.058 40 300 5.00 0.129 0.218 0.032 2 6.8 0.002 45 182 4.55 0.254 6.3 0.090 40 251 € 28. 0.389 6.5 8.7 0,050 10 250 645 0.395 0.314 0.097 0.080 125 6.80 6.8 45 0.433 8.3 0.030 40 347 £38 0.384 61 2 0.050 40 260 6.50 0.402 0.377 0.047 0.5 0.083 273. 6.83 4.8 0.420 -8 0,000 40 0.00 0.057 367 0.021 0.55 0.011 40 6.68 0.433 8364 1 0.80 0,945 10 40 0.00 0 0.000 2 0.50 0.057 0.031 40 5.83 0.420 0.367 0.021 0.045 286 0.85 20 7.35 0.437 0.027 Distancia distancia Transe desde urillo Q Linimetro 0.296 6 = CMI 0.0130 afa 60 1 0.085 0.085 0.0005 Ċi 0.819 2 0.323 0.238 0.0318 0.0052 0.281 0.039 m3/i 3 8,604 0.0379 0.0997 Q teorice 4 9.972 0.358 0.0008 \$5tm 5 2.69 1.487 0.0155 Q total 0.042 w3/s

Tabla 22.

Cálculo del caudal igual a 36 m3/s para vertedero 2 que representa el rio Toltén.

		CAL	CULO DE C	AUDAL POR	MEDIO D	CORREN	TOMETRO			
stedom.	1		DAPLIFITAS	CERNEDAL						
dw:	25/08/3002					v	Helice	85818-1		
ea:	11:47	. 0 =	$\frac{\mathbb{E}(q_1+q_2)}{2}$	457-			Coefficientes	A arro		
de-	2.890		DATE OF THE PARTY				9	0.0553		
enetro-	8.2%	" Y=	0.0553N	+0.0421	4=		b nameto de me	0.0411 Autom		
Punto	Medicide	Factor altura clesde obaje	Y(nt)	Ypardal		· ·	N	¥	Veran	4
1.	1.	6.4		6.048	40	34	0.85	0.089		
1	1	0.63	0.082	9.053	40	26	0.65	0.078	0.013	0.006
1	1	0.85		0.070	40	20	0.50	0.070		
1	2	6.4	_	0.033	40	- 34	0.65	0.069		
1	2	0.60	0.000	0.055	40	81	9.76	9,065	0.075	0.000
4	1	0.86	-	0.000	40	21	0.58	0.074		
2	1	0.25		0.033	40	10	2.00	0.153		
2	1	0.5	0.23	0.065	40	60	358	9:129	0.117	0.038
2	1	6.8	9.48	0.304	40	81	2.03	0.154	0.136	5520
1	1	0.25		0.033	40	BI.	2.03	0:154		
			0.00							
1	1	9.5	6.33	0.065	40	13	153	0.126	0.1/(1	0.000
1	1	6,8		0.304	-40	90	2.25	0.167		
1	1	0,0		0.033	40	127	3.38	0.216		
3	3.	6.5	UTIL	0.068	AD	180	450	5385	0.248	6.631
1	1	6,8		0.092	40	117	458	0.301		
1	1	0.3		0.005	40	134	3.35	0.327		
3	2	0.5	0.115	0.058	40	334	4.53	0.392	0.252	0.029
1	2	- 68		0.062	10	117	458	0,302		
+	1	0.48	100	0.032	40	.189	421		100	555
4	1	0.60	0.012	0.047	40	428	4.45	9.388	0.243	0.017
4	1.0	0.85		0.061	40	182	455	9.254		
4	2	0.45		0.092	40	369	423	2500	15/2/1	1 1200
4	2	0.60	0.012	0.047	40	383	4.50	0.292	0.246	0.038
4	2 .	0.85		0.061	40	188	4.70	0.302		
5	1	11000	No. of London	0.000	40		960	110000	J. J. Colon .	2 VOIII
5	1		0.043	0.000	40		0.00		0.256	0.011
5	1	0.7		0.090	40	334	4.65	2,110		
5	2			0.000	40	_	000			
3	2		0.043	0.000	40		0.00		0.261	0.011
5	1	0.7		0.090	45	195	4.95	0.336		200
15 F	Distancia	distances		- 100		-1010	220	9200		
Inre	desile arita	trave	q	q.			Unimetro	0.296		
			6.0063	0.0004			afa	60		
			0.0185	0.0029			04	0.019		Q = Cdb
	0.040		0.0008	0.0006			() teorico	0.039	750	
- 82			0.0176	0.0000			C INCHILL	2.420		
- 8			6.000	0.0(1)						
	2.88		0.0011	9,0008						
110	4.00		Itetal	0.036 m						

Tabla 23.

Càlculo del caudal igual a 25 m3/s para vertedero 2 que representa el rio Toltén.

			TOMETRO	CORREN	MEDIO DE	AUDAL POR I	CULO DE C	CAL		
						WERTAS	OWPUERTAS		2	ertedero
		85013-1	Heice Coeficientes		4=),)D	$\frac{\Sigma(q_1+a_2)}{2}$	-	05/11/2022 13:00	echa:
		0.0553	1	**	4	10.7	- 2	. Q=	2120	ncha =
		0.0411		Į.	£+				0240	nimetro=
			súmero de rave	U	- 0.0	+ 0.0421	0.0553N	V =	61,540	ranso u-
9	Vann	v	M	U	1	Y parcial	Y (m)	Factor altura desde abaje	Medicián	Punto
			0.00		43	0.000			-1	1
0.00	0.142	0.141	2.15	86	43	0.030	0.054	0.55	1	1
		0.171	2.38	GB.	43	0.043		0.8	1	1
		1117759	0.00		40	0.000		0	7	1
0.00	0.146	0.148	2.28	91	40	0.033	0.054	0.55	2	1
		0.172	2.35	94	40	0.043		0.8	2	1
		0.243	3.63	185	43	0.432		0.3	1	2
0.00	0.235	0.252	3.80	192	40	0.053	0.105	0.5	1	2
	U.Secup	0.265	4.08	151	40	0.084		0.8	1	2
		0.245	3.68	147	40	0.032		0.3	2	2
om	0.240	0.259	3.98	157	40	0.053	0.105	0.5	2	2
0.00	1.00	0.273	4.18	167	40	0.084	(COCCO)	0.8	2	2
		0.348	5.53	221	43	0.031	_	0.35	1	3
0.00	0.329	0.360	5.75	138	40	0.048	0.098	0.55	1	3
-576		0.374	6.00	240	40	0.070	3777	0.8	1	1
		0.345	5.48	219	43	0.031	_	0.35	2	3
0.00	0.330	0.357	5.70	228	40	0.048	0.096	0.55	2	3
	4.000	0.312	6.15	246	40	0.070		0.8	2	1
		747.00	0.00	-	41	0.000	_	- 12	1	4
0.00	0.246		0.00		43	0.000	0.043		1	4
		0.298	4.63	385	40	0.030		6.7	1	4
			0.00		41	0.000			2	4
0.00	0.249		0.00		43	0.000	0.049		2	4
		0.342	471	186	40	0.030		0.7	2	4
		Carino.				4.447	9006		7-91	3
								distancia	Distancia	
		0.243	Lisknetro			.0	q	tramo	desdeprilla	Trame
= 0.8	0	60	dta			0.0003	0.0078	0.067	0.017	1
		0.829	Cd.			0.0088	0.0249	0.218		2
		0.023	Q teorics			0.0076	0.0290	0.781		3
		-	0/100000107			0.0073	0.0006	0.368		4
						0.0062		1.166		5
					th-	0.025 m	total			

Tabla 24.

