UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

EVALUACIÓN DE LA INUNDACIÓN POR DESBORDE DEL RIO CHILCA Y DE LA QUEBRADA CHUTANA. DISTRITO DE PUCUSANA. LIMA. 2017

Tesis para optar el Título Profesional de Ingeniero Civil

LÍNEA DE INVESTIGACIÓN: HIDRÁULICA

AUTORES: Bach. MORENO VÁSQUEZ, Paulo César.

Bach. OLIVA CUEVA, Diego José.

ASESOR: ING. GARCÍA RIVERA, Juan Pablo

TRUJILLO - PERÚ 2018

NIO	٦A.	Regis	tra.		
T.A.	ue.	1/6519	uv.		

Tesis: "EVALUACIÓN DE LA INUNDACION POR DESBORDE DEL RIO CHILCA Y DE LA QUEBRADA CHUTANA. DISTRITO DE PUCUSANA. LIMA. 2017"

JURADO EVALUADOR

PRESIDENTE:
Ing. Narváez Aranda, Ricardo Andrés
CIP: 58776
SECRETARIO:
Ing. Sagástegui Plasencia, Fidel German
CIP: 32720
VOCAL:
Ing. Cabanillas Quiroz, Guillermo Juan
CIP: 17902
ASESOR:
Ing. Juan Pablo García Rivera

CIP: 68614

DEDICATORIA 1

A Dios, ya que, gracias a él, hoy estoy finalizando este proyecto.

A mis queridos padres, por el apoyo incondicional durante mi carrera profesional

Moreno Vásquez, Paulo César

DEDICATORIA 2

A nuestro padre celestial, por iluminar mi camino.

A mis padres, ya que son parte de este proyecto de vida.

A mis abuelos y tíos, ya que con sus consejos me fortalecieron.

Oliva Cueva, Diego José

AGRADECIMIENTO

Gracias a Dios por iluminar nuestros caminos hasta la culminación satisfactoria de esta tesis.

A nuestra familia, por todo su apoyo, amor, comprensión y mucha paciencia durante todo este tiempo y sobre todo en aquellas épocas difíciles en todo este proceso. En especial a nuestros padres por su gran esfuerzo de enseñarnos a dar lo mejor de nosotros mismos para nuestro desarrollo profesional.

A nuestro asesor por su constante apoyo y aporte de sus conocimientos para la elaboración de nuestra tesis.

ÍNDICE

CARA	ÁTULA		i
CONT	ΓRACARA	TULA	ii
DEDI	CATORIA	.1	iii
DEDI	CATORIA	. 2	iv
AGR A	ADECIMII	ENTO	v
ÍNDIO	CE		vi
ÍNDIO	CE DE TA	BLAS	ix
ÍNDIO	CE DE ILU	JSTRACIONES	xi
RESU	MEN		xiv
ABST	RACT		XV
I.	INTRO	DUCCIÓN	16
1.1.	E	L PROBLEMA	16
	1.1.1.	Planteamiento del Problema	16
	1.1.2.	Formulación del problema	17
	1.1.3.	Alcance	17
	1.1.4.	Justificación de la Investigación	17
	1.1.5.	Hipótesis	18
	1.1.6.	Objetivos	18
	1.1.6.1.	General	18
		Específicos	
II.		MENTACIÓN TEÓRICA	
2.1.	A	NTECEDENTES DE LA INVESTIGACIÓN	20
	2.1.1.	Antecedente 1	20
	2.1.2.	Antecedente 2	21
	2.1.3.	Antecedente 3	21
2.2.	D	EFINICIONES TEORICAS	22
	2.2.1.	Inundación	
	2.2.2.	¿Por qué ocurren las inundaciones?	25
	2.2.3.	Clasificación de las inundaciones	26
	2.2.4.	Lámina de precipitación	
	2.2.5.	Intensidad de precipitación	
	2.2.6.	Periodo de retorno (Tr)	33
	2.2.7.	Cuenca	33
	2.2.7.1.	Delimitación de Cuenca	35

	de agua	
	2.2.7.3. Red de drenaje	
	2.2.7.4. Densidad de drenaje	
	2.2.7.5. Parámetros geomorfológicos básicos	
	2.2.7.6. Área de la cuenca	
	2.2.7.7. Perímetro	39
	2.2.7.8. Altura máxima, mínima y desnivel	39
	2.2.7.9. Índice de compacidad	40
	2.2.7.10. Radio de elongación	40
	2.2.7.11. Curvas hipsométricas	41
	2.2.7.12. Altitud media	42
	2.2.8. El ciclo hidrológico	42
	2.2.9. Tiempo de Concentración y Tiempo de Retraso	44
	2.2.9.1. Tiempo de concentración	44
	2.2.10. Tiempo de retraso	52
	2.2.10.1. Definición del tiempo de retraso	53
	2.2.11. Hidrogramas	54
	2.2.11.1. Hidrograma unitario sintético triangular del SCS	54
	2.2.12. ArcGIS Desktop	57
	2.2.13. Introducción a HEC HMS	60
	2.2.14. Introducción IBER	61
	2.2.14.1. Módulos principales del programa IBER	61
	2.2.14.2. Limitaciones de IBER	62
	2.2.14.3. Ventajas de IBER	62
III.	MATERIALES Y METODOS	64
3.1.	Población	64
3.2.	Muestra	64
3.3.	Unidad de Análisis	66
3.4.	Metodología	66
3.4.1.	Obtención de datos	66
	3.4.1.1. Obtención del Modelo de Elevación Digital (DEM)	66
3.4.2.	Delimitación de la Cuenca en ARC GIS	68
3.4.3.	Datos Hidrometereologicos Extraídos de SENAMHI	80
3.4.4.	Cálculo de Intensidades de Precipitaciones y Caudales	
	3.4.4.1. Quebrada Chutana	85

	CÁLCULO DE INTENSIDAD DE PRECIPITACIÓN	92
	Método Perfil SCS Tipo II	92
	Método D. Peschke	100
	Método F. Bell	101
	Método Daniel F. Campos	102
	CÁLCULO DE CAUDALES	105
	Método Racional	105
	Método Envolvente de Descargas máximas de Creager	107
	Método Hidrograma Unitario Triangular	109
	Método HEC – HMS	112
	3.4.4.2. Rio Chilca	121
	CÁLCULO DE INTENSIDAD DE PRECIPITACIÓN	146
	Método Perfil SCS Tipo II	146
	Método D. Peschke	154
	Método F. Bell	156
	Método Daniel F. Campos	158
	CÁLCULO DE CAUDALES	162
	Método Hidrograma Unitario Triangular	162
	Método HEC – HMS	165
IV.	RESULTADOS	177
4.1.	Simulación Iber	177
CONC	CLUSIONES	201
RECC	DMENDACIONES	203
ו זמזמ	IOCD AELA	205

ÍNDICE DE TABLAS

Tabla 1: Número de damnificados y afectados al 18 de abril 2017	24
Tabla 2: Precipitaciones Maximas de las Estaciones	82
Tabla 3: Precipitaciones Maximas Amplificadas	84
Tabla 4: Evaluación de Precipitaciones	85
Tabla 5: Datos Morfométricos de la Cuenca, Quebrada Chutana	85
Tabla 6: Datos Pluviométricos de Estación Chosica	
Tabla 7: Resumen de Precipitaciones Máximas de cada Mes	88
Tabla 8: Datos para Cálculo de Variables Probabilísticas	
Tabla 9: Cálculo de las Precipitaciones Diarias Máximas Probables para Distintas Frecuencias	90
Tabla 10: Datos para Cálculo de Tiempo de Concentración	90
Tabla 11: Tiempos de Concentración Promedio	91
Tabla 12: Tiempo de Retardo Quebrada Chutana	92
Tabla 13: Tabla de Factores para Intensidad, SCS Tipo II - 24 Horas	92
Tabla 14: Procesamiento de Precipitaciones con Factor SCS II	
Tabla 15: Intensidad Máxima en el minuto 150	97
Tabla 16: Resultados de Intensidades Mediante Método de D. Peschke	100
Tabla 17: Resultados de Intensidades Mediante Método de F. Bell	102
Tabla 18: Factores del Método Daniel F. Campos Duración en Horas	102
Tabla 19: Factores del Método Daniel F. Campos Duración en Minutos	103
Tabla 20: Resultados de Intensidades Mediante Método de Daniel F. Campos	103
Tabla 21: Tabla Resumen de Métodos para Hallar la Intensidad	104
Tabla 22: Resumen de Resultados Intensidades	105
Tabla 23: Tabla de Valores K y C, para el Cálculo de Escorrentía	106
Tabla 24: Coeficiente de Escorrentía para Estudio	106
Tabla 25: Resumen de Datos para Cálculo de Caudal	
Tabla 26: Coeficientes para cada Región Hidráulica	108
Tabla 27: Resumen de Datos	109
Tabla 28: Cálculo de Caudal Método de Creager, Tiempo de Retorno 100 Años	109
Tabla 29: Datos para Método H. U. Triangular	109
Tabla 30: Lluvia Efectiva	109
Tabla 31: Tabla Resumen de los Métodos y sus Resultados	120
Tabla 32: Datos Morfométricos de la Cuenca, Rio Chilca	121
Tabla 33: Datos Pluviométricos de Estación Matucana	122
Tabla 34: Resumen de Precipitaciones Máximas de cada Mes	124
Tabla 35: Datos para Cálculo de Variables Probabilísticas	125
Tabla 36: Cálculo de las Precipitaciones Diarias Máximas Probables para Distintas Frecuencias	s 127
Tabla 37: Datos para Cálculo de Tiempo de Concentración	127
Tabla 38: Tiempos de Concentración Promedio	128
Tabla 39: Tiempos de Retardo Rio Chilca	
Tabla 40: Precipitaciones de estudio, Rio Chilca	129
Tabla 41: Coeficiente de Relación a la Lluvia Durante 24 Horas	130

Tabla 42: Precipitaciones Máximas para Diferentes Tiempos de Duración de Lluvias	.130
Tabla 43: Intensidades de Lluvia a partir de Pd, Según Duración de Precipitación y Frecuencia	de
la Misma	.131
Tabla 44: Periodo de Retorno para T = 2 años	.132
Tabla 45: Periodo de Retorno para T = 5 años	.133
Tabla 46: Periodo de Retorno para T = 10 años	.134
Tabla 47: Periodo de Retorno para T = 25 años	.135
Tabla 48: Periodo de Retorno para T = 50 años	.136
Tabla 49: Periodo de Retorno para T = 100 años	.137
Tabla 50: Periodo de Retorno para T = 500 años	.138
Tabla 51: Resumen de Constantes y Coeficientes	.139
Tabla 52: Regresión Potencial	.140
Tabla 53: Intensidades en cada Intervalo de Tiempo	.142
Tabla 54: Tabla de Factores para Intensidad, SCS Tipo II - 24 Horas	.146
Tabla 55: Procesamiento de Precipitaciones con Factor SCS II	.147
Tabla 56: Intensidad Máxima en el minuto 150	.150
Tabla 57: Resultados de Intensidades Mediante Método de D. Peschke	.154
Tabla 58: Resultados de Intensidades Mediante Método de F. Bell	.156
Tabla 59: Factores del Método Daniel F. Campos Duración en Horas	.158
Tabla 60: Factores del Método Daniel F. Campos Duración en Minutos	.158
Tabla 61: Resultados de Intensidades Mediante Método de Daniel F. Campos	.159
Tabla 62: Tabla Resumen de Métodos para Hallar la Intensidad	.160
Tabla 63: Resumen de Resultados Intensidades	.161
Tabla 64: Datos para Método H. U. Triangular	.162
Tabla 65: Lluvia Efectiva	.162
Tabla 66: Datos para estudio del Caudal en HEC - HMS	.165
Tabla 67: Número de Curva	.166
Tabla 68: Datos Iniciales del Hietograma cada 10 Minutos	.167
Tabla 69: Precipitaciones cada 10 Minutos	.168
Tabla 70: Datos Iniciales del Hietograma cada 5 Minutos	.171
Tabla 71: Precipitaciones cada 5 Minutos	.172
Tabla 72: Tabla Resumen de los Métodos y sus Resultados	
Tabla 73: Ingreso y Salida de Caudal en Simulación	
Tabla 74: Resultado de Inundación	

ÍNDICE DE ILUSTRACIONES

Ilustración 1: Cuenca de la Quebrada Chutana	16
Ilustración 2: Cuenca del Rio Chilca.	17
Ilustración 3: Número de eventos en los que la Cruz Roja Internacional	23
Ilustración 4: Inundación en el Distrito de Pucusana	25
Ilustración 5: Proceso y formación de las inundaciones	26
Ilustración 6: Ejemplo de un pluviómetro (medidor de lluvia electrónico)	32
Ilustración 7: Ejemplo de un pluviógrafo.	
Ilustración 8: Representación gráfica de una cuenca hidrológica (Eslava, 2004)	34
Ilustración 9: Red de drenaje según Horton- Strahler	37
Ilustración 10: Red de drenaje según Shreve (Ferro, 2002)	38
Ilustración 11: Esquema del ciclo hidrológico. (fuente: Sistema de los servicios de Agua Potabl	e,
Drenaje y Alcantarillado de Puerto Vallarta)	
Ilustración 12:Tiempo de retraso	
Ilustración 13: Hidrograma Unitario adimensional (curvilíneo) y su equivalencia con el hidrograma	
triangular	
Ilustración 14: Esquema de la arquitectura de ArcGIS	
Ilustración 15: Mapa del Distrito de Pucusana	
Ilustración 16: Login Alaska Satellite Facility	
Ilustración 17: DEM insertado en Arc Gis	
Ilustración 18: Herramienta Fill Sinks	
Ilustración 19: Fin del Proceso de Fill Sinks	
Ilustración 20: Herramienta Flow Direction	
Ilustración 21: Fin del Proceso de Flow Direction	
Ilustración 22: Fin del Proceso de Flow Accumulation	
Ilustración 23: Fin del Proceso de Flow Accumulation	
Ilustración 24: Fin del Proceso de Stream Segmentation	
Ilustración 25: Fin del Proceso de Catchment Grid Delineation, Formación de las Microcuencas	
Ilustración 26: Fin del Proceso de Catchment Polygon Processing, Formación de las Microcuen	
mediante Polígonos	
Ilustración 27: Fin del Proceso de Drainage Line Processing, Formación de la red fluvial	
Ilustración 28: Resultado de todo el Proceso	
Ilustración 29: Ortofotos para Referencia el Área de Estudio	
Ilustración 30: Project Setup, Quebrada Chutana	
Ilustración 31: Punto de Estudio Quebrada Chutana	
Ilustración 32: Generar Proyecto de la Quebrada Chutana	
Ilustración 33: Cuenca de la Quebrada Chutana	
Ilustración 34: Cuenca de la Quebrada Chutana, Fin del Proceso	
Ilustración 35: Formación de la Cuenca del Rio Chilca	
Ilustración 36: Punto de proyecto Cuenca del Rio Chilca	
Ilustración 37: Cuenca del Rio Chilca Generada	
Ilustración 38: Cuenca del Rio Chilca Dividida	
Ilustración 39: Hidrograma Estación Autisha	
Ilustración 40: Hidrograma Estación Chosica	
Ilustración 41: Hidrograma Estación Matucana	
Ilustración 42: Hidrograma Estación Santiago de Tuna	81

Ilustración 43: Hidrograma Estación Yauyos	82
Ilustración 44: Gráfica Interpolación de Factores	103
Ilustración 45: Mapa de Regiones Hidráulicas Diferenciales	108
Ilustración 46: Creación del Proyecto en HEC – HMS	112
Ilustración 47: Modelador de la Cuenca	112
Ilustración 48: Forma de Insertar Modelo de la Cuenca	113
Ilustración 49: Cuenca de la Quebrada Chutana	113
Ilustración 50: Datos de la Cuenca	114
Ilustración 51: Datos de Perdidas	114
Ilustración 52: Datos de Transformación	115
Ilustración 53: Modelo de la Cuenca Finalizado a Nivel de Basin Model Manager	115
Ilustración 54: Creación de la Precipitación	116
Ilustración 55: Tipo de Precipitación y Pérdida	116
Ilustración 56: Confirmación de la Cuenca	117
Ilustración 57: Dato de Precipitación	117
Ilustración 58: Creación del Control de Precipitación	118
Ilustración 59: Tiempo de la Precipitación	118
Ilustración 60: Ejecución de Simulación	119
Ilustración 61: Verificación de Resultados	119
Ilustración 62: Caudal de Diseño	120
Ilustración 63: Curva Intensidad T = 2 años	132
Ilustración 64: Curva Intensidad T = 5 años	133
Ilustración 65: Curva Intensidad T = 10 años	135
Ilustración 66: Curva Intensidad T = 25 años	136
Ilustración 67: Curva Intensidad T = 50 años	137
Ilustración 68: Curva Intensidad T = 100 años	138
Ilustración 69: Curva Intensidad T = 500 años	139
Ilustración 70: Curva de Cte. de Regresión VS Periodo de Retorno	141
Ilustración 71: Curvas IDF de la Cuenca 2 Años Periodo de Retorno	142
Ilustración 72: Curvas IDF de la Cuenca 5 Años Periodo de Retorno	143
Ilustración 73: Curvas IDF de la Cuenca 10 Años Periodo de Retorno	143
Ilustración 74: Curvas IDF de la Cuenca 25 Años Periodo de Retorno	144
Ilustración 75: Curvas IDF de la Cuenca 50 Años Periodo de Retorno	144
Ilustración 76: Curvas IDF de la Cuenca 100 Años Periodo de Retorno	145
Ilustración 77: Curvas IDF de la Cuenca del Rio Chilca	145
Ilustración 78: Gráfica Interpolación de Factores	158
Ilustración 79: Creación del Proyecto en HEC – HMS	165
Ilustración 80: Basin Models	166
Ilustración 81: Metereologic Models	166
Ilustración 82: Control Specifications, Intervalo de Tiempo 10 Minutos	167
Ilustración 83: Curva IDF 10 Minutos	
Ilustración 84: Hietograma de Precipitación 10 Minutos	169
Ilustración 85: Distribución de Intensidades 10 Minutos	
Ilustración 86: Precipitation Gage 1 cada 10 Minutos	170
Ilustración 87: Hietograma en HEC – HMS 10 Minutos	171
Ilustración 88: Curva IDF 5 Minutos	173

Ilustración 89: Hietograma de Precipitación 5 Minutos	173
Ilustración 90: Distribución de Intensidades 5 Minutos	174
Ilustración 91: Precipitation Gage 2 cada 5 Minutos	174
Ilustración 92: Hietograma en HEC – HMS 5 Minutos	175
Ilustración 93: Caudal de Diseño	175
Ilustración 94: Creación de Proyecto	
Ilustración 95: Carpeta de Simulación	
Ilustración 96: Importación de Archivo DXF	179
Ilustración 97: Archivo Pucusana.dxf	179
Ilustración 98: Geometría del Área en Estudio	180
Ilustración 99: Colapsar Líneas	180
Ilustración 100: Líneas Colapsadas	181
Ilustración 101: Geometría del Rio	181
Ilustración 102: Superficie por Búsqueda del Rio	182
Ilustración 103: Insertando Superficie por Búsqueda	182
Ilustración 104: Creación de Superficie Automática	183
Ilustración 105: Creación de Superficie, 3 líneas	
Ilustración 106: Superficie Total Creada	184
Ilustración 107: Uso de Suelo	184
Ilustración 108: Uso de Suelo del Rio	185
Ilustración 109: Uso de Suelo de la Zona Urbana	185
Ilustración 110: Uso de Suelos para Rio y Zona Urbana	186
Ilustración 111: Condición de Contorno	187
Ilustración 112: Entrada 1, Caudal 21.05 m3/s	187
Ilustración 113: Entrada 2, Caudal 92.90 m3/s	188
Ilustración 114: Salida del Flujo	188
Ilustración 115: Entradas de Flujos	189
Ilustración 116: Salida del Flujo	189
Ilustración 117: Generar Malla del Rio	190
Ilustración 118: Malla de Rio Generada, Tamaño 6 m	190
Ilustración 119: Malla de Zona Urbana Generada, Tamaño 4 m	191
Ilustración 120: Generamos Mallas	191
Ilustración 121: Proceso de Mallado	192
Ilustración 122: Malla del Proyecto Generada	192
Ilustración 123: Modificación de Cota de Malla, con el Modelo Digital de Elevación	193
Ilustración 124: Archivo ASCI_Pucusana2.txt	193
Ilustración 125: Elevación de la Malla	194
Ilustración 126: Tiempo de Simulación	195
Ilustración 127: Cálculo de la Simulación	
Ilustración 128: Fin del Proceso de Simulación	
Ilustración 129: Calado de Inundación	
Ilustración 130: Velocidad del Flujo	197
Ilustración 131: Calado de Inundación, Máximo y Mínimo	

RESUMEN

La inundación es la ocupación por parte del agua de zonas o regiones que habitualmente se encuentran secas. Normalmente es consecuencia de la aportación inusual y más o menos repentina de una cantidad de agua superior a la que puede drenar el propio cauce del río, aunque no siempre es este el motivo. Las inundaciones se producen por diversas causas (o la combinación de éstas), pueden ser causas naturales como las lluvias, oleaje o deshielo o no naturales como la rotura de presas.

Nuestro país, fue víctima de una serie de inundaciones en distintos puntos de sus departamentos, siendo los más afectados, los situados en la costa, tales como Piura, Lambayeque, La Libertad, Lima, etc. El fenómeno llamado "Niño Costero" del 2017, que fue el causante de dichos desastres, que afecto a nivel socioeconómico los mencionados departamentos; inundando ciudades, destruyendo viviendas, interrumpiendo el transporte de personas y el transporte de alimentos.

Estos desastres fueron iniciados por una combinación de causas, por las intensas lluvias, luego llenando las cuencas y por ende aumentando el caudal de los ríos, además la activación de quebradas, para finalizar en los desbordes e inundación de ciudades.

El Perú esta propenso nuevamente a sufrir estos desastres, si no se realizan los estudios correspondientes, razón por la cual nuestro estudio se destina a una zona critica, en la cual haremos la evaluación mediante un programa de modelamiento hidráulico, que nos permitirá al finalizar brindar una recomendación sustentada para mitigar los posibles desastres.

ABSTRACT

Flooding is the occupation by water of areas or regions that are usually dry. Normally it is a consequence of the unusual and more or less sudden contribution of a quantity of water superior to that which can drain the river bed itself, although this is not always the reason. Floods are produced by various causes (or the combination of these), can be natural causes such as rain, swell or thaw or unnatural as the breakage of dams.

Our country was the victim of a series of floods in different parts of its departments, the most affected being those located on the coast, such as Piura, Lambayeque, La Libertad, Lima, etc. The phenomenon called "Coastal Child" of 2017, which was the cause of these disasters, which affected the aforementioned departments at a socioeconomic level; flooding cities, destroying homes, disrupting the transport of people and the transportation of food.

These disasters were initiated by a combination of causes, by intense rains, then filling the basins and therefore increasing the flow of rivers, as well as the activation of streams, to end in the overflows and flooding of cities.

Perú is prone again to suffer these disasters, if the corresponding studies are not carried out, reason why our study is destined to a critical zone, in which we will make the evaluation through a hydraulic modeling program, which will allow us to finally provide a sustained recommendation to mitigate possible disasters.

CAPÍTULO I: INTRODUCCIÓN

I. INTRODUCCIÓN

1.1. EL PROBLEMA

1.1.1. Planteamiento del Problema

El trabajo de investigación se ubica geográficamente en la Región Lima, Provincia de Lima - Distrito de Pucusana.

Ante la existencia de la quebrada Chutana y el rio Chilca, y los desastres ocasionados por el fenómeno del niño de este año; nace la necesidad de realizar un estudio de Inundación del distrito de Pucusana.

Ilustración 1: Cuenca de la Quebrada Chutana.

Durante dicho fenómeno el rio Chilca presento desborde, afectando la transitabilidad vehicular y la integridad física de los habitantes de dicha zona.

El estudio al cual se recurrirá; es un estudio de inundación en la cual se simulará la activación de la quebrada Chutana y el rio Chilca, posteriormente el desborde de las mencionadas formaciones geológicas.

Ilustración 2: Cuenca del Rio Chilca.

Nuestra tesis tiene como finalidad brindar una alternativa de solución, para mitigar los efectos de este desastre natural, que se podría presentar nuevamente el próximo verano.

1.1.2. Formulación del problema

¿Cuál es la evaluación de la Inundación por desborde del rio Chilca y de la quebrada Chutana. Distrito de Pucusana. Lima. 2017?

1.1.3. Alcance

Local y permitirá recomendar obras de prevención sostenibles para evitar posibles inundaciones en el distrito de Pucusana.

1.1.4. Justificación de la Investigación

La importancia de realizar esta evaluación de la inundación es vital para la planificación territorial. El principal objetivo de este tipo de estudios es evaluar la capacidad que tiene un cauce de soportar un determinado caudal de avenida para evitar o disminuir los daños producidos por las inundaciones, de tal manera que se puedan diseñar estructuras para adecuar los cursos de aguas a su paso por las zonas urbanas, existen diferentes procedimientos para simular los caudales de avenidas, para ello es necesario una cartografía del terreno y un modelo digital del terreno

conocer las características hidráulicas del suelo, investigar sobre inundaciones históricas que se hayan producido en el ámbito de estudio y datos pluviométricos para conocer la cantidad de precipitación que cae sobre la cuenca. El software IBER que utiliza un modelo matemático bidimensional para la simulación del flujo en lámina libre y procesos de transporte en ríos y estuarios.

1.1.5. Hipótesis:

La evaluación de la Inundación por desborde del rio Chilca y de la quebrada Chutana. Distrito de Pucusana. Lima. 2017; permitirá proponer obras de prevención sostenibles.

1.1.6. Objetivos:

1.1.6.1. General:

Determinar la evaluación de la Inundación por desborde del rio Chilca y de la quebrada Chutana. Distrito de Pucusana. Lima. 2017.

1.1.6.2. Específicos:

- Elaborar el diagnostico situacional del distrito de Pucusana, el Rio Chilca y la Quebrada Chutana.
- Recopilar información del estudio topográfico.
- Determinar los caudales mediante un estudio Hidrológico.
- Realizar la simulación de inundaciones utilizando el software Iber.
- Proponer estructuras hidráulicas para el encausamiento.

CAPÍTULO II: FUNDAMENTACIÓN TEÓRICA

II. FUNDAMENTACIÓN TEÓRICA

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

2.1.1. Antecedente 1

Según, Alonso Gorbeña, Gonzalo Blanco Blanco y Delia Vives Zanon Joaquin en su tesis, "ESTUDIO DE INUNDABILIDAD DEL RIO GAZNATA A SU PASO POR LA LOCALIDAD DEL HERRADON, ÀVILA".

Prácticamente todo el territorio español se encuentra sometido a riesgo de inundaciones, aunque en distinto grado y diferentes modalidades. Los estudios de síntesis del CTEI, basados en las inundaciones históricas, permitieron delimitar unos 1300 puntos conflictivos. Además, se identificó más de un millar de zonas de riesgo, de las cuales sólo un 6,5% corresponden a nivel máximo. Simplificando la diversidad, pero a título orientativo para la delimitación de "regiones riesgo", existen cuatro grandes zonas en riesgo en España: Zonas en riesgo por inundaciones asociadas a avenidas relámpago o súbitas en la vertiente mediterránea; se trata de los cauces de corrientes efímeras costeras (ramblas o rieras) o permanentes y sus márgenes, que, en situaciones de precipitaciones muy intensas durante el otoño, producen el anegamiento de núcleos 4de población y terrenos agrícolas.

Se ha estudiado en el presente trabajo el comportamiento hidráulico del arroyo de la Gaznata a su paso por el núcleo urbano del Herradón y a lo largo de la cuenca que lo conforma, analizando los niveles de lámina de agua, velocidades y las llanuras de inundación que pueden producirse para los diferentes periodos de retorno: 25, 100 y 500 años. El origen del cauce, las características climáticas de la parte alta de la cuenca y la forma de la cuenca, con escasa laminación provocan que los caudales del río a su paso por la localidad del Herradón sean más elevados, en proporción al caudal medio.

2.1.2. Antecedente 2

Según, (Autoridad Nacional del Agua) en su estudio, TRATAMIENTO DE CAUCE DEL RIO PARA EL CONTROL DE INUNDACONES EN LA CUENCA SANTA.

En el cauce del río Santa, las inundaciones catastróficas son ocasionadas por el desbordamiento de una avenida ordinaria o extraordinaria con gran capacidad para erosionar o sedimentar. En este proceso de inundación ocurren pérdidas de cultivos, disminución de tierras de cultivo, deterioro de infraestructura vial, hidráulica y centros poblados; amenazando la vida de los pobladores. Por lo tanto, el valle es considerado muy vulnerable ante la presencia de estos eventos de crecida; como consecuencia de la insuficiente 12 obras de defensas ribereña, cobertura vegetal casi inexistentes, cauces colmatados, etc. Concluimos con Los caudales empleados para la simulación hidráulica del río, corresponde a los periodos de retorno de 10, 25 y 50 años, calculados con información de caudales de la estación de Condor Cerro. La estimación de los parámetros hidráulicos y geomorfológicos, ha tenido como fuente a estudios anteriores relacionados con el tema; así como, a información levantada en campo, tanto por el personal profesional de la Autoridad Nacional del Agua, Administración Local de Agua y Junta de Usuarios.

2.1.3. Antecedente 3

Según, (Instituto Nacional de Defensa Civil – Perú), MANUAL DE ESTIMACION DEL RIESGO ANTE INUNDACIONES FLUVIALES.

El pasar de la simple identificación del peligro a un análisis básico de sus condiciones, nos permitirá obtener no solo un mapa del nivel de peligrosidad; sino también, un análisis de las vulnerabilidades mediante la identificación y caracterización de los elementos que se encuentran expuestos, en una determinada área geográfica, a los efectos desfavorables de la inundación fluvial, lo cual nos permitirá también obtener un mapa de las vulnerabilidades. Tanto el mapa del nivel de peligrosidad como el de vulnerabilidades se elaboran sobre el territorio que tiene la probabilidad de afectación. Las inundaciones se producen cuando las lluvias

intensas o continuas sobrepasan la capacidad de campo del suelo, el volumen máximo de transporte del río es superado y el cauce principal se desborda e inunda los terrenos circundantes. Todos estos factores son claramente observables y por consiguiente se pueden prever, aunque no son tan fáciles de controlar.

2.2. DEFINICIONES TEORICAS

2.2.1. Inundación:

De acuerdo con el glosario internacional de hidrología (OMM/UNESCO, 1974), la definición oficial de inundación es: "aumento del agua por arriba del nivel normal del cauce". En este caso, "nivel normal" se debe entender como aquella elevación de la superficie del agua que no causa daños, es decir, inundación es una elevación mayor a la habitual en el cauce, por lo que puede generar pérdidas.

Por otra parte, avenida se define como: "Una elevación rápida y habitualmente breve del nivel de las aguas en un río o arroyo hasta un máximo desde el cual dicho nivel desciende a menor velocidad" (OMM/UNESCO, 1974). Estos incrementos y disminuciones, representan el comportamiento del escurrimiento en un río (figura 1).

Con lo anterior, se entiende por inundación: aquel evento que, debido a la precipitación, oleaje, marea de tormenta, o falla de alguna estructura hidráulica provoca un incremento en el nivel de la superficie libre del agua de los ríos o el mar mismo, generando invasión o penetración de agua en sitios donde usualmente no la hay y, generalmente, daños en la población, agricultura, ganadería e infraestructura.

El agua es uno de los recursos naturales más valiosos de cualquier país debido a los beneficios sociales y económicos que se derivan de su consciente explotación; sin embargo, junto con las ventajas existen también situaciones extremas tales como las inundaciones y las sequías.

A nivel mundial las inundaciones están aumentando más rápidamente que ningún otro desastre. De acuerdo con la Cruz Roja Internacional, durante el periodo 1919-2004, han colaborado con ayuda en más eventos de inundaciones que de cualquier otro tipo (figura 1), en gran medida porque el acelerado desarrollo de las

comunidades modifica los ecosistemas locales, incrementando el riesgo de inundación al que están expuestas muchas poblaciones.

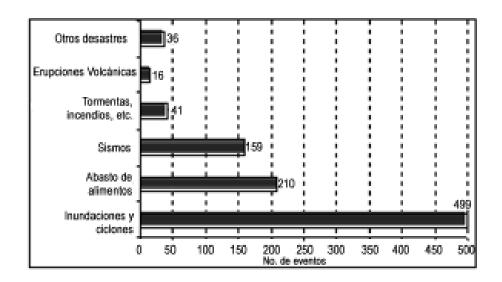


Ilustración 3: Número de eventos en los que la Cruz Roja Internacional

(Fuente: International Federation of Red Cross and Red Crescent Societies).

El Perú ha sufrido el presente año desastres causados por un fenómeno de niño, denominado "Niño Costero", es por ello que, la presidencia del Perú envío al Congreso de la República un proyecto de ley para impulsar el proceso de reconstrucción de las zonas afectadas por las lluvias, huaicos e inundaciones que afectó diversas regiones del país.

Afectación en población:

A nivel nacional:

Personas: 113 Víctimas mortales; 178,701 Damnificados; 1,049,083 Afectados y 397 heridos y 17 desaparecidos.

Viviendas: 20,788 colapsadas; 19,429 inhabitables y 237,906 afectadas.

En Piura:

Personas: 15 Víctimas mortales; 40,392 Damnificados; 347,055 Afectados y 39 heridos.

Viviendas: 4,336 colapsadas; 3,705 inhabitables y 74,907 están afectadas.

Tabla 1: Número de damnificados y afectados al 18 de abril 2017

Región	Damnificados		Afectados		Total	
Piura	40,392	23%	347,055	33%	387,447	32%
Lambayeque	52,855	30%	146,967	14%	199,822	16%
La Libertad	26,729	15%	122,100	12%	148,829	12%
Ica	4,155	2%	96,768	9%	100,923	8%
Ancash	24,765	14%	67,454	6%	92,219	8%
Lima	14,328	8%	44,351	4%	58,679	5%
Tumbes	978	1%	37,158	4%	38,136	3%
Otras regiones (17)	14,499	8%	187,230	18%	201,729	16%
Total	178,701	100%	1,049,083	100%	1,227,784	100%

Fuente: INDECI, Reporte de situación diaria al 18 de abril

Al 18 de abril las regiones con mayor número de damnificados son: Lambayeque con 52,855 (30%), Piura con 40,392 (23%), La Libertad con 26,729 (15%) y Ancash con 24,765 (14%); mientras que Piura es la región con el 33% del total de afectados, alcanzando la cifra de 347,055, le sigue Lambayeque con 146,9967 (14%) y La Libertad con 122,100 (12%).

Mientras que el distrito de Pucusana, fue afectado por el desborde el Rio Chilca, el cual dejó afectadas las viviendas, terrenos agrícolas y las vías vehiculares.

Informó América televisión mediante su página web, "Pucusana: desborde del río Chilca bloqueó el acceso al distrito", "Pucusana: distrito fue declarado en emergencia tras desborde del río Chilca".