Cálculo del caudal igual a 23 m3/s para vertedero 2 que representa el rio Toltén.

		CAL	ICULO DE C	AUDAL POR	MEDIO DE	CORRE	TOMETRO			
erieders eria ora:	09/11/2022 13:45		$(q_1 + q_2)$		$\mathcal{S} = \frac{0}{\Gamma}$		Helice Coeficientes	85018-1		
nche +	2.300	n V =-	2					0.0553		
inimetrio-	0.240	n w	0553N +	0.0474	q = V.T		b	0.0411		
		7,000,000	.0555m ±1	0.0421			U: nimero de rev	oluciones :		
Punto	Medición	Factor altura closde abaje	Y(m)	Ypartial	1	U	N	٧	V prore	4
1	1			0.000	40		0.00	0,042		
1	1	0.5	500.0	0.031	40	30	6.78	0.085	0.079	0.00
1	10	0.80		0.053	40	-34	0.85	0.089		
1	2			0.000	40		0.00	0.042		
1	ž.	4.5	0.062	0.031	40	34	0.85	0,089	0.018	9,00
1	2	0.85	50000	0.053	40	*	0.90	320.0	100000	11111
2	1	6.3		0.033	40	71	1.95	0.349		
2	1	0.5	0.105	0.055	40	85	2.13	0.193	0.159	2.01
2	1	6.8		0.067	-40	125	2.88	0.30t		
2	2	0.3		0.033	40	71	1.80	0.142		
2	2	0.5	0.109	0.055	40	96	2.25	0.167	0.160	0.01
2	2	0.8		0.057	40	120	3.00	9.209		
3	1	0.35		0.033	40	178	4.45	0.288		
3	1	0.55	0.094	0.052	40	183	4.58	0.295	0.214	0.02
- 3	1	0,8		9,875	40	199	4.99	0,337		
3	2	0.35		0.033	40	179	4.48	0.290		
3	2	0.55	0.094	0.052	40	330	4.70	0.368	0.218	9.02
3	2	6.8		0.075	40	204	5.30	0.324		
4	1			0.000	40		0.00			
4	1	0.0	9.05	0.030	40	138	1.6	9.233	0.208	9.03
4	1	0,8		0,040	45	163	408	0.267	1000000	
4	2.			0,000	40		0.00			
4	2	0.6	4.05	0,030	40	133	348	0.234	0.209	0.03
4%	2	6.6		0.040	40	165	408	9.267		
	Distancia	distancia								
Tramo	desdeorila	trave	- 3	Q			Unimetro	9.240		cal
- 1		0.084	0.0048	0.0002			do	60	0.4	Cav
2		0.218	0.0174	0.0026			Cd	0.813		
. 1		0.281	0.0200	0.0061			Q teorico	0.023	mil/s	
4		0.368	0.0104	0.0067						
5	2.1	200000		0.0003						
		1	I total	0.023 H	dA					

Tabla 25.

Cálculo del caudal igual a 12 m3/s para vertedero 2 que representa el río Toltén.

			TOMETRO	CORREN	MEDIO DE	NUDAL POR	CULO DE CA	CAL		
						IN ENTAS	DWPUERTAS A		1	ertedern
		85018-1	Helice	11		- 10	2/- 1		10/11/2002	edu:
			Coeficientes	Ŧ	N =	$q_2)\nu$	$=\frac{\Sigma(q_1+q_2)}{2}$	0	12:25	ion:
		0.0553	a	No.			- 2	n Y	1.660	echo=
		0.0421	b	V.Y.	6=	+ 0 0421	0.0553N	n v =	0.146	inimetro:
		duciones:	numero de revo	Ü		100000	4.000011	, Alies		
п	Vpm	٧	N	U	T	Ypardal	Y(m)	Factor altura desde abajo	Medición	Punto
			0.00		40	0.000			1	13
7 01	0.017		0.00		40	0.000	8,000		1	1
200	10.00	0.096	0.98	H	40	0.090	100000	0.8	1	1
			0.00		40	0.000		0	2	1
3 0	0.083		0.00		40	0.000	8.038	0	2	1
		0.304	113	15	10	0.030		0.8	2	1
ec m	6-0990	0.243	163	145	40	0.029		0.35	1	1
5 0.	0.246	0.263	4.00	160	40	0.046	0.063	0.55	1	2
		0.305	475	190	40	0.066		0.8	1	1
		0.245	168	147	40	0.029	1900	0.35	2	2
9 0	0.249	0.258	190	155	40	0.046	0.083	0.55	2	2
		0.314	4.93	197	40	0.065		0.8	2	2
			000		40	0,000			1	3
4 0	0.134	0.089	0.85	34	40	0.090	0.067	0.45	2	3
		0.209	103	121	40	0.054		0.8	- 10	3
			0.00		40	0.000		. 0	1	3
0 0	0.130	0.093	0.93	31	4	0.030	0.067	0.45	2	3
		0.219	3.20	128	40	0.054		0.8	1	3
							0.023	1017		4
								distancia	Distancia	
		0.345	Linimetro			Q	9	trano	desde arilla	Trans
Q = C		60	afa			0.0001	0.0030	0.085		- 1
		0.819	CI			0.0028	0.0206	0.238		7
	m3/s	0.007	Q teorico			0.0041	0.0085	0.231		3
						0.012 m		1.105	1,658	4

Tabla 26.

Cálculo del caudal igual a 12 m3/s para vertedero 2 que representa el rio Toltén.

			TOMETRO	CORREN	MEDIO DE	UDAL POR	CULO DE C	CAL		
		85038-1	Helice Coeficientes	į.	N =		$\Sigma(q_1+q_2)$	0 =	2 10/31/2022 13:20	ertetlero echa: osa:
		0.0553		7	0.5		2	m V-	1.910	ndia =
		0.0421	2	ev.	V =	0.0421	0.0553N	n v -	0.146	nimetro=
		Accres	: número de revi	J.	,-	0.0761	0.033311			
	V prom	v	N	¥	1	Yparcial	Y(m)	Factor altara desde abajo	Medición	Punto
			0.00		40	0.000			1	1
000	0.083	5,000	0.94	36	40	0.029	0.049	0.6	1	1
		0.108	1,20	48	41	0.039		0.8	1	1
		-100	0.01		4)	0.000		0	7	1
0.00	0.081	0.086	0.80	32	43	0.029	0.049	0.6	2	1
		0.113	128	51	40	0.039		0.8	2	1
		0.153	2.00	80	40	0.029		0.3	1	2
0.01	0.176	0.212	3.08	123	40	0.058	0.096	0.6	1	2
		0.218	3.18	127	43	0.071		0.8	1	1
0.80	woskini	0.143	1.33	73	40	0.029		0.3	2	2
001	0.173	0.214	310	124	40	0.058	0.096	0.6	2	2
		0.220	3.23	129	40	0.077		0.8	2	2
		0.132	1.63	65	40	0.031		64	1	1
0.00	0.117	0.111	1.25	50	40	0.047	0.078	0.6	1	3
		0.139	1.75	70	40	0.061		0.8	1	1
		0.136	178	68	40	0.031		0.4	2	3
0.00	0.119	0.111	1.25	55	40	0.047	0.076	0.6	2	1
		0.142	1.90	72	43	0.062		08	2	3
		12221	0.01		43	0.000			1	4
0.00			0.00		40	0.000	0.035		1	4
		0.042	8.01	0	40	0.030	Charles of	0.85	1	4
		SCEUTE.	0.00		40	0.000	_		2	4
0.00			0.01		40	0.000	0.035		2	4
9233		0.042	0.00	4:	40	0.030	Constant	0.85	2	4
		113,031					0018	15:115		5
								distancia	Distancia	577
		0.146	Unimetro			Q	4	tramo	desde critis	Trame
= Cdh	0	60	alfa			0.0001	0.0040	0.055	0.035	1
		0.819	Co			0.0025	0.0067	0.238		2
	m3/s	0.007 c	Qteorica			0.0006	0.0092	9.281		3
	200000	1000	2046/2002			0.0051	UNIONI P	1315		4
						0.012 m	total	192		

Tabla 27.

Cálculo del caudal igual a 60 m3/s para vertedero 2 que representa el río Toltén.

rtadore	1		COMPULLITAS	CERRADAS						
dec	10/11/3022		$\frac{\Sigma(q_1+q_2)}{2}$	₂)D	$N = \frac{\sigma}{\tau}$		Helice Coefficiences	85818-1		
cho-	1.710	n Q	2					0.0533		
enemo-	0.300	m st	0.0553N	0.0424	$q = V_{i,j}$		b	0.0421		
			0.42234	7 0.0461		-	nimeio deren	duciones		
Porto	Midición	Factor oltora desde obaja	Yout	Yparcial	1	U	н	٧	Various	- 4
1	1	8.36		0,029	40	160	400	0363		
1	3	0.65	0.084	0.055	10	177	4.43	9.287	0.249	0.02
1	1	0.05		0.071	45	386	4,20	0.274		
1	5	0.36		0.029	40	167	4.05	0.266		
1	2	0.68	0.084	0.055	40	176	440	0.385	0.249	0.02
10	2	0.85		0.071	40	387	4310	9273		
2	1	0.25	20000	0.034	40	211	5.30	0.335	Numero	15359
5	3	0.5	0.114	0.965	40	237	5.99	0.370	0.351	0.04
2	1	0.8		0.397	40	568	670	0.413		17.01
2	1	0.25		0.095	雄	308	5.30	0.330		
2	2	0.5	0.114	0.067	40	238	595	0.172	0.347	0.04
2	2	6.8		9,197	40	263	6.58	0.406		
3	1	0.25		0.090	49	252	630	9.350		
1	1	0.5	0.119	0.060	46	283	7.08	5.433	0.353	0.04
3	1	6.8		0.095	46	381	7.30	0.435		
3	2	0.25		0.093	40	257	6.43	9.397		
3	2	6.5	0318	0.060	40	281	7.63	0.430	0.554	0.04
3	1	0.8		0.085	40	211	7.08	0.433		
4	1	6.4		0,029	40	253	633	55.56	0.000	1 1 1 2 1 2
4	1	0,6	0.013	0,044	40	252	7.30	0.446	0.379	0.02
4	1	0.8		0.058	雄	251	7.33	0.487		1715
+	2	0.4		0.029	40	348	630	233	4366	1973
4	2	0.6	0.013	0.046	40	259	7.33	0.447	0.382	0.02
4	2	6.8		0.058	40	291	7.45	0.454		
	1			0.000	40		0.00			
5	1		0,04	0.000	40	000000	0.00		0.351	0.00
5	1	6.8		0.032	40	387	7.38	0.435		
*	2		222	0.000	40		0.00		Water N	250
5	2	68	0.04	0.000	40	287	7.18	0.439	0.351	0.03
-		9.9		4435	-	000	nae-	97400		
	Distancia	distancia								
Tome	desde arilla	trame	- 9	9			Linimetro	0.380	99	Q = C#
10		0.306	9.0009	9.9911			afa	60		6.7.58
1		0.238	0.0468	0.0081			CH .	0.029		
3		0.281	0.0469	0.0132			Q tuories	0.064	m3/I	
339		0.368	8/0278	00137						
		1.715		0.0238						
8.0										

Tabla 28.

Cálculo del caudal igual a 71 m3/s para vertedero 2 que representa el río Toltén.