El diario comercio Igualmente Informo mediante su página web y compartió imágenes de lo sucedido en la zona, "Pucusana: Autos quedaron atrapados tras desborde del rio Chilca".

Ilustración 4: Inundación en el Distrito de Pucusana

Fuente: Pagina web de diario "El Comercio"

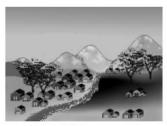
2.2.2. ¿Por qué ocurren las inundaciones?

Aún antes de la aparición del hombre sobre la Tierra, el entorno físico mantenía un equilibrio: el agua que llovía en las zonas montañosas bajaba por los cauces e inundaba las zonas bajas, para luego volver a su estado inicial (figuras 4a y 4b).

Posterior a la aparición del hombre se desarrollaron asentamientos humanos en las zonas aledañas a los cuerpos de agua (figura 4c) trayendo consigo, cuando se

desborda una corriente, problemas de inundaciones (figura 4d). Adicionalmente, la degradación del medio ambiente, tal como la deforestación, la erosión, etc., modifica la respuesta hidrológica de las cuencas, incrementando la ocurrencia y la magnitud de inundaciones (figura 4e y 4f).

a) El entorno físico estaba en equilibrio.


b) Se desborda el río y las zonas adyacentes se inundan, sin que esto signifique en sí, un problema.

 Aparecen asentamientos humanos aledaños al río.

 d) Cuando el río se desborda, los asentamientos humanos se ven afectados.

 Adicionalmente se produce deforestación y erosión por actividades humanas.

 f) Lo anterior agrava los problemas debidos a las inundaciones.

Ilustración 5: Proceso y formación de las inundaciones

La modificación del terreno en las cuencas (cambio en los usos del suelo), produce daños cada vez más considerables por efecto de las inundaciones, debido a que:

Se producen crecientes mayores que las que habían ocurrido (avenidas históricas) cuando las cuencas eran naturales o la degradación del medio ambiente era mínima.

El tiempo que debe transcurrir para que los efectos de una inundación sean percibidos por la población ha disminuido, provocando que en ocasiones la respuesta de las autoridades y de la población se vea comprometida.

2.2.3. Clasificación de las inundaciones

Las clasificaciones más comunes obedecen a su origen, o bien, al tiempo que tardan en presentarse sus efectos.

De acuerdo con su origen:

En este punto se trata de identificar la causa de la inundación. Los principales tipos son:

Inundaciones pluviales.

Son consecuencia de la precipitación, se presentan cuando el terreno se ha saturado y el agua de lluvia excedente comienza a acumularse, pudiendo permanecer horas o días.

Su principal característica es que el agua acumulada es agua precipitada sobre esa zona y no la que viene de alguna otra parte (por ejemplo, de la parte alta de la cuenca).

Causas de la precipitación

El vapor de agua, al condensarse en las capas altas y frías de la atmósfera, se transforma en nubes que se presentan en diversas formas: cúmulos, cirros, estratos y nimbos; de acuerdo con el contenido de vapor de agua que se condensa, se convierte en gotas de agua. Al estar suficientemente grandes aumenta su peso y velocidad, haciendo que se precipiten hacia el suelo en forma de lluvia (http://www.imta.mx/otros/tedigo/lluvia.htm).

Los principales mecanismos a través de los que se genera la precipitación son:

- 1. Ciclones tropicales: Al transportar grandes cantidades de humedad, los ciclones tropicales pueden provocar tormentas de larga duración, del orden de varios días y abarcar grandes extensiones.
- 2. Lluvias orográficas: Se originan con las corrientes de aire húmedo que chocan con las barreras montañosas, provocando su ascenso y consecuente enfriamiento, lo que da lugar para su condensación y, como resultado, la ocurrencia de precipitación en el lado por donde sopla el viento (barlovento) hacia las montañas.

El relieve representa un importante factor en la distribución de las lluvias, ya que actúa como una barrera o un modificador de la dirección del viento. Usualmente esta distribución de la precipitación es muy irregular entre las dos vertientes de una misma cadena montañosa, sobre todo cuando su eje es más o menos perpendicular a la dirección de los vientos húmedos dominantes.

- 3. Lluvias invernales (frentes fríos): Consisten en el desplazamiento de frentes de aire frío procedentes de la zona del Polo Norte. En el país, la zona más afectada por este tipo de fenómenos meteorológicos es la noroeste, donde se originan precipitaciones importantes
- 4. Lluvias convectivas: Las lluvias convectivas tienen su origen en el calentamiento de la superficie terrestre, ya que algunas áreas de la superficie de la tierra absorben mejor que otras los rayos solares, por ello, el aire en contacto con esas "zonas cálidas" llega a calentarse más que en los alrededores, lo que da lugar a corrientes verticales con las que asciende el aire caliente húmedo.

Estas corrientes al llegar a la capa de la troposfera, se enfrían rápidamente, produciéndose la condensación del vapor de agua y formándose nubes densas, por lo general del tipo cúmulos o nubes macizas. Se presentan en áreas reducidas ya que el ascenso y descenso de las corrientes sólo muestran un espacio local (Ahrens, 2000).

Inundaciones fluviales

Se generan cuando el agua que se desborda de los ríos queda sobre la superficie de terreno cercano a ellos.

A diferencia de las pluviales, en este tipo de inundaciones el agua que se desborda sobre los terrenos adyacentes corresponde a precipitaciones registradas en cualquier parte de la cuenca tributaria y no necesariamente a lluvia sobre la zona afectada.

Es importante observar que el volumen que escurre sobre el terreno a través de los cauces, se va incrementando con el área de aportación de la cuenca, por lo que las inundaciones fluviales más importantes se darán en los ríos con más desarrollo (longitud) o que lleguen hasta las planicies costeras.

Inundaciones costeras

Se presentan cuando el nivel medio del mar asciende debido a la marea y permite que éste penetre tierra adentro, en las zonas costeras, generando el cubrimiento de grandes extensiones de terreno.

La marea de tormenta es generada por los vientos de los ciclones tropicales sobre la superficie del mar y por la disminución de la presión atmosférica en el centro de estos meteoros. Por su parte, el oleaje en el océano puede ser provocado por diferentes factores; sin embargo, su causa más común e el viento. La suma de los efectos de ambos fenómenos, puede causar importantes estragos. En el fascículo de Ciclones Tropicales (Jiménez, et al, 2003), puede encontrarse más información al respecto.

Por el tiempo de respuesta de la cuenca:

La respuesta hidrológica de una cuenca depende de sus características fisiográficas. Básicamente se han definido dos grupos: inundaciones lentas e inundaciones rápidas. Lo anterior significa que en cuencas cuya respuesta hidrológica es lenta se generan avenidas en un tiempo relativamente largo (del orden de varias horas o días); en ellas ocurren principalmente daños materiales. Mientras que cuando la inundación se forma en poco tiempo (desde unos cuantos minutos, hasta un par de horas) se llama inundación súbita, causando, principalmente, la pérdida de vidas humanas en zonas pobladas.

Inundaciones lentas

Al ocurrir una precipitación capaz de saturar el terreno, esto es, cuando el suelo no puede seguir absorbiendo más agua de lluvia, el volumen remanente escurre por los ríos y arroyos o sobre el terreno. Conforme el escurrimiento avanza hacia la salida de la cuenca, se incrementa proporcionalmente con el área drenada, si el volumen que fluye por el cauce

excede la capacidad de éste, se presentan desbordamientos sobre sus márgenes y el agua desalojada puede permanecer horas o días sobre el terreno inundado.

Este efecto se presenta comúnmente en zonas donde la pendiente del cauce es pequeña y, por ende, la capacidad de los ríos disminuye considerablemente provocando desbordamientos que generan inundaciones en las partes aledañas.

Si se identifica la presencia de sistemas meteorológicos que pueden generar este tipo de inundación, ésta podría pronosticarse, por lo que no deberían presentarse daños importantes; sin embargo, la realidad es otra, ya que la falta de instrumentación para monitorear lluvias, en muchos casos no permite anticipar la ocurrencia de este tipo de inundación; la falta de información tiene como consecuencia que al llegar la crecida la gente la perciba como una avenida súbita.

Inundaciones súbitas

Las inundaciones súbitas son el resultado de lluvias repentinas e intensas que ocurren en áreas específicas. Pueden ocasionar que pequeñas corrientes se transformen, en cuestión de minutos, en violentos torrentes capaces de causar grandes daños.

Las zonas urbanas son usualmente sitios donde se presenta este tipo de avenidas, como consecuencia de la "cubierta impermeable" formada artificialmente por los edificios y calles, así como por la deforestación. Debido a ello, el agua no puede infiltrarse y prácticamente todo el volumen precipitado se convierte en escurrimiento.

Así, donde antes una tormenta humedecía la tierra y regaba la hierba y los árboles, ahora bastan unos cuantos minutos para generar una avenida que arrastra todo lo que encuentra a su paso.

La diferencia entre inundaciones lentas e inundaciones súbitas es el tiempo que tardan en manifestarse los efectos desde que comienza a llover hasta que se genera el escurrimiento. Una manera de caracterizar este tiempo es mediante el llamado "tiempo de concentración", que es una característica de cada cuenca. De varios casos registrados (tabla 2), se puede decir que, con tiempos de concentración del orden de dos horas, es posible que se presente una avenida súbita.

Más aún, comparando entre inundaciones lentas y súbitas, éstas son responsables de un mayor número de muertes; sin embargo, es evidente que esta clasificación obedece también al tiempo de respuesta de las instituciones de protección civil ya que, por ejemplo, si ante la ocurrencia de una inundación el tiempo requerido es de cinco horas, entonces para ese caso en particular las avenidas que se presenten en menos de cinco horas serán consideradas como súbitas, en caso contrario serán clasificadas como lentas. Con esto queda de manifiesto la importancia de llevar a cabo una vigilancia continua de la lluvia y los niveles en los ríos, en toda la cuenca y de informar y orientar a las autoridades de Protección Civil en estos temas.

2.2.4. Lámina de precipitación

La precipitación que ocurre en una zona no es constante y el escurrimiento que se genera depende en gran medida de la extensión donde tiene lugar y de sus características (tamaño, pendiente, tipo de suelo, cobertura vegetal, etc.).

Si alguien preguntara cuánto llovió durante una determinada tormenta, la respuesta puede variar, ya que depende de la medición en cada sitio, de acuerdo con la ubicación que tenga dentro de la zona donde está lloviendo.

Es por eso que la precipitación se caracteriza como una altura o lámina; de esta manera es posible comparar la altura de la lluvia en diferentes puntos de una cuenca, o bien, obtener un promedio; también, al ser una variable independiente del área, permite convertir la lluvia en volumen precipitado para cualquier sub-área dentro de la cuenca que se esté estudiando. En México es común expresarla en mm, mientras que, en los Estados Unidos de América, lo hacen en pulgadas.

Los aparatos que miden la lluvia, pluviómetros (figura x) o pluviógrafos (figura y) la expresan como láminas de lluvia, y es de interés particular en el tema de las

inundaciones, conocer la cantidad de precipitación que se acumula en duraciones, generalmente, menores a un día.

En ocasiones la lluvia se expresa en volumen por unidad de área, normalmente, litros por m2, lo cual es equivalente a expresarlo en mm.

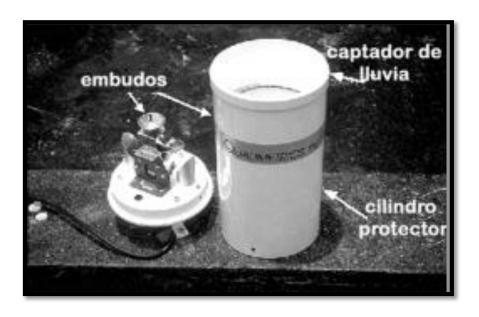


Ilustración 6: Ejemplo de un pluviómetro (medidor de lluvia electrónico).

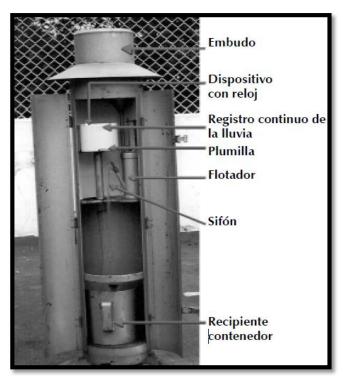


Ilustración 7: Ejemplo de un pluviógrafo.

2.2.5. Intensidad de precipitación

La cantidad de lluvia que se precipita en cierto tiempo es conocida como la intensidad de la precipitación (altura de precipitación por unidad de tiempo). Sus unidades son mm/h, mm/día, etc.

Un pluviógrafo, o el medidor de lluvia electrónico, es el instrumento ideal para registrar la lluvia, ya que, al medir la intensidad de ésta, es posible saber cuándo y cuánto llovió en cada instante, durante una tormenta.

2.2.6. Periodo de retorno (Tr)

Es el tiempo que, en promedio, debe transcurrir para que se presente un evento igual o mayor a una cierta magnitud.

Normalmente, el tiempo que se usa son años, y la magnitud del evento puede ser el escurrimiento, expresado como un cierto gasto, una lámina de precipitación o una profundidad de inundación (tirante). Se subraya que el evento analizado no ocurre exactamente en el número de años que indica el periodo de retorno, ya que éste puede ocurrir el próximo o dentro de muchos años.

En las normas de diseño de obras hidráulicas se han propuesto periodos de retorno específicos para dimensionar obras de protección contra inundaciones, por ejemplo, para el diseño de sistemas de drenaje urbano se utiliza comúnmente 10 años y para obras de excedencia de presas (vertedores) se usa 10,000 años (CNA, 1993).

2.2.7. Cuenca

La cuenca es una zona de la superficie terrestre donde, si fuera impermeable, las gotas de lluvia que caen sobre ella tenderían a ser drenadas por el sistema de corrientes hacia un mismo punto de salida (figura 13). En realidad, el terreno no es impermeable, por lo que un porcentaje del volumen llovido es absorbido por el suelo, otro es atrapado en pequeñas depresiones del terreno, formando charcos, otro queda sobre la vegetación y otra parte escurre hacia los ríos y arroyos. Usualmente el área de una cuenca se expresa en km2.

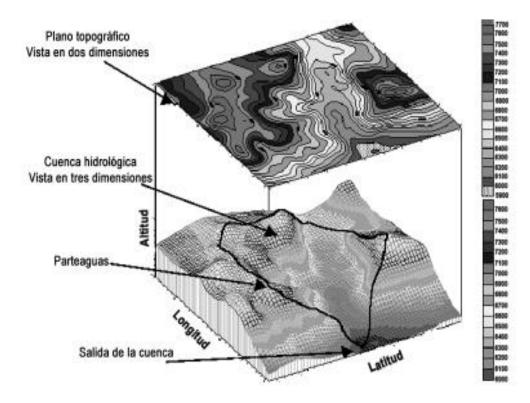


Ilustración 8: Representación gráfica de una cuenca hidrológica (Eslava, 2004).

Aparicio M., F. (1992): Una cuenca es una zona de la superficie terrestre en donde (si fuera impermeable) las gotas de lluvia que caen sobre ella tienden a ser drenadas por el sistema de corrientes hacia un mismo punto de salida

Chereque M., W. (1990): Se define cuenca el área de terreno donde todas las aguas caídas por precipitación se unen para formar un solo curso de agua, cada curso de agua tiene una cuenca bien definida para cada punto de su recorrido.

Guevara P., E. (1997): Una cuenca hidrográfica es una unidad física bien definida y comprende toda el área que aporta a un sistema de drenaje común en un punto, a partir del cual hacia aguas arriba, la cuenca es bordeada por una divisoria o línea de separación de la precipitación (divortium aquarum) que cae sobre las cuencas vecinas.

Monsalve S., G. (1999): Una cuenca hidrográfica es un área definida por una divisoria topográfica de aguas, drenada por un curso de agua o un sistema conectado de cursos de agua tal que todo el caudal afluente es descargado a través

de una salida simple. Se llama cuenca hidrográfica o cuenca receptora de un río en un punto dado, al área limitada por el divortium aquarum que define un contorno en cuyo interior el agua precipitada se acumula en ese punto del río. Si el terreno es impermeable los límites de la cuenca están definidos topográficamente por la curva que separan las vertientes.

Vásquez V., A. (1998): Es el área natural o unidad de territorio, delimitada por una divisoria topográfica (divortium aquarum), que capta la precipitación y drena el agua de escorrentía hasta un colector común, denominado rio principal.

2.2.7.1. Delimitación de Cuenca

Chereque Moran., W. (1990): La delimitación de una cuenca se hace sobre un plano a curvas de nivel, siguiendo las líneas del divortium aquarum o líneas de las altas cumbres.

Villon B., M. (2011): La delimitación de una cuenca, se hace sobre un plano o mapa a curvas de nivel, siguiendo las líneas del divortium aquarum (parteaguas), la cual es una línea imaginaria, que divide a las cuencas adyacentes y distribuye el escurrimiento originado por la precipitación, que, en cada sistema de corriente, fluye hacia el punto de salida de la cuenca. El parteaguas está formado por los puntos de mayor nivel topográfico y cruza las corrientes en los puntos de salida, llamado estación de aforo.

2.2.7.2. La Cuenca y sus Características Geomorfológicas clasificación de los cursos de agua

Con base en la constancia de la escorrentía, los cursos de agua se pueden dividir en:

Perennes:

Corrientes con agua permanente

El flujo subterráneo mantiene una alimentación continúa produciendo un flujo base que es permanente, salvo situaciones extremadamente secas.

Intermitentes:

Corrientes que presentan un flujo base sólo en estaciones de lluvia.

El nivel de agua subterránea supera el nivel del lecho del río en la época

lluviosa. En épocas de lluvias escasas o nulas ese nivel baja manteniendo un

flujo subterráneo.

Efímeros o ríos secos

Carecen generalmente de flujo base. Los escurrimientos superficiales se

generan solamente ante la presencia de una lluvia (generalmente de alta

intensidad) sobre la cuenca. En zonas áridas, por ejemplo, en los torrentes se

producen crecientes súbitas.

2.2.7.3. Red de drenaje

La red de drenaje está constituida por el río principal y sus tributarios.

Orden de la red de drenaje

Refleja el grado de ramificación o bifurcación dentro de una red de drenaje.

Puede determinarse de acuerdo con criterios expuestos por diferentes

autores, entre ellos se tiene:

Horton-Strahler: consiste en atribuirle el número de orden a los canales

Corrientes de primer orden: Pequeños canales que no tienen tributarios.

Corrientes de segundo orden: Cuando dos corrientes de primer orden se

unen.

Corrientes de tercer orden: Cuando dos corrientes de segundo orden se

unen.

Corrientes de orden n + 1: Cuando dos corrientes de orden n se unen

36

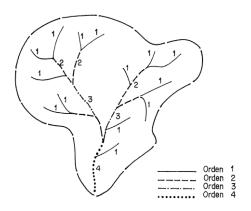


Ilustración 9: Red de drenaje según Horton- Strahler

Shreve: es otro esquema de organización planimétrica de la red hidrográfica en la que se obtiene un árbol de bifurcación donde el orden o "magnitud" de un segmento de corriente formado en una unión, es la suma de las magnitudes de los dos tributarios, así:

Corrientes de primer orden: Pequeños canales que no tienen tributarios.

Corrientes de segundo orden: Cuando dos corrientes de primer orden se unen.

Corrientes de tercer orden: Cuando se unen una corriente de segundo orden y una de primer orden.

Corrientes de orden n + m: Cuando se unen dos corrientes de orden n y m. La magnitud de cualquier segmento de corriente iguala el número de la magnitud de sus fuentes, lo cual significa que la magnitud Shreve es una de las relaciones más simples para predecir el flujo de corriente que otros sistemas de ordenamiento.

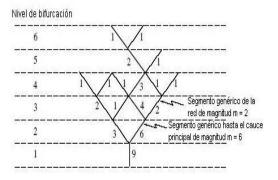


Ilustración 10: Red de drenaje según Shreve (Ferro, 2002)

2.2.7.4. Densidad de drenaje

Es un importante indicador de la forma del terreno y el grado de erosión que puede tener la cuenca en función de los factores geológicos, de vegetación y de tipo de suelo. Un buen mapa topográfico base de una cuenca debe reflejar adecuadamente la densidad del drenaje.

Cuantitativamente es la relación entre la longitud de los cursos de agua de la cuenca y su área total, así:

$$D_{d} = \frac{L}{A}$$

Donde:

L: Es la longitud total de las corrientes de agua, en km

A: Es el área total de la cuenca, en km2

La densidad de drenaje, D_d, usualmente toma valores entre 0.5 km/km2 para cuencas con drenaje pobre, hasta 3.5 km/km2 para cuencas excepcionalmente bien drenadas.

2.2.7.5. Parámetros geomorfológicos básicos

Los parámetros geomorfológicos básicos para establecer una afinidad hidrológica entre cuencas comparables son: área, perímetro, altura máxima, mínima y desnivel, índice de compacidad, radio de elongación, curva hipsométrica, curva de frecuencias altimétricas, altitud media, longitud del

cauce principal, pendiente media del cauce principal, pendiente ponderada del cauce principal, rectángulo equivalente, índice de pendiente, pendiente, pendiente media total o pendiente neta total, coeficiente de masividad o de Martone, coeficiente orográfico. Dichos parámetros geomorfológicos pueden ser calculados fácilmente haciendo uso de sistemas de información geográfica (SIG) integrados a modelos hidrológicos. (INCTH et. al., 1976).

2.2.7.6. Área de la cuenca

La delimitación exacta de las cuencas se efectúa sobre los planos correspondientes a las restituciones planialtimétricas a escala adecuada. De acuerdo con los órdenes de magnitud de las escalas de los planos base en trabajos de hidrología, suelen considerarse como suficientes las escalas de trabajo recién mencionadas en todos los casos se determina primero la línea de contorno de cada cuenca coincidente con la divisoria topográfica.

2.2.7.7. Perímetro

Sobre los mismos planos se mide el contorno de cada cuenca. En la medición del perímetro, en los casos en que la divisoria sigue una trayectoria muy sinuosa, se sigue el criterio, a los efectos de la medición, de interpolar una línea sustituyendo a la auténtica divisoria. Con ello las características de la cuenca no se alterarán fundamentalmente, el área no se modifica ya que se puede suponer que está compensada y en cuanto al perímetro sufre un cierto acortamiento. En definitiva, la forma de la cuenca en su aspecto hidrológico no se altera por esta sustitución y el valor que se adopta no es el resultante de recorrer todo el contorno rigurosamente, sino un contorno simplificado de su forma.

2.2.7.8. Altura máxima, mínima y desnivel

En general la elevación máxima, en conjunción con la altitud media, es un índice de la medida en que deben elevarse las masas de aire para pasar sobre la cuenca. La altura máxima se obtiene por lectura directa en las planimetrías, de la cota del cerro de mayor altura, ubicado dentro de la cuenca o en su contorno. La altura mínima se determina en correspondencia con la cota del cauce

principal en la sección de control. El desnivel corresponde a la diferencia entre la altura máxima y la altura mínima.

2.2.7.9. Índice de compacidad

Una cuenca vertiente está definida en primer lugar por su contorno, que tiene una forma determinada y encierra una cierta área, A. Es evidente que esta forma tendrá una gran influencia sobre la configuración del hidrograma resultante de una lluvia dada. El Índice utilizado para representar esta característica es el coeficiente de compacidad de Gravelius, o simplemente, índice de compacidad, y que es igual a la relación entre el perímetro de la cuenca (P) y el perímetro de un círculo de igual área.

$$I_{\rm C} = \frac{P}{2\sqrt{\pi*A}}$$

En términos del área, el círculo es la figura de menor perímetro, por tanto, en cualquier caso, este coeficiente será mayor que la unidad. Así, mientras más cercano a la unidad sea el coeficiente de compacidad, la forma de la cuenca se aproxima a la circular, y entre más alejado de ella, más irregular es su forma en relación con el círculo.

Efectuando operaciones con los valores constantes resulta:

$$I_{C} = \frac{0.282*P}{\sqrt{A}}$$

En cierto modo, el significado del índice de compacidad es similar al del radio hidráulico, en hidráulica, sólo que, en este caso, es una relación entre perímetro (P) y la raíz cuadrada del área (A).

2.2.7.10. Radio de elongación

Otro de los parámetros que se han introducido en los estudios hidrológicos para definir numéricamente la forma de la cuenca, lo constituye el radio de elongación, que se establece como la relación entre el diámetro de un círculo de

igual área que la cuenca y la longitud máxima de la misma medida desde la sección de control (B), o sea que:

$$R_e = \frac{1,1284 * \sqrt{A}}{B}$$

Esta relación alcanzará evidentemente, como valor máximo la unidad, para una figura perfectamente circular, disminuyendo luego, a medida que la forma de la cuenca se aleje de dicha configuración.

2.2.7.11. Curvas hipsométricas

La mayor parte de los fenómenos meteorológicos e hidrológicos (precipitaciones, temperatura, caudales específicos, etc.) se presentan en función de la altitud, por lo tanto, es muy importante calcular la distribución de la cuenca vertiente, en km2 y en porcentaje del área total, por intervalos constantes de altura. Para determinar la equidistancia entre curvas de nivel en que se deben medir las áreas, se parte del cálculo de la relación:

$$N = \frac{H_{M} - H_{m}}{n}$$

Siendo H_M la cota máxima de la cuenca, H_m la cota mínima y n el número de curvas de nivel. Si se están estudiando varias cuencas simultáneamente, se obtienen así valores máximos y mínimos de N para todas las cuencas en estudio. Luego, para homogeneizar el estudio se considera una equidistancia entre curvas de nivel que no sea menor que el N mínimo ni mayor que el N máximo. Así si se tiene por ejemplo N mínimo de las cuencas de 90 y N máximo de 205, se puede seleccionar para todas las cuencas una equidistancia ente curvas de nivel de 100 metros.

Las áreas entre curvas de nivel se obtienen por planimetría de los planos en escala adecuada disponibles para todas las cuencas. Se puede considerar a esta curva como una especie de perfil de la cuenca que representa las áreas dominadas por encima de cada cota. Otra curva similar a la hipsométrica, es la curva de frecuencias altimétricas o curva de distribución de altitudes, que

representa en un diagrama escalonado, los porcentajes del área total de la cuenca que se hallan comprendidos entre intervalos constantes de altitud (de 100 en 100 m, por ejemplo).

2.2.7.12. Altitud media

Dado que la precipitación es básicamente el resultado del ascenso y enfriamiento de masas de aire, existe generalmente una correlación entre la misma y la altitud media, en cuencas de zonas montañosas. En consecuencia, la elevación media de una cuenca sobre el nivel del mar es un indicador general de las cantidades de precipitación. Por otra parte, a alturas mayores, debido al descenso de las temperaturas, se produce una disminución general de la evapotranspiración potencial.

La altitud media de las cuencas se obtiene mediante la relación:

$$Alt_{m} = \frac{\sum h_{i} * A_{i}}{A}$$

En donde las sub áreas A_i , corresponden a las áreas comprendidas entre curvas de nivel consecutivas h_i y A es el área total de la cuenca.

2.2.8. El ciclo hidrológico

El agua que tomamos ahora es la misma que durante millones de años se ha mantenido en cualquiera de sus tres estados: líquido, gas (vapor) o sólido (hielo) reciclándose constantemente, es decir, se limpia y se renueva trabajando en equipo con el sol, la tierra y el aire, para mantener el equilibrio en la naturaleza. La continuidad del agua en la tierra es lo que conocemos como El ciclo hidrológico.

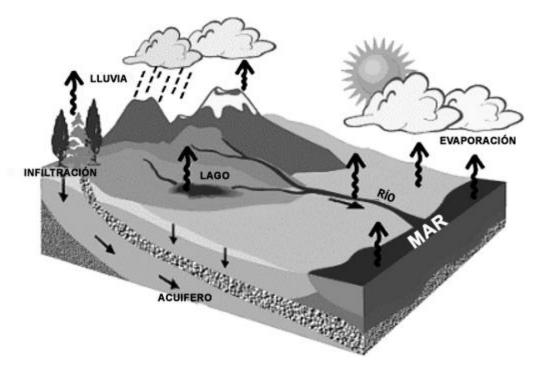


Ilustración 11: Esquema del ciclo hidrológico. (fuente: Sistema de los servicios de Agua Potable, Drenaje y Alcantarillado de Puerto Vallarta)

El ciclo hidrológico no tiene principio ni fin; sin embargo, por convención su explicación inicia cuando el sol calienta el agua superficial en los océanos, lagos y lagunas, generando la evaporación que la convierte en el vapor de agua que se eleva hacia la atmósfera.

Una vez que ese vapor de agua alcanza las capas altas de la atmósfera, se enfría y se transforma en pequeñas gotas, las cuales forman las nubes, éstas son el principal fenómeno atmosférico visible.

En las nubes, una vez que se forman las pequeñas gotas, se juntan y crecen hasta que se vuelven demasiado pesadas y regresan a la tierra como precipitación (se condensan) en su fase líquida (lluvia) o en su fase sólida (nieve o granizo).

La precipitación incluye también el agua que pasa de la atmósfera a la superficie terrestre por condensación del vapor de agua (rocío) o por la congelación del vapor (helada) y por la intercepción de las gotas de agua de las nieblas (nubes que tocan el suelo o el mar).

A medida que cae la lluvia, parte de ella se evapora directamente hacia la atmósfera o es interceptada. El resto penetra hacia el interior del suelo; esta agua infiltrada puede volver a la atmósfera por evapotranspiración o profundizarse hasta alcanzar las capas freáticas. Si la precipitación continúa penetrando en la tierra hasta que ésta se satura, el agua excedente pasa a formar parte de las aguas superficiales, originando escurrimientos sobre la superficie de la tierra que ayudan a llenar los lagos, ríos y mantos acuíferos.

Los ríos son un claro ejemplo de aguas superficiales. Se definen como la corriente natural de agua que fluye por un lecho, desde un lugar elevado a otro más bajo. La mayoría de los ríos desaguan en el mar o en un lago, aunque algunos desaparecen debido a que sus aguas se filtran en la tierra o se evaporan hacia la atmósfera. Además, la cantidad de agua que circula por ellos, varía en el tiempo y en el espacio. Las variaciones temporales se dan durante o justo después de las tormentas.

Por otra parte, el agua que se infiltra en el suelo, y circula bajo tierra, tarda mucho más en alimentar el caudal de un río y puede llegar a él días, semanas o meses después de la lluvia que generó el escurrimiento; esta agua infiltrada puede volver a la atmósfera por evapotranspiración o profundizarse hasta alcanzar las capas freáticas.

Una vez que el agua retorna a la superficie de la tierra, se puede evaporar otra vez rápidamente, o ser absorbida y penetrar en el suelo y permanecer bajo tierra por miles de años hasta que al fin encuentre su camino hacia una salida. Pero sin considerar donde cae la precipitación o que tanto permanezca en el lugar, eventualmente será reciclada.

2.2.9. Tiempo de Concentración y Tiempo de Retraso

2.2.9.1. Tiempo de concentración

Tiempo necesario para que todo el sistema (toda la cuenca) contribuya eficazmente a la generación de flujo en el desagüe. Comúnmente el tiempo de concentración se define como, el tiempo que tarda una partícula de agua caída en el punto más alejado de la cuenca hasta la salida del desagüe. Además, debe

tenerse en claro que el tiempo de concentración de una cuenca no es constante; según Marco y Reyes (1992) aunque muy ligeramente depende, de la intensidad y la precipitación.

Por tener el concepto de tiempo de concentración una cierta base física, han sido numerosos los autores que han obtenido formulaciones del mismo, a partir de características morfológicas y geométricas de la cuenca. A continuación, se muestran algunas de esas fórmulas empíricas:

ASC Modificada

$$Tc = \frac{0.007*n^{0.8}*Lp^{0.8}}{S^{0.4}*P2^{0.5}}$$
 (Ec. 1)

Donde:

n: coeficiente de rugosidad del cauce

Lp: longitud del cauce (pies)

S: pendiente promedio del cauce principal (m/m)

P2: precipitación con un período de retorno de 2 años para una lluvia de duración de 24 horas (pulg)

Tc: tiempo de concentración (horas)

Bransby-Williams

$$tc = 14.6 * L * A^{-0.1} * S^{-0.2}$$
 (Ec. 2)

Donde:

L: longitud del curso de agua más largo (km)

A: área de la cuenca (km2)

S: pendiente promedio del cauce principal (m/m)

tc: tiempo de concentración (min)

California Culvert Practice

$$tc = 60 * \left[\frac{0.87075*L^3}{H} \right]^{0.385}$$
 (Ec. 3)

Donde:

L: longitud de curso de agua (m.)

H: Diferencia de Nivel (m.)

tc: Tiempo de Concentración (min.)