13 0,0		0.0533	Coefficient es		$\pi = \frac{1}{1}$	00	$\Sigma(q_1+q_2)$, Q=	10/11/0022 12:40 3:210 (echac lore: acho =
13 0,0		0.0421	h nimeto de coso		127		0.0553N	4	0.360 /	nimetro-
	Vpm	¥	N.	w	7	Vperdal	Y(m)	factor atture cleade abajo	Medidde	Porte
		9,000	043	11	40	0.034		0.3	1	1
a 00	0.013		0.31	13	40	0.068	0.134	6.6	30	1
π : 00		9,942	999	- 1	40	0.091		6.8	1	1
N 06		0.060	233	11	40	0.034		0.3	2.0	4
	0.093		0.38	19	40	0.069	0.114	6.6	2.	10
		0,042	0.00	- 0	-40	0.091		6,4	2	1.
29 82	200	0.050	0.35		40	0.031	THE P	6.2	1	1
8 00	0.058	0.061	0.35	14	40	0.029	0.157	6.5	1	2
		0.071	0.53	21	40	0,125		0.8	1	2
		0.049	0.13	3		0.031	X150	0.5	2	2
14 0.0	0.061	0.043	0.18	15	40	0,009	0.157	0.5	2	2
		0.078	0.65	76	40	0.125		1.5		2
11 00	0.131	0.111	0.85	58 56	40	0.039	DIA.	6.5	1 1	3
400	0.131	0.209	153	121	45	9.115	O'Dear	68	1	3
		0.002	293	AT	40	0.036		0.25		1
5 0.0	0.135	0.115	133	53	AS	0.072	0.144	0.5	2	3
2. 60	0.132	0.213	305	123	40	0.135	U.Law	5.8	2	1
		0.263	195	158	40	0.000		43	1	1
15 0.0	0.225	9.135	5.30	732	40	0.060	0.2	0.6	1	4
	- was	0.345	3.41	230	40	0.790		6.8	î	4
		9.261	3.95	158	40	0.030		5.3	2	4
6.0	0.268	0.143	5.45	110	40	0.040	464	0.6	2	
		0.355	5.65	326	46	0.083		4.9	1	4
		9,302	420	181	40	0,000		2.4	1	5
0.0	0.285	0:123	5.05	308	40	0.045	0.01%	6.6	1	2
CO TON	meach.	0.132	5.25	233	40	0.060	16000	0.8	1	5
10 30	1583	0.302	470	189	- 40	0.000	1000945	0.4	2.	1
0.0	0.289	0.330	5.20	308	40	0.045	0.075	4.6	2	8
200	0.0000000	3.141	5.40	735	46	0.060	VOLES!	- 6.8	2	5
			0.00		40	0.003			1	4
17 0.0	0.017		0.00		40	0.003	0.011		1	
F2. (25)		0.048	(0.30)	4	48	9,000		0.9	1	400
20 00	72835		0.00		40	0.000	933 E		2	6
18 0.0	0.018	22722	6.00	12	40	8,860	0.011	24	2	
		0.049	4.13	- 5	:40	0.090		69	2	6
								distance	Distancia	
		0.980	Intretto			13	- 0	trans	desde aritis	Tone
Q=08	10	60	afa			0.0005	0.0050	0.357		1
		0.829	69			0.0018	8.0094	0.238		- 2
	mil/i	0.064	Q teorisp			0.0040	0.0101	0.281		
						0.0008	0.0287	0.368	1.054	4
						0.0208	8.6215	0.827		5
						0.0947		3.228	5,000	. 6

Tabla 29.

Cálculo del caudal igual a 68 m3/s para vertedero 2 que representa el río Toltén.

dere	11/11/2022		DIPUNTAS				Helics	RS015-5		
	12:50		$\frac{\Sigma(q_1+q_2)}{2}$	-)D	1000	a	Coeficientes	Maria 2		
p.=	5.255	. Q =	-147 . 4	21.00	N =	T		0.0000		
wtxo=	0.206	Pr .			9-	V.V	b	0.0411		
		V -	0.0553N	0.0421	20,000		: name to de me	shad plant.		
unto	Medicin	Factor attura clande abaja	Y(m)	Ypardal	Ť			¥	Ypar	9
1	1	0.25		0.032	14011	30	0.50	0.070		
1	1	0.6	0.126	0.075	40	- 1	0.30	0.048	0.053	0.000
1	1	6.8		0.10t	40	- 5	0:13	0.049		
1:	2	0.25		0.032	40	21	083	0.077		
1	2	64	0136	0.076	40	-4	0.30	0.048	0.054	0.00
1	2	6.8		0.301	40	- 4	0.35	0.050		
2	10	6.2		9.094	40	- 25	0.68	0.077		
2	1	0.5	0.07	0.065	46	- 34	0.30	0.041	0.063	0.01
2	1	61		0.136	AD	21	0.58	0.074		
2	2	6.2	-	0.094	40	26	66	0.078		
2	2	0.5	0.37	0.085	45	4	0.25	0.050	0.065	0.03
2	2	0.0		0.136	46	24	0.63	0.075	2000	
1	1	0.2		0.032	40	- 5	0.13	0.049		
3	1	6.5	0.159	0.080	40	25	0.63	9,077	0.066	0.02
3	1	0.8	1000	0.127	40	21	0.68	0.079		100
3	3	0.2		0.092	AT	-1	0.30	0.048		
3	2	6.5	0.159	0.063	40	71	0.68	0.079	0.067	0.01
3	2	0.8	Water .	0.127	40	29	679	0.082	www.	
4	1	6.3		0.096	45	- 86	2.25	0.162		
4	i	0.5	6.32	0.067	40	107	2.55	0.183	0.173	0.02
4	î	4.8	91.00	0.096	40	125	3.33	9.215	0.174	9.66
4	2	6.3		0.036	40	- 80	2.00	0.153		
4	2	6.5	4.07	0.060	40	108	2.70	0.191	0.178	0.02
1	2	6.8	200	0.096	40	136	3.40	0.230	0.1.18	
5	1	0.36	_	0.034	40	209	523	0.331		
5	1	0.6	0.096-:	0.058	40	115	5.38	0.335	0.318	9.09
-	1	4.6	U.Urre	0.077	40	342	6.05	5377	0.518	9.49
_			_	10000000	40					
5	2	0.36	6.600	0.094		205	5.33	0.326	White	10.00
	2 2	6.6	0.096	0.058	40	220	5.50	0.346	0.318	0.03
		- 11	_	272022	_	240	6.03	0.381		
	-1	600	aista é	0.000	40	1400	0.00	99.59	white.	W.66
6	1	0.56	0.056	0.031	40	145	163	0.243	915.0	0.01
6	1	6.8		0.045	40	160	4.00	0.263		
•	2	1000	WEST	0.000	40	0.000	000	2000	Transaction of the last of the	200
	2 2	0.58	0.054	0.031	40	347	3.68	9345	0.219	0.01
6	2.	0.6		0.045	40	183	4.08	9267		
	Distancia	distancia								
one	desde erila	trave	0	Q.			Unimetro	0.395		
1	0.213	0.213	0.0005	0.0007			afo	60	1	2 - CW
2		0.238	0.0109	0.0021			Cd	3.819		- 1
3		0.281	0.0105	0.0030			Q teories	9.080	m3/1	
4		0.365	0.0213	0.0058			-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
5	1.927	0.827	0.6305	0.0013						
6		1.007	0.0122	0.0215						
7		2.221		0.0135						
	- 1		Literal	0.050 m	41.					

Tabla 30.

Cálculo del caudal igual a 103 m3/s para vertedero 2 que representa el río Toltén.

rtedere diai	11/11/1022		COMPLETAS				Helice	85818-1		
en:	11:25	920	$\frac{\Sigma(q_1+q_2)}{2}$	2)D		0	Coefficientes			
cho+	5,080	m Q =	2		K -	7		0.0553		
emetro+	0.395	m 41-	n array			- N	b	0.0411		
		v =	0.0553N	+0.0921	q = 1	4.5	U: número de rev	ductores.		
Porte	Medición	Factor altura desde altoja	A (ia)	Ypercial	T	W	N	٧	Урган	
1	30	0.35		0.032	40	139	2.98	0.307		
1	1	0.56	0.092	0.051	40	340	3.50	0.236	0.215	0.020
1	1	6.8	000000	0.074	40	164	430	0.269	1.15.00	9 10000
40	2	0.35		0,032	40	121	1.08	0.232		
1	2	0.58	0.092	0.051	40	10	3.55	0.238	0.217	9.030
- 3.	1	4.8		0.008	40	382	4.05	0.266		
2	1	0.25		0.099	40	239	5.98	0.373		
2	1	0.55	634	0.077	40	284	7.30	0.435	0.392	0.053
2	1	6.8		0.132	40	290	7.43	0.451		
2	- 2	0.25		0.095	AD:	241	6.03	0.375		
2	2	0.55	0.32	0.077	60	339	4.90	0.428	0.363	0.05
2	2.7	6.8		0,132	40	299	7.48	0.455		
30	1	0,25	222-00	0.032	40	287	7.38	0.439		5 5/5/0
3	1	0.55	0.118	0.070	40	331	7.78	0.472	0.441	0.05
1	1	0.8	200	5,152	40	133	8.33	0.502		9 15 150
1	2	0.25	7000	0.032	46	291	7.28	0,446		
3	2	0.58	0.016	0.070	40	130	7.75	0.471	0.441	0.05
1	2	0.0		0,102	45	129	2.23	0.457		
4.0	1	6.4		0.033	40	170	6.79	9.435		
4.3	1	0.6	0.082	0.040	40	175	6.81	0.422	0.364	0.00
4	1	6.8		0.066	45	251	7.28	5.444		
4	2	0.4		0.093	40	220	4.75	0.435		
4	2	0.6	0.082	0.049	40	138	6.55	0.425	0.385	0.05
4	2	6.8		0.065	40	252	7.30	0.445		
5	1	927	1000	0.000	46	-	0.03	Share	- Sandra	
5	1	0.6	0.054	0.032	45	332	8.30	0.501	0.433	0.02
5	1	6,8	00000	0.043	40	348	8.70	9523	11000	10000
5	2	28	- CONTROL	0.000	40		0.00	0333		V 1500
5	2	0.6	0.054	0.032	40	337	843	0.508	0.438	0.02
- 8	2	6.8		0.043	40	151	1.83	0.537		
	Distancia	distancia								
Torse	desde utile	trame	9	Q			Linkmetou	0.295		0 = 00
1	0,238	0.158	0.0130	0.0014			off or	60		U = CM
- 7	0.376	0.238	0.0549	0.0089			Cir	0.819		
- 3	0.657	0.781	0.0585	0.0056			() teorico	0.000	m1/4	
1.34	1.025	0.368	0.0315	0.0162						
1	1.850	0.827	6.0235	0.0028						
. 6	5.08	3.238		0.0980						

Tabla 31.

Cálculo del caudal igual a 18 m3/s para vertedero 2 que representa el río Toltén.

		CAL	CULO DE C	AUDAL POR	MEDIO D	CORREN	TOMETRO			
echedero echo: lora: echo =	13/11/2022 15:3000 PM 19	0 =	$\frac{\Sigma(q_1+q_2)}{2}$	17.535	к =	0 T	Helice Coeficientes	85018-1 0.0553		
ninstro-	0.200	n V=	0.0553N	0.0421	9-	V.Y	b	0.0421		
							II namero de revi	fucenes.		
Pomp	Medición	Fector atturn clende abeje	You	Ypental	1	U	N	. W	Varian	- 4
1	1			0.000	40		0.00			
1	1	0.63	H047	0.001	40	MI.	2.61	0.176	0.139	0.00
3	1	0.8		0.000	40	dis	131	0.133		
1	2			0.000	40		0.00			
3	2	0.65	8.047	0.031	40	286	2.40	0.175	0.129	0.00
10	2	6.8		0.098	40	- 51	1.28	0.113		
2	1	0.3		0.020	40	131	140	0.333		
2	1	0.55	0.097	0.053	40	381	4.03	0.385	0.241	0.02
2	10	0.8	The same	0.078	45	129	4.48	0.250		200
1	Z	9.3	1000	0.029	40	138	3.65	9.233	P00000	1000
2	2	0.55	0.097	0.053	40	394	4.30	9.289	0.243	9.82
2	2	6.6		0.078	.40	179	4.48	0.250	11001000	
3	1	0.36		0.029	40	393	4.83	0.309		
3	1	0.5	0.083	0.042	40	233	5.33	0.337	0.299	0.02
3	1	6.8		0.065	40	230	5.40	0.341		
3	2	0.55		0.029	40	181	4.75	0.305		
2	2	0.5	0.025	0.042	40	231	5.28	0.539	0.256	0.02
3	2	5,6		0.066	40	237	5.43	0.342		
45	1	11/2	1005	0.003	46		0.00	(0.00	15.0000	1 1000
4	1		0.015	0.000	標		0.03		0.119	0.00
4	1	0,9	ANT O	0.032	40	109	2.48	0,179	1000	540
4	2			0.000	-40		4.00	11.77.77		
4	2	0	0.035	0.000	40		0.00		0.144	9.09
4	20	6.9		0.032	40	304	2.60	0.185		
	Distancia	distancia								
Inne	desde urilla	Irano	q	Q.			Unimetro	0.200		
	1 0.058	0.038	0.0061	0.0002			alfa	60		= Cab
	2 0.296	0.238	0.0235	0.0035			Ci	5.819		
	3 0.577	0.281	0.0248	6,0068			Q teorica	0.015	mMi	
100	4 0.945		0.0049	0.0055					0.00	
8	5 15	0.935		0.0024						
			intal.	0.018 w	άΛ					

Tabla 32.

Càlculo del caudal igual a 14 m3/s para vertedero 2 que representa el río Toltén.