Clark

$$Tc = 0.335 * \left[\frac{A}{S^{0.3}}\right]^{0.593}$$
 (Ec. 4)

Donde:

A: área de la cuenca (km2)

S: pendiente promedio del cauce principal (m/m)

Tc: tiempo de concentración (horas)

Ecuación de Retardo SCS

$$Tc = \frac{0.0136*L^{0.8}*\left[\left(\frac{1000}{CN}\right) - 9\right]^{0.7}}{S^{0.5}}$$
 (Ec. 5)

Donde:

L: Longitud de curso de agua (metros)

CN: Numero de Curva

S: Pendiente (m/m)

tc: Tiempo de Concentración (min)

Federal Aviation Agency FAA

$$tc = 3.26 * (1.1 - C) \frac{(1000*L)^{0.5}}{(100*S)^{0.333}}$$
 (Ec. 6)

Donde:

C: Coeficiente de escorrentía

L: Longitud de curso de agua (metros)

S: Pendiente (m/m)

tc: Tiempo de Concentración (min)

George Rivero

$$tc = \frac{16*L}{[(1.05-0.2*p)*(100*S)]^{0.04}}$$
 (Ec. 7)

Donde:

L: longitud del curso de agua más largo (km)

p: relación entre el área cubierta de vegetación y el área de la cuenca

S: pendiente promedio del cauce principal (m/m)

tc: tiempo de concentración (min)

Giandotti

$$TC = \frac{4*\sqrt{A}+1.5*L}{25.3*\sqrt{S}*L}$$
 (Ec. 8)

Donde:

A: área de la cuenca (km2)

L: longitud del curso de agua más largo (km)

S: pendiente promedio del cauce principal (m/m)

Tc: tiempo de concentración (horas)

Henderson y Woodin

tc =
$$0.94 * i^{-0.4} * \left[\frac{n*Lp}{\sqrt{s}}\right]^{0.6}$$
 (Ec. 9)

Donde:

i: intensidad de la lluvia (mm/hr)

n: coeficiente de rugosidad del cauce

Lp: longitud del cauce (pies)

S: pendiente promedio del cauce principal (m/m)

tc: tiempo de concentración (min)

Izzard

$$tc = \frac{41.025*(0.0007*ip^{0.8}+c)*Lp^{0.333}*n^{0.605}}{ip^{0.667}*S^{0.333}}$$
(Ec. 10)

Donde:

ip: intensidad de lluvia (mm/hr)

c: Coeficiente de Retardo

L: Longitud de curso de agua (metros)

S: Pendiente (m/m)

tc: Tiempo de Concentración (min)

Johnstone Cross

$$Tc = 5 * \left(\frac{Lm}{\sqrt{s}}\right)^{0.5}$$
 (Ec. 11)

Donde:

Lm: longitud del canal desde aguas arriba hasta la salida (mi)

s: pendiente promedio de la cuenca (pies/mi)

tc: tiempo de concentración (min)

Kerby-Hathaway

$$tc = \left[\frac{0.67*n*Lp}{\sqrt{S}}\right]^{0.467}$$
 (Ec. 12)

Donde:

n: coeficiente de rugosidad del cauce

Lp: longitud del cauce (pies)

S: pendiente promedio del cauce principal (m/m)

tc: tiempo de concentración (min)

Kirpich

$$tc = 0.06628 * \frac{L^{0.77}}{S^{0.385}}$$
 (Ec. 13)

Donde:

L: Longitud del Canal en (metros)

S: Pendiente (m/m)

tc: Tiempo de Concentración (min)

Método Racional Generalizado

$$Tc = \left[\frac{60*n*L}{H^{0.3}}\right]$$
 (Ec. 14)

Donde:

n: coeficiente de rugosidad del cauce

L: longitud del curso de agua más largo (km)

H: diferencia de nivel entre la divisoria de aguas y la salida (metros)

Tc: tiempo de concentración (horas)

Morgali y Linsley (Ecuaciones de Onda Cinética)

$$tc = \frac{0.933*Lp^{0.6}*n^{0.6}}{i^{0.4}*S^{0.3}}$$
 (Ec. 15)

Donde:

Lp: longitud del cauce (pies)

n: Coeficiente de Rugosidad

i: intensidad de lluvia (mm/hr)

S: Pendiente (m/m)

tc: Tiempo de Concentración (min)

Passini

$$Tc = \frac{\left[0.108*(A*L)^{\frac{1}{3}}\right]}{S^{0.3}}$$
 (Ec. 16)

Donde:

A: área de la cuenca (km2)

L: longitud del curso de agua más largo (km)

S: pendiente promedio del cauce principal (m/m)

Tc: tiempo de concentración (horas)

Pérez

$$Tc = \frac{L}{72*(\frac{H}{L})^{0.6}}$$
 (Ec. 17)

Donde:

L: longitud del curso de agua más largo (km)

H: diferencia de nivel entre la divisoria de aguas y la salida (m)

Tc: tiempo de concentración (horas)

Pilgrin y McDermott

$$Tc = 0.76 * A^{0.38}$$
 (Ec. 18)

Donde:

A: área de la cuenca (km2)

Tc: tiempo de concentración (horas)

Snyder

$$Tc = 1.2 * (L * Lcg)^{0.3}$$
 (Ec. 19)

Donde:

L: longitud del curso de agua más largo (km)

Lcg: distancia desde la salida hasta el centro de gravedad de la cuenca (mi)

Tc: tiempo de concentración (horas)

Temez

$$Tc = 0.3 * \left[\frac{L}{S^{0.25}}\right]^{0.76}$$
 (Ec. 20)

Donde:

L: longitud del curso de agua más largo (km)

S: pendiente promedio del cauce principal (m/m)

Tc: tiempo de concentración (horas)

Valencia y Zuluaga

$$Tc = 1.7594 * A^{0.325} * L^{-0.096} * S0^{-0.290}$$
 (Ec. 21)

Donde:

A: área de la cuenca (km2)

L: longitud del curso de agua más largo (km)

S0: pendiente en porcentaje

Tc: tiempo de concentración (horas)

Ventura - Heras

$$Tc = \alpha * \frac{A^{0.5}}{S}$$
 (Ec. 22)

Donde:

α: Coeficiente que depende de la pendiente

A: área de la cuenca (km2)

S: pendiente promedio del cauce principal (m/m)

Tc: tiempo de concentración (horas)

Ven Te Chow

$$Tc = 0.273 * \left(\frac{L}{S^{0.5}}\right)^{0.64}$$
 (Ec. 23)

Donde:

L: longitud del curso de agua más largo (km)

S: pendiente promedio del cauce principal (m/m)

Tc: tiempo de concentración (horas)

2.2.10. Tiempo de retraso

El tiempo de retraso se define como el tiempo que transcurre entre el centroide del hietograma de lluvia efectiva y el tiempo pico del hidrograma de escurrimiento directo

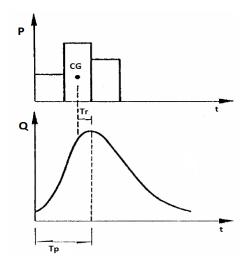


Ilustración 12:Tiempo de retraso

2.2.10.1. Definición del tiempo de retraso

El tiempo de retraso depende, principalmente, de las características fisiográficas de la cuenca y de la forma del hidrograma y es independiente de la lluvia. Para calcular el tiempo de retraso, Chow (1962) propone la ecuación:

$$Tr = 0.0050 * \left[\frac{L}{\sqrt{s}}\right]^{0.64}$$
 (Ec. 24)

Donde

L: es la longitud del cauce principal (m)

S: es la pendiente del cauce principal (%)

Tr: es el tiempo de retraso (horas)

Linsley y colaboradores (1975) recomiendan calcular el tiempo de retraso Tr con la expresión:

$$Tr = 0.75174 * (C_t) * \left[\frac{L*L_{ca}}{\sqrt{S}}\right]^n$$
 (Ec. 25)

Donde

L: es la longitud de la corriente principal (km)

 L_{ca} : es la longitud de la corriente principal desde la salida de la cuenca, hasta el punto más cercano al centro de gravedad de la cuenca (km)

S: es la pendiente de la cuenca

n: es una constante (para montañas, pie de montes y valles, el valor de n = 0.38)

 C_t : es el coeficiente que representa las variaciones de la pendiente y el almacenamiento en la cuenca (para cuencas naturales varía entre 1.35 y 1.65 y para zonas urbanas, de acuerdo con las mediciones realizadas por Eagleson, se obtuvo que oscila entre 0.16 y 0.24).

En tanto que Snyder (1938) propone determinar el valor de Tr mediante la ecuación siguiente:

$$Tr = C_t * (L * L_{ca})^{0.3}$$
 (Ec. 26)

Bien, se puede utilizar la ecuación:

$$Tr = 0.60 * Tc$$
 (Ec. 27)

Donde:

Tc: es el tiempo de concentración (horas).

2.2.11. Hidrogramas

2.2.11.1. Hidrograma unitario sintético triangular del SCS

El hidrograma unitario triangular del SCS es una simplificación que resulta muy útil para el cálculo de hidrogramas sintéticos en cuencas de tamaños reducidos.

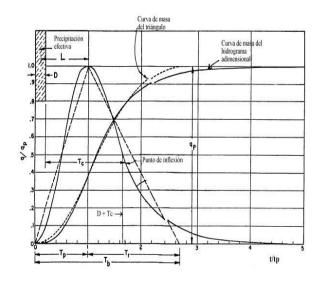


Ilustración 13: Hidrograma Unitario adimensional (curvilíneo) y su equivalencia con el hidrograma triangular

Donde:

D: es la duración de la precipitación efectiva

 T_R : es el tiempo de retraso ("Lag time") centro de masa de precipitación efectiva al centro de masa de escorrentía directa o al pico del Hidrograma Unitario Triangular.

 T_P : es el tiempo al pico, en horas y fracción.

 T_r : es el tiempo de recesión, en horas y fracción.

 T_b : es el tiempo base del hidrograma triangular en horas y fracción.

 q_p : es la escorrentía pico en mm/hora.

 P_e : es la Lámina total de escorrentía efectiva en mm (no se indica en la figura).

 T_c : es el Tiempo de concentración de la cuenca.

El Hidrograma unitario adimensional (curvilíneo) se puede también representar por su hidrograma triangular equivalente que tenga las mismas unidades de tiempo y de descarga (NEH, 1972).

$$P_e = \frac{q_p * T_p}{2} + \frac{q_p * T_r}{2} = \frac{q_p * (T_p + T_r)}{2}$$
 (Ec. 28)

Despejando q_p

$$q_p = \frac{2*P_e}{(T_p + T_r)} = \frac{2*P_e}{T_b}$$
 (Ec. 29)

Ahora bien:

Como se expresó ese hidrograma curvilíneo se representa también por uno triangular equivalente que tiene igual porcentaje de volumen en el lado de ascenso de los caudales. Esto permite expresar el tiempo de base, T_b en función del tiempo al pico, T_p . Si para una unidad de tiempo T_p el volumen es igual a 0.375, entonces:

$$T_b = \frac{1.00}{0.375} = 2.67 \ Unidades \ de \ tiempo \tag{Ec. 30}$$

$$T_b = T_p + T_r$$

$$T_r = T_b - T_p = 2.67 - 1.00 = 1.67T_p$$

sea: $T_r = 1.67 * T_p$ (Ec. 31)
Y: $T_b = 2.67 * T_p$ (Ec. 32)

Igualmente, el punto de inflexión de la rama descendente está aproximadamente a 1.7 unidades de tiempo.

Reemplazando la ecuación 66 en la 63 se tiene:

$$q_p = \frac{2*P_e}{2.67*T_p} = 0.75 * \left(\frac{P_e}{T_p}\right)$$
 (Ec. 33)

Para expresar la escorrentía total en función de áreas y en m3/s el caudal pico, Q_p , es:

$$Q_{p} = \frac{0.75*P_{e}*A}{T_{p}} * \left[\frac{mm*km^{2}}{horas}\right] * \frac{10^{6}*\left[\frac{m^{2}}{km^{2}}\right]}{1000*\left[\frac{mm}{m}\right]*3600\left[\frac{segundos}{horas}\right]}$$
(Ec. 34)

Simplificando, resulta la ecuación del caudal pico dado por el método del SCS

$$Q_{p} = \frac{0.75*P_{e}*A*10^{6}}{3600000*T_{p}} = 0.208 * \left(\frac{P_{e}*A}{T_{p}}\right)$$
 (Ec. 35)

Una vez calculado el caudal pico puede también hacerse una estimación del volumen del hidrograma

$$\forall = 1000 * P_e * A$$
 (Ec. 36)

Donde:

∀: es el volumen, en m3

P: es la precipitación efectiva (escorrentía directa), en mm.

A: es el área de la cuenca en km

Luego:

$$T_p = 0.5 * D + T_R$$
 (Ec. 37)

Cuando la escorrentía es uniforme (o casi uniforme) en una cuenca o microcuenca es suficiente estimar TR de la relación empírica (NEH, 1972):

$$T_R = 0.6 * T_C$$
 (Ec. 38)

Por lo tanto, la ecuación 71 queda:

$$T_p = 0.5 * D + 0.6 * T_C$$
 (Ec. 39)

El tiempo al pico se puede obtener gráficamente en términos de la duración del exceso de lluvia unitario (D) y del tiempo de concentración de la cuenca, T_c

$$1.7 * T_p = D + T_c$$
 (Ec. 40)

$$\frac{D}{2} + T_R = T_P$$
 (Ec. 41)

$$\frac{D}{2} + 0.6 * T_c = T_P$$
 (Ec. 42)

Resolviendo las ecuaciones para D y para T_P es:

$$D = 0.1333 * T_c$$
 (Ec. 43)

y

$$T_p = 1.113 * T_R$$
 (Ec. 44)

Para que el hidrograma resultante tenga adecuada definición, se debe cumplir que el intervalo de tiempo del hidrograma debe ser:

$$Dt \le 0.25 * T_p$$
 (Ec. 45)

y

$$Dt \le (0.25)(1.113)L$$
 (Ec. 46)

$$Dt \le 0.28 * T_R$$
 (Ec. 47)

2.2.12. ArcGIS Desktop

Es una arquitectura integrada de los productos SIG de la casa ESRI que incluye ArcReader, ArcView, ArcEditor y ArcInfo. Estos cuatro productos comparten una misma interface, por lo tanto, tienen el mismo aspecto y trabajan de la misma manera. La diferencia está en la funcionalidad de cada uno de estos productos, que

va desde la más básica ArcReader hasta la de altas prestaciones de ArcInfo (Orduña, 2007).

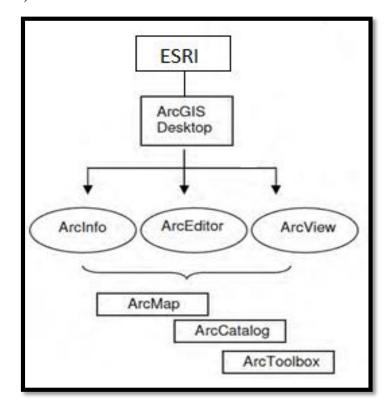


Ilustración 14: Esquema de la arquitectura de ArcGIS

ArcGIS

Es un sistema de información geográfica, el cual posee una interface gráfica de usuario, de manejo sencillo con el ratón, posibilita cargar con facilidad datos espaciales y taburales para ser mostrados en forma de mapas, tablas y gráficos, también provee las herramientas necesarias para consultar y analizar los datos y presentar los resultados como mapas con calidad de presentación. Algunos ejemplos de lo que se puede obtener es cartografía temática, creación y edición de datos, análisis espacial, geocodificación de direcciones, etc. ArcGIS se compone de tres aplicaciones que están incluidas en ArcInfo, ArcEditor y ArcView, las cuales son ArcMap, ArcCatalog y ArcToolbox (Orduña, 2007).

ArcInfo

Es el producto funcionalmente más rico en la familia de ArcGIS. Incluye todo el potencial que puede dar ArcView y ArcEditor, de forma adicional ArcInfo añade el entorno de geoprocesamiento de ArcGIS Desktop, más de 100 herramientas nuevas válidas para trabajar con cualquier formato vectorial de los soportados por ArcGIS, y unas 50 herramientas específicas para formato cobertura. Dispone de funcionalidades de conversión de datos a otros formatos y sistemas de proyección, así como toda la funcionalidad aportada por el entorno de comandos de ArcInfo Workstation (Orduña, 2007).

ArcEditor

Diseñado principalmente para crear y editar geodatabases. Se puede crear y modificar bases de datos y esquemas de bases de datos para ficheros shape, coberturas, geodatabases personales, y corporativas o multiusuario; así como la posibilidad de implementar topología basada en reglas. (Orduña, 2007).

ArcView

Incorpora funciones avanzadas de visualización, análisis y consulta de datos, así como la capacidad de crear y editar datos geográficos y alfanuméricos. Asimismo, contiene ArcMap, ArcCatalog y ArcToolbox (Orduña, 2007).

ArcMap

Permite realizar mapas a partir de capas o datos espaciales, elegir colores y simbología, interrogar a las bases de datos, analizar relaciones espaciales y diseñar mapas o salidas impresas. La interfaz de ArcMap se compone de una tabla de contenidos donde se listan todas las capas que forman el mapa, una ventana donde se muestra el mapa, y una serie de menús y herramientas para trabajar con las capas y mapas (Orduña, 2007).

ArcCatalog

Permite manipular y acceder la información geográfica de un modo fácil. Se puede agregar las conexiones de la información geográfica con que se está trabajando al

Catálogo; también, se pueden conectar los fólderes con los discos locales y compartir fólderes y bases de datos que están disponibles en la red de trabajo.

Después de construir el Catálogo, es posible observar diferentes vistas para ver las fuentes de información geográfica que están disponibles con su respectiva conexión y explorar los contenidos individuales de las fuentes de datos. Es permisible explorar toda la información del mismo modo en que fue guardada. Además, el programa posee herramientas para organizar y darle mantenimiento a la información. Los datos son presentados en una estructura de árbol y a la derecha de la pantalla se pueden observar los archivos espaciales en miniatura, (Orduña, 2007).

ArcToolbox

Permite convertir los datos espaciales de un formato a otro, así como introducir un sistema de referencia o cambiar proyecciones de los datos. Las herramientas se encuentran organizadas temáticamente y mediante el empleo de intuitivos asistentes, permiten realizar dichas funciones de forma sencilla e inmediata; su poder radica en funciones para análisis espacial (Orduña, 2007).

Teoría y Generación de Numero de curva con sistemas de Información Geográfica

Aspectos generales sobre los SIG

La mayor utilidad de un sistema de información geográfica está íntimamente relacionada con la capacidad que posee éste de construir modelos o representaciones del mundo real a partir de las bases de datos digitales, esto se logra aplicando una serie de procedimientos específicos que generan aún más información para el análisis. La construcción de modelos de simulación se convierte en una valiosa herramienta para analizar fenómenos que tengan relación con tendencias y así poder lograr establecer los diferentes factores influyentes. (Chuvieco, 1990).

2.2.13. Introducción a HEC HMS

Medición de Precipitaciones

La lluvia se mide con dos tipos de instrumentos: medidores sin registro (pluviómetros) y medidores con registro (fluviógrafos). En realidad, cualquier recipiente (de cualquier tamaño) es conveniente para medir la lámina total de la lluvia caída. Sea esta de cualquier duración y simplemente midiendo con una regla la altura de la lluvia caída, pero debido a las variaciones que se pueden producir por efectos diversos (viento, influencia del tamaño y forma del recipiente) y a la necesidad de estandarizar la medida se han establecido medidores estándar. En cuanto a los fluviógrafos los hay de distinto tipo y todos registran en papel o digitalmente la lluvia caída y sus variaciones a través del tiempo. Debido a la importancia de este dato, se debe tener especial cuidado en la elección del sitio para la instalación del aparato de medición, en cuanto a su facilidad de acceso, como de evitar factores que distorsionan la medición como cercanías de árboles o edificios y cumplir las normas que se han establecido.

2.2.14. Introducción IBER

El paquete computacional Iber, corresponde a un modelo numérico que simula el flujo turbulento en lámina en régimen no permanente. Tiene aplicaciones en campos de estudio como: Hidrodinámica fluvial, simulación de presas y canales abiertos, evaluación de zonas inundables.

Las versiones actuales de Iber constan de tres módulos principales, mismos que trabajan sobre una malla no estructurada de volúmenes finitos que pueden ser triangulares o cuadrangulares.

2.2.14.1. Módulos principales del programa IBER

Módulo Hidrodinámico: Resuelve las ecuaciones de aguas poco profundas bidimensionales promedias en profundidad (ecuaciones de St. Venant 2D).

Módulo de Turbulencia: Permite incluir las tensiones turbulentas en el cálculo hidrodinámico.

Módulo de Transporte de sedimentos: resuelve las ecuaciones de transporte de fondo y transporte turbulento en suspensión.

2.2.14.2. Limitaciones de IBER

El costo computacional llega a ser demasiado elevado al usar una malla demasiado fina, lo cual a su vez se ve reflejado en el tiempo de cálculo del modelo.

Requiere de información de calidad, para la obtención de resultados confiables, misma que en ocasiones resulta demasiado compleja su obtención.

2.2.14.3. Ventajas de IBER

IBER al ser un modelo bidimensional garantiza una mayor precisión en la simulación de presas y canales.

A continuación, se presenta una serie de ventajas de Iber.

Esquema de trabajo de alta resolución.

Presencia de mallas irregulares que se adaptan de mejor manera al modelo digital del terreno.

Mayor precisión en la simulación de presas y canales.

CAPÍTULO III: MATERIALES Y METODOS

III. MATERIALES Y METODOS

3.1. Población

La población es el área de estudio correspondiente al Distrito de Pucusana.

3.2. Muestra

La muestra corresponde al Distrito de Pucusana donde se involucran el rio Chilca y la quebrada Chutana.

El distrito de Pucusana es uno de los 43 distritos de la provincia de Lima, ubicada en el departamento homónimo, en el Perú. Es un balneario que se encuentra a 60 km al sur de Lima, en el Perú. Limita al norte con el distrito de Santa María del Mar, al este con la provincia de Cañete, al sur y oeste con el océano Pacífico.

El distrito fue creado mediante Ley No. 9782 del 22 de enero de 1943, en el primer gobierno del Presidente Manuel Prado Ugarteche.

En su litoral se encuentran lanchas para dar un paseo por su costa, desde donde se pueden apreciar otras playas tales como Las Culebritas, las Ninfas, Naplo, La Yesera, La Honda, Pelícanos, La Tiza y La Quipa.

Uno de sus más visitados atractivos es el Corte de La Viuda, que es un gran accidente geográfico donde el mar hace su entrada en medio del cerro costero. También es conocido como el Boquerón del Diablo, aunque su nombre real es el anterior. Acá, además, se encuentra el salto del Corte, un salto de 13 metros hacia el mar que se utiliza desde hace algunos años.

Su población se dedica mayormente a la pesca artesanal y al turismo.

Es un lugar típico para degustar la gastronomía del Perú, especialmente aquella con productos del mar.

Otro atractivo es la famosa casa buque. También existe un museo local. Además, anualmente se celebra la famosa Regata Pelícanos, es decir, carrera de veleros, alrededor del mes de febrero, la cual es muy concurrida.

En Pucusana se suele practicar deportes marinos o náuticos como la caza submarina, el buceo, el esquí, la vela y la natación. Dentro de sus instalaciones náuticas, Pucusana posee además de muelle de pescadores, un muelle deportivo y un Yacht Club.



Ilustración 15: Mapa del Distrito de Pucusana

3.3. Unidad de Análisis

Se evaluaron las salidas, tanto del rio Chilca como la de la quebrada Chutana y el impacto que tendrá, su desborde, en el Distrito de Pucusana.

3.4. Metodología

3.4.1. Obtención de datos

3.4.1.1. Obtención del Modelo de Elevación Digital (DEM)

Para efectuar, como en este caso, un estudio de zonas inundables se requiere el levantamiento topográfico de al menos 2 km aguas arriba y 1 km aguas abajo de la zona en estudio, llegándose necesariamente al curso que podría originar los eventuales problemas de inundación.

De no contarse con esta información, se puede generar un modelo digital de elevación desde una página de la NASA (Alaska Satellite Facility), con una exactitud de un raster de 12.5 m. x 12.5 m., lo cual en la zona motivo de estudio, que es de baja pendiente, resulta razonablemente aceptable (el estudio se efectuará en base al modelo digital del terreno; no hay topografía)

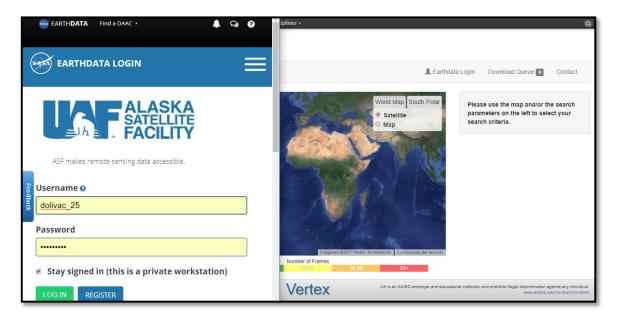


Ilustración 16: Login Alaska Satellite Facility

En primer lugar, tuvimos que crearnos una cuenta para poder obtener datos de este servidor, luego se seleccionó el area de estudio en el mapa georeferencial y en la sección Geospatial/ Geographic Region obtuvimos las coordenadas.

Figura 1: Selección del área de estudio en el Servidor Alaska Satellite Facility

Se selecciona en Geospatial | Dataset |ALOS PALSAR |Search, en el mapa se revisa la información proporcionada por el satelite y se escoge ALPSRP212106930.

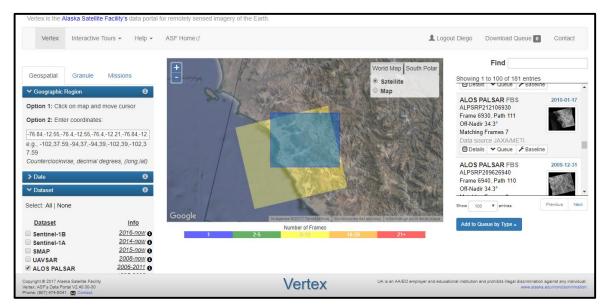


Figura 2: Selección del Modelo de Elevación Digital en el Servidor Alaska Satellite Facility

Se selecciona la informacion ALPSRP212106930 ; se descarga y se descomprime el producto Hi-Res Terrain Corrected , el archivo se guarda de manera automática con el nombre AP_26403_FBS_F7020_RT1

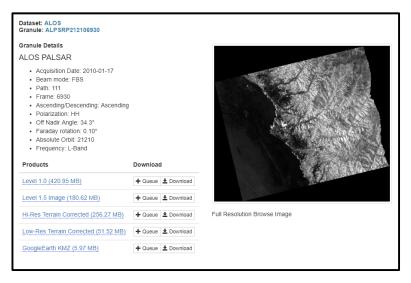


Figura 3: Descarga del Modelo de Elevación Digital desde el servidor Alaska Satellite Facility

3.4.2. Delimitación de la Cuenca en ARC GIS

Para la obtención del caudal, que utilizamos en el programa IBER, tuvimos primero que delimitar la cuenca utilizando los datos obtenidos en la sección anterior e introducirlo en el programa Arc Gis, el cual procederemos a explicar.

Primero creamos una carpeta en el ESCRITORIO de la computadora, para guardar todos nuestros datos en ella, luego guardamos el proyecto que iniciamos, también en ella.

Luego Cargamos nuestro archivo Modelo de Elevación Digital (DEM) para procesarlo utilizando una extensión del Arc Gis llamado Hec GeoHMS.

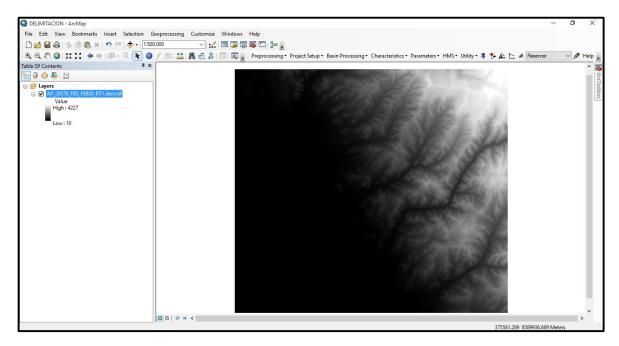


Ilustración 17: DEM insertado en Arc Gis

Ya que el DEM tenía algunos vacíos e imperfecciones, nosotros tuvimos que rellenar dichos vacíos con la herramienta FILL SINKS en Preprocesing de la extensión Hec GeoHMS.

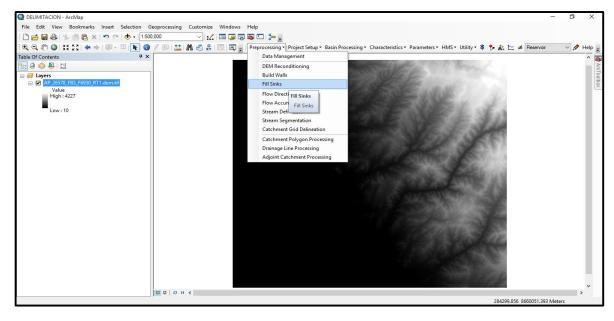


Ilustración 18: Herramienta Fill Sinks

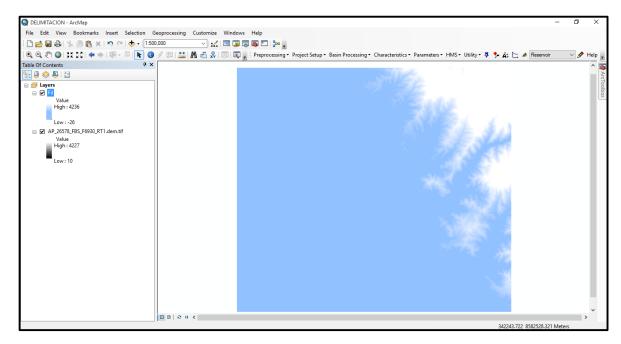


Ilustración 19: Fin del Proceso de Fill Sinks

El proceso continuó con la herramienta FLOW DIRECTION, que se refiere a la dirección del flujo siempre en Preprocesing.

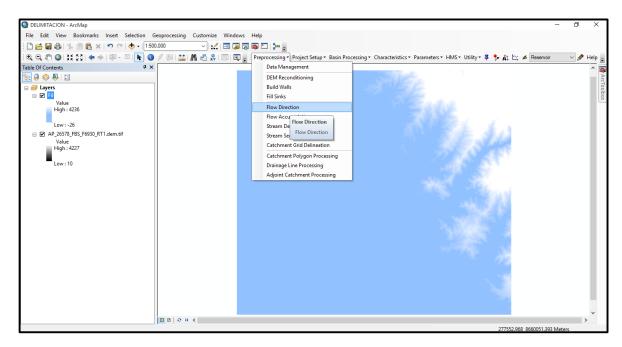


Ilustración 20: Herramienta Flow Direction

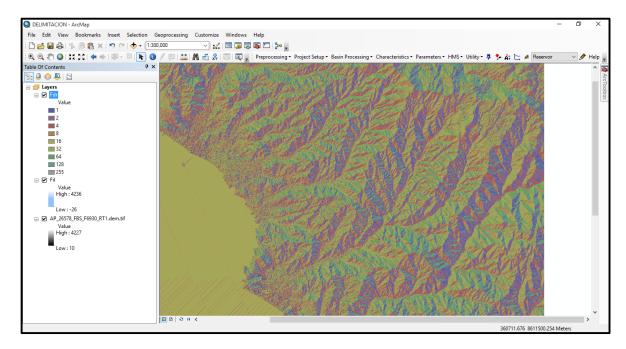


Ilustración 21: Fin del Proceso de Flow Direction

Proseguimos con la herramienta FLOW ACCUMULATION, que se refiere a la formación de causes debido a la escorrentía, continuamos en el Preprocesing.

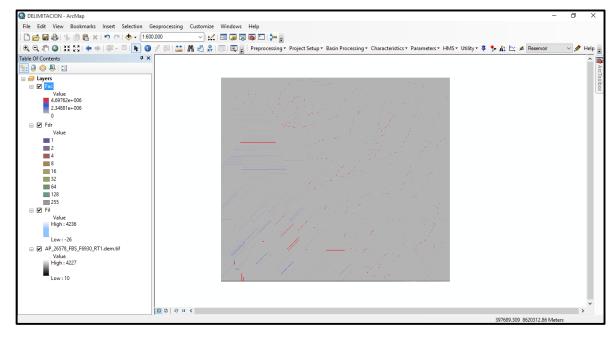


Ilustración 22: Fin del Proceso de Flow Accumulation

Posteriormente utilizamos la herramienta STREAM DEFINITION, que se refiere a la definición del orden de los afluentes, continuamos en el Preprocesing.

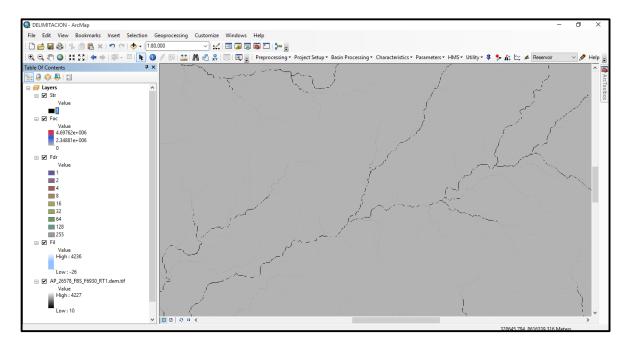


Ilustración 23: Fin del Proceso de Flow Accumulation

Continuamos en el Preprocesing con la herramienta STREAM SEGMENTATION, que disgrega y atribuye ciertos colores en función del orden del rio.

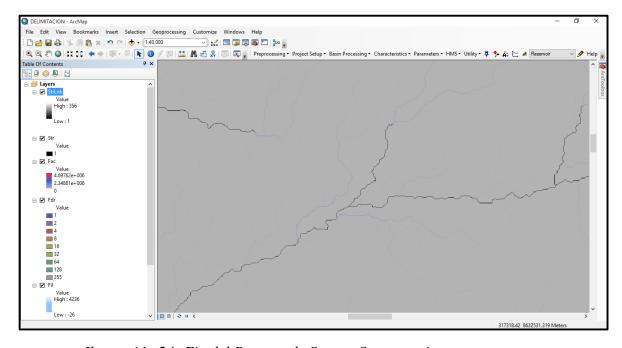


Ilustración 24: Fin del Proceso de Stream Segmentation

Continuamos en el Preprocesing con la herramienta CATCHMENT GRID DELINEATION, que disgrega a toda el área en sus microcuencas a nivel de Raster.

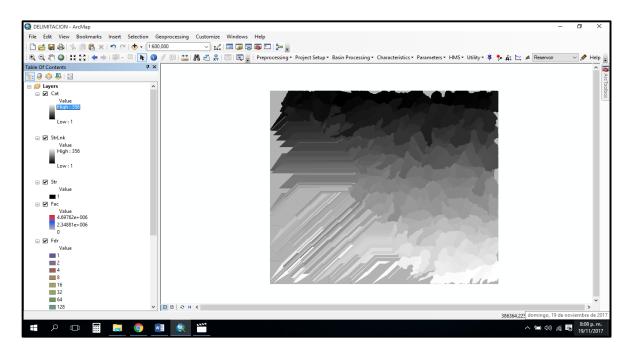


Ilustración 25: Fin del Proceso de Catchment Grid Delineation, Formación de las Microcuencas

Continuamos en el Preprocesing con la herramienta CATCHMENT POLYGON PROCESSING, transformamos el raster anteriormente obtenido y convertimos en polígonos.

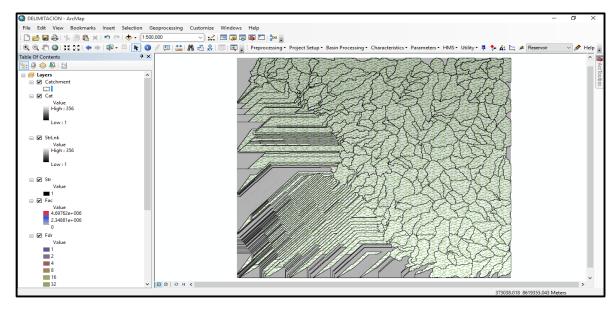


Ilustración 26: Fin del Proceso de Catchment Polygon Processing, Formación de las Microcuencas mediante Polígonos

Continuamos en el Preprocesing con la herramienta DRAINAGE LINE PROCESSING, donde obtenemos la red fluvial y la aparición de los ríos en formato SHAPE.

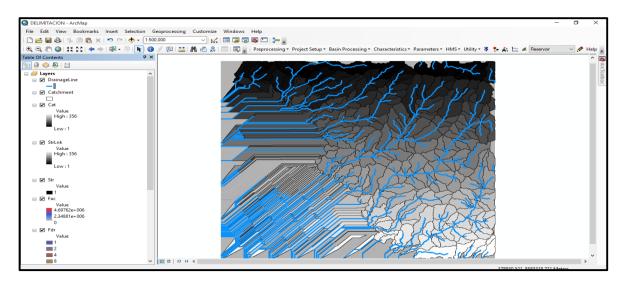


Ilustración 27: Fin del Proceso de Drainage Line Processing, Formación de la red fluvial

Finalizamos en el Preprocesing con la herramienta ADJOINT CATCHMENT PROCESSING, donde la cual representa sus áreas aportantes desde un punto de vista global; no al detalle, sino disgrega a través de sus corrientes principales.

Hemos concluido con todo el proceso de la formación vectorial de los elementos de una cuenca en Preprocesing.