			- CHILLING		miculo DE (VUDAL POR		-		
						DRRADAS	DIMPUERTAS	0	1	ecedere
		85018-1	Helice						11/11/1002	echu;
			Coeficientes		. 0)D	$\Sigma(q_1+q_2)$		38:35	lone
		0.0553			$W = \frac{1}{T}$		7	n Q =	2.950	ede-
		0.0411	b		q = 7.7	0.0424	n organ	n	0.200	nimetro
		Auciencs	nimero de revo	U		0.0421	0.0553.V -	V = 1		
6 0	Удент	٧	H	10	7	Yperdal	Y (re)	Factor diture closele aboje	Medicin	Porte
			0.00		40	0.000			1	3
.0.0	0.000		0.00		40	260.0	0.063	0.5	3	2
			0.00		40	0.053		0.6	1	1
0 33	1000		0.00		40	0.000		0.	1	1
0.0	0.000		0.00		40	0.032	0.063	0.5	2	1
			:000		40	9.050	0.000	6.8	2	1
			0.00		40	5.333		0.3	3	2
0.0	(1.000		0.00		46	0.055	0.100	0.5	3	2
			0.00		40	0.067		6.8	1	2
			0.00		40	0.033		6.3	2	2
0.0	0,000		0.00		40	0.055	0.100	0.5	2	2
			0.00		10	0.087		0.8	2	2
		0.313	128	-51	40	0.093		0.35	1.	1
10.0	0.137	0.365	2.25	89	40	0.051	0.053	0.55	1	3
-	- 11	0.183	2.55	102	40	0.074	1000	0.8	2	3
- 117		0.122	141	51	40	0.033	201234	0.26	2	- 1
0.0	0.145	0.172	2.35	94	40	0.051	0.053	0.56	2	3
		0.193	2.73	109	40	0.074		6.8	2	1
0.0	S-YOUT	2277	0.00		40	0.000	90,92	- 22	1	4
0.0	0.207	0.227	3.53	141.	40	0.021	0.052	0.6	1	4
		0.355	3.85	154	40	0.042		6.8	1	4
			0.00	_	40	0.000			2:	-1
0.0	0.206	0.232	3.43	137	40	0.091	0.052	0.6	2	4
		0.363	4 00	380	40	0.042		68	1	4
								distancia	Distancia	
		0.200	Linknetto			Q.	9	trave	desde arifla	Tone
Q = C		60	afa			0.0000	0.0000	0.1		1
		0.819	Cit			0.0000	4.0000	0.238		2
		0.015	() teories			0.0018	0.0130	0.281		3
	- Angel	W-11.3	THE STREET			0.0044	9.0107	0.368		4
						0.0073	SUBSECUTION STATES	1.362		
					130	0.014 m	total		3 373	

Tabla 33.

Cálculo del caudal igual a 129 m3/s para vertedero 2 que representa el río Toltén.

			TOMETRO	DRREN	MEDIO DE C	UUAL PUE	COLO DE CA	CAL		
		85016-1	Helica			O TOTAL STREET	DIPUERTALA		11/11/0022	estedora edia:
			Coefficientes		$M = \frac{M}{2\pi}$	D	$\Sigma(q_1+q_2)$	0 -	12:30	OFF:
		0.0553			- 7	-	2		5.515	etho+:
		0.0411	b		$q \approx V.T$	0.0421	0.0553N +	m v-v	0.445	remaine:
		Audenti-	name to de rayo	t/		0.0421	1.000001			
- 14	V prove		н		7	Yperdal	YOU	Factor attura clesde alleja	Medican	Poste
		5347	190	76	88	0.093		4.3	3.	3.
0.0	0.156		2.40	.56	40	0.055	8.31	6.5	1	1
	2001 202	0,183	2.55	352	40	0,088		9,8	1	1
		0.149	193	77	40-	0.033		0.3	2	1.
0.0	0.158	0.162	2.53	321	40	0.055	0.11	0.5	1	2
		0.384	2.58	385	40	0.088	2000	6.8	1	1
		0.357	570	220	40	0.011		0.2	1	- 1
7.0	0.362	0.381	6.33	249	40	0.077	0.353	0.5	1	2
	1115	0.603	6.90	360	40	0.122	1000000	6.8	1	2
		0.500	A28	III.	40	110.0		6.2	2.	1
0.0	0.408	0.388	6.25	250	40	0.077	0.113	0.5	2	2
		0.406	658	268	40	0.122		6.8	2	2
		0.505	4.38	135	40	0,033		0.25	4	-1
0.0	0.500	0.545	9.10	354	40	0.075	0132	058	3	3.
		0.552	121	101	40	0.306		SA	1	400
		0.304	635	334	40	0.033		0.23	2	3
0.0	0.501	0.549	9.18	367	40	0.073	0.332	0.55	2	3
		0.554	0.25	120	40	0.300		6.0	2	1
		0.435	6.75	270	40	0.033		0.35	1	4
0.0	0,436	0.462	7.60	304	40	0.052	0.095	0.55	3	4
		0.496	8,20	138	40	6.87G		4.8	4	
		0.435	4.75	330	A0-	0.043		0.36	3	1
0.0	0.418	0.467	7.68	307	40	0.052	0.095	0.50	2	4
		0.501	830	111	46	0.076		6.6	1	4
		0.511	8.48	-339	40	0.031		0.45	100	5
0.0	0.468	0.355	9.28	171	40	0.046	0.068	0.65	1	4
		0.536	413	157	40	0.054		6.8	1	1
1 0-0		9536	8.58	343	40	0.031	Q-27-1-1	0.45	2	5
0.0	0.411	0,559	9.35	374	40	0.049	0.068	0.65	2	5
		0.536	8.93	357	40	0.054		6.8	1	- 5
			10000	-		30000	0.027	redition.	400/1/00/	
								distancia	Dictorcia	
		8.445	Unimetto			Q.	q	trave	desde orita	Tone
Q = Ca	70	90	afe			0.0014	0.0175	0.357	0.361	1
g-ca	-53	0.019	DE			0.0093	0.0589	0.258	0.405	- 2
	ms/i	0.008	Q feorite			993.78	0.0961	0.281		
	3.00					0.0194	0.0006	0.369		100
						0.00%	0.0319	0.827	1.881	- 5
						0.0515	1.00	5.219		7
					4/2	0.129 m	tertal			

Tabla 34.

Cálculo del caudal igual a 49 m3/s para vertedero 2 que representa el río Toltén.