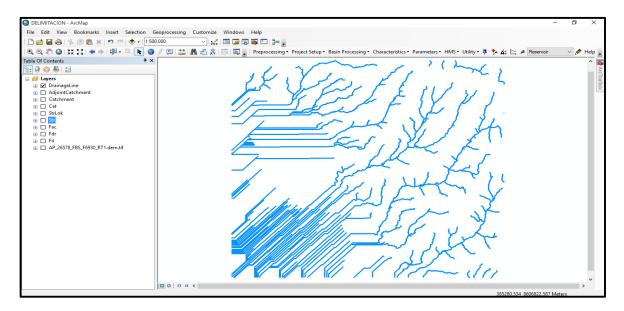


Ilustración 28: Resultado de todo el Proceso

Insertamos las ORTOFOTOS para poder visualizar mejor la zona de estudio.

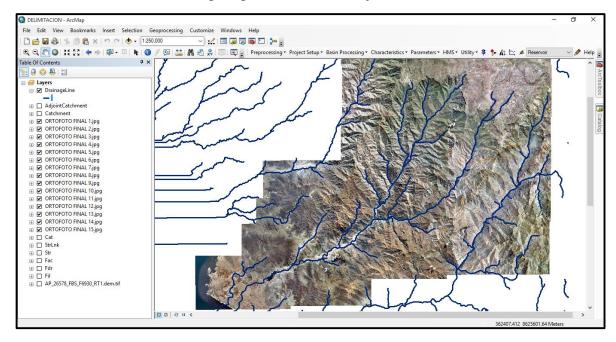


Ilustración 29: Ortofotos para Referencia el Área de Estudio

Continuamos con la formación de la cuenca, la cual contiene a nuestros ríos en estudio, para ello pasamos al PROJECT SETUP, el cual nos ayudó a extraer datos de la zona que necesitábamos estudiar.

En primer lugar, hicimos uso de la herramienta STAR NEW PROJECT.

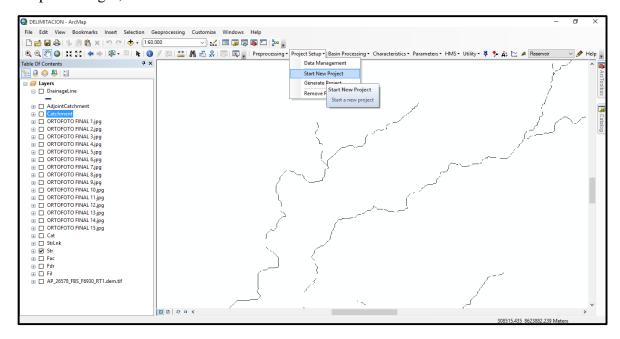


Ilustración 30: Project Setup, Quebrada Chutana

Agregamos el punto de estudio con la herramienta ADD PROJECT POINTS.

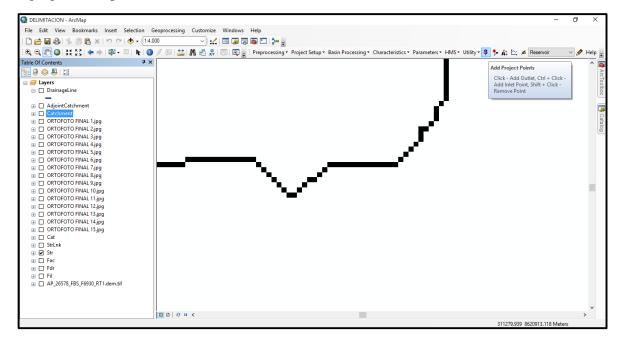


Ilustración 31: Punto de Estudio Quebrada Chutana

El paso siguiente fue, definición de la cuenca, para ello utilizamos la herramienta GENERATE PROJECT y se generó automáticamente nuestro proyecto. De la quebrada Chutana.

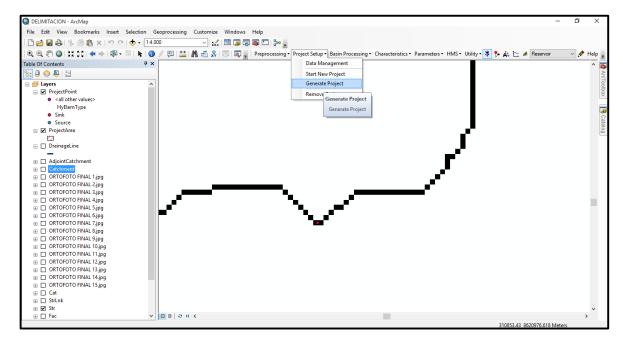


Ilustración 32: Generar Proyecto de la Quebrada Chutana

Resultado de dicha herramienta nos dio la formación de la cuenca que observamos en la imagen siguiente.

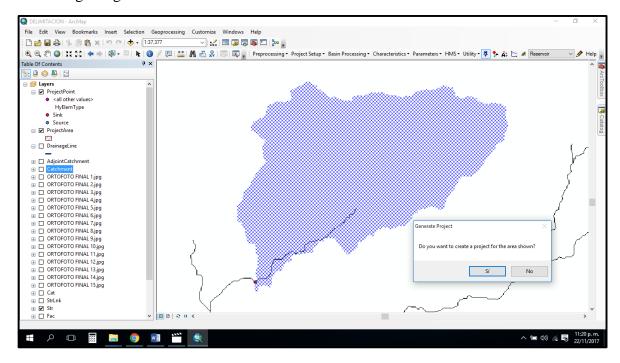


Ilustración 33: Cuenca de la Quebrada Chutana

Una vez procesados los datos nos apareció la cuenca y su rio involucrado, a continuación, la imagen del resultado.

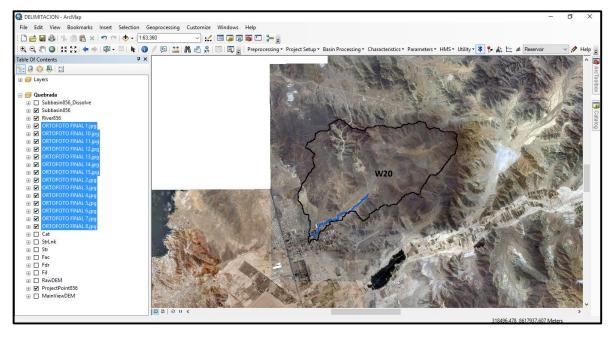


Ilustración 34: Cuenca de la Quebrada Chutana, Fin del Proceso

Hemos realizado el mismo procedimiento para la formación de la cuenca del rio Chilca, el cual mostramos a continuación.

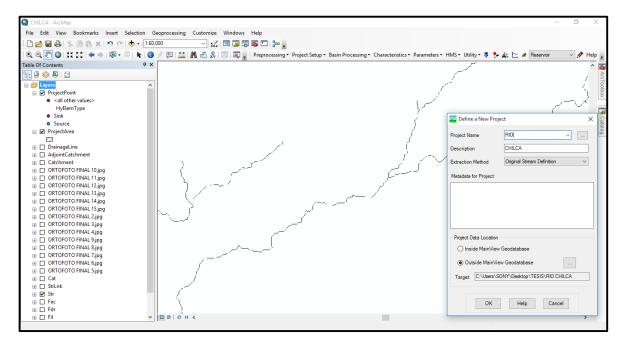


Ilustración 35: Formación de la Cuenca del Rio Chilca

Indicamos el punto del proyecto para la formación de la cuenca y generamos la formación de la misma.

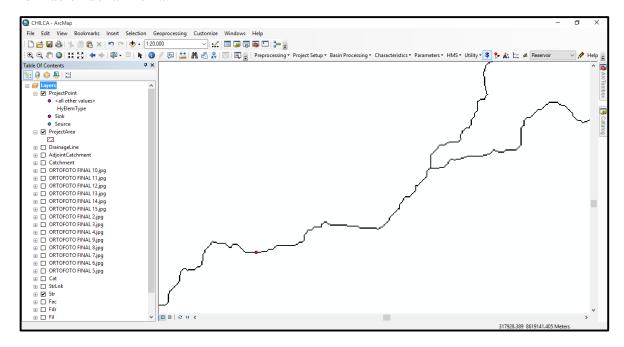


Ilustración 36: Punto de proyecto Cuenca del Rio Chilca

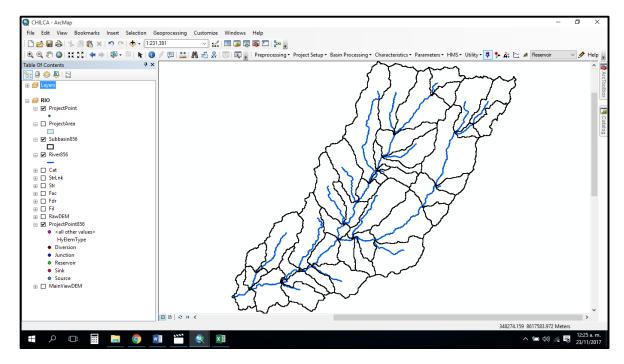


Ilustración 37: Cuenca del Rio Chilca Generada

Para finalizar con el proceso hemos dividido la cuenca en tres sub cuencas, W40, W50 y W60.

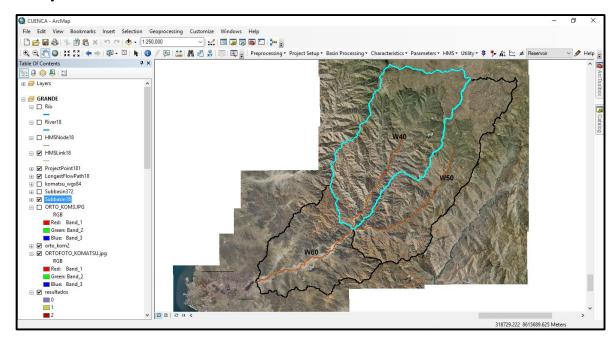


Ilustración 38: Cuenca del Rio Chilca Dividida

3.4.3. Datos Hidrometereologicos Extraídos de SENAMHI

En nuestro estudio hemos considerado los datos de las estaciones meteorológicas, que corresponde a la estación AUTISHA, CHOSICA, MATUCANA, SANTIAGO DE TUNA E YAUYOS.

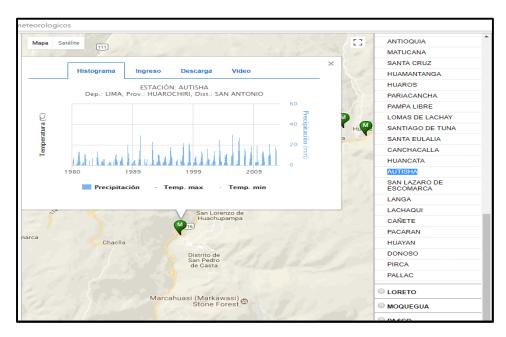


Ilustración 39: Hidrograma Estación Autisha

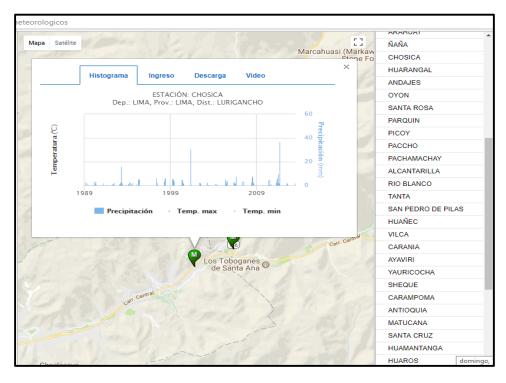


Ilustración 40: Hidrograma Estación Chosica

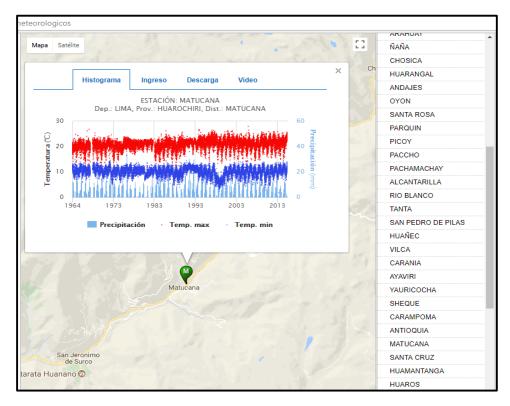


Ilustración 41: Hidrograma Estación Matucana

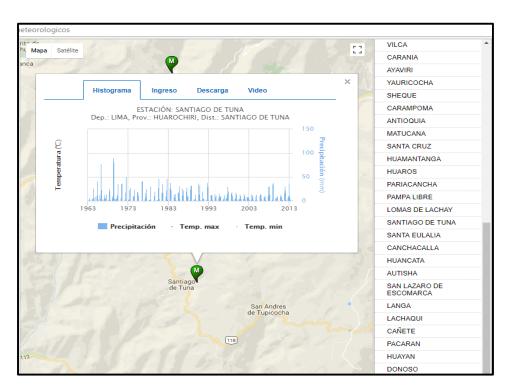


Ilustración 42: Hidrograma Estación Santiago de Tuna

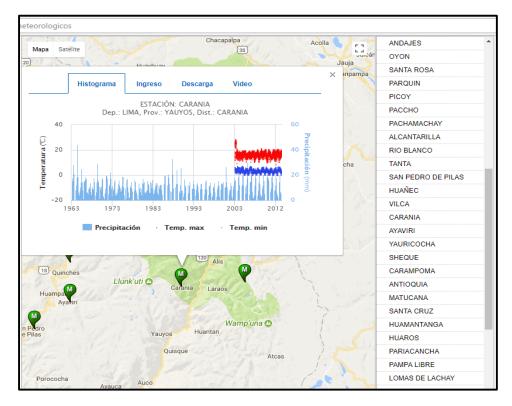


Ilustración 43: Hidrograma Estación Yauyos

Realizamos el procesamiento de los datos obtenidos en la página del Senamhi, en la cual resaltamos las precipitaciones máximas obtenidas en 24 horas medidas en milímetros, de cada año; iniciando en 1964 hasta el año 2009. Posteriormente calculamos el promedio y desviación de la precipitación de cada una de las estaciones.

Tabla 2: Precipitaciones Maximas de las Estaciones

RE	REGISTRO DE PRECIPITACIONES MÁXIMAS EN 24 HORAS (mm)								
AÑO	AUTISHA	CHOSICA	MATUCANA	SANTIAGO DE TUNA	YAUYOS				
1964	18.3	10.6	22.1	-	19.5				
1965	20.5	7.2	14.9	-	31.4				
1966	21.1	13.8	17.1	42.0	23.3				
1967	14.7	6.9	16.7	78.1	23.6				
1968	15.5	3.2	15.4	13.5	-				
1969	21.4	6.8	12.0	25.1	17.4				
1970	12.5	11.9	31.7	89.9	26.8				
1971	15.1	15.1	23.3	36.2	33.0				
1972	15.4	9.5	18.1	37.0	-				
1973	27.4	6.9	25.2	49.7	28.2				
1974	11.2	1.6	11.9	27.7	21.5				
1975	14.6	10.8	10.8	24.0	19.0				

DESVIACIÓN ESTANDAR	6.01	5.39	6.45	17.12	5.97
PROMEDIO	16.45	7.53	17.95	30.07	19.31
2009	19.3	8.0	23.1	38.0	15.1
2008	16.9	4.0	16.5	-	19.9
2007	27.8	7.7	16.6	10.5	19.8
2006	30.8	5.6	14.3	-	-
2005	11.7	1.2	21.5	-	13.6
2004	14.4	1.6	18.0	11.7	14.2
2003	25.5	2.8	19.5	14.0	14.4
2002	16.4	30.7	15.7	15.4	11.6
2001	14.1	5.2	16.2	13.5	13.3
2000	9.5	6.0	14.3	17.9	12.9
1999	22.1	6.5	19.8	19.6	19.9
1998	22.2	13.2	21.9	30.2	14.7
1997	10.2	2.8	9.5	15.1	18.8
1996	18.4	5.8	13.6	15.7	24.3
1995	9.3	3.0	22.3	12.2	12.2
1994	11.2	16.0	15.5	14.9	31.5
1993	23.3	2.4	30.3	38.7	17.3
1992	6.3	2.3	30.5	-	-
1991	29.7	3.7	17.6	33.2	-
1990	14.7	3.2	10.6	36.8	-
1989	20.3	5.2	10.7	33.5	-
1988	9.8	2.9	12.3	28.2	_
1987	11.6	16.1	20.9	-	-
1986	12.8	7.3	27.2	30.7	-
1985	6.4	10.5	19.8	18.6	-
1984	14.0	5.4	21.5	38.6	10.0
1983	20.5	7.2	25.0	46.3	-
1982	11.2	14.0	9.5	-	-
1981	13.7	5.7	12.5	46.5	22.8
1980	16.5	8.7	8.8	20.6	15.5
1979	10.3	7.5	12.3	31.1	16.9
1978	9.3	1.6	7.8	25.3	20.1
1977	18.6	6.5	35.2	42.1	14.8
1976	20.4	11.9	15.8	20.5	20.0

En la siguiente tabla hemos amplificado las precipitaciones por un factor de seguridad de 1.13 que nos permitió tener precipitaciones mayores para un estudio más preciso.

Tabla 3: Precipitaciones Maximas Amplificadas

PREC	PRECIPITACIONES MAXIMAS EN 24 HRS AMPLIFICADAS X 1.13 (mm)								
AÑO	AUTISHA	CHOSICA	MATUCANA	SANTIAGO DE TUNA	YAUYOS				
1964	20.7	12.0	24.973	-	22.0				
1965	23.2	8.1	16.837	-	35.5				
1966	23.8	15.6	19.323	47.5	26.3				
1967	16.6	7.8	18.871	88.3	26.7				
1968	17.5	3.6	17.402	15.3	-				
1969	24.2	7.7	13.560	28.4	19.7				
1970	14.1	13.4	35.821	101.6	30.3				
1971	17.1	17.1	26.329	40.9	37.3				
1972	17.4	10.7	20.453	41.8	-				
1973	31.0	7.8	28.476	56.2	31.9				
1974	12.7	1.8	13.447	31.3	24.3				
1975	16.5	12.2	12.204	27.1	21.5				
1976	23.1	13.4	17.854	23.2	22.6				
1977	21.0	7.3	39.776	47.6	16.7				
1978	10.5	1.8	8.814	28.6	22.7				
1979	11.6	8.5	13.899	35.1	19.1				
1980	18.6	9.8	9.944	23.3	17.5				
1981	15.5	6.4	14.125	52.5	25.8				
1982	12.7	15.8	10.735	-	-				
1983	23.2	8.1	28.250	52.3	-				
1984	15.8	6.1	24.295	43.6	11.3				
1985	7.2	11.9	22.374	21.0	-				
1986	14.5	8.2	30.736	34.7	-				
1987	13.1	18.2	23.617	-	-				
1988	11.1	3.3	13.899	31.9	-				
1989	22.9	5.9	12.1	37.9	-				
1990	16.6	3.6	12.0	41.6	-				
1991	33.6	4.2	19.9	37.5	-				
1992	7.1	2.6	34.5	-	-				
1993	26.3	2.7	34.2	43.7	19.5				
1994	12.7	18.1	17.5	16.8	35.6				
1995	10.5	3.4	25.2	13.8	13.8				
1996	20.8	6.6	15.4	17.7	27.5				
1997	11.5	3.2	10.7	17.1	21.2				
1998	25.1	14.9	24.7	34.1	16.6				
1999	25.0	7.3	22.4	22.1	22.5				
2000	10.7	6.8	16.2	20.2	14.6				
2001	15.9	5.9	18.3	15.3	15.0				
2002	18.5	34.7	17.7	17.4	13.1				

2003	28.8	3.2	22.0	15.8	16.3
2004	16.3	1.8	20.3	13.2	16.0
2005	13.2	1.4	24.3	-	15.4
2006	34.8	6.3	16.2	-	-
2007	31.4	8.7	18.8	11.9	22.4
2008	19.1	4.5	18.6	-	22.5
2009	21.8	9.0	26.1	42.9	17.1
PROMEDIO	18.59	8.51	20.29	33.98	21.82
DESVIACIÓN	6.79	6.09	7.29	19.34	6.74
ESTANDAR					

Posteriormente evaluamos las estaciones pluviométricas y escogimos la que más se adecuaba, para el estudio que realizamos.

Tabla 4: Evaluación de Precipitaciones

ESTACIÓN	ALTITUD (m.s.n.m)	PRECIPITACIÓN (mm)	EVALUACIÓN
AUTISHA	2171	18.59	Estación Lejana
CHOSICA	850	8.51	Q. Chutana
MATUCANA	2479	20.29	Rio Chilca
YAUYOS	2327	21.82	Estación Lejana
SANTIAGO DE TUNA	2921	33.98	Muy Elevado

3.4.4. Cálculo de Intensidades de Precipitaciones y Caudales

3.4.4.1. Quebrada Chutana

Seguimos mostrando los datos de la cuenca y de la estación que le corresponde para su respectivo estudio.

Para la cual iniciamos con la quebrada Chutana, con la estación pluviométrica de Chosica.

Tabla 5: Datos Morfométricos de la Cuenca, Quebrada Chutana

DESCRIPCIÓN	UND	VALOR							
De la superficie									
Área	km2	17.25							
Perímetro de la cuenca	km	25850							
Cotas									
Cota máxima	msnm	702.75							
Cota mínima	msnm	58							

Centroide (PSC:wgs 1984 UTM Zone 17S)							
X centroide	m	313419.3632					
Y centroide	m	8623025.701					
Z centroide	msnm	394.576179					
Altitud							
Altitud media	msnm	394.576179					
Altitud más frecuente	msnm	760.00					
Altitud de frecuencia media (1/2)	msnm	1457.618249					
De la Red H	drica						
Longitud del curso principal	km	8788.719331					
Parámetros Generados							
pendiente del cauce principal	m/km	0.0734					

Continuamos con ingresando los datos de la estación Chosica, datos históricos de máximas precipitaciones.

Tabla 6: Datos Pluviométricos de Estación Chosica

DATOS ESTACIÓN PLUVIOMÉTRICA							
Estación:	CHOSICA	Coordenadas UTM WGS 84 18S	Latitud	11° 55' 47.5"	Cota =	112	
Denominación:		Coordenadas UTWI WGS 84 185	Longitud	76° 41' 22.8"	Cota =	442	

Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	M	láximo
1989	-	-	4.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.10	Marzo
1990	2.80	0.00	2.20	0.00	0.80	0.10	0.00	0.00	0.00	0.20	1.00	3.20	3.20	Diciembre
1991	0.20	2.00	3.70	0.70	0.30	0.00	0.00	0.00	0.00	1.00	0.00	0.50	3.70	Marzo
1992	0.30	2.30	0.60	0.30	0.80	1	0.00	0.40	0.00	0.00	0.00	1.00	2.30	Febrero
1993	0.00	0.80	1.80	2.40	0.00	0.00	0.00	0.00	0.20	0.00	1.20	1.20	2.40	Abril
1994	16.00	2.50	3.00	1.80	0.40	0.00	0.00	0.00	1.00	0.00	0.40	1.50	16.00	Enero
1995	3.00	0.50	2.50	1.20	2.20	0.00	0.00	0.00	0.50	0.30	1.40	0.00	3.00	Enero
1996	5.00	5.00	5.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.40	5.80	Marzo
1997	0.50	-	-	-	-	-	-	-	-	-	-	-	0.50	Enero
1998	-	6.50	2.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.50	Febrero
1999	3.50	6.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.50	Febrero
2000	6.00	4.50	3.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.00	Enero
2001	5.20	5.00	3.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60	0.00	5.20	Enero
2002	1.00	30.70	1.00	0.00	0.00	0.00	0.60	0.00	0.50	0.00	0.00	0.00	30.70	Febrero
2003	1.50	2.50	1.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.80	2.80	Diciembre
2004	0.80	0.50	0.70	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.60	1.60	Diciembre
2005	1.20	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.20	Enero
2006	5.60	4.00	4.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.00	5.60	Enero
2007	2.20	3.00	1.80	7.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.70	Abril
2008	3.60	4.00	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	Febrero
2009	3.00	6.60	8.00	1.60	0.00	-	0.00	0.00	0.00	-	0.00	0.00	8.00	Marzo
2010	0.00	0.30	0.80	-	-	-	-	-	-	-	-	-	0.80	Marzo
MAX	16.00	30.70	8.00	7.70	2.20	0.10	0.60	0.40	1.00	1.00	1.40	3.20		30.70

Posteriormente realizamos el cálculo de las precipitaciones máximas probables en diferentes tiempos de retorno por medio de distribución de probabilidades Gumbel.

La fórmula que utilizamos en dicho método fue:

$$F(x) = e^{-e^{-(\frac{x-u}{a})}}$$

Invocamos a los datos que nos sirvió para este cálculo.

Tabla 7: Resumen de Precipitaciones Máximas de cada Mes

Nº	Año	Mes Máxima Precipitación	Precipitaciones
1	1989	Marzo	4.10
2	1990	Diciembre	3.20
3	1991	Marzo	3.70
4	1992	Febrero	2.30
5	1993	Abril	2.40
6	1994	Enero	16.00
7	1995	Enero	3.00
8	1996	Marzo	5.80
9	1997	Enero	0.50
10	1998	Febrero	6.50
11	1999	Febrero	6.50
12	2000	Enero	6.00
13	2001	Enero	5.20
14	2002	Febrero	30.70
15	2003	Diciembre	2.80
16	2004	Diciembre	1.60
17	2005	Enero	1.20
18	2006	Enero	5.60
19	2007	Abril	7.70
20	2008	Febrero	4.00
21	2009	Marzo	8.00
22	2010	Marzo	0.80

Tabla 8: Datos para Cálculo de Variables Probabilísticas

		Mes	Precipi	tación (mm)
Nº	Año	Max. Precip.	xi	$(xi - x)^2$
1	1989	Marzo	4.10	2.89
2	1990	Diciembre	3.20	6.76
3	1991	Marzo	3.70	4.41
4	1992	Febrero	2.30	12.25
5	1993	Abril	2.40	11.56
6	1994	Enero	16.00	104.04
7	1995	Enero	3.00	7.84
8	1996	Marzo	5.80	0.00
9	1997	Enero	0.50	28.09
10	1998	Febrero	6.50	0.49
11	1999	Febrero	6.50	0.49
12	2000	Enero	6.00	0.04
13	2001	Enero	5.20	0.36
14	2002	Febrero	30.70	620.01
15	2003	Diciembre	2.80	9.00
16	2004	Diciembre	1.60	17.64
17	2005	Enero	1.20	21.16
18	2006	Enero	5.60	0.04
19	2007	Abril	7.70	3.61
20	2008	Febrero	4.00	3.24
21	2009	Marzo	8.00	4.84
22	2010	Marzo	0.80	25.00
22		Suma	127.6	883.8

$$\overline{X} = \frac{\sum xi}{n} = 5.80 \text{ mm}$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (xi - \overline{x})^2}{n - 1}} = 6.49 \text{ mm}$$

$$\alpha = \frac{\sqrt{6}}{\pi} * s = 5.06 \text{ mm}$$

$$u = \overline{x} - 0.5772 * \alpha = 2.88 \text{ mm}$$

Tabla 9: Cálculo de las Precipitaciones Diarias Máximas Probables para Distintas Frecuencias

Periodo Retorno	Variable Reducida	Precip. Prob. de (mm) ocurrencia		Corrección intervalo fijo
Años	YT	XT'(mm)	F(xT)	XT (mm)
2	0.3665	4.7343	0.5000	5.3498
5	1.4999	10.4673	0.8000	11.8280
10	2.2504	14.2630	0.9000	16.1172
25	3.1985	19.0588	0.9600	21.5365
50	3.9019	22.6167	0.9800	25.5569
100	4.6001	26.1483	0.9900	29.5476
500	6.2136	34.3092	0.9980	38.7694

Posteriormente calculamos el Tiempo de Concentración, para la cual emplearemos siete fórmulas de las cuales se encontró el dato adecuado. A continuación, mostramos los datos con los cuales calculamos dicho Tiempo de Concentración.

Tabla 10: Datos para Cálculo de Tiempo de Concentración

Área Aportante	Longitud del Afluente (m)	Cota Máxima (m.s.n.m.)	Cota mínima (m.s.n.m.)	Desnivel máximo (m)	Pendiente (m/m)	Pendiente (%)	Área (Km2)	Perímetro (Km.)
Q. CHUTANA	8788.71933	702.75	58	644.75	0.073	7.3	17.25	25850

Ahora mostramos las fórmulas que se utilizaron para hallar dichos resultados.

Federal Aciation Administration (1970):

$$t_c = 0.7035 * \frac{(1.1 - C) * L^{0.50}}{S^{0.333}}$$

C: Coeficiente de escorrentía del método racional.

L: Longitud del flujo superficial, m.

S: Pendiente de la superficie, m/m.

California Culverts Practice (1942):

$$t_c = 0.0195 * (\frac{L^3}{H})^{0.385}$$

L: Longitud del curso de agua mas largo, m.

H: Diferencia de nivel entre la divisoria de aguas y la salida, m.

Ecuacion de Retardo SCS (1973):

$$t_c = \frac{0.0136 * L^{0.8} (\frac{1000}{CN} - 9)^{0.7}}{S^{0.5}}$$

L: Longitud hidráulica de la cuenca mayor trayectoria de flujo, m.

CN: Número de curva SCS.

S: Pendiente promedio de la cuenca, m/m.

Seguimos con el proceso y presentamos los resultados que nos brinda cada una de las formulas expresadas anteriormente, adicionando algunas fórmulas de la sección 2.2.9.1, las cuales establecimos como más confiables para este cálculo.

Tabla 11: Tiempos de Concentración Promedio

Fórmula	Tc (hr)	Tc (hr)2
Kirpich	0.9661	
Temez	2.5708	2.5708
Ven Te Chow	2.5312	2.5312
Hathaway	2.4275	2.4275
California	0.9672	
FAA	1.5216	
SCS	2.8750	
Promedio (hrs)	1.9799	2.5098
Promedio		
(min)	118.794629	150.590178

Luego a partir de estos cálculos, aplicamos la fórmula de tiempo de retardo, el cual fue un dato clave para el siguiente programa que utilizamos HEC HMS.

Presento la fórmula que aplicamos:

$$T_{c (hra)} = 0.3 * (\frac{L_{(Km)}}{J^{1/4}})^{0.76}$$

$$T_{c} = 0.000323 * (\frac{L^{0.77}}{S^{0.385}})$$

$$T_{lag} = 0.35 * T_{c}$$

Lo que resulto de esta aplicación fue lo siguiente:

Tabla 12: Tiempo de Retardo Quebrada Chutana

L (m)	RIO	J	TC temez	tc kiripch	Tlag T(min)	Tlag (k) (min)
8788.72	W20	0.07	2.57	0.97	54.00	20.00

Posteriormente se realizó el cálculo de las intensidades de precipitaciones por cuatro métodos que a continuación exponemos:

CÁLCULO DE INTENSIDAD DE PRECIPITACIÓN

Método Perfil SCS Tipo II

Tabla 13: Tabla de Factores para Intensidad, SCS Tipo II - 24 Horas

name=Type II 24-hr Tabular
timeunits=hours
depthunits=inches
duration=24
comment=Type II 24-hour tabular mass curve 1982
smoothing=false
depth=.0000 .0010 .0020 .0030 .0041 .0051 .0062 .0072 .0083 .0094
depth=.0105 .0116 .0127 .0138 .0150 .0161 .0173 .0184 .0196 .0208
depth=.0220 .0232 .0244 .0257 .0269 .0281 .0294 .0306 .0319 .0332
depth=.0345 .0358 .0371 .0384 .0398 .0411 .0425 .0439 .0452 .0466
depth=.0480 .0494 .0508 .0523 .0538 .0553 .0568 .0583 .0598 .0614
depth=.0630 .0646 .0662 .0679 .0696 .0712 .0730 .0747 .0764 .0782
depth=.0800 .0818 .0836 .0855 .0874 .0892 .0912 .0931 .0950 .0970
depth=.0990 .1010 .1030 .1051 .1072 .1093 .1114 .1135 .1156 .1178
depth=.1200 .1222 .1246 .1270 .1296 .1322 .1350 .1379 .1408 .1438

depth=.1470	.1502	.1534	.1566	.1598	.1630	.1663	.1697	.1733	.1771	
depth=.1810	.1851	.1895	.1941	.1989	.2040	.2094	.2152	.2214	.2280	
depth=.2350	.2427	.2513	.2609	.2715	.2830	.3068	.3544	.4308	.5679	
depth=.6630	.6820	.6986	.7130	.7252	.7350	.7434	.7514	.7588	.7656	
depth=.7720	.7780	.7836	.7890	.7942	.7990	.8036	.8080	.8122	.8162	
depth=.8200	.8237	.8273	.8308	.8342	.8376	.8409	.8442	.8474	.8505	
depth=.8535	.8565	.8594	.8622	.8649	.8676	.8702	.8728	.8753	.8777	
depth=.8800	.8823	.8845	.8868	.8890	.8912	.8934	.8955	.8976	.8997	
depth=.9018	.9038	.9058	.9078	.9097	.9117	.9136	.9155	.9173	.9192	
depth=.9210	.9228	.9245	.9263	.9280	.9297	.9313	.9330	.9346	.9362	
depth=.9377	.9393	.9408	.9423	.9438	.9452	.9466	.9480	.9493	.9507	
depth=.9520	.9533	.9546	.9559	.9572	.9584	.9597	.9610	.9622	.9635	
depth=.9647	.9660	.9672	.9685	.9697	.9709	.9722	.9734	.9746	.9758	
depth=.9770	.9782	.9794	.9806	.9818	.9829	.9841	.9853	.9864	.9876	
depth=.9887	.9899	.9910	.9922	.9933	.9944	.9956	.9967	.9978	.9989	
depth=1.000										
L.										

La precipitación máxima en 24 Horas que utilizamos fue 27.6167 mm.