						-managain	DEPUNCTAND		1	etredete
		85016-1	Helica						30/11/2002	
			Coefficiences	r.	M =	10	$\Sigma(q_1+q_2)$	0 =	12:40	DERI.
		9.9503			- 0.00		2	н .	5.210	nche+
		0.0011	h	P.	V 0.1	0.0421	0.0553N -	• V =	0.360	renetur
		SEASON ST	name to de reso		04.000		**********			
m .	Vyra	٧	*	U	1	Yparcial	York	Factor Stress chocks obeje	Medición	Putto
		0.066	643	11	40	0.094		6.3	1	4
3 0	0.061	0.063	0.30	15	40	0.060	0004	0.6	3	1
		0,042	0.00	. 0	40	0.091		5.8	-1	1
7 6	11.00.1	0.066	0.35	15	40	0.094	0.000	6.5	2	43
	11.00	0.542	0.00	- 10	46	0.091	11.114	6.0	2	1
		0.050	635	-1	A0	0.001		6.2	-1	1
	0.098	0.063	635	14	-	0.029	0.197	0.5	i	2
	0.004	0.071	640	20	400	0.336	MARK	6.8	20	-
-	5	0.049	638	-3	400	0.001	22.0	0.2	- 1	1
2 0	0.061	0.063	0.39	15	40	0.079	0.157	0.5	2	2
		0.076	0.60	28	10	0.126	1100	0.8	2	2
		0.068	0.87	- 31	10	0.036		0.25	- 1	- 2.
1 0	0111	0.333	3.35	66	146	0.072	0.144	6.6	3.	3
		0.309	340	121	46	0.123		6.8	1	3
		0.095	0.98	11	40	0.095		0.25	2.7	9.0
1	(1111	2.335	1,33	-50	40	0.072	DOME	6.5	2	4
200	1,10000	0.213	3.05	332	40	9.125	967.1	0,9	2.	1
		0.261	3.95	338	46	0.000		6.3	4.0	
5 0	0.285	9335	5.90	233	40	0.000	82	0.0	1	4.5
		0.345	3.48	7.95	10	0.080		6.6	2	4
		9.263	.490	128	60	0.083		6,0		4
0 0	0.250	0.343	5.45	338	40	0.060	30.7	0.6	2	
		5335	1,61	220	-00	0.090		2.8	3.	4
25. 12	100	0.102	4.70	188	40	0.087	242200	6.4	83	
5 0	0.285	0.321	3.23	230	46	0.045	0.07%	66	1	
		0.302	4.70		40	0.090		0.4		
	0.29	2.492	4.20	188	100	0.045	nors:	6.6	2	1
D. 2	14.10	0.161	5.40	236	46	0.060	maria-	6.6	- 2	8
		2214	600		40	0.000		77.	1	6
7 6	0.037		0.00		40	0.000	0.013		2	
	-	0.048	0.00	- 4	40	0.093	******	0.9	1	
			0.00		40	0.001			2	
8 0	0.038		500		40	0.000	0.003		1	6
		0.049	0.33	- 1.5	48	0.000		6,9	1	4
								100000	- 23 E 0 L	
								distancia	Dictorcia	
		0.360	Unimetre			0	9	trave	Months of the	Tierre
0=0		60	are			0.0000	0.0059	0.387		1
		0.819	E4			0.0018	3,0098	0.308		- 1
	menta.	0.004	II teorisia			20040	2.0191	0.281		
						0.0008	9.0297	0.358		- 1
						9-2208	9,0215	0.827		
						0.0014	8.0012	2 221		

Tabla 35.

Cálculo del caudal igual a 60 m3/s para vertedero 2 que representa el río Toltén.

		CAI	COLO DE C	MUDAL POR	MEDIO DI	CORREN	TOMETRO			
etadero else	10/11/0003		DIPUTATION	A. L. C.			Helica	Meta-1		
DEB:	32.43	0 -	$\frac{\Sigma(q_1+q_3)}{2}$) D	$N = \frac{\delta}{4}$		Coefficientes	- Control of the Control		
ncho+:	2.710	n V-	2		0.44	1		0.0553		
rémeto-	0.960	69	1000		q = V	7	b	0.0421		
		Vet	1.0553N+	0.0421	4.01	011	rameto de ree	diaconin.		
Posts	Medicin	Panter ditora ciendo abaja	YORK	Yperdal	7		•	٧	Variet	
2.	1.	0.00		0.030	40	360	4.00	9.263		
1	1	0.65	0.084	9,055	40	377	4.43	0.287	0.249	0.02
1		0.05	11000	0.071	40	168	4.20	0.374		1
1	2	0.35		0.029	A0)	167	415	0.266		
1	2	0.65	0.084	0.055	40	370	4.40	0.285	0.245	10.02
1	2	0.85		0.071	40	167	438	0.279		
2.	1	0.25		0.034	40	231	5.30	0.335		
1	1	0.5	0.334	0.067	Att.	337	5.93	0.370	0.881	0.04
- 1	1	5.8		9307	46	268	6.70	0.413		
1	20	0.25		0.034	40	308	5.20	0.330		
2	2	0.5	0.114	0.067	40	236	595	9.372	0.347	0.04
2	2	0.6		0.307	40	263	6.58	0.406		
1	1	0.25		0.000	40	252	630	0.190		
	2	0.5	0.018	0.060	40	281	7.06	0.433	0.163	0.04
1	3	0.8	0.010	0.095	40	384	7.10	0.435		
1	2	0.25	_	0.000	AD	257	641	0.107		
i			0.119		40				0.384	0.04
	2	0.5	0.139	0.060		3310	7.53	0.433	0.554	0.04
1		5.8		0.095	40	213	7.08	2438		
*	1	6.4	C10000	0.029	40	258	633	W1955		
4	9.7	4.6	0.013	0.046	40	231	730	0.446	0.379	0.02
1.	3	4.8		0.068	Atl	348	201	2.447		
*	2	0.4		0.029	40	248	6.20			
4	3.	6.6	0.079	0.045	40	.3166	230	2.4.67	0.993	0.00
4	- 2	- 68		0.058	40	298	7.45	0,454		
5	3.			9.900	40		0.00			
5	1		6.94	0.000	40		9.99		0.351	0.03
5	1	5.6	20,50	9,932	40	257	7.38	9:435	0.0300	2.000
2	1	000		0.000	45	-	0.00	0.486	10.000	4.10
3	2		0.04	0.963	AD		0.00		0.551	7.03
187	3	6.8	100	0.002	46	337	7.18	5.439	056	9.000
	Distancia	distancia								
Turse	deade with	trave	4	a			Moinette	0.360		g-can
- 1	0.000	0.300	11,0200	0.0011			wfo	:00		Fi = Cour
- 1	0.346	0.238	9.0908	0.0001			CH	0.639		
	0.621	0.381	9.0069	6:0130			O teorise	0.060	40/6	
5.7	0.995	0.368	0.0279	0.0137						
1		0.827	8.0140	9:9171						
1		0.888		0.0062						
		2233	tions.	9,000 H	444					

Figura 22. Área correspondiente a los modelos físicos del Laboratorio de Hidráulica de la Universidad de Piura

Figura 23.