Tabla 14: Procesamiento de Precipitaciones con Factor SCS II

Tiempo (min)	SCS II	Pacum (mm)	Pinterv (mm)
0	0.0000	0.000	
6	0.0010	0.028	0.028
12	0.0020	0.055	0.028
18	0.0030	0.083	0.028
24	0.0041	0.113	0.030
30	0.0051	0.141	0.028
36	0.0062	0.171	0.030
42	0.0072	0.199	0.028
48	0.0083	0.229	0.030
54	0.0094	0.260	0.030
60	0.0105	0.290	0.030
66	0.0116	0.320	0.030
72	0.0127	0.351	0.030
78	0.0138	0.381	0.030
84	0.0150	0.414	0.033
90	0.0161	0.445	0.030
96	0.0173	0.478	0.033
102	0.0184	0.508	0.030
108	0.0196	0.541	0.033
114	0.0208	0.574	0.033
120	0.0220	0.608	0.033
126	0.0232	0.641	0.033
132	0.0244	0.674	0.033
138	0.0257	0.710	0.036
144	0.0269	0.743	0.033
150	0.0281	0.776	0.033
156	0.0294	0.812	0.036
162	0.0306	0.845	0.033
168	0.0319	0.881	0.036
174	0.0332	0.917	0.036
180	0.0345	0.953	0.036
186	0.0358	0.989	0.036
192	0.0371	1.025	0.036
198	0.0384	1.060	0.036
204	0.0398	1.099	0.039

-			
210	0.0411	1.135	0.036
216	0.0425	1.174	0.039
222	0.0439	1.212	0.039
228	0.0452	1.248	0.036
234	0.0466	1.287	0.039
240	0.0480	1.326	0.039
246	0.0494	1.364	0.039
252	0.0508	1.403	0.039
258	0.0523	1.444	0.041
264	0.0538	1.486	0.041
270	0.0553	1.527	0.041
276	0.0568	1.569	0.041
282	0.0583	1.610	0.041
288	0.0598	1.651	0.041
294	0.0614	1.696	0.044
300	0.0630	1.740	0.044
306	0.0646	1.784	0.044
312	0.0662	1.828	0.044
	_		
318	0.0679	1.875	0.047
324	0.0696	1.922	0.047
330	0.0712	1.966	0.044
336	0.0730	2.016	0.050
342	0.0747	2.063	0.047
348	0.0764	2.110	0.047
354	0.0782	2.160	0.050
360	0.0800	2.209	0.050
366	0.0818	2.259	0.050
372	0.0816	2.309	0.050
378	0.0855	2.361	0.052
384	0.0874	2.414	0.052
390	0.0892	2.463	0.050
396	0.0912	2.519	0.055
402	0.0931	2.571	0.052
408	0.0950	2.624	0.052
414	0.0970	2.679	0.055
420	0.0990	2.734	0.055
426	0.1010	2.789	0.055
432	0.1030	2.845	0.055
438	0.1050	2.903	0.058
444	0.1072	2.961	0.058
450	0.1093	3.019	0.058
456	0.1114	3.076	0.058
462	0.1135	3.134	0.058
468	0.1156	3.192	0.058
474	0.1178	3.253	0.061
480	0.1200	3.314	0.061
486	0.1222	3.375	0.061
492	0.1246	3.441	0.066
498	0.1270	3.507	0.066
504	0.1296	3.579	0.072
510	0.1290	3.651	0.072
516	0.1350	3.728	0.077
522	0.1379	3.808	0.080
528	0.1408	3.888	0.080
534	0.1438	3.971	0.083
540	0.1470	4.060	0.088
546	0.1502	4.148	0.088
552	0.1534	4.236	0.088
558	0.1566	4.325	0.088
564	0.1598	4.413	0.088
570	0.1630	4.502	0.088
576	0.1663	4.593	0.091
582		4.687	0.091
	0.1697		
588	0.1733	4.786	0.099
594	0.1771	4.891	0.105
600	0.1810	4.999	0.108
606	0.1851	5.112	0.113
612	0.1895	5.233	0.122
			

	7		0.405
618	0.1941	5.360	0.127
624	0.1989	5.493	0.133
630	0.2040	5.634	0.141
636	0.2094	5.783	0.149
642	0.2152	5.943	0.160
648	0.2214	6.114	0.171
654	0.2280	6.297	0.182
660	0.2350	6.490	0.193
666	0.2427	6.703	0.213
672	0.2513	6.940	0.238
678	0.2609	7.205	0.265
684	0.2715	7.498	0.293
690			
	0.2830	7.816	0.318
696	0.3068	8.473	0.657
702	0.3544	9.787	1.315
708	0.4308	11.897	2.110
714	0.5679	15.684	3.786
720	0.6630	18.310	2.626
726	0.6820	18.835	0.525
732	0.6986	19.293	0.458
738	0.7130	19.691	0.398
744	0.7252	20.028	0.337
750	0.7350	20.298	0.271
756	0.7434	20.530	0.232
762	0.7514	20.751	0.221
768	0.7514	20.751	0.204
774		21.143	0.204
	0.7656		
780	0.7720	21.320	0.177
786	0.7780	21.486	0.166
792	0.7836	21.640	0.155
798	0.7890	21.790	0.149
804	0.7942	21.933	0.144
810	0.7990	22.066	0.133
816	0.8036	22.193	0.127
822	0.8080	22.314	0.122
828	0.8122	22.430	0.116
834	0.8162	22.541	0.110
840	0.8200	22.646	0.105
846	0.8237	22.748	0.102
852	0.8273	22.847	0.099
858	0.8308	22.944	0.097
		23.038	
864	0.8342		0.094
870	0.8376	23.132	0.094
876	0.8409	23.223	0.091
882	0.8442	23.314	0.091
888	0.8474	23.402	0.088
894	0.8505	23.488	0.086
900	0.8535	23.571	0.083
906	0.8565	23.654	0.083
912	0.8594	23.734	0.080
918	0.8622	23.811	0.077
924	0.8649	23.886	0.075
930	0.8676	23.960	0.075
936	0.8702	24.032	0.072
942	0.8728	24.104	0.072
948	0.8753	24.173	0.069
954	0.8777	24.239	0.066
960	0.8800	24.303	0.064
966	0.8823	24.366	0.064
972	0.8845	24.427	0.061
978	0.8868	24.490	0.064
984		24.490	
	0.8890		0.061
990	0.8912	24.612	0.061
996	0.8934	24.673	0.061
1002	0.8955	24.731	0.058
1008	0.8976	24.789	0.058
1014	0.8997	24.847	0.058
1020	0.9018	24.905	0.058

	=	•	
1026	0.9038	24.960	0.055
1032	0.9058	25.015	0.055
1038	0.9078	25.070	0.055
1044	0.9097	25.123	0.052
1050	0.9117	25.178	0.055
1056	0.9136	25.231	0.052
1062	0.9155	25.283	0.052
1068	0.9173	25.333	0.050
1074	0.9192	25.385	0.052
1080	0.9210	25.435	0.050
1086	0.9228	25.485	0.050
1092	0.9245	25.532	0.047
1098	0.9263	25.581	0.050
1104	0.9280	25.628	0.047
1110	0.9297	25.675	0.047
1116	0.9313	25.719	0.044
1122	0.9330	25.766	0.047
1128	0.9346	25.811	0.044
1134	0.9362	25.855	0.044
1140	0.9377	25.896	0.041
1146	0.9393	25.940	0.044
1152	0.9408	25.982	0.041
1158	0.9423	26.023	0.041
1164	0.9438	26.065	0.041
1170	0.9452	26.103	0.039
1176	0.9466	26.142	0.039
1182	0.9480	26.181	0.039
1188	0.9493	26.217	0.036
1194	0.9507	26.255	0.039
	0.9520		
1200		26.291	0.036
1206	0.9533	26.327	0.036
1212	0.9546	26.363	0.036
1218	0.9559	26.399	0.036
1224	0.9572	26.435	0.036
1230	0.9584	26.468	0.033
1236	0.9597	26.504	0.036
1242	0.9610	26.540	0.036
1248	0.9622	26.573	0.033
1254	0.9635	26.609	0.036
1260	0.9647	26.642	0.033
1266	0.9660	26.678	0.036
1272	0.9672	26.711	0.033
1278	0.9685		
		26.747	0.036
1284	0.9697	26.780	0.033
1290	0.9709	26.813	0.033
1296	0.9722	26.849	0.036
1302	0.9734	26.882	0.033
1308	0.9746	26.915	0.033
1314	0.9758	26.948	0.033
1320	0.9770	26.982	0.033
1326	0.9782	27.015	0.033
1332	0.9794	27.048	0.033
1338	0.9806	27.081	0.033
1344	0.9818	27.114	0.033
1350	0.9829	27.144	0.030
1356	0.9841	27.178	0.033
1362	0.9853	27.211	0.033
	+		
1368	0.9864	27.241	0.030
1374	0.9876	27.274	0.033
1380	0.9887	27.305	0.030
1386	0.9899	27.338	0.033
1392	0.9910	27.368	0.030
1398	0.9922	27.401	0.033
1404	0.9933	27.432	0.030
1410	0.9944	27.462	0.030
1416	0.9956	27.495	0.033
1422	0.9967	27.526	0.030
	0.9978	27.556	0.030
1428	0.9976	27.550	0.030

1434	0.9989	27.586	0.030
1440	1.0000	27.617	0.030
		Pmáx	27.617

Tabla 15: Intensidad Máxima en el minuto 150

Tiempo	Pinter (mm)	Pacum (mm)	i (mm/h)
6	3.786	3.786	37.86
12			
18	2.626	6.413	32.06
24	2.110	8.523	28.41
	1.315	9.837	24.59
30	0.657	10.494	20.99
36	0.525	11.019	18.37
42	0.458	11.477	16.40
48	0.398	11.875	14.84
54	0.337	12.212	13.57
60	0.318	12.530	12.53
66	0.293	12.822	11.66
72	0.271	13.093	10.91
78	0.265	13.358	10.28
84	0.238	13.596	9.71
90	0.232	13.828	9.22
96	0.221	14.049	8.78
102	0.213	14.261	8.39
108	0.204	14.466	8.04
114	0.193	14.659	7.72
120	0.188	14.847	7.42
126	0.182	15.029	7.16
132	0.177	15.206	6.91
138	0.171	15.377	6.69
144	0.166	15.543	6.48
150	0.160	15.703	6.28
156	0.155	15.858	6.10
162	0.149	16.007	5.93
168	0.149	16.156	5.77
174	0.144	16.299	5.62
180	0.141	16.440	5.48
186	0.133	16.573	5.35
192	0.133	16.705	5.22
198	0.127	16.832	5.10
204	0.127	16.959	4.99
210	0.122	17.081	4.88
216	0.122	17.202	4.78
222	0.116	17.318	4.68
228	0.113	17.432	4.59
234	0.110	17.542	4.50
240	0.108	17.650	4.41
246	0.105	17.755	4.33
252	0.105	17.733	4.33
258	0.103	17.860	4.23
258	0.102	18.061	4.18
270			
	0.099	18.161	4.04
276	0.097	18.257	3.97
282	0.094	18.351	3.90
288	0.094	18.445	3.84
294	0.094	18.539	3.78
300	0.091	18.630	3.73
306	0.091	18.721	3.67
312	0.091	18.812	3.62
318	0.088	18.901	3.57
324	0.088	18.989	3.52
330	0.088	19.078	3.47
336	0.088	19.166	3.42
342	0.088	19.254	3.38
348	0.088	19.343	3.33
354	0.088	19.431	3.29
360	0.086	19.517	3.25
		17	

366	0.083	19.600	3.21
372	0.083	19.682	3.17
378	0.083	19.765	3.14
384	0.080	19.845	3.10
390			
	0.080	19.925	3.07
396	0.080	20.006	3.03
402	0.077	20.083	3.00
408	0.077	20.160	2.96
414	0.075	20.235	2.93
420	0.075	20.309	2.90
426	0.072	20.381	2.87
432	0.072	20.453	2.84
438	0.072	20.525	2.81
444	0.072	20.597	2.78
450	0.069	20.666	2.76
456	0.066	20.732	2.73
462	0.066	20.798	2.70
468	0.066	20.864	2.67
474	0.064	20.928	2.65
480	0.064	20.991	2.62
486	0.064	21.055	2.60
492	0.061	21.116	2.58
498	0.061	21.176	2.55
504	0.061	21.237	2.53
510	0.061	21.298	2.51
516	0.061	21.359	2.48
			2.46
522	0.061	21.420	
528	0.061	21.480	2.44
534	0.058	21.538	2.42
540	0.058	21.596	2.40
546	0.058	21.654	2.38
552	0.058	21.712	2.36
558	0.058	21.770	2.34
564	0.058	21.828	2.32
570	0.058	21.886	2.30
576	0.058	21.944	2.29
582	0.058	22.002	2.27
588	0.058	22.060	2.25
594	0.055	22.115	2.23
600	0.055	22.171	2.22
606	0.055	22.226	2.20
612	0.055	22.281	2.18
618	0.055	22.336	2.17
624	0.055	22.392	2.17
630	0.055	22.447	2.14
636	0.055	22.502	2.12
642	0.055	22.557	2.11
648	0.052	22.610	2.09
654	0.052	22.662	2.08
660	0.052	22.715	2.06
666	0.052	22.767	2.05
672	0.052	22.820	2.04
678	0.052	22.872	2.02
		22.925	
684	0.052		2.01
690	0.052	22.977	2.00
696	0.050	23.027	1.99
702	0.050	23.077	1.97
708	0.050	23.126	1.96
714	0.050	23.176	1.95
720	0.050	23.226	1.94
726	0.050	23.275	1.92
732	0.050	23.325	1.91
738	0.050	23.375	1.90
744	0.050	23.424	1.89
750	0.050	23.474	1.88
756	0.047	23.521	1.87
762	0.047	23.568	1.86
768	0.047	23.615	1.84
700			

774	0.047	23.662	1.83
780	0.047	23.709	1.82
786	0.047	23.756	1.81
792	0.047	23.803	1.80
798	0.047	23.850	1.79
804	0.044	23.894	1.78
810	0.044	23.938	1.77
	0.044	23.982	
816			1.76
822	0.044	24.027	1.75
828	0.044	24.071	1.74
834	0.044	24.115	1.73
840	0.044	24.159	1.73
846	0.044	24.203	1.72
852	0.044	24.247	1.71
858	0.041	24.289	1.70
864	0.041	24.330	1.69
870	0.041	24.372	1.68
876	0.041	24.413	1.67
882	0.041	24.455	1.66
888	0.041	24.496	1.66
894	0.041	24.537	1.65
900	0.041	24.579	1.64
906	0.041	24.620	1.63
912	0.041	24.662	1.62
918	0.039	24.700	1.61
924	0.039	24.739	1.61
930	0.039	24.778	1.60
936	0.039	24.816	1.59
942	0.039	24.855	1.58
948	0.039	24.894	1.58
954			
	0.039	24.932	1.57
960	0.039	24.971	1.56
966	0.039	25.010	1.55
972	0.039	25.048	1.55
978	0.039	25.087	1.54
984	0.036	25.123	1.53
990	0.036	25.159	1.52
996	0.036	25.195	1.52
1002	0.036	25.231	1.51
1008	0.036	25.267	1.50
1014	0.036	25.302	1.50
1020	0.036	25.338	1.49
1026	0.036	25.374	1.48
1032	0.036	25.410	1.48
1038	0.036	25.446	1.47
1044	0.036	25.482	1.46
1050	0.036	25.518	1.46
1056	0.036	25.554	1.45
		25.590	
1062	0.036		1.45
1068	0.036	25.626	1.44
1074	0.036	25.661	1.43
1080	0.036	25.697	1.43
1086	0.036	25.733	1.42
1092	0.036	25.769	1.42
1098	0.036	25.805	1.41
1104	0.036	25.841	1.40
1110	0.036	25.877	1.40
1116	0.033	25.910	1.39
1122	0.033	25.943	1.39
1128	0.033	25.976	1.38
1134	0.033	26.009	1.38
1140	0.033	26.043	1.37
1146	0.033	26.076	
			1.37
1152	0.033	26.109	1.36
1158	0.033	26.142	1.35
1164	0.033	26.175	1.35
1170	0.033	26.208	1.34
1176	0.033	26.241	1.34

1182 1188 1194 1200 1206 1212 1218 1224 1230 1236 1242 1248 1254 1260 1266 1272 1278 1284	0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	26.275 26.308 26.341 26.374 26.407 26.440 26.473 26.507 26.540 26.573 26.606 26.639 26.672 26.738 26.772 26.805 26.838	1.33 1.33 1.32 1.32 1.31 1.31 1.30 1.30 1.29 1.29 1.29 1.28 1.28 1.27 1.27 1.26
1194 1200 1206 1212 1218 1224 1230 1236 1242 1248 1254 1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	26.341 26.374 26.407 26.440 26.473 26.507 26.540 26.573 26.606 26.639 26.672 26.705 26.738 26.772 26.805	1.32 1.32 1.31 1.31 1.30 1.30 1.29 1.29 1.29 1.28 1.28 1.27 1.27
1200 1206 1212 1218 1224 1230 1236 1242 1248 1254 1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	26.374 26.407 26.440 26.473 26.507 26.540 26.573 26.606 26.639 26.672 26.705 26.738 26.772 26.805	1.32 1.31 1.31 1.30 1.30 1.29 1.29 1.29 1.28 1.28 1.27 1.27
1206 1212 1218 1224 1230 1236 1242 1248 1254 1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	26.407 26.440 26.473 26.507 26.540 26.573 26.606 26.639 26.672 26.705 26.738 26.772 26.805	1.31 1.30 1.30 1.29 1.29 1.29 1.28 1.28 1.27 1.27
1212 1218 1224 1230 1236 1242 1248 1254 1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	26.440 26.473 26.507 26.540 26.573 26.606 26.639 26.672 26.705 26.738 26.772 26.805	1.31 1.30 1.30 1.29 1.29 1.29 1.28 1.28 1.27 1.27 1.26
1218 1224 1230 1236 1242 1248 1254 1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	26.473 26.507 26.540 26.573 26.606 26.639 26.672 26.705 26.738 26.772 26.805	1.30 1.30 1.29 1.29 1.29 1.28 1.28 1.27 1.27
1224 1230 1236 1242 1248 1254 1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	26.507 26.540 26.573 26.606 26.639 26.672 26.705 26.738 26.772 26.805	1.30 1.29 1.29 1.29 1.28 1.28 1.27 1.27
1230 1236 1242 1248 1254 1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	26.540 26.573 26.606 26.639 26.672 26.705 26.738 26.772 26.805	1.29 1.29 1.29 1.28 1.28 1.27 1.27
1236 1242 1248 1254 1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	26.573 26.606 26.639 26.672 26.705 26.738 26.772 26.805	1.29 1.29 1.28 1.28 1.27 1.27 1.26
1242 1248 1254 1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	26.606 26.639 26.672 26.705 26.738 26.772 26.805	1.29 1.28 1.28 1.27 1.27 1.26
1248 1254 1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033 0.033 0.033	26.639 26.672 26.705 26.738 26.772 26.805	1.28 1.28 1.27 1.27 1.26
1254 1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033 0.033	26.672 26.705 26.738 26.772 26.805	1.28 1.27 1.27 1.26
1260 1266 1272 1278	0.033 0.033 0.033 0.033 0.033	26.705 26.738 26.772 26.805	1.27 1.27 1.26
1266 1272 1278	0.033 0.033 0.033 0.033	26.738 26.772 26.805	1.27 1.26
1272 1278	0.033 0.033 0.033	26.772 26.805	1.26
1278	0.033 0.033	26.805	
	0.033		1.26
1204		26.838	
1204	0.033		1.25
1290		26.871	1.25
1296	0.030	26.901	1.25
1302	0.030	26.932	1.24
1308	0.030	26.962	1.24
1314	0.030	26.993	1.23
1320	0.030	27.023	1.23
1326	0.030	27.053	1.22
1332	0.030	27.084	1.22
1338	0.030	27.114	1.22
1344	0.030	27.144	1.21
1350	0.030	27.175	1.21
1356	0.030	27.205	1.20
1362	0.030	27.236	1.20
1368	0.030	27.266	1.20
1374	0.030	27.296	1.19
1380	0.030	27.327	1.19
1386	0.030	27.357	1.18
1392	0.030	27.387	1.18
1398	0.030	27.418	1.18
1404	0.030	27.448	1.17
1410	0.030	27.479	1.17
1416	0.028	27.506	1.17
1422	0.028	27.534	1.16
1428	0.028	27.561	1.16
1434	0.028	27.589	1.15
1440	0.028	27.617	1.15
Pmáx	27.617		

Método D. Peschke

$$I = \frac{P \times FA}{d}$$

Tabla 16: Resultados de Intensidades Mediante Método de D. Peschke

Duración	Pd	D.Peschke
d (min) (mm)		i (mm/h)
6	7.02	70.16
12	8.34	41.72
18	9.23	30.78
24	9.92	24.81
30	10.49	20.98

36	10.98	18.30
42	11.41	16.30
48	11.80	14.75
54	12.15	13.50
60	12.48	12.48
66	12.78	11.62
72	13.06	10.88
78	13.32	10.25
84	13.57	9.69
90	13.81	9.21
96	14.03	8.77
102	14.25	8.38
108	14.45	8.03
114	14.65	7.71
120	14.84	7.42
126	15.02	7.15
132	15.20	6.91
138	15.37	6.68
144	15.53	6.47
150	15.69	6.28
156	15.84	6.09
162	15.99	5.92

Método F. Bell

$$P_t^T = (0.21 \log_e T + 0.52) * (0.54t^{0.25} - 0.50)P_{60}^{10}$$

$$I = a * P_{24}^b$$

Factores:

a = 0.4602

b = 0.8760

Pmax 24h = 27.61 mm

I = P(10,60) = 8.42 mm

T = 100 años

Tabla 17: Resultados de Intensidades Mediante Método de F. Bell

Duración (min)	P(t,T)	i (mm/h)
6	4.32	43.23
12	6.33	31.63
18	7.67	25.56
24	8.71	21.77
30	9.57	19.13
36	10.30	17.17
42	10.95	15.65
48	11.54	14.42
54	12.07	13.41
60	12.56	12.56
66	13.01	11.83
72	13.44	11.20
78	13.84	10.64
84	14.21	10.15
90	14.57	9.71
96	14.91	9.32
102	15.23	8.96
108	15.54	8.63
114	15.84	8.34
120	16.12	8.06
126	16.40	7.81
132	16.66	7.57
138	16.92	7.36
144	17.17	7.15
150	17.41	6.96
156	17.64	6.78
162	17.87	6.62

Método Daniel F. Campos

Tabla 18: Factores del Método Daniel F. Campos Duración en Horas

Duración (hr)	Factor
1	0.30
2	0.39
3	0.46
4	0.52
5	0.57
6	0.61
8	0.68
12	0.80
18	0.91
24	1.00

Tabla 19: Factores del Método Daniel F. Campos Duración en Minutos

Duración (min)	Factor
60	0.30
120	0.39
180	0.46
240	0.52
300	0.57
360	0.61
480	0.68
720	0.80
1080	0.91
1440	1.00

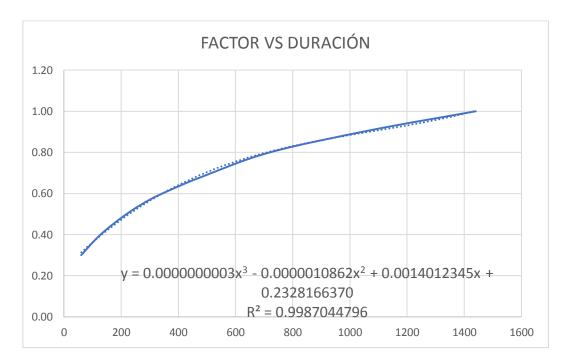


Ilustración 44: Gráfica Interpolación de Factores

Tabla 20: Resultados de Intensidades Mediante Método de Daniel F. Campos

Duración (min)	Factor	Pd (mm)	i (mm/h)
6	0.241	6.66	66.61
12	0.249	6.89	34.45
18	0.258	7.12	23.72
24	0.266	7.34	18.35
30	0.274	7.56	15.13
36	0.282	7.78	12.97
42	0.290	8.00	11.43
48	0.298	8.22	10.27
54	0.305	8.43	9.37
60	0.313	8.65	8.65
66	0.321	8.86	8.05
72	0.328	9.06	7.55
78	0.336	9.27	7.13
84	0.343	9.47	6.77
90	0.350	9.68	6.45

96	0.358	9.88	6.17
102	0.365	10.07	5.93
108	0.372	10.27	5.71
114	0.379	10.46	5.51
120	0.386	10.66	5.33
126	0.393	10.85	5.16
132	0.400	11.03	5.02
138	0.406	11.22	4.88
144	0.413	11.40	4.75
150	0.420	11.59	4.63
156	0.426	11.77	4.53
162	0.433	11.95	4.42

Finalmente hemos recolectado los datos para procesar y elegir la intensidad para el estudio.

Tabla 21: Tabla Resumen de Métodos para Hallar la Intensidad

Duración	Pd	D.Peschke	SCS	F. Bell	DF Campos
d (min)	(mm)	i (mm/h)	i (mm/h)	i (mm/h)	i (mm/h)
6	7.02	70.16	37.86	43.23	66.61
12	8.34	41.72	32.06	31.63	34.45
18	9.23	30.78	28.41	25.56	23.72
24	9.92	24.81	24.59	21.77	18.35
30	10.49	20.98	20.99	19.13	15.13
36	10.98	18.30	18.37	17.17	12.97
42	11.41	16.30	16.40	15.65	11.43
48	11.80	14.75	14.84	14.42	10.27
54	12.15	13.50	13.57	13.41	9.37
60	12.48	12.48	12.53	12.56	8.65
66	12.78	11.62	11.66	11.83	8.05
72	13.06	10.88	10.91	11.20	7.55
78	13.32	10.25	10.28	10.64	7.13
84	13.57	9.69	9.71	10.15	6.77
90	13.81	9.21	9.22	9.71	6.45
96	14.03	8.77	8.78	9.32	6.17
102	14.25	8.38	8.39	8.96	5.93
108	14.45	8.03	8.04	8.63	5.71
114	14.65	7.71	7.72	8.34	5.51
120	14.84	7.42	7.42	8.06	5.33
126	15.02	7.15	7.16	7.81	5.16
132	15.20	6.91	6.91	7.57	5.02
138	15.37	6.68	6.69	7.36	4.88
144	15.53	6.47	6.48	7.15	4.75
150	15.69	6.28	6.28	6.96	4.63
156	15.84	6.09	6.10	6.78	4.53
162	15.99	5.92	5.93	6.62	4.42

Para el estudio de esta microcuenca se utilizó la Estación Chosica y después del análisis del registro histórico de precipitaciones máximas en 24 horas, se determinó que la precipitación de diseño relacionada a un periodo de retorno de 100 años es

27.61 Para el cálculo de las intensidades se utilizó varios métodos, descartando F. Bell y Daniel F. Campos por tener resultados alejados.

Tabla 22: Resumen de Resultados Intensidades

METODO	INTENSIDAD
SCS	6.28
D.PESCHKE	6.28
F. BELL	6.96
DF CAMPOS	4.63
INTENSIDAD DE DISEÑO	6.28

Proseguimos calculando los caudales mediante cuatro métodos que exponemos a continuación:

CÁLCULO DE CAUDALES

Método Racional

$$Q_P = 0.278CiA$$

Donde:

Qp: Gasto máximo o de pico, en m3/s.

C: Coeficiente de escurrimiento (usualmente entre 0.5 y 0.8, ver tabla 24 para zonas urbanas)

i: Intensidad media de la lluvia para una duración igual al tiempo de concentración de la cuenca, en mm/h.

A: Área de la cuenca, en Km2.

Para estimar tiempo de concentración se utiliza la fórmula de Kirpich:

$$t_c = 0.000325 * (\frac{L^{0.77}}{S^{0.385}})$$

Tabla 23: Tabla de Valores K y C, para el Cálculo de Escorrentía

	VALORES DE K			
	40 Muy	30	20	10 Llano
	Accidentado	Accidentado	Ondulado	pendientes
1. Relieve del terreno	pendientes	pendientes	pendientes	inferiores
	superiores al	entre el 10%	entre el 5%	al 5%
	30%	y el 30%	y el 10%	a1 3 70
	20 Muy	15 Bastante	10 Bastante	5 Muy
2. Permeabilidad del suelo	permeable	impermeable	permeable	permeable
	Roca	Arcilla	Normal	Arena
		15 Poca	10 Bastante	5 Mucha
3. Vegetación	20 Ninguna	Menos del	Hasta el	Hasta el
3. Vegetacion		10% de la	50% de la	90% de la
		superficie	superficie	superficie
4. Capacidad de almacenaje de agua	20 Ninguna	15 Poca	10 Bastante	5 Mucha
	-			
Valor de K comprendido entre	75 - 100	50 - 75	30 - 50	25 - 30
Valor de C	0.65 - 0.80	0.50 - 0.65	0.35 - 0.50	0.20 - 0.35

Con la ayuda de la tabla anteriormente mostrada calculamos el coeficiente de escorrentía.

Tabla 24: Coeficiente de Escorrentía para Estudio

COEFICIENTE DE ESCORRENTIA DE LA CUENCA

COEFICIENTE DE ESCORRENTIA DE LA CUENCA						
Parámetro Características		Puntaje				
RELIEVE	Accidentado pendientes entre 10% y 30%	20.00				
INFILTRACION	Bastante permeable - Normal	10.00				
COBERTURA VEGETAL	Ninguna	20.00				
ALM. SUPERFICIAL	Ninguna	20.00				
Valor de K	70.00					

|--|

Calculamos el caudal mediante método Racional.

Tabla 25: Resumen de Datos para Cálculo de Caudal

Tiempo de Retorno (años)	Área (Km²)	Tiempo Concentración (min)	Intensidad (*) (mm/h)	Caudal (m³/s)	Forma de Drenaje
100.00	17.25	150.59	6.28	21.08	Quebrada

Método Envolvente de Descargas máximas de Creager

$$Qmax = (C1 + C2) * log(T) * A^{mA^{-n}}$$

Donde:

Qmax: Caudal máximo para un periodo de retorno T seleccionado, en m3/s.

A: Área de la cuenca aportante, en Km2.

T: Periodo de retorno, en años.

C1, C2: Coeficientes adimensionales de escala, por regiones hidráulicas (Ilustración 48 y Tabla 27).

M, n: Exponentes adimensionales, por regiones hidráulicas (Ilustración 48 y Tabla 27).

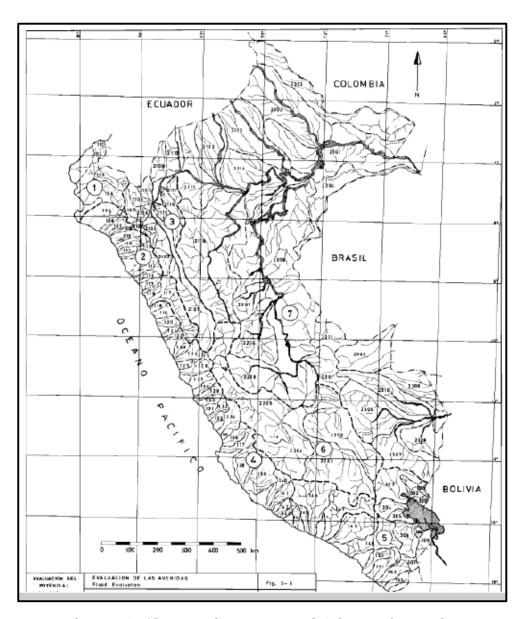


Ilustración 45: Mapa de Regiones Hidráulicas Diferenciales

Tabla 26: Coeficientes para cada Región Hidráulica

Región	C1	C2	m	n
1	1.01	4.37	1.02	0.04
2	0.10	1.28	1.02	0.04
3	0.27	1.48	1.02	0.04
4	0.09	0.36	1.24	0.04
5	0.11	0.26	1.24	0.04
6	0.18	0.31	1.24	0.04
7	0.22	0.37	1.24	0.04

Tabla 27: Resumen de Datos

DATOS								
Región	4							
C1 =	0.09							
C2 =	0.36							
m =	1.24							
n =	0.04							
Área =	17.25 Km							
A^-n =	0.892							
m*A^-n =	1.106							
$A^{n}(m^{*}A^{n}-n) =$	23.362							

Tabla 28: Cálculo de Caudal Método de Creager, Tiempo de Retorno 100 Años

T (años)	Qmax (m3/s)
100	21.03

Método Hidrograma Unitario Triangular

Tabla 29: Datos para Método H. U. Triangular

DATOS INICIALES					
T Pmax 24h					
100	27.6166959				

Cálculo de la duración de la lluvia efectiva:

Para cuencas grandes:

$$d_e = 2\sqrt{t_c}$$

Para cuencas pequeñas:

$$d_e = t_c$$

Consideramos la cuenca como cuenca grande.

Tabla 30: Lluvia Efectiva

T. de concentración	2.510
$de = 2 \operatorname{raíz}(Tc)$	3.168 Hrs

Cálculo de la lámina de lluvia neta y de la intensidad de lluvia.

$$P = P_{24h} (\frac{D}{1440})^{0.25}$$

Se hace uso de la fórmula de Dyck y Peschke (1978)

$$D = de = 3.168 \text{ hrs}$$

T	Pmáx 24h	P (durac.)	i (mm/h)
100	27.6166959	16.65	5.25

Cálculo del tiempo para alcanzar el pico del hidrograma.

$$t_p = \frac{de}{2} + t_r$$

Fórmulas para el tiempo de retraso:

$$t_r = 0.6t_c$$

Según Chow:

$$t_r = 0.005 (\frac{L}{\sqrt{S}})^{0.64}$$

Donde:

tr: Tiempo de retraso, en hr.

tc: Tiempo de concentración, en hr.

L: Longitud del cauce principal, en m.

S: Pendiente de cauce, en %.

Calculamos el tiempo de retraso con la fórmula "a" mostrada en la ilustración 51, posteriormente hemos calculado el tiempo pico.

de / 2 =	1.584 Hrs
tr = 0.6Tc =	1.457 Hrs
tp =	3.041 Hrs
tp =	182.446 min

Cálculo del caudal pico.

$$Pe = \frac{(P - Ia)^2}{P + 0.80S} = \frac{(P - 0.20S)^2}{P + 0.80S}$$

Donde:

$$S = \frac{1000}{CN} - 10$$

$$Ia = 0.20S$$

En las expresiones anteriores:

Pe: Precipitación efectiva, en pulgadas.

P: Precipitación de diseño, en pulgadas

S: Abstracción inicial.

CN: Numero hidrológico o número de curva.

Formula de Caudal Máximo:

$$Qmax = 0.208 * \frac{A * Pe}{Tp}$$

Datos para el cálculo:

Área = 17.25 Km2

PE: según SCS

CN = 81 S = 2.346

Т	Pmax 24h	P (durac)	P (pulg)	PE (Pulg)	PE (mm)	Qmax (m3/s)
100	27.62	16.65	0.655	0.014	0.348	0.411

Método HEC – HMS

Utilizamos el software HEC – HMS, para determinar el caudal de nuestro estudio, para ello realizamos la siguiente secuencia.

Primero creamos nuestro proyecto asignándole un nombre.

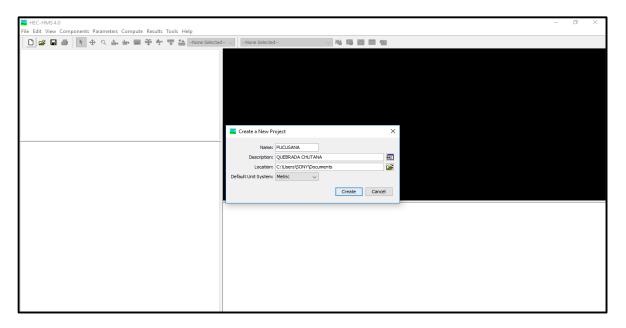


Ilustración 46: Creación del Proyecto en HEC – HMS

Continuamos insertando la cuenca en estudio en la pestaña COMPONENTS, luego BASIN MODELER MANAGER.

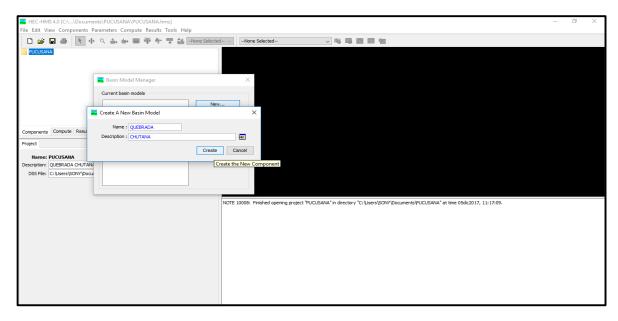


Ilustración 47: Modelador de la Cuenca

Insertamos la cuenca en estudio mediante VIEW – BACKGROUND MAPS, luego buscamos la cuenca con extensión .SHP.

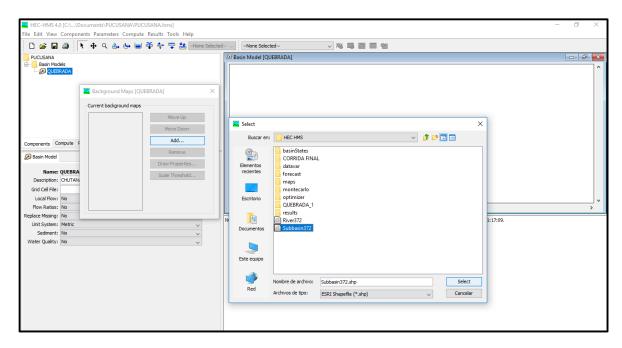


Ilustración 48: Forma de Insertar Modelo de la Cuenca

Lo mismo realizamos con el rio y nos resultó lo siguiente:

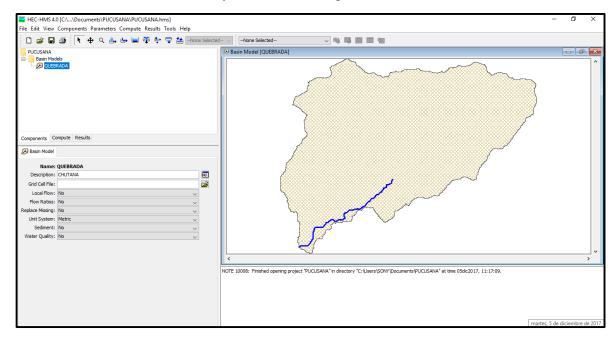


Ilustración 49: Cuenca de la Quebrada Chutana

Seguimos con el establecimiento del sitio de análisis, donde insertamos los datos que anteriormente hemos obtenido en la parte inferior izquierda, además hemos utilizado el método número de curva SCS.

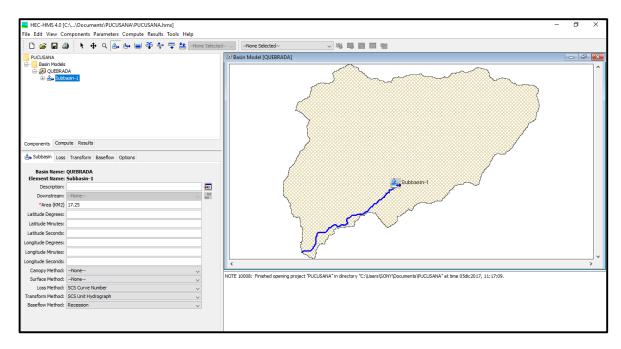


Ilustración 50: Datos de la Cuenca

Pasamos a la sección de LOSS (perdidas) donde colocamos el número de curva

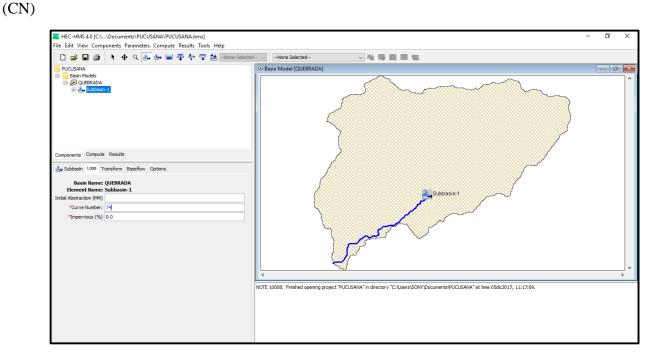


Ilustración 51: Datos de Perdidas

Pasamos a la siguiente pestaña de TRANSFORM donde insertamos el tiempo de retardo en minutos.

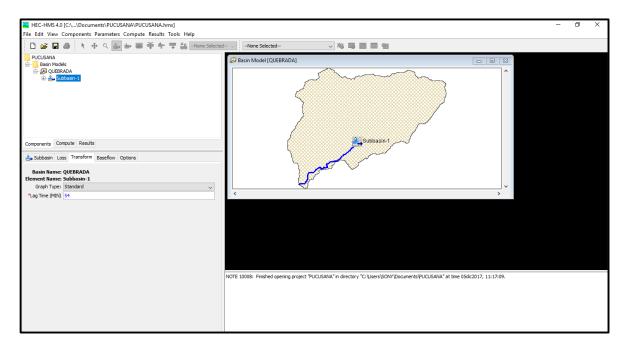


Ilustración 52: Datos de Transformación

Finalizamos esta sección insertando el punto de llegada del flujo.

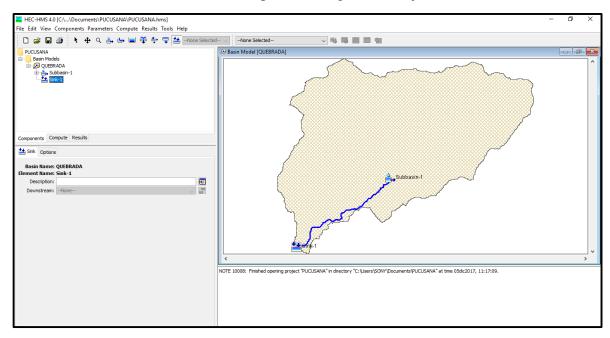


Ilustración 53: Modelo de la Cuenca Finalizado a Nivel de Basin Model Manager

Continuamos insertando los datos de precipitación en la pestaña COMPONENTS, luego METEREOLIGIC MODEL MANAGER, donde insertamos la precipitación máxima en 24 horas que hemos estudiado estudiamos.

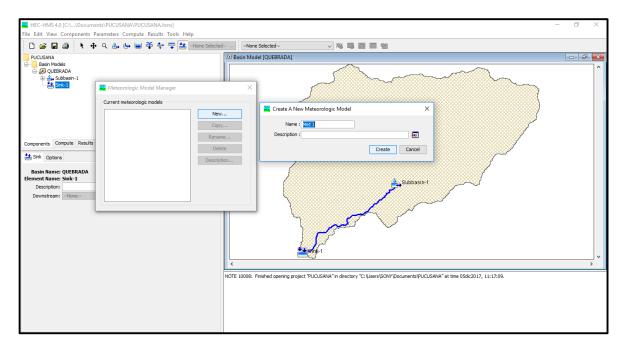


Ilustración 54: Creación de la Precipitación

Especificamos el tipo de precipitación (SCS Storm) y la pérdida (Set to Default) que sufrirá el modelo.

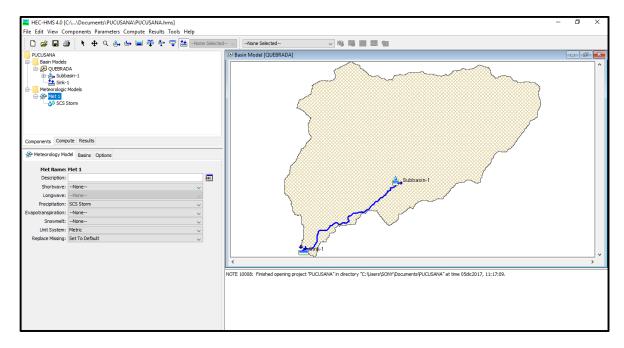


Ilustración 55: Tipo de Precipitación y Pérdida

Confirmamos el nombre de la cuenca en la que se dará la precipitación.

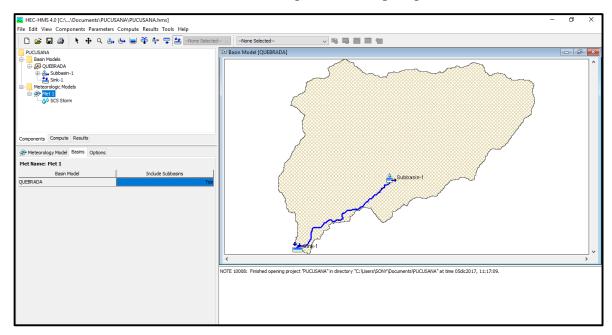


Ilustración 56: Confirmación de la Cuenca

Finalmente especificamos la precipitación máxima en 24 horas que estuvimos estudiando.

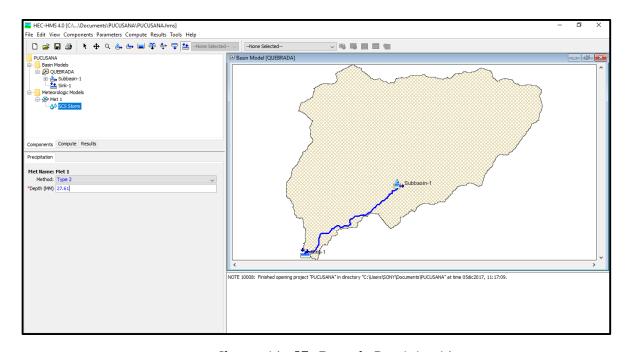


Ilustración 57: Dato de Precipitación

Continuamos insertando los datos de tiempos en el que se dara la simulación de precipitación para la cuenca en la pestaña COMPONENTS, luego CONTROL SPECIFICATIONS MANAGER.

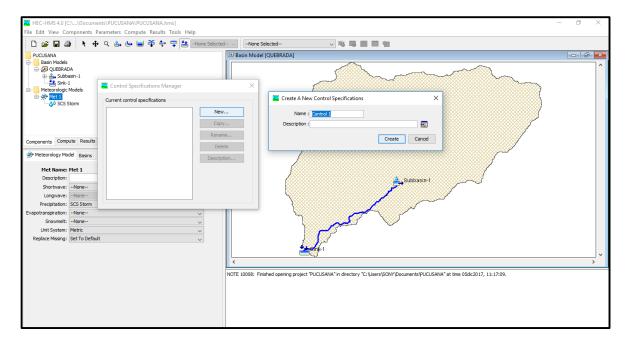


Ilustración 58: Creación del Control de Precipitación

Insertamos los tiempos en los que se daría la precipitación.

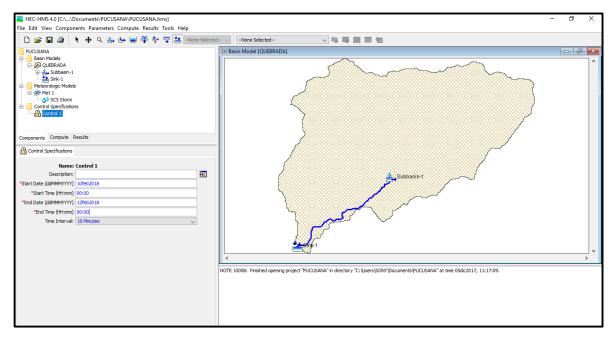


Ilustración 59: Tiempo de la Precipitación

Finalmente Procesamos los datos en la pestaña COMPUTE, luego CREATE COMPUTE y SIMULATION RUN.



Ilustración 60: Ejecución de Simulación

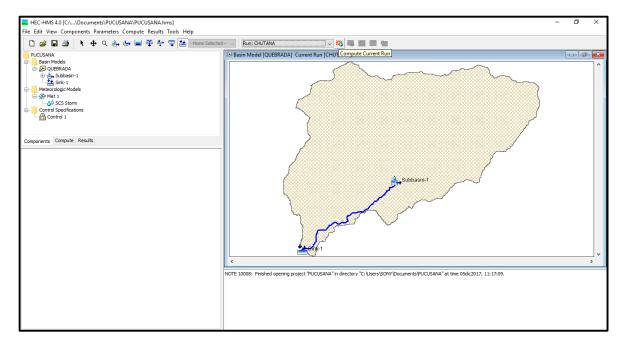


Ilustración 61: Verificación de Resultados

Obtuvimos los siguientes resultados de la simulación.

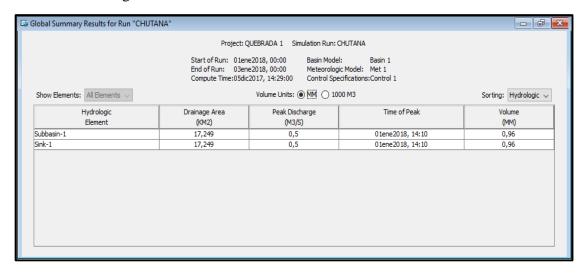


Ilustración 62: Caudal de Diseño

Finalizamos el análisis de los caudales por 4 métodos descartamos el método del hidrograma Triangular y el HEC HMS, ya que estos métodos dan mejor resultado para cuencas grandes, promediamos los resultados de los otros dos métodos y nos dio 21.05 m3/s.

Tabla 31: Tabla Resumen de los Métodos y sus Resultados

METODOS	T = 100
Racional:	21.08
Creager:	21.03
H. Triangular:	0.41
HEC HMS	0.50
Utilizar	21.05

3.4.4.2. Rio Chilca

Continuamos con el estudio en la cuenca del Rio Chilca, con la estación pluviométrica de Matucana.

Tabla 32: Datos Morfométricos de la Cuenca, Rio Chilca

DESCRIPCIÓN	UND	VALOR								
De la superficie										
Área	km2	702.07								
Perímetro de la cuenca	Km	190.875								
Cotas										
Cota máxima	msnm	4215.999997								
Cota mínima	msnm	106								
Centroide (PSC:wgs 1984 UTM Zone 175)										
X centroide	М	335298.4104								
Y centroide	M	8635455.645								
Z centroide	msnm	2260.67132								
Altitud										
Altitud media	msnm	2260.67132								
De la Red Hío	drica									
Longitud más larga	М	65434.5391								
Parámetros Generados										
pendiente del cauce principal	m/m	0.0628								

Continuamos con ingresando los datos de la estación Matucana, datos históricos de máximas precipitaciones.

Tabla 33: Datos Pluviométricos de Estación Matucana

DATOS ESTACIÓN PLUVIOMÉTRICA									
Estación:	MATUCANA	Coordenadas UTM WGS 84 18S	Latitud	Cata	2470 m a n m				
Denominación:		Coordenadas UTM WGS 84 18S	Longitud	Cota =	2479 m.s.n.m				

Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	N	Máximo	
1964	-	12.70	8.10	12.10	3.80	0.00	0.00	0.00	0.00	4.60	4.20	15.90	15.90	Diciembre	
1966	0.70	10.40	17.10	9.40	0.20	0.00	0.00	0.00	0.00	5.20	0.00	10.90	17.10	Marzo	
1967	11.70	14.40	16.70	3.70	2.50	0.00	-	1	2.10	6.40	3.00	4.80	16.70	Marzo	
1968	8.70	12.80	8.70	8.20	5.00	-	-	ı	ı	-	-	-	12.80	Febrero	
1969	8.10	12.00	11.20	8.50	0.00	0.00	0.00	0.00	0.90	5.80	10.20	8.00	12.00	Febrero	
1970	31.70	1.60	10.60	5.30	3.50	0.00	0.00	0.00	7.20	5.10	2.30	15.60	31.70	Enero	
1971	12.10	23.30	13.60	5.20	0.00	0.00	0.00	0.00	0.00	3.50	1.00	9.10	23.30	Febrero	
1972	12.30	16.90	18.10	5.50	0.00	0.00	0.00	0.00	1.20	8.80	3.10	10.10	18.10	Marzo	
1973	14.40	25.20	9.60	2.60	0.00	0.00	0.00	0.00	17.20	3.20	2.40	10.50	25.20	Febrero	
1974	10.20	11.90	9.00	4.80	0.00	0.00	0.00	0.00	0.40	0.60	2.10	8.00	11.90	Febrero	
1975	6.80	9.90	10.80	3.50	3.20	0.80	0.00	0.00	1.30	4.50	9.30	10.00	10.80	Marzo	
1976	15.80	13.00	10.50	0.50	0.50	0.50	0.00	0.00	0.50	0.00	0.00	6.30	15.80	Enero	
1977	4.70	35.20	18.20	2.20	3.30	0.00	0.00	0.00	1.10	0.60	7.80	10.40	35.20	Febrero	
1978	6.70	6.90	6.50	4.90	0.00	0.00	0.00	0.00	1.50	0.00	7.80	5.80	7.80	Noviembre	
1979	5.60	12.30	7.50	0.00	0.00	0.00	0.00	0.00	0.00	1.70	0.90	-	12.30	Febrero	
1980	4.80	1.80	4.90	8.80	0.00	0.00	0.00	0.00	0.00	2.40	0.00	3.20	8.80	Abril	
1981	10.50	12.50	10.50	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.90	9.60	12.50	Febrero	
1982	2.90	5.50	2.90	0.00	0.00	0.00	1	0.00	0.00	0.00	9.50	0.90	9.50	Noviembre	
1983	3.70	25.00	22.60	4.20	0.00	0.00	0.00	0.00	0.00	-	-	9.90	25.00	Febrero	
1984	6.40	19.20	21.50	3.10	1.00	1.80	0.00	0.00	0.00	11.90	8.30	13.90	21.50	Marzo	
1985	4.90	12.70	14.50	4.30	1.90	0.00	0.00	1.00	1.80	0.90	19.80	6.90	19.80	Noviembre	
1986	27.20	10.00	10.30	11.30	4.90	0.00	0.00	3.60	0.00	3.70	7.80	10.30	27.20	Enero	
1987	19.50	8.30	20.90	0.00	0.00	0.00	0.00	1.00	0.20	0.00	-	7.40	20.90	Marzo	

1988	11.10	12.30	5.80	8.60	2.80	0.00	0.00	0.00	0.00	0.50	0.00	6.40	12.30	Febrero
1989	8.30	10.70	6.50	1.20	2.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.70	Febrero
1990	6.70	2.40	6.70	1.30	4.10	0.30	0.00	0.40	0.00	7.40	10.60	10.30	10.60	Noviembre
1991	3.90	17.20	17.60	4.20	2.10	0.00	0.00	0.00	0.00	7.70	3.50	1.80	17.60	Marzo
1992	14.00	15.20	30.50	13.10	0.00	0.00	0.00	0.00	0.00	11.40	3.70	6.40	30.50	Marzo
1993	22.30	27.10	30.30	15.90	0.00	0.00	0.00	0.00	0.00	5.30	8.80	9.60	30.30	Marzo
1994	11.40	12.20	5.80	15.50	2.60	0.00	0.00	0.00	0.30	0.30	5.00	11.70	15.50	Abril
1995	22.30	9.10	14.00	12.40	0.00	0.00	0.00	0.00	3.60	3.70	20.30	12.70	22.30	Enero
1996	11.70	13.60	12.10	5.80	0.00	0.00	0.00	0.00	0.00	0.00	2.40	3.60	13.60	Febrero
1997	8.50	9.50	4.80	2.60	0.00	0.00	0.00	0.00	0.00	5.40	6.50	7.50	9.50	Febrero
1998	16.60	21.90	14.00	5.90	0.00	0.00	0.00	1.30	2.20	0.00	0.00	4.00	21.90	Febrero
1999	7.50	19.80	5.70	7.30	0.00	0.00	0.00	0.00	4.00	5.10	6.50	6.20	19.80	Febrero
2000	10.60	14.30	11.00	10.90	2.50	0.00	0.00	0.00	0.00	5.90	0.00	7.30	14.30	Febrero
2001	16.20	13.50	9.70	3.80	0.00	0.00	0.00	0.00	0.00	1.60	10.00	1.30	16.20	Enero
2002	6.00	15.70	9.80	9.00	4.90	0.00	0.00	0.00	1.20	-	7.90	10.90	15.70	Febrero
2003	8.20	12.90	7.00	14.50	0.00	0.00	0.00	0.00	0.00	0.00	0.70	19.50	19.50	Diciembre
2004	5.50	10.30	18.00	8.90	0.00	3.60	0.00	-	0.00	6.30	6.20	18.00	18.00	Diciembre
2005	21.50	5.70	11.70	4.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.90	21.50	Enero
2006	13.90	11.50	14.30	10.80	0.00	0.00	0.00	0.00	0.00	1.20	5.70	11.50	14.30	Marzo
2007	12.50	13.10	16.60	16.50	0.00	ı	-	0.00	-	1.80	0.00	12.30	16.60	Marzo
2008	7.30	16.50	11.70	6.20	-	0.00	-	0.00	-	2.00	7.70	9.00	16.50	Febrero
2009	13.70	18.10	23.10	6.90	-	ı	0.00	0.00	0.00	7.40	7.90	9.60	23.10	Marzo
2010	9.70	16.80	17.00	-	-	ı	-	-	-	-	1	-	17.00	Marzo
MAX	31.70	35.20	30.50	16.50	5.00	3.60	0.00	3.60	17.20	11.90	20.30	19.50		35.20

Posteriormente realizamos el cálculo de las precipitaciones máximas probables en diferentes tiempos de retorno por medio de distribución de probabilidades Gumbel.

La fórmula que utilizamos en dicho método fue:

$$F(x) = e^{-e^{-(\frac{x-u}{a})}}$$

Invocamos a los datos que nos sirvió para este cálculo.

Tabla 34: Resumen de Precipitaciones Máximas de cada Mes

		Mes	
N^o	Año	Máximas	Precipitaciones
		Precipitaciones	•
1	1964	Diciembre	15.90
2	1966	Marzo	17.10
3	1967	Marzo	16.70
4	1968	Febrero	12.80
5	1969	Febrero	12.00
6	1970	Enero	31.70
7	1971	Febrero	23.30
8	1972	Marzo	18.10
9	1973	Febrero	25.20
10	1974	Febrero	11.90
11	1975	Marzo	10.80
12	1976	Enero	15.80
13	1977	Febrero	35.20
14	1978	Noviembre	7.80
15	1979	Febrero	12.30
16	1980	Abril	8.80
17	1981	Febrero	12.50
18	1982	Noviembre	9.50
19	1983	Febrero	25.00
20	1984	Marzo	21.50
21	1985	Noviembre	19.80
22	1986	Enero	27.20
23	1987	Marzo	20.90
24	1988	Febrero	12.30
25	1989	Febrero	10.70
26	1990	Noviembre	10.60
27	1991	Marzo	17.60
28	1992	Marzo	30.50
29	1993	Marzo	30.30
30	1994	Abril	15.50
31	1995	Enero	22.30

32	1996	Febrero	13.60
33	1997	Febrero	9.50
34	1998	Febrero	21.90
35	1999	Febrero	19.80
36	2000	Febrero	14.30
37	2001	Enero	16.20
38	2002	Febrero	15.70
39	2003	Diciembre	19.50
40	2004	Marzo	18.00
41	2005	Enero	21.50
42	2006	Marzo	14.30
43	2007	Marzo	16.60
44	2008	Febrero	16.50
45	2009	Marzo	23.10
46	2010	Marzo	17.00

Tabla 35: Datos para Cálculo de Variables Probabilísticas

		Mes	Precip	itación (mm)
Nº	Año	Max. Precip.	xi	$(xi - x)^2$
1	1964	Diciembre	15.90	3.6348251
2	1966	Marzo	17.10	0.499173
3	1967	Marzo	16.70	1.2243904
4	1968	Febrero	12.80	25.06526
5	1969	Febrero	12.00	33.715695
6	1970	Enero	31.70	193.02874
7	1971	Febrero	23.30	30.178303
8	1972	Marzo	18.10	0.0861295
9	1973	Febrero	25.20	54.663521
10	1974	Febrero	11.90	34.886999
11	1975	Marzo	10.80	49.091347
12	1976	Enero	15.80	4.0261295
13	1977	Febrero	35.20	302.53309
14	1978	Noviembre	7.80	100.13048
15	1979	Febrero	12.30	30.321782
16	1980	Abril	8.80	81.117434
17	1981	Febrero	12.50	28.159173
18	1982	Noviembre	9.50	68.998303
19	1983	Febrero	25.00	51.746129
20	1984	Marzo	21.50	13.641782
21	1985	Noviembre	19.80	3.9739556
22	1986	Enero	27.20	88.237434

23	1987	Marzo	20.90	9.5696078
24	1988	Febrero	12.30	30.321782
25	1989	Febrero	10.70	50.502651
26	1990	Noviembre	10.60	51.933956
27	1991	Marzo	17.60	0.0426512
28	1992	Marzo	30.50	161.12439
29	1993	Marzo	30.30	156.087
30	1994	Abril	15.50	5.3200425
31	1995	Enero	22.30	20.191347
32	1996	Febrero	13.60	17.694825
33	1997	Febrero	9.50	68.998303
34	1998	Febrero	21.90	16.756564
35	1999	Febrero	19.80	3.9739556
36	2000	Febrero	14.30	12.295695
37	2001	Enero	16.20	2.5809121
38	2002	Febrero	15.70	4.4374338
39	2003	Diciembre	19.50	2.8678686
40	2004	Diciembre	18.00	0.0374338
41	2005	Enero	21.50	13.641782
42	2006	Marzo	14.30	12.295695
43	2007	Marzo	16.60	1.4556947
44	2008	Febrero	16.50	1.7069991
45	2009	Marzo	23.10	28.020912
46	2010	Marzo	17.00	0.6504773
46		Suma	819.1	1871.5

$$\overline{X} = \frac{\sum xi}{n} = 17.81 mm$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (xi - \overline{x})^2}{n - 1}} = 6.45 mm$$

$$\alpha = \frac{\sqrt{6}}{\pi} * s = 5.03 mm$$

$$u = \overline{x} - 0.5772 * \alpha = 14.90 mm$$

Tabla 36: Cálculo de las Precipitaciones Diarias Máximas Probables para Distintas Frecuencias

Periodo	Variable	Precip.	Prob. de	Corrección
Retorno	Reducida	(mm)	ocurrencia	intervalo fijo
Años	YT	XT'(mm)	F(xT)	XT (mm)
2	0.3665	16.7471	0.5000	18.9243
5	1.4999	22.4462	0.8000	25.3642
10	2.2504	26.2195	0.9000	29.6280
25	3.1985	30.9871	0.9600	35.0154
50	3.9019	34.5239	0.9800	39.0120
100	4.6001	38.0346	0.9900	44.0300
500	6.2136	46.1474	0.9980	52.1465

Posteriormente calculamos el Tiempo de Concentración, para la cual emplearemos siete fórmulas de las cuales se encontró el dato adecuado. A continuación, mostramos los datos con los cuales calculamos dicho Tiempo de Concentración.

Tabla 37: Datos para Cálculo de Tiempo de Concentración

Área Aportante	Longitud del Afluente (m)	Cota Máxima (m.s.n.m.)	Cota mínima (m.s.n.m.)	Desnivel máximo (m)	Pendiente (m/m)	Pendiente (%)	Área (Km2)	Perímetro (Km.)
RIO CHILCA	65434.5391	4216	106	4110	0.063	6.3	702.073906	190.875

Ahora mostramos las fórmulas que se utilizaron para hallar dichos resultados.

Federal Aciation Administration (1970):

$$t_c = 0.7035 * \frac{(1.1 - C) * L^{0.50}}{S^{0.333}}$$

C: Coeficiente de escorrentía del método racional.

L: Longitud del flujo superficial, m.

S: Pendiente de la superficie, m/m.

California Culverts Practice (1942):

$$t_c = 0.0195 * (\frac{L^3}{H})^{0.385}$$

L: Longitud del curso de agua mas largo, m.

H: Diferencia de nivel entre la divisoria de aguas y la salida, m.

Ecuacion de Retardo SCS (1973):

$$t_c = \frac{0.0136 * L^{0.8} (\frac{1000}{CN} - 9)^{0.7}}{S^{0.5}}$$

L: Longitud hidráulica de la cuenca mayor trayectoria de flujo, m.

CN: Número de curva SCS.

S: Pendiente promedio de la cuenca, m/m.

Seguimos con el proceso y presentamos los resultados que nos brinda cada una de las formulas expresadas anteriormente, adicionando algunas fórmulas de la sección 2.2.9.1, las cuales establecimos como más confiables para este cálculo.

Tabla 38: Tiempos de Concentración Promedio

Fórmula	Tc (hr)	Tc (hr)2
Kirpich	4.8118	4.8118
Temez	12.1761	12.1761
Ven Te Chow	9.6141	9.6141
Hathaway	6.4285	6.4285
California	4.8174	
FAA	4.3722	
SCS	15.4833	
Promedio (hrs)	8.2433	8.2576
Promedio		
(min)	494.60	495.46

En el cálculo del tiempo de concentración se ha escogido el promedio de las formulas porque entre ellas la diferencia era muy grande por lo tanto la decisión paso por hacer 2 promedios, uno con todas las formulas y el otro con las más utilizadas en nuestro país para cuencas grandes.

Luego a partir de estos cálculos, aplicamos la fórmula de tiempo de retardo, el cual lo analizamos por dos aportes, Temez y Kirpich fue un dato clave para el siguiente programa que utilizamos HEC HMS.

Presento la fórmula que aplicamos:

$$T_{c (hra)} = 0.3 * \left(\frac{L_{(Km)}}{J^{1/4}}\right)^{0.76}$$

$$T_{c} = 0.000323 * \left(\frac{L^{0.77}}{S^{0.385}}\right)$$

$$T_{lag} = 0.35 * T_{c}$$

Lo que resulto de esta aplicación fue lo siguiente:

Tabla 39: Tiempos de Retardo Rio Chilca

L (m)	RIO	J	TC temez	TC kiripch	Tlag T(min)	Tlag(k) (min)
36867.82	W40	0.09	7.38	2.72	155.00	57.00
43969.91	W50	0.08	8.54	3.19	179.00	67.00
29413.43	W60	0.05	6.86	2.78	144.00	58.00

Para el estudio de esta cuenca se utilizó la Estación Chosica para la sub-cuenca baja (W60) y la estación Matucana para las Sub-cuencas altas (W50 y W40).

Después del análisis del registro histórico de precipitaciones máximas en 24 horas, se determinó que la precipitación de diseño relacionada a un periodo de retorno de 100 años es la siguiente:

Tabla 40: Precipitaciones de estudio, Rio Chilca

VALOR	ESTACION CHOSICA	ESTACION MATUCANA
Pmax 24 horas (PR=100 años)	27.61	44.03

También se calculó la ecuación de intensidad válida para la cuenca en estudio en los diferentes periodos de retorno.

Para ello iniciamos mostrando los coeficientes para la relación a la lluvia de duración 24 horas.

Tabla 41: Coeficiente de Relación a la Lluvia Durante 24 Horas

	Duraciones, en horas									
1	2	3	4	5	6	8	12	18	24	
0.25	0.31	0.80	0.44	0.50	0.56	0.64	0.79	0.90	1.00	

Fuente: MTC, 2013

Luego aplicamos y multiplicamos dichos coeficientes con los valores obtenidos en la Tabla 37, obtenemos la siguiente tabla:

Tabla 42: Precipitaciones Máximas para Diferentes Tiempos de Duración de Lluvias

Tiempo de	Casianta	Prec	ipitación	máxima	Pd (mm)	por tiem	pos de dur	ación
Duración	Cociente	2 años	5 años	10 años	25 años	50 años	100 años	500 años
24 hr	X24	18.9243	25.3642	29.6280	35.0154	39.0120	44.0300	52.1465
18 hr	X18 = 91%	17.0319	22.8278	26.6652	27.6621	35.1108	39.6270	46.9319
12 hr	X12 = 80%	14.9502	20.0377	23.4062	27.6621	30.8195	34.7837	41.1958
8 hr	X8 = 68%	12.1115	16.2331	18.9619	22.4098	24.9677	28.1792	33.3738
6 hr	X6 = 61%	10.5976	14.2040	16.5917	19.6086	21.8467	24.6568	29.2021
5 hr	X5 = 57%	9.4621	12.6821	14.8140	17.5077	19.5060	22.0150	26.0733
4 hr	X4 = 52%	8.3267	11.1603	13.0363	15.4068	17.1653	19.3732	22.9445
3 hr	X3 = 46%	15.1394	20.2914	23.7024	28.0123	31.2096	35.2240	41.7172
2 hr	X2 = 39%	5.8665	7.8629	9.1847	10.8548	12.0937	13.6493	16.1654
1 hr	X1 = 30%	4.7311	6.3411	7.4070	8.7538	9.7530	11.0075	13.0366

Hallamos la intensidad de lluvia por intermedio la fórmula que mostramos a continuación, la cual posteriormente hicimos regresión y calculamos sus factores con nuestros datos obtenidos de la investigación.

$$I = \frac{P (mm)}{t_{duración}(hr)}$$

Tabla 43: Intensidades de Lluvia a partir de Pd, Según Duración de Precipitación y Frecuencia de la Misma

Tiempo de	duración	Inten	sidad de	la lluvia	(mm/hr)	según el F	eriodo de	Retorno
Hr	min	2 años	5 años	10 años	25 años	50 años	100 años	500 años
24 hr	1440	0.7885	1.0568	1.2345	1.4590	1.6255	1.8346	2.1728
18 hr	1080	0.9462	1.2682	1.4814	1.5368	1.9506	2.2015	2.6073
12 hr	720	1.2458	1.6698	1.9505	2.3052	2.5683	2.8986	3.4330
8 hr	480	1.5139	2.0291	2.3702	2.8012	3.1210	3.5224	4.1717
6 hr	360	1.7663	2.3673	2.7653	3.2681	3.6411	4.1095	4.8670
5 hr	300	1.8924	2.5364	2.9628	3.5015	3.9012	4.4030	5.2147
4 hr	240	2.0817	2.7901	3.2591	3.8517	4.2913	4.8433	5.7361
3 hr	180	5.0465	6.7638	7.9008	9.3374	10.4032	11.7413	13.9057
2 hr	120	2.9333	3.9315	4.5923	5.4274	6.0469	6.8247	8.0827
1 hr	60	4.7311	6.3411	7.4070	8.7538	9.7530	11.0075	13.0366

Como mencionábamos anteriormente hemos realizado la regresión matemática para obtener los factores que se utilizaran en la fórmula de la curva de intensidad para los distintos tiempos de retorno.