Medición del área total destinada para nuestro modelo físico.

Figura 24.

Levantamiento topográfico de los elementos existentes en el área a trabajar.

Figura 25.

Levantamiento del muro de albañileria de la poza de aquietamiento del rio Allipén.

Figura 26.

Demolición de los muros existente para levantar los muros de albañilería de la poza de aquietamiento del río Toltén.

Figura 27.

Cuarto de Bombas del Laboratorio de Hidráulica de la Universidad de Piura (vista externa).

Figura 28.

Cuarto de bombas del Laboratorio de Hidráulica de la Universidad de Piura (vista Interna)

Figura 29.

Construcción de muros perimetrales de nuestro modelo fisco en el laboratorio de hidráulica de la UDEP.

Figura 30.

Relleno con material de la zona para área de confluencia de los rios en nuestro modelo físico.

Figura 31.

Levantamiento topográfico de puntos críticos de la confluencia de ríos en el modelo físico.

Figura 32.

Tarrajeo e impermeabilización del reservorio del rio Toltén.

Figura 33.

Tarrajeo e impermeabilización del reservorio del rio Allipén.

Figura 34.

Levantamiento de puntos topográficos para la construcción de las secciones transversales en el modelo físico

Figura 35.

Construcción de secciones transversales del modelo físico en el modelo hidráulico.

Figura 36.

Construcción de secciones transversales del modelo físico en el modelo hidráulico.

Figura 37.

Levantamiento de puntos topográficos para la construcción de las secciones transversales en el modelo físico

Figura 38.

Construcción de secciones transversales en el modelo fisico.

Figura 39. Instalación de vitroven en la salida del reservorio del rio Allipén.

Figura 40. Instalación de vitroven en la salida del reservorio del rio Toltén.

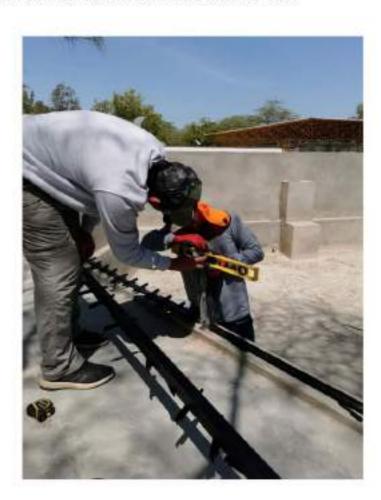


Figura 41.

Nivelación de puntos para la medición del tirante en los diferentes cambios de pendiente.

Figura 42.

Calibración del limnimetro en el reservorio del rio Allipén.

Figura 43.

Calibración del limnimetro en el reservorio del rio Allipén.

Figura 44.

Proceso de conteo de las revoluciones con el correntómetro de hélice 85018-1.

Figura 45.

Proceso de conteo de las revoluciones del molinete con el contador digital.

Figura 46.

Medición de las revoluciones con el correntómetro de hélice 85018-1 y contador digital en una sección de confluencia en el modelo físico.

Figura 47.

Confluencia de los ríos Allipén y Toltén a un caudal determinado en el modelo físico.

Figura 48.

Prueba hidráulica del modelo fisico sin condición de borde.

Estudio de confluencia de ríos mediante modelo físico en laboratorio de hidráulica de la Universidad de Piura

INFORME DE ORIGINALIDAD

INDICE DE SIMILITUD

FUENTES DE INTERNET

PUBLICACIONES

TRABAIOS DEL **ESTUDIANTE**

FUENTES PRIMARIAS

AVILA SALDAÑA ENRIQUE SEGUNDO. "ITS de Modificación de Componente: Variante de la Línea de Transmisión en 138 kV San Gabán II -Azángaro-IGA0009619", R.D. Nº 177-2014-MEM-DGAAE, 2020

Publicación

Excluir citas

Apagado

Excluir bibliografía

Apagado

Excluir coincidencias < 1%

JUAN PABLO GARCÍA RIVERA MUCHEUN - III

Estudio de confluencia de ríos mediante modelo físico en laboratorio de hidráulica de la Universidad de Piura

INFORME DE GRADEMARK	
NOTA FINAL	COMENTARIOS GENERALES
/0	Instructor
PÁGINA 1	
PÁGINA 2	
PÁGINA 3	
PĀGINA 4	
PÁGINA 5	
PÁGINA 6	
PÁGINA 7	
PÁGINA 8	
PÁGINA 9	
PÁGINA 10	
PÁGINA 11	
PÁGINA 12	
PÁGINA 13	
PĀGINA 14	
PÁGINA 15	
PÁGINA 16	
PÁGINA 17	
PÁGINA 18	
PÁGINA 19	

PÁGINA 21
PÁGINA 22
PÁGINA 23
PÁGINA 24
PÁGINA 25
PÁGINA 26
PÁGINA 27
PÁGINA 28
PÁGINA 29
PÁGINA 30
PÁGINA 31
PÁGINA 32
PÁGINA 33
PĀGINA 34
PÁGINA 35
PÁGINA 36
PÁGINA 37
PÁGINA 38
PÅGINA 39
PÁGINA 40
PÁGINA 41
PÁGINA 4Z
PÁGINA 43
PÁGINA 44
PÁGINA 45

PÁGINA 46	
PÁGINA 47	
PÁGINA 48	
PÁGINA 49	
PÁGINA 50	
PÁGINA 51	
PÁGINA 52	
PÁGINA 53	
PÁGINA 54	
PÁGINA 55	
PÄGINA 56	
PÁGINA 57	
PÁGINA 58	
PÁGINA 59	
PÄGINA 60	
PÁGINA 61	
PÁGINA 62	
PÁGINA 63	
PÁGINA 64	
PÁGINA 65	
PÁGINA 66	
PÁGINA 67	
PÁGINA 68	
PÁGINA 69	
PAGINA 70	
PÁGINA 71	

PÁGINA 72	
PÁGINA 73	
PÁGINA 74	
PÁGINA 75	
PÁGINA 76	
PÁGINA 77	
PAGINA 78	
PÁGINA 79	
PÁGINA 80	
PÁGINA 81	
PÁGINA 82	
PÁGINA 83	
PÁGINA 84	5Y
PÁGINA 85	
PĀGINA 86	
PÁGINA 87	
PÁGINA 88	
PÁGINA 89	
PÁGINA 90	
PĂGINA 91	
PÁGINA 92	
PÁGINA 93	
PÁGINA 94	
PÁGINA 95	
PÁGINA 96	
PÁGINA 97	

PÁGINA 98		
PÁGINA 99		
PÁGINA 100		
PÁGINA 101		
PÁGINA 102		
PÁGINA 103		
PÁGINA 104		
PÁGINA 105		
PÁGINA 106		