Representación matemática de las curvas Intensidad - Duración - Período de retorno:

$$I = \frac{K * T^m}{t^n}$$

en la cual:

I = Intensidad (mm/hr)

t = Duración de la lluvia (min)

T = Período de retorno (años)

K, m, n = Parámetros de ajuste

Realizando un cambio de variable obtuvimos:

$$d = K * T^m$$

Con lo que de la anterior expresión se obtiene:

$$I = \frac{d}{t^n} \to I = d * t^{-n}$$

Tabla 44: Periodo de Retorno para T = 2 años

Nº	X	y	ln x	ln y	ln x*ln y	(lnx)^2
1	1440	0.7885	7.2724	-0.2376	-1.7280	52.8878
2	1080	0.9462	6.9847	-0.0553	-0.3862	48.7863
3	720	1.2458	6.5793	0.2198	1.4462	43.2865
4	480	1.5139	6.1738	0.4147	2.5604	38.1156
5	360	1.7663	5.8861	0.5689	3.3484	34.6462
6	300	1.8924	5.7038	0.6379	3.6382	32.5331
7	240	2.0817	5.4806	0.7332	4.0182	30.0374
8	180	5.0465	5.1930	1.6187	8.4058	26.9668
9	120	2.9333	4.7875	1.0761	5.1519	22.9201
10	60	4.7311	4.0943	1.5542	6.3632	16.7637
10	4980	22.9457	58.1555	6.5305	32.8183	346.9435
Ln(d) =	4.0875	<i>d</i> =	59.5914	n =	-0.5906	



Ilustración 63: Curva Intensidad T = 2 años

Tabla 45: Periodo de Retorno para T = 5 años

Nº	X	y	ln x	ln y	ln x*ln y	(lnx)^2
1	1440	1.0568	7.2724	0.0553	0.4021	52.8878
2	1080	1.2682	6.9847	0.2376	1.6596	48.7863
3	720	1.6698	6.5793	0.5127	3.3733	43.2865
4	480	2.0291	6.1738	0.7076	4.3686	38.1156
5	360	2.3673	5.8861	0.8618	5.0724	34.6462
6	300	2.5364	5.7038	0.9308	5.3088	32.5331
7	240	2.7901	5.4806	1.0261	1.0261 5.6235	
8	180	6.7638	5.1930	1.9116	9.9268	26.9668
9	120	3.9315	4.7875	1.3690	6.5541	22.9201
10	60	6.3411	4.0943	1.8470	7.5624	16.7637
10	4980	30.7541	58.1555	9.4594	49.8517	346.9435
Ln(d) =	4.3804	<i>d</i> =	79.8705	n =	-0.5906	

Ilustración 64: Curva Intensidad T = 5 años

Tabla 46: Periodo de Retorno para T = 10 años

N°	X	y	ln x	ln y	ln x*ln y	(lnx)^2
1	1440	1.2345	7.2724	0.2107	1.5321	52.8878
2	1080	1.4814	6.9847	0.3930	2.7449	48.7863
3	720	1.9505	6.5793	0.6681	4.3955	43.2865
4	480	2.3702	6.1738	0.8630	5.3279	38.1156
5	360	2.7653	5.8861	1.0171	5.9870	34.6462
6	300	2.9628	5.7038	1.0861	6.1951	32.5331
7	240	3.2591	5.4806	1.1814 6.4751		30.0374
8	180	7.9008	5.1930	2.0670	10.7337	26.9668
9	120	4.5923	4.7875	1.5244	7.2980	22.9201
10	60	7.4070	4.0943	2.0024	8.1986	16.7637
10	4980	35.9240	58.1555	11.0133	58.8879	346.9435
Ln(d) =	4.5358	<i>d</i> =	93.2970	n =	-0.5906	

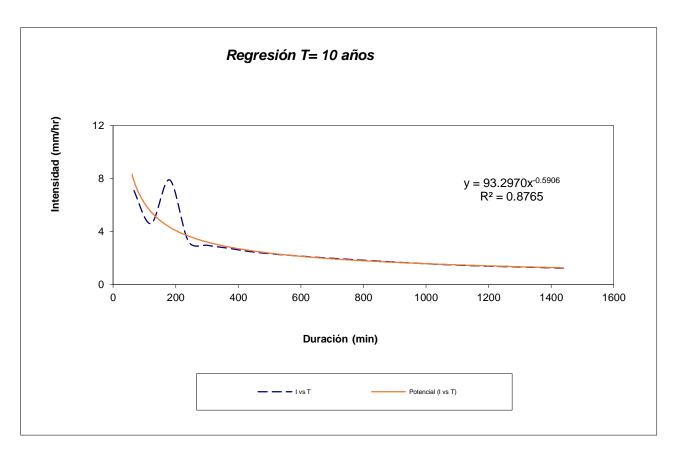


Ilustración 65: Curva Intensidad T = 10 años

Tabla 47: Periodo de Retorno para T = 25 años

Nº	X	y	ln x	ln y	ln x*ln y	(lnx)^2
1	1440	1.4590	7.2724	0.3777	2.7470	52.8878
2	1080	1.5368	6.9847	0.4297	3.0013	48.7863
3	720	2.3052	6.5793	0.8352	5.4947	43.2865
4	480	2.8012	6.1738	1.0301	6.3594	38.1156
5	360	3.2681	5.8861	1.1842	6.9704	34.6462
6	300	3.5015	5.7038	1.2532	7.1480	32.5331
7	240	3.8517	5.4806	1.3485	7.3907	30.0374
8	180	9.3374	5.1930	2.2340	11.6012	26.9668
9	120	5.4274	4.7875	1.6915	8.0978	22.9201
10	60	8.7538	4.0943	2.1695	8.8827	16.7637
10	4980	42.2422	58.1555	12.5535	67.6932	346.9435
Ln(d) =	4.7913	<i>d</i> =	120.4531	<i>n</i> =	-0.6080	

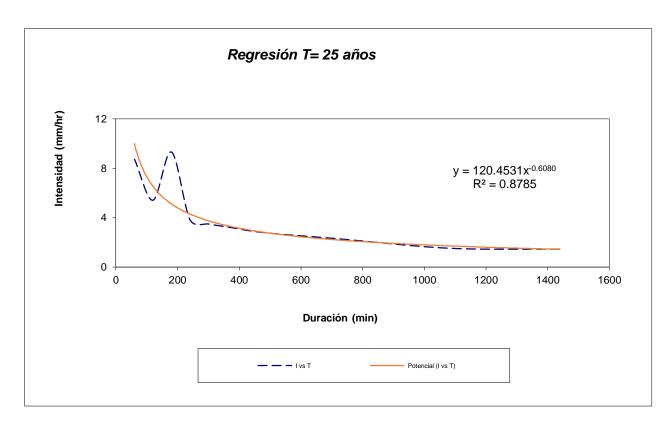


Ilustración 66: Curva Intensidad T = 25 años

Tabla 48: Periodo de Retorno para T = 50 años

Nº	X	y	ln x	ln y	ln x*ln y	(lnx)^2
1	1440	1.6255	7.2724	0.4858	3.5330	52.8878
2	1080	1.9506	6.9847	0.6681	4.6667	48.7863
3	720	2.5683	6.5793	0.9432	6.2058	43.2865
4	480	3.1210	6.1738	1.1381	7.0266	38.1156
5	360	3.6411	5.8861	1.2923	7.6066	34.6462
6	300	3.9012	5.7038	1.3613	7.7645	32.5331
7	240	4.2913	5.4806	1.4566	7.9831	30.0374
8	180	10.4032	5.1930	2.3421	12.1625	26.9668
9	120	6.0469	4.7875	1.7995	8.6153	22.9201
10	60	9.7530	4.0943	2.2776	9.3252	16.7637
10	4980	47.3021	58.1555	13.7647	74.8893	346.9435
Ln(d) =	4.8109	<i>d</i> =	122.8465	n =	-0.5906	

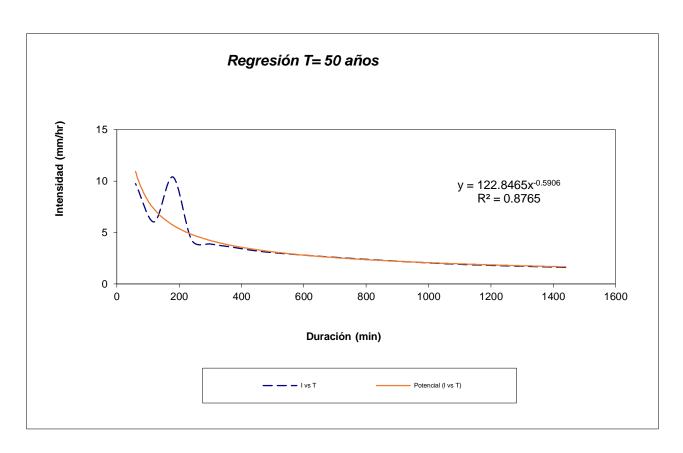


Ilustración 67: Curva Intensidad T = 50 años

Tabla 49: Periodo de Retorno para T = 100 años

Nº	X	y	ln x	ln y	ln x*ln y	(lnx)^2
1	1440	1.8346	7.2724	0.6068	4.4130	52.8878
2	1080	2.2015	6.9847	0.7891	5.5119	48.7863
3	720	2.8986	6.5793	1.0642	7.0019	43.2865
4	480	3.5224	6.1738	1.2591	7.7737	38.1156
5	360	4.1095	5.8861	1.4133	8.3188	34.6462
6	300	4.4030	5.7038	1.4823	8.4546	32.5331
7	240	4.8433	5.4806	1.5776	8.6462	30.0374
8	180	11.7413	5.1930	2.4631	12.7909	26.9668
9	120	6.8247	4.7875	1.9205	9.1946	22.9201
10	60	11.0075	4.0943	2.3986	9.8206	16.7637
10	4980	53.3864	58.1555	14.9748	81.9262	346.9435
Ln(d) =	4.9319	<i>d</i> =	138.6479	n =	-0.5906	

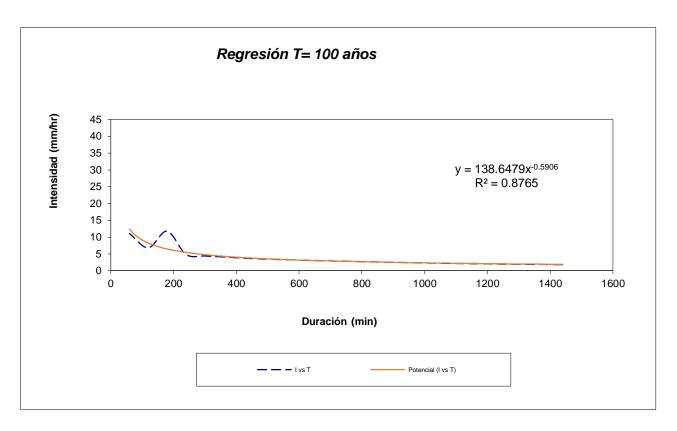


Ilustración 68: Curva Intensidad T = 100 años

Tabla 50: Periodo de Retorno para T = 500 años

Nº	X	y	ln x	ln y	ln x*ln y	(lnx)^2
1	1440	2.1728	7.2724	0.7760	5.6434	52.8878
2	1080	2.6073	6.9847	0.9583	6.6936	48.7863
3	720	3.4330	6.5793	1.2334	8.1150	43.2865
4	480	4.1717	6.1738	1.4283	8.8182	38.1156
5	360	4.8670	5.8861	1.5825	9.3146	34.6462
6	300	5.2147	5.7038	1.6515	9.4196	32.5331
7	240	5.7361	5.4806	1.7468	9.5735	30.0374
8	180	13.9057	5.1930	2.6323	13.6694	26.9668
9	120	8.0827	4.7875	2.0897	10.0046	22.9201
10	60	13.0366	4.0943	2.5678	10.5133	16.7637
10	4980	63.2277	58.1555	16.6666	91.7653	346.9435
Ln(d) =	5.1011	d =	164.2064	n =	-0.5906	

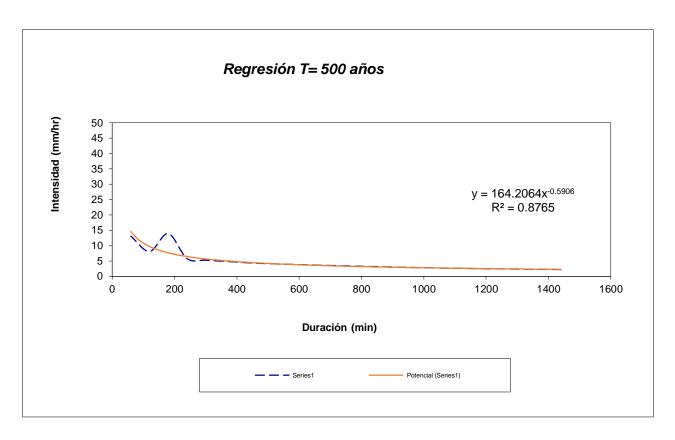


Ilustración 69: Curva Intensidad T = 500 años

Resumimos las constantes y coeficientes hallados en las tablas anteriormente mostradas y calculamos el promedio:

Tabla 51: Resumen de Constantes y Coeficientes

Periodo de	Término cte. de	Coef. de
Retorno T (años)	regresión (d)	regresión [n]
2	59.59143899077	-0.59056566789
5	79.87047280775	-0.59056566789
10	93.29695773155	-0.59056566789
25	120.45314599989	-0.60800917020
50	122.84651752618	-0.59056566789
100	138.64787529118	-0.59056566789
500	164.20639610743	-0.59056566789
Promedio =	111.27325777925	-0.59305759679

En función del cambio de variable realizado, se realizó otra regresión de potencia entre las columnas del periodo de retorno (T) y el término constante de regresión (d), para obtener valores de la ecuación:

$$d = K * T^m$$

Tabla 52: Regresión Potencial

N°	X	y	ln x	ln y	ln x*ln y	(lnx)^2
1	2	59.5914	0.6931	4.0875	2.8332	0.4805
2	5	79.8705	1.6094	4.3804	7.0500	2.5903
3	10	93.2970	2.3026	4.5358	10.4440	5.3019
4	25	120.4531	3.2189	4.7913	15.4225	10.3612
5	50	122.8465	3.9120	4.8109	18.8205	15.3039
6	100	138.6479	4.6052	4.9319	22.7124	21.2076
7	500	164.2064	6.2146	5.1011	31.7015	38.6214
7	692	778.9128	22.5558	32.6390	108.9841	93.8667
Ln(K) =	4.0828	K = 59.3114		m = 0.1800		

Termino constante de regresión (K) =

59.3114

Coeficiente de regresión (m) =

0.179969

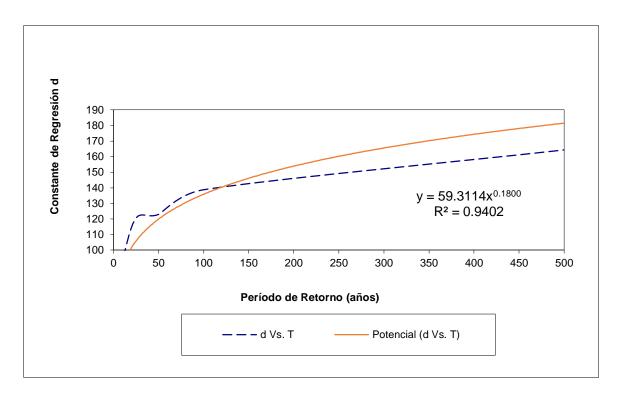


Ilustración 70: Curva de Cte. de Regresión VS Periodo de Retorno

La ecuación de Intensidad válida para la cuenca resultó:

$$I = \frac{59.3114 * T^{0.179969}}{t^{0.59306}}$$

Donde:

I = intensidad de precipitación (mm/hr)

T = Periodo de Retorno (años)

t = Tiempo de duración de precipitación (min)

Tabla 53: Intensidades en cada Intervalo de Tiempo

	Tabla de intensidades - Tiempo de duración											
Frecuencia		Duración en minutos										
años	5	10	15	20	25	30	35	40	45	50	55	60
2	25.87	17.15	13.48	11.37	9.96	8.94	8.16	7.54	7.03	6.60	6.24	5.93
5	30.51	20.22	15.90	13.41	11.75	10.54	9.62	8.89	8.29	7.79	7.36	6.99
10	34.56	22.91	18.01	15.19	13.31	11.94	10.90	10.07	9.39	8.82	8.34	7.92
25	40.76	27.02	21.24	17.91	15.69	14.08	12.85	11.87	11.07	10.40	9.83	9.34
50	46.17	30.61	24.07	20.29	17.78	15.95	14.56	13.45	12.54	11.78	11.14	10.58
100	52.31	34.68	27.26	22.99	20.14	18.07	16.50	15.24	14.21	13.35	12.62	11.98
500	69.88	46.32	36.42	30.71	26.90	24.15	22.04	20.36	18.99	17.84	16.86	16.01

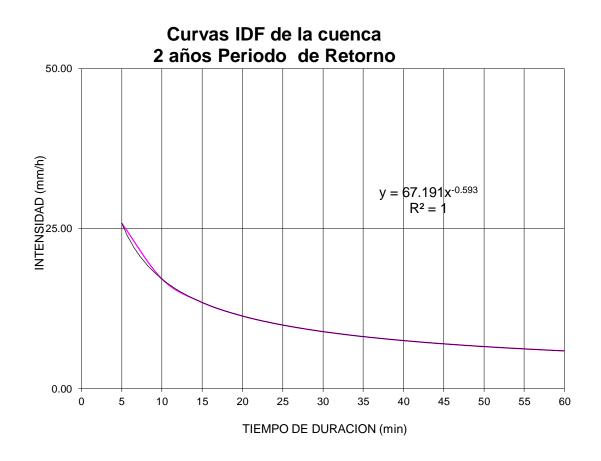


Ilustración 71: Curvas IDF de la Cuenca 2 Años Periodo de Retorno

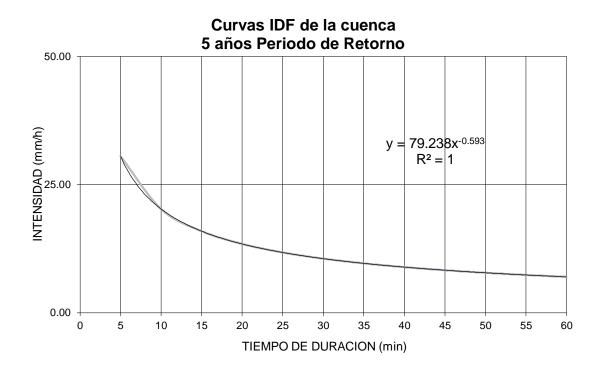


Ilustración 72: Curvas IDF de la Cuenca 5 Años Periodo de Retorno

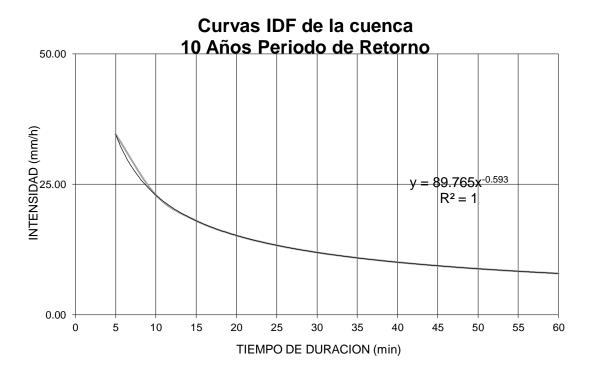


Ilustración 73: Curvas IDF de la Cuenca 10 Años Periodo de Retorno 143

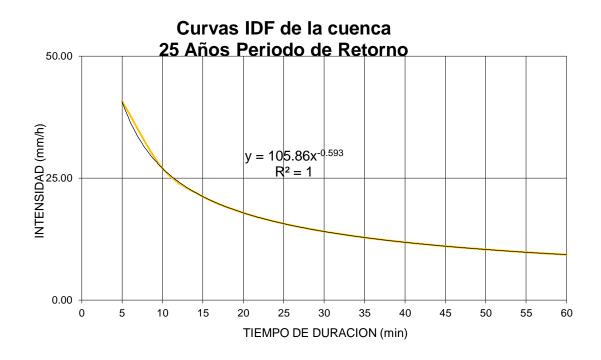


Ilustración 74: Curvas IDF de la Cuenca 25 Años Periodo de Retorno

Ilustración 75: Curvas IDF de la Cuenca 50 Años Periodo de Retorno

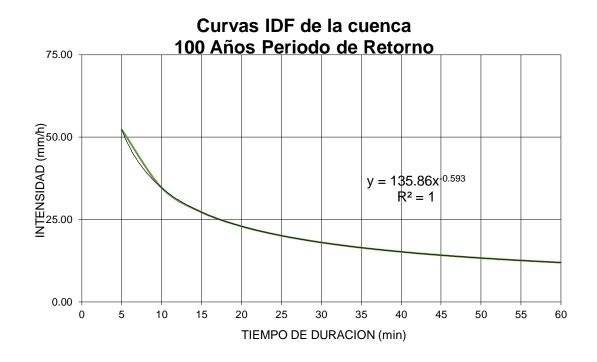


Ilustración 76: Curvas IDF de la Cuenca 100 Años Periodo de Retorno

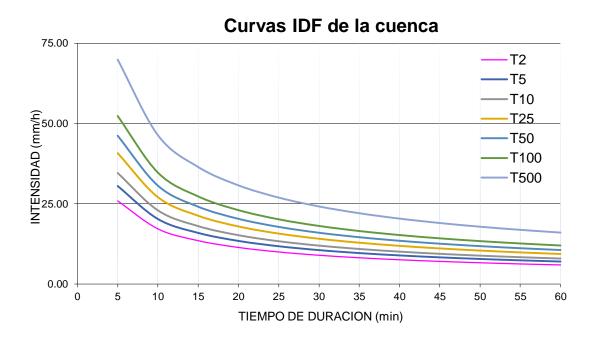


Ilustración 77: Curvas IDF de la Cuenca del Rio Chilca

Posteriormente se realizó el cálculo de las intensidades de precipitaciones por cuatro métodos que a continuación exponemos:

CÁLCULO DE INTENSIDAD DE PRECIPITACIÓN

Método Perfil SCS Tipo II

Tabla 54: Tabla de Factores para Intensidad, SCS Tipo II - 24 Horas

name=Type II 24-hr Tabular
timeunits=hours
depthunits=inches
duration=24
comment=Type II 24-hour tabular mass curve 1982
smoothing=false
depth=.0000 .0010 .0020 .0030 .0041 .0051 .0062 .0072 .0083 .0094
depth=.0105 .0116 .0127 .0138 .0150 .0161 .0173 .0184 .0196 .0208
depth=.0220 .0232 .0244 .0257 .0269 .0281 .0294 .0306 .0319 .0332
depth=.0345 .0358 .0371 .0384 .0398 .0411 .0425 .0439 .0452 .0466
depth=.0480 .0494 .0508 .0523 .0538 .0553 .0568 .0583 .0598 .0614
depth=.0630 .0646 .0662 .0679 .0696 .0712 .0730 .0747 .0764 .0782
depth=.0800 .0818 .0836 .0855 .0874 .0892 .0912 .0931 .0950 .0970
depth=.0990 .1010 .1030 .1051 .1072 .1093 .1114 .1135 .1156 .1178
depth=.1200 .1222 .1246 .1270 .1296 .1322 .1350 .1379 .1408 .1438
depth=.1470 .1502 .1534 .1566 .1598 .1630 .1663 .1697 .1733 .1771
depth=.1810 .1851 .1895 .1941 .1989 .2040 .2094 .2152 .2214 .2280
depth=.2350 .2427 .2513 .2609 .2715 .2830 .3068 .3544 .4308 .5679
depth=.6630 .6820 .6986 .7130 .7252 .7350 .7434 .7514 .7588 .7656
depth=.7720 .7780 .7836 .7890 .7942 .7990 .8036 .8080 .8122 .8162
depth=.8200 .8237 .8273 .8308 .8342 .8376 .8409 .8442 .8474 .8505
depth=.8535 .8565 .8594 .8622 .8649 .8676 .8702 .8728 .8753 .8777
depth=.8800 .8823 .8845 .8868 .8890 .8912 .8934 .8955 .8976 .8997
depth=.9018 .9038 .9058 .9078 .9097 .9117 .9136 .9155 .9173 .9192
depth=.9210 .9228 .9245 .9263 .9280 .9297 .9313 .9330 .9346 .9362
depth=.9377 .9393 .9408 .9423 .9438 .9452 .9466 .9480 .9493 .9507
depth=.9520 .9533 .9546 .9559 .9572 .9584 .9597 .9610 .9622 .9635
depth=.9647 .9660 .9672 .9685 .9697 .9709 .9722 .9734 .9746 .9758
depth=.9770 .9782 .9794 .9806 .9818 .9829 .9841 .9853 .9864 .9876
depth=.9887 .9899 .9910 .9922 .9933 .9944 .9956 .9967 .9978 .9989
depth=1.000

La precipitación máxima en 24 Horas que utilizamos fue 44.03 mm.

Tabla 55: Procesamiento de Precipitaciones con Factor SCS II

Tiempo (min) SCS II Pacum (mm) Pintery (mm) 0 0.0000 0.000 6 0.0010 0.044 0.044 12 0.0020 0.088 0.044 18 0.0030 0.132 0.044 24 0.0041 0.181 0.048 30 0.0051 0.225 0.044 36 0.0062 0.273 0.048 42 0.0072 0.317 0.044 48 0.0083 0.365 0.048	
12 0.0020 0.088 0.044 18 0.0030 0.132 0.044 24 0.0041 0.181 0.048 30 0.0051 0.225 0.044 36 0.0062 0.273 0.048 42 0.0072 0.317 0.044	
12 0.0020 0.088 0.044 18 0.0030 0.132 0.044 24 0.0041 0.181 0.048 30 0.0051 0.225 0.044 36 0.0062 0.273 0.048 42 0.0072 0.317 0.044	
24 0.0041 0.181 0.048 30 0.0051 0.225 0.044 36 0.0062 0.273 0.048 42 0.0072 0.317 0.044	
30 0.0051 0.225 0.044 36 0.0062 0.273 0.048 42 0.0072 0.317 0.044	
36 0.0062 0.273 0.048 42 0.0072 0.317 0.044	
42 0.0072 0.317 0.044	
48 0.0083 0.365 0.048	
54 0.0094 0.414 0.048	
60 0.0105 0.462 0.048	
66 0.0116 0.511 0.048	
72 0.0127 0.559 0.048	
78 0.0138 0.608 0.048	
84 0.0150 0.660 0.053	
90 0.0161 0.709 0.048 96 0.0173 0.762 0.053	
102 0.0184 0.810 0.048	
108 0.0196 0.863 0.053	
108 0.0196 0.863 0.053 114 0.0208 0.916 0.053	
120 0.0220 0.969 0.053	
126 0.0220 0.909 0.053	
132 0.0244 1.074 0.053	
138 0.0257 1.132 0.057	
144 0.0269 1.184 0.053	
150 0.0281 1.237 0.053	
156 0.0294 1.294 0.057	
162 0.0306 1.347 0.053	
168 0.0319 1.405 0.057	
174 0.0332 1.462 0.057	
180 0.0345 1.519 0.057	
186 0.0358 1.576 0.057	
192 0.0371 1.634 0.057	
198 0.0384 1.691 0.057	
204 0.0398 1.752 0.062	
210 0.0411 1.810 0.057	
216 0.0425 1.871 0.062	
222 0.0439 1.933 0.062	
228 0.0452 1.990 0.057	
234 0.0466 2.052 0.062	
240 0.0480 2.113 0.062	
246 0.0494 2.175 0.062	
252 0.0508 2.237 0.062	
258 0.0523 2.303 0.066	
264 0.0538 2.369 0.066	
270 0.0553 2.435 0.066	
276 0.0568 2.501 0.066 282 0.0583 2.567 0.066	
282 0.0583 2.567 0.066 288 0.0598 2.633 0.066	
294 0.0614 2.703 0.070	
300 0.0630 2.774 0.070	
306 0.0646 2.844 0.070	
312 0.0662 2.915 0.070	
318 0.0679 2.990 0.075	
324 0.0696 3.064 0.075	
330 0.0712 3.135 0.070	
336 0.0730 3.214 0.079	
342 0.0747 3.289 0.075	
348 0.0764 3.364 0.075	
354 0.0782 3.443 0.079	
360 0.0800 3.522 0.079	
366 0.0818 3.602 0.079	
372 0.0836 3.681 0.079	

378	0.0855	3.765	0.084
384	0.0874	3.848	0.084
	1		
390	0.0892	3.927	0.079
396	0.0912	4.016	0.088
402	0.0931	4.099	0.084
408	0.0950	4.183	0.084
414	0.0970	4.271	0.088
420	0.0990	4.359	0.088
426	0.1010	4.447	0.088
432	0.1030	4.535	0.088
438	0.1051	4.628	0.092
444	0.1072	4.720	0.092
450	0.1093	4.812	0.092
456	0.1114	4.905	0.092
462	0.1135	4.997	0.092
468	0.1156	5.090	0.092
474	0.1178	5.187	0.097
480	0.1200	5.284	0.097
486	0.1222	5.380	0.097
492	0.1246	5.486	0.106
	1		
498	0.1270	5.592	0.106
504	0.1296	5.706	0.114
510	0.1322	5.821	0.114
516	0.1350	5.944	0.123
522	0.1379	6.072	0.128
528	0.1408	6.199	0.128
534	0.1438	6.332	0.132
540	0.1470	6.472	0.141
546	0.1502	6.613	0.141
552	0.1534	6.754	0.141
558	0.1566	6.895	0.141
	0.1598		
564		7.036	0.141
570	0.1630	7.177	0.141
576	0.1663	7.322	0.145
582	0.1697	7.472	0.150
588	0.1733	7.630	0.159
594	0.1771	7.798	0.167
600	0.1810	7.969	0.172
606	0.1851	8.150	0.181
612	0.1895	8.344	0.194
618	0.1941	8.546	0.203
624	0.1989	8.758	0.211
630	0.2040	8.982	0.225
	0.00		
636	0.2094	9.220	0.238
642	0.2152	9.475	0.255
648	0.2214	9.748	0.273
654	0.2280	10.039	0.291
	0.2350	10.039	0.308
660			
666	0.2427	10.686	0.339
672	0.2513	11.065	0.379
678	0.2609	11.487	0.423
684	0.2715	11.954	0.467
690	0.2830	12.460	0.506
696	0.3068	13.508	1.048
702	0.3544	15.604	2.096
708	0.4308	18.968	3.364
714	0.5679	25.005	6.037
720	0.6630	29.192	4.187
726	0.6820	30.028	0.837
732	0.6986	30.759	0.731
738	0.7130	31.393	0.634
744	0.7252	31.931	0.537
750	0.7350	32.362	0.431
756	0.7434	32.732	0.370
762	0.7514	33.084	0.352
768	0.7588	33.410	0.326
774	0.7656	33.709	0.299
	0		
780	0.7720	33.991	0.282

	•	1	
786	0.7780	34.255	0.264
792	0.7836	34.502	0.247
798	0.7890	34.740	0.238
804	0.7942	34.969	0.229
810	0.7990	35.180	0.211
816	0.8036	35.383	0.203
822	0.8080	35.576	0.194
828	0.8122	35.761	0.185
834	0.8162	35.937	0.176
840	0.8200	36.105	0.167
846	0.8237	36.268	0.163
852	0.8273	36.426	0.159
858	0.8308	36.580	0.154
864	0.8342	36.730	0.150
870	0.8376	36.880	0.150
876	0.8409	37.025	0.145
882	0.8442	37.170	0.145
888	0.8474	37.311	0.141
894	0.8505	37.448	0.136
900	0.8535	37.580	0.132
906	0.8565	37.712	0.132
912	0.8594	37.839	0.128
918	0.8622	37.963	0.123
924	0.8649	38.082	0.119
930			
	0.8676	38.200	0.119
936	0.8702	38.315	0.114
942	0.8728	38.429	0.114
948	0.8753	38.539	0.110
954	0.8777	38.645	0.106
960	0.8800	38.746	0.101
966	0.8823	38.848	0.101
972	0.8845	38.945	0.097
978	0.8868	39.046	0.101
984	0.8890	39.143	0.097
990	0.8912	39.240	0.097
996	0.8934	39.336	0.097
1002	0.8955	39.429	0.092
1008	0.8976	39.521	0.092
1014	0.8997	39.614	0.092
1020	0.9018	39.706	0.092
1026	0.9038	39.794	0.088
1032	0.9058	39.882	0.088
1038	0.9078	39.970	0.088
1044	0.9097	40.054	0.084
1050	0.9117	40.142	0.088
1056	0.9136	40.226	0.084
1062	0.9155	40.309	0.084
1068	0.9173	40.389	0.079
1074	0.9192	40.472	0.084
1080	0.9210	40.552	0.079
1086	0.9228	40.631	0.079
1092	0.9245	40.706	0.075
1098	0.9263	40.785	0.079
1104	0.9280	40.860	0.075
1110	0.9297	40.935	0.075
1116	0.9313	41.005	0.070
1122	0.9330	41.080	0.075
1128	0.9346	41.150	0.070
1134	0.9362	41.221	0.070
1140	0.9377	41.287	0.066
1146	0.9393	41.357	0.070
1152	0.9408	41.423	0.066
1158	0.9423	41.489	0.066
1164	0.9438	41.556	0.066
1170	0.9452	41.617	0.062
1176	0.9466	41.679	0.062
1182	0.9480	41.740	0.062
1188	0.9493	41.798	0.057
		71.770	0.057
1100			

1194	0.9507	41.859	0.062
1200	0.9520	41.917	0.057
1206	0.9520	41.917	0.057
1212	0.9546	42.031	0.057
1218	0.9559	42.088	0.057
1224	0.9572	42.146	0.057
1230	0.9584	42.198	0.053
1236	0.9597	42.256	0.057
1242	0.9610	42.313	0.057
1248	0.9622	42.366	0.053
1254	0.9635	42.423	0.057
1260	0.9647	42.476	0.053
1266	0.9660	42.533	0.057
1272	0.9672	42.586	0.053
1278	0.9685	42.643	0.057
1284	0.9697	42.696	0.053
1290	0.9709	42.749	0.053
1296	0.9722	42.806	0.057
1302	0.9734	42.859	0.053
1308	0.9746	42.912	0.053
1314	0.9758	42.964	0.053
1320	0.9770	43.017	0.053
1326	0.9782	43.070	0.053
1332	0.9794	43.123	0.053
1338	0.9806	43.176	0.053
1344	0.9818	43.229	0.053
1350	0.9829	43.277	0.048
1356	0.9841	43.330	0.053
1362	0.9853	43.383	0.053
1368	0.9864	43.431	0.048
1374	0.9876	43.484	0.053
1380	0.9887	43.532	0.048
1386	0.9899	43.585	0.053
1392	0.9910	43.634	0.048
1398	0.9922	43.687	0.053
1404	0.9933	43.735	0.048
1410	0.9944	43.783	0.048
1416	0.9956	43.836	0.053
1422	0.9967	43.885	0.048
1428	0.9978	43.933	0.048
1434	0.9989	43.982	0.048
1440	1.0000	44.030	0.048
			44.030

Tabla 56: Intensidad Máxima en el minuto 150

Tiempo	Pinter (mm)	Pacum (mm)	i (mm/h)
6	6.037	6.037	60.37
12	4.187	10.224	51.12
18	3.364	13.588	45.29
24	2.096	15.683	39.21
30	1.048	16.731	33.46
36	0.837	17.568	29.28
42	0.731	18.299	26.14
48	0.634	18.933	23.67
54	0.537	19.470	21.63
60	0.506	19.976	19.98
66	0.467	20.443	18.58
72	0.431	20.875	17.40
78	0.423	21.297	16.38
84	0.379	21.676	15.48
90	0.370	22.046	14.70
96	0.352	22.398	14.00
102	0.339	22.737	13.37
108	0.326	23.063	12.81
114	0.308	23.371	12.30
120	0.299	23.671	11.84

126	0.291	23.961	11.41
132	0.282	24.243	11.02
138	0.273	24.516	10.66
144	0.264	24.780	10.33
150	0.255	25.035	10.01
156	0.247	25.282	9.72
162	0.238	25.520	9.45
168	0.238	25.758	9.20
174	0.229	25.987	8.96
180	0.225	26.211	8.74
186	0.211	26.422	8.52
192	0.211	26.634	8.32
198	0.203	26.836	8.13
204	0.203	27.039	7.95
210	0.194	27.233	7.78
216	0.194	27.426	7.62
222	0.185	27.611	7.46
228	0.181	27.792	7.31
234	0.176	27.968	7.17
240	0.172	28.140	7.03
246	0.167	28.307	6.90
252	0.167	28.474	6.78
258	0.163	28.637	6.66
264	0.159	28.796	6.54
270	0.159	28.954	6.43
276	0.154	29.108	6.33
282	0.150	29.258	6.23
288	0.150	29.408	6.13
294	0.150	29.557	6.03
300	0.145	29.703	5.94
306	0.145	29.848	5.85
312	0.145	29.993	5.77
318	0.141	30.134	5.69
324	0.141	30.275	5.61
330	0.141	30.416	5.53
336	0.141	30.557	5.46
342	0.141	30.698	5.39
348	0.141	30.839	5.32
354	0.141	30.980	5.25
360	0.136	31.116	5.19
366	0.132	31.248	5.12
372	0.132	31.380	5.06
378	0.132	31.512	5.00
384	0.128	31.640	4.94
390	0.128	31.768	4.89
396	0.128	31.895	4.83
402	0.123	32.019	4.78
408	0.123	32.142	4.73
414	0.119	32.261	4.68
420	0.119	32.380	4.63
426	0.114	32.494	4.58
432	0.114	32.609	4.53
438	0.114	32.723	4.48
444	0.114	32.838	4.44
450	0.110	32.948	4.39
456	0.106	33.053	4.35
462	0.106	33.159	4.31
468	0.106	33.265	4.26
			4.22
474	0.101	33.366	
480	0.101	33.467	4.18
486	0.101	33.568	4.14
492	0.097	33.665	4.11
498	0.097	33.762	4.07
504	0.097	33.859	4.03
510	0.097	33.956	3.99
516	0.097	34.053	3.96
522	0.097	34.150	3.93
528	0.097	34.247	3.89

534	0.092	34.339	3.86
540	0.092	34.431	3.83
546	0.092	34.524	3.79
552	0.092	34.616	3.76
	0.092		
558		34.709	3.73
564	0.092	34.801	3.70
570	0.092	34.894	3.67
576	0.092	34.986	3.64
582	0.092	35.079	3.62
588	0.092	35.171	3.59
594	0.088	35.259	3.56
600	0.088	35.347	3.53
606	0.088	35.435	3.51
612	0.088	35.523	3.48
618	0.088	35.611	3.46
624	0.088	35.700	3.43
630	0.088	35.788	3.41
636	0.088	35.876	3.38
642	0.088	35.964	3.36
648	0.084	36.047	3.34
654	0.084	36.131	3.31
660	0.084	36.215	3.29
666	0.084	36.298	3.27
672	0.084	36.382	3.25
678	0.084	36.466	3.23
684	0.084	36.549	3.21
690	0.084	36.633	3.19
696	0.079	36.712	3.16
702	0.079	36.791	3.14
708	0.079	36.871	3.12
714	0.079	36.950	3.11
720	0.079	37.029	3.09
726	0.079	37.108	3.07
732	0.079	37.188	3.05
738	0.079	37.267	3.03
744	0.079	37.346	3.01
750	0.079	37.426	2.99
756	0.075	37.500	2.98
762	0.075	37.575	2.96
768	0.075	37.650	2.94
774	0.075	37.725	2.92
780			
	0.075	37.800	2.91
786	0.075	37.875	2.89
792	0.075	37.949	2.87
798	0.075	38.024	2.86
804	0.070	38.095	2.84
810	0.070	38.165	2.83
816	0.070	38.236	2.81
822	0.070	38.306	2.80
828	0.070	38.377	2.78
834	0.070	38.447	2.77
840	0.070	38.517	2.75
846	0.070	38.588	2.74
852	0.070	38.658	2.72
858	0.066	38.724	2.71
864	0.066	38.790	2.69
870	0.066	38.856	2.68
876	0.066	38.923	2.67
882	0.066	38.989	2.65
888	0.066	39.055	2.64
894	0.066	39.121	2.63
900	0.066	39.187	2.61
200	0.066	39.253	2.60
906			2.50
	0.066	39.319	2.59
906 912	0.066		
906 912 918	0.066 0.062	39.380	2.57
906 912 918 924	0.066 0.062 0.062	39.380 39.442	2.57 2.56
906 912 918	0.066 0.062	39.380	2.57 2.56
906 912 918 924 930	0.066 0.062 0.062 0.062	39.380 39.442 39.504	2.57 2.56 2.55
906 912 918 924	0.066 0.062 0.062	39.380 39.442	2.57 2.56

942 0.062 39.687 2.51 954 0.062 39.750 2.50 960 0.062 39.750 2.50 960 0.062 39.750 2.50 966 0.062 39.9374 2.48 972 0.062 39.997 2.45 984 0.057 40.054 2.44 990 0.057 40.111 2.43 996 0.057 40.169 2.42 1002 0.057 40.226 2.41 1008 0.057 40.283 2.40 1014 0.057 40.340 2.39 1020 0.057 40.388 2.38 1026 0.057 40.455 2.37 1032 0.057 40.512 2.36 1038 0.057 40.569 2.35 1044 0.057 40.626 2.33 1050 0.057 40.741 2.31 1062 0.057 40.798				
954 0.062 39.750 2.50 960 0.062 39.812 2.49 966 0.062 39.874 2.48 972 0.062 39.935 2.47 978 0.062 39.997 2.45 984 0.057 40.054 2.44 990 0.057 40.111 2.43 1002 0.057 40.169 2.42 1002 0.057 40.226 2.41 1008 0.057 40.283 2.40 1014 0.057 40.340 2.39 1020 0.057 40.340 2.39 1020 0.057 40.439 2.38 1032 0.057 40.455 2.37 1032 0.057 40.569 2.35 1038 0.057 40.662 2.33 1050 0.057 40.684 2.32 1056 0.057 40.798 2.30 1062 0.057 40.79	942	0.062	39.627	2.52
954 0.062 39.750 2.50 960 0.062 39.812 2.49 966 0.062 39.874 2.48 972 0.062 39.935 2.47 978 0.062 39.997 2.45 984 0.057 40.054 2.44 990 0.057 40.111 2.43 1002 0.057 40.169 2.42 1002 0.057 40.226 2.41 1008 0.057 40.283 2.40 1014 0.057 40.340 2.39 1020 0.057 40.340 2.39 1020 0.057 40.439 2.38 1032 0.057 40.455 2.37 1032 0.057 40.569 2.35 1038 0.057 40.662 2.33 1050 0.057 40.684 2.32 1056 0.057 40.798 2.30 1062 0.057 40.79	948	0.062	39.689	2.51
960 0.062 39.812 2.49 966 0.062 39.874 2.48 972 0.062 39.935 2.47 978 0.062 39.997 2.45 984 0.057 40.054 2.44 990 0.057 40.111 2.43 996 0.057 40.169 2.42 1002 0.057 40.283 2.40 1014 0.057 40.380 2.39 1020 0.057 40.388 2.38 1026 0.057 40.388 2.38 1026 0.057 40.398 2.38 1026 0.057 40.552 2.37 1032 0.057 40.569 2.35 1044 0.057 40.626 2.33 1050 0.057 40.684 2.32 1050 0.057 40.684 2.32 1056 0.057 40.798 2.30 1068 0.057 40.79				
966 0.062 39.874 2.48 972 0.062 39.935 2.47 978 0.062 39.997 2.45 984 0.057 40.054 2.44 990 0.057 40.111 2.43 1002 0.057 40.169 2.42 1008 0.057 40.226 2.41 1008 0.057 40.330 2.39 1020 0.057 40.340 2.39 1020 0.057 40.398 2.38 1026 0.057 40.398 2.38 1026 0.057 40.5512 2.36 1032 0.057 40.569 2.35 1044 0.057 40.569 2.35 1050 0.057 40.569 2.35 1050 0.057 40.626 2.33 1050 0.057 40.798 2.30 1056 0.057 40.798 2.30 1068 0.057 40				
972 0.062 39.935 2.47 978 0.062 39.997 2.45 984 0.057 40.054 2.44 990 0.057 40.111 2.43 996 0.057 40.169 2.42 1002 0.057 40.226 2.41 1008 0.057 40.283 2.40 1014 0.057 40.398 2.38 1026 0.057 40.398 2.38 1026 0.057 40.398 2.36 1032 0.057 40.552 2.37 1032 0.057 40.569 2.35 1038 0.057 40.626 2.33 1050 0.057 40.684 2.32 1056 0.057 40.684 2.32 1056 0.057 40.798 2.30 1068 0.057 40.998 2.30 1068 0.057 40.913 2.29 1080 0.057 41.				
978 0.062 39.997 2.45 984 0.057 40.054 2.44 990 0.057 40.111 2.43 996 0.057 40.169 2.42 1002 0.057 40.226 2.41 1008 0.057 40.283 2.40 1014 0.057 40.340 2.39 1020 0.057 40.398 2.38 1026 0.057 40.398 2.38 1026 0.057 40.455 2.37 1032 0.057 40.569 2.35 1044 0.057 40.569 2.35 1050 0.057 40.626 2.33 1050 0.057 40.798 2.30 1056 0.057 40.798 2.30 1068 0.057 40.798 2.30 1068 0.057 40.798 2.30 1074 0.057 40.970 2.28 1086 0.057 41				
984 0.057 40.054 2.44 990 0.057 40.111 2.43 996 0.057 40.169 2.42 1002 0.057 40.283 2.40 1014 0.057 40.380 2.39 1020 0.057 40.398 2.38 1026 0.057 40.398 2.38 1026 0.057 40.552 2.37 1032 0.057 40.559 2.35 1044 0.057 40.569 2.35 1044 0.057 40.626 2.33 1050 0.057 40.584 2.32 1056 0.057 40.684 2.32 1056 0.057 40.798 2.30 1068 0.057 40.855 2.30 1068 0.057 40.813 2.29 1080 0.057 40.970 2.28 1086 0.057 41.084 2.26 1092 0.057 4	972	0.062	39.935	2.47
984 0.057 40.011 2.43 996 0.057 40.119 2.42 1002 0.057 40.169 2.42 1002 0.057 40.283 2.40 1014 0.057 40.340 2.39 1020 0.057 40.398 2.38 1026 0.057 40.455 2.37 1032 0.057 40.552 2.35 1038 0.057 40.569 2.35 1044 0.057 40.626 2.33 1050 0.057 40.684 2.32 1056 0.057 40.798 2.30 1066 0.057 40.798 2.30 1068 0.057 40.855 2.30 1074 0.057 40.855 2.30 1080 0.057 40.979 2.28 1086 0.057 41.027 2.27 1092 0.057 41.084 2.26 1104 0.053	978	0.062	39,997	2.45
990 0.057 40.169 2.42 1002 0.057 40.226 2.41 1008 0.057 40.283 2.40 1014 0.057 40.340 2.39 1020 0.057 40.398 2.38 1026 0.057 40.455 2.37 1032 0.057 40.512 2.36 1038 0.057 40.569 2.35 1044 0.057 40.626 2.33 1050 0.057 40.626 2.33 1050 0.057 40.626 2.33 1050 0.057 40.624 2.32 1056 0.057 40.798 2.30 1068 0.057 40.798 2.30 1068 0.057 40.970 2.28 1080 0.057 40.970 2.28 1086 0.057 41.084 2.26 1092 0.057 41.084 2.26 1098 0.057 <td< td=""><td>984</td><td>0.057</td><td>40.054</td><td>2.44</td></td<>	984	0.057	40.054	2.44
1002				
1002				
1008	996	0.057	40.169	2.42
1014	1002	0.057	40.226	2.41
1014	1008	0.057	40.283	2.40
1020				
1026				
1032 0.057 40.512 2.36 1038 0.057 40.569 2.35 1044 0.057 40.626 2.33 1050 0.057 40.684 2.32 1056 0.057 40.741 2.31 1062 0.057 40.798 2.30 1068 0.057 40.913 2.29 1080 0.057 40.913 2.29 1086 0.057 40.970 2.28 1086 0.057 41.027 2.27 1092 0.057 41.084 2.26 1098 0.057 41.142 2.25 1104 0.057 41.256 2.23 1110 0.057 41.299 2.24 1110 0.057 41.309 2.22 11104 0.053 41.309 2.22 1122 0.053 41.415 2.20 1128 0.053 41.452 2.21 1128 0.053 <				
1038 0.057 40.569 2.35 1044 0.057 40.626 2.33 1050 0.057 40.684 2.32 1056 0.057 40.741 2.31 1062 0.057 40.798 2.30 1074 0.057 40.913 2.29 1080 0.057 40.970 2.28 1086 0.057 41.027 2.27 1092 0.057 41.084 2.26 1098 0.057 41.084 2.26 1098 0.057 41.199 2.24 1110 0.057 41.199 2.24 1110 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1124 0.053 41.467 2.19 1140 0.053 41.573 2.18 1152 0.053 41.573 2.18 1152 0.053 <t< td=""><td></td><td>0.057</td><td>40.455</td><td></td></t<>		0.057	40.455	
1038 0.057 40.569 2.35 1044 0.057 40.626 2.33 1050 0.057 40.684 2.32 1056 0.057 40.741 2.31 1062 0.057 40.798 2.30 1074 0.057 40.913 2.29 1080 0.057 40.970 2.28 1086 0.057 41.027 2.27 1092 0.057 41.084 2.26 1098 0.057 41.084 2.26 1098 0.057 41.199 2.24 1110 0.057 41.199 2.24 1110 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1124 0.053 41.467 2.19 1140 0.053 41.573 2.18 1152 0.053 41.573 2.18 1152 0.053 <t< td=""><td>1032</td><td>0.057</td><td>40.512</td><td>2.36</td></t<>	1032	0.057	40.512	2.36
1044 0.057 40.626 2.33 1050 0.057 40.684 2.32 1056 0.057 40.741 2.31 1062 0.057 40.798 2.30 1068 0.057 40.998 2.30 1074 0.057 40.913 2.29 1080 0.057 40.970 2.28 1086 0.057 41.027 2.27 1092 0.057 41.084 2.26 1098 0.057 41.084 2.26 1098 0.057 41.149 2.24 1104 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1122 0.053 41.362 2.21 1128 0.053 41.520 2.19 1140 0.053 41.573 2.18 1152 0.053 41.573 2.18 1158 0.053 <t< td=""><td></td><td>0.057</td><td>40.569</td><td>2.35</td></t<>		0.057	40.569	2.35
1050				
1056				
1062 0.057 40.798 2.30 1068 0.057 40.855 2.30 1074 0.057 40.913 2.29 1080 0.057 40.970 2.28 1086 0.057 41.027 2.27 1092 0.057 41.084 2.26 1098 0.057 41.142 2.25 1104 0.057 41.199 2.24 1110 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1134 0.053 41.520 2.19 1140 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 <t< td=""><td></td><td>0.057</td><td></td><td></td></t<>		0.057		
1068 0.057 40.855 2.30 1074 0.057 40.913 2.29 1080 0.057 40.970 2.28 1086 0.057 41.027 2.27 1092 0.057 41.084 2.26 1098 0.057 41.142 2.25 1104 0.057 41.199 2.24 1110 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1134 0.053 41.520 2.19 1140 0.053 41.520 2.19 1140 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.732 2.15 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.787 2.13 1182 0.053 <t< td=""><td>1056</td><td>0.057</td><td>40.741</td><td>2.31</td></t<>	1056	0.057	40.741	2.31
1068 0.057 40.855 2.30 1074 0.057 40.913 2.29 1080 0.057 40.970 2.28 1086 0.057 41.027 2.27 1092 0.057 41.084 2.26 1098 0.057 41.142 2.25 1104 0.057 41.199 2.24 1110 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1134 0.053 41.520 2.19 1140 0.053 41.520 2.19 1140 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.732 2.15 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.787 2.13 1182 0.053 <t< td=""><td>1062</td><td>0.057</td><td>40.798</td><td>2.30</td></t<>	1062	0.057	40.798	2.30
1074 0.057 40.970 2.28 1080 0.057 40.970 2.28 1086 0.057 41.027 2.27 1092 0.057 41.084 2.26 1098 0.057 41.142 2.25 1104 0.057 41.199 2.24 1110 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1134 0.053 41.457 2.19 1146 0.053 41.573 2.18 1152 0.053 41.573 2.18 1152 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.732 2.15 1170 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 <t< td=""><td></td><td></td><td></td><td>2.30</td></t<>				2.30
1080 0.057 40.970 2.28 1086 0.057 41.027 2.27 1092 0.057 41.084 2.26 1098 0.057 41.142 2.25 1104 0.057 41.199 2.24 1110 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1134 0.053 41.520 2.19 1140 0.053 41.520 2.19 1146 0.053 41.520 2.19 1146 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1086 0.057 41.027 2.27 1092 0.057 41.084 2.26 1098 0.057 41.142 2.25 1104 0.057 41.199 2.24 1110 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1134 0.053 41.457 2.19 1140 0.053 41.520 2.19 1146 0.053 41.520 2.19 1146 0.053 41.573 2.18 1152 0.053 41.679 2.16 1158 0.053 41.732 2.15 1170 0.053 41.732 2.15 1170 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1200 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1092 0.057 41.084 2.26 1098 0.057 41.142 2.25 1104 0.057 41.199 2.24 1110 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1140 0.053 41.467 2.19 1146 0.053 41.573 2.18 1152 0.053 41.679 2.16 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.732 2.15 1170 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 42.101 2.09 1212 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1092 0.057 41.084 2.26 1098 0.057 41.142 2.25 1104 0.057 41.199 2.24 1110 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1140 0.053 41.467 2.19 1146 0.053 41.573 2.18 1152 0.053 41.679 2.16 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.732 2.15 1170 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 42.101 2.09 1212 0.053 <t< td=""><td>1086</td><td>0.057</td><td>41.027</td><td></td></t<>	1086	0.057	41.027	
1098 0.057 41.142 2.25 1104 0.057 41.199 2.24 1110 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1134 0.053 41.467 2.19 1140 0.053 41.520 2.19 1146 0.053 41.573 2.18 1152 0.053 41.679 2.16 1164 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.879 2.13 1176 0.053 41.890 2.13 1182 0.053 41.890 2.13 1188 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 42.049 2.10 1206 0.053 <t< td=""><td>1092</td><td>0.057</td><td></td><td>2.26</td></t<>	1092	0.057		2.26
1104 0.057 41.199 2.24 1110 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1134 0.053 41.467 2.19 1140 0.053 41.520 2.19 1146 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.890 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 41.943 2.12 1194 0.053 42.049 2.10 1206 0.053 42.049 2.10 1212 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1110 0.057 41.256 2.23 1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1134 0.053 41.467 2.19 1140 0.053 41.520 2.19 1146 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.837 2.13 1182 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 41.943 2.12 1200 0.053 42.049 2.10 1206 0.053 42.049 2.10 1206 0.053 42.101 2.09 1218 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1116 0.053 41.309 2.22 1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1134 0.053 41.467 2.19 1140 0.053 41.520 2.19 1146 0.053 41.573 2.18 1152 0.053 41.679 2.16 1164 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.890 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 41.943 2.12 1194 0.053 42.049 2.10 1200 0.053 42.049 2.10 1206 0.053 42.049 2.10 1212 0.053 42.101 2.09 1218 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1122 0.053 41.362 2.21 1128 0.053 41.415 2.20 1134 0.053 41.467 2.19 1140 0.053 41.520 2.19 1146 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.890 2.13 1188 0.053 41.943 2.12 1200 0.053 42.049 2.10 1206 0.053 42.049 2.10 1206 0.053 42.154 2.09 1212 0.053 42.154 2.09 1218 0.053 42.260 2.07 1230 0.053 <t< td=""><td>1110</td><td>0.057</td><td></td><td></td></t<>	1110	0.057		
1128 0.053 41.415 2.20 1134 0.053 41.467 2.19 1140 0.053 41.520 2.19 1146 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.890 2.13 1188 0.053 41.943 2.12 1200 0.053 42.049 2.10 1206 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.154 2.09 1212 0.053 42.101 2.09 1218 0.053 42.154 2.09 1218 0.053 <t< td=""><td>1116</td><td>0.053</td><td>41.309</td><td>2.22</td></t<>	1116	0.053	41.309	2.22
1128 0.053 41.415 2.20 1134 0.053 41.467 2.19 1140 0.053 41.520 2.19 1146 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.890 2.13 1188 0.053 41.943 2.12 1200 0.053 42.049 2.10 1206 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.154 2.09 1212 0.053 42.101 2.09 1218 0.053 42.154 2.09 1218 0.053 <t< td=""><td>1122</td><td>0.053</td><td>41.362</td><td>2.21</td></t<>	1122	0.053	41.362	2.21
1134 0.053 41.467 2.19 1140 0.053 41.520 2.19 1146 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1200 0.053 42.949 2.10 1206 0.053 42.199 2.11 1206 0.053 42.101 2.09 1212 0.053 42.101 2.09 1218 0.053 42.101 2.09 1218 0.053 42.2049 2.10 1218 0.053 42.207 2.08 1224 0.053 42.207 2.08 1224 0.053 <				
1140 0.053 41.520 2.19 1146 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1200 0.053 42.049 2.10 1206 0.053 42.049 2.10 1212 0.053 42.154 2.09 1212 0.053 42.101 2.09 1218 0.053 42.101 2.09 1218 0.053 42.207 2.08 1224 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1242 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1146 0.053 41.573 2.18 1152 0.053 41.626 2.17 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 41.996 2.11 1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.207 2.08 1224 0.053 42.313 2.06 1236 0.053 42.313 2.06 1242 0.053 42.313 2.06 1242 0.053 42.419 2.05 1248 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1152 0.053 41.626 2.17 1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 41.996 2.11 1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1242 0.053 42.366 2.06 1242 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.419 2.05 1248 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 41.996 2.11 1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1242 0.053 42.366 2.06 1242 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.419 2.05 1248 0.053 42.524 2.03 1266 0.053 <t< td=""><td>1146</td><td>0.053</td><td>41.573</td><td>2.18</td></t<>	1146	0.053	41.573	2.18
1158 0.053 41.679 2.16 1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 41.996 2.11 1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1242 0.053 42.366 2.06 1242 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.419 2.05 1248 0.053 42.524 2.03 1266 0.053 <t< td=""><td>1152</td><td>0.053</td><td>41.626</td><td>2.17</td></t<>	1152	0.053	41.626	2.17
1164 0.053 41.732 2.15 1170 0.053 41.784 2.14 1176 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 41.996 2.11 1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.260 2.07 1230 0.053 42.260 2.07 1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.524 2.03 1266 0.053 <t< td=""><td>1158</td><td>0.053</td><td>41 679</td><td></td></t<>	1158	0.053	41 679	
1170 0.053 41.784 2.14 1176 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 41.996 2.11 1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.260 2.07 1230 0.053 42.366 2.06 1234 0.053 42.313 2.06 1242 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.524 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1176 0.053 41.837 2.13 1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 41.996 2.11 1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.200 2.07 1230 0.053 42.313 2.06 1242 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.630 2.02 1278 0.053 42.736 2.01 1278 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1182 0.053 41.890 2.13 1188 0.053 41.943 2.12 1194 0.053 41.996 2.11 1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.630 2.02 1278 0.053 42.736 2.01 1278 0.053 42.736 2.01 1278 0.053 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1188 0.053 41.943 2.12 1194 0.053 41.996 2.11 1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.524 2.03 1260 0.053 42.630 2.02 1272 0.053 42.630 2.02 1278 0.053 42.736 2.01 1278 0.053 42.736 2.01 1284 0.053 42.841 1.99 1290 0.053 <t< td=""><td>1176</td><td>0.053</td><td></td><td>2.13</td></t<>	1176	0.053		2.13
1188 0.053 41.943 2.12 1194 0.053 41.996 2.11 1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.524 2.03 1260 0.053 42.630 2.02 1272 0.053 42.630 2.02 1278 0.053 42.736 2.01 1278 0.053 42.736 2.01 1284 0.053 42.841 1.99 1290 0.053 <t< td=""><td>1182</td><td>0.053</td><td>41.890</td><td>2.13</td></t<>	1182	0.053	41.890	2.13
1194 0.053 41.996 2.11 1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1302 0.048 42.890 1.99 1302 0.048 <t< td=""><td></td><td>0.053</td><td></td><td>2.12</td></t<>		0.053		2.12
1200 0.053 42.049 2.10 1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1272 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1278 0.053 42.736 2.01 1284 0.053 42.841 1.99 1290 0.053 42.841 1.99 1302 0.048 42.890 1.99 1302 0.048 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1206 0.053 42.101 2.09 1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1272 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1302 0.048 42.890 1.99 1302 0.048 42.986 1.97 1314 0.048 43.083 1.96 1326 0.048 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1212 0.053 42.154 2.09 1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1302 0.048 42.890 1.99 1302 0.048 42.986 1.97 1314 0.048 43.035 1.97 1326 0.048 43.083 1.96 1332 0.048 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1290 0.053 42.841 1.99 1302 0.048 42.890 1.99 1302 0.048 42.986 1.97 1314 0.048 43.035 1.97 1326 0.048 43.083 1.96 1332 0.048 <t< td=""><td>1206</td><td>0.053</td><td>42.101</td><td>2.09</td></t<>	1206	0.053	42.101	2.09
1218 0.053 42.207 2.08 1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1290 0.053 42.841 1.99 1302 0.048 42.890 1.99 1302 0.048 42.986 1.97 1314 0.048 43.035 1.97 1326 0.048 43.083 1.96 1332 0.048 <t< td=""><td>1212</td><td>0.053</td><td>42.154</td><td>2.09</td></t<>	1212	0.053	42.154	2.09
1224 0.053 42.260 2.07 1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1302 0.048 42.890 1.99 1302 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94	1218		42,207	
1230 0.053 42.313 2.06 1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1302 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1236 0.053 42.366 2.06 1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1302 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1332 0.048 43.132 1.95 1338 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1242 0.053 42.419 2.05 1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1302 0.048 42.938 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1332 0.048 43.132 1.95 1338 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1248 0.053 42.471 2.04 1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1296 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1302 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94	1242	0.053	42.419	2.05
1254 0.053 42.524 2.03 1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1302 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94	1248	0.053	42.471	2.04
1260 0.053 42.577 2.03 1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1296 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1266 0.053 42.630 2.02 1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1296 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1272 0.053 42.683 2.01 1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1296 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1278 0.053 42.736 2.01 1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1296 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1296 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94	1272	0.053	42.683	2.01
1284 0.053 42.788 2.00 1290 0.053 42.841 1.99 1296 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94	1278	0.053	42.736	2.01
1290 0.053 42.841 1.99 1296 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1296 0.048 42.890 1.99 1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1302 0.048 42.938 1.98 1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1308 0.048 42.986 1.97 1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94	1302	0.048	42.938	1.98
1314 0.048 43.035 1.97 1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94	1308	0.048	42.986	1.97
1320 0.048 43.083 1.96 1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1326 0.048 43.132 1.95 1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1332 0.048 43.180 1.95 1338 0.048 43.229 1.94				
1338 0.048 43.229 1.94				
		0.048		1.95
	1338	0.048	43.229	1.94
22.1 0.0.10 10.277 1.73				

1350	0.048	43.326	1.93
1356	0.048	43.374	1.92
1362	0.048	43.422	1.91
1368	0.048	43.471	1.91
1374	0.048	43.519	1.90
1380	0.048	43.568	1.89
1386	0.048	43.616	1.89
1392	0.048	43.665	1.88
1398	0.048	43.713	1.88
1404	0.048	43.761	1.87
1410	0.048	43.810	1.86
1416	0.044	43.854	1.86
1422	0.044	43.898	1.85
1428	0.044	43.942	1.85
1434	0.044	43.986	1.84
1440	0.044	44.030	1.83
	44.030		

Método D. Peschke

$$I = \frac{P \times FA}{d}$$

Tabla 57: Resultados de Intensidades Mediante Método de D. Peschke

Durac	Pd (mm)	i (mm/h)
6	11.19	111.87
12	13.30	66.52
18	14.72	49.07
24	15.82	39.55
30	16.73	33.46
36	17.51	29.18
42	18.20	25.99
48	18.81	23.52
54	19.38	21.53
60	19.89	19.89
66	20.37	18.52
72	20.82	17.35
78	21.24	16.34
84	21.64	15.46
90	22.02	14.68
96	22.37	13.98
102	22.71	13.36
108	23.04	12.80
114	23.36	12.29
120	23.66	11.83
126	23.95	11.40
132	24.23	11.01
138	24.50	10.65
144	24.76	10.32
150	25.01	10.01
156	25.26	9.72
162	25.50	9.44
168	25.73	9.19
174	25.96	8.95
180	26.18	8.73
186	26.40	8.51
192	26.61	8.31
198	26.81	8.12
204	27.01	7.94
210	27.21	7.77
216	27.40	7.61
222	27.59	7.46
228	27.77	7.31
234	27.96	7.17
240	28.13	7.03
246	28.31	6.90

258 28.65 6.66 264 28.81 6.55 270 28.97 6.44 276 29.13 6.33 282 29.29 6.23 288 29.44 6.13 294 29.60 6.04 300 29.75 5.95 306 29.89 5.86 312 30.04 5.78 318 30.18 5.69 324 30.32 5.62 330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83	252	28.48	6.78
264 28.81 6.55 270 28.97 6.44 276 29.13 6.33 282 29.29 6.23 288 29.44 6.13 294 29.60 6.04 300 29.75 5.95 306 29.89 5.86 312 30.04 5.78 318 30.18 5.69 324 30.32 5.62 330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78			
270 28.97 6.44 276 29.13 6.33 282 29.29 6.23 288 29.44 6.13 294 29.60 6.04 300 29.75 5.95 306 29.89 5.86 312 30.04 5.78 318 30.18 5.69 324 30.32 5.62 330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72			
276 29.13 6.33 282 29.29 6.23 288 29.44 6.13 294 29.60 6.04 300 29.75 5.95 306 29.89 5.86 312 30.04 5.78 318 30.18 5.69 324 30.32 5.62 330 30.46 5.54 334 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67			
282 29.29 6.23 288 29.44 6.13 294 29.60 6.04 300 29.75 5.95 306 29.89 5.86 312 30.04 5.78 318 30.18 5.69 324 30.32 5.62 330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62			
288 29.44 6.13 294 29.60 6.04 300 29.75 5.95 306 29.89 5.86 312 30.04 5.78 318 30.18 5.69 324 30.32 5.62 330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57			
294 29.60 6.04 300 29.75 5.95 306 29.89 5.86 312 30.04 5.78 318 30.18 5.69 324 30.32 5.62 330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57			
300 29.75 5.95 306 29.89 5.86 312 30.04 5.78 318 30.18 5.69 324 30.32 5.62 330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48			
306 29.89 5.86 312 30.04 5.78 318 30.18 5.69 324 30.32 5.62 330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43			
312 30.04 5.78 318 30.18 5.69 324 30.32 5.62 330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 456 33.03 4.35 462 33.14 4.30			
318 30.18 5.69 324 30.32 5.62 330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 456 33.03 4.35 462 33.14 4.30			
324 30.32 5.62 330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30	_		
330 30.46 5.54 336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22			
336 30.60 5.46 342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22			
342 30.74 5.39 348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.66 4.11			
348 30.87 5.32 354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14			
354 31.00 5.25 360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11			
360 31.13 5.19 366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07			
366 31.26 5.13 372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03			
372 31.39 5.06 378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00			
378 31.52 5.00 384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96			
384 31.64 4.94 390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89 <td></td> <td></td> <td></td>			
390 31.76 4.89 396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89 <td></td> <td></td> <td></td>			
396 31.88 4.83 402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
402 32.00 4.78 408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
408 32.12 4.72 414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
414 32.24 4.67 420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
420 32.36 4.62 426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
426 32.47 4.57 432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
432 32.59 4.53 438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
438 32.70 4.48 444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
444 32.81 4.43 450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89		32.59	
450 32.92 4.39 456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89		32.70	
456 33.03 4.35 462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
462 33.14 4.30 468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89	450	32.92	4.39
468 33.24 4.26 474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89	456		
474 33.35 4.22 480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89	462		4.30
480 33.46 4.18 486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
486 33.56 4.14 492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
492 33.66 4.11 498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
498 33.76 4.07 504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
504 33.87 4.03 510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89	492	33.66	4.11
510 33.97 4.00 516 34.07 3.96 522 34.16 3.93 528 34.26 3.89	498	33.76	
516 34.07 3.96 522 34.16 3.93 528 34.26 3.89			
522 34.16 3.93 528 34.26 3.89	510		4.00
528 34.26 3.89			
	522	34.16	3.93
534 34 36 3 86		34.26	3.89
55. 51.50 5.00	534	34.36	3.86

Método F. Bell

$$P_t^T = (0.21 \log_e T + 0.52) * (0.54t^{0.25} - 0.50)P_{60}^{10}$$

$$I = a * P_{24}^b$$

Factores:

a = 0.4602

b = 0.8760

Pmax 24h = 44.03 mm

I = P(10,60) = 12.67 mm

T = 100 años

Tabla 58: Resultados de Intensidades Mediante Método de F. Bell

Durac (min)	P(t,T)	i (mm/h)
6	6.50	65.04
12	9.52	47.59
18	11.54	38.46
24	13.10	32.75
30	14.39	28.79
36	15.50	25.84
42	16.48	23.55
48	17.36	21.70
54	18.16	20.18
60	18.90	18.90
66	19.58	17.80
72	20.22	16.85
78	20.82	16.02
84	21.39	15.28
90	21.92	14.61
96	22.43	14.02
102	22.92	13.48
108	23.38	12.99
114	23.83	12.54
120	24.26	12.13
126	24.67	11.75
132	25.07	11.40
138	25.46	11.07
144	25.83	10.76
150	26.19	10.48
156	26.54	10.21
162	26.88	9.96
168	27.21	9.72
174	27.54	9.50
180	27.85	9.28
186	28.16	9.08
192	28.46	8.89
198	28.75	8.71
204	29.04	8.54
210	29.32	8.38
216	29.59	8.22
222	29.86	8.07
228	30.12	7.93
234	30.38	7.79
240	30.63	7.66

246	30.88	7.53
252	31.12	7.41
258	31.12 31.36	7.29
264	31.60	7.18
270	31.83	7.07
276	32.06	6.97
282	32.28	6.87
288	32.50	6.77
294	32.72	6.68
300	32.93	6.59
306	33.14	6.50
312	33.35	6.41
318	33.55	6.33
324	33.75	6.25
330	33.95	6.17
336	34.15	6.10
342	34.34	6.02
348	34.53	5.95
354	34.72	5.88
360	34.91	5.82
366	35.09	5.75
372	35.27	5.69
378	35.45	5.63
384	35.63	5.57
390	35.80	5.51
396	35.97	5.45
402	36.14	5.39
408	36.31	5.34
414	36.48	5.29
420	36.65	5.24
426	36.81	5.18
432	36.97	5.14
438	37.13	5.09
444	37.29	5.04
450	37.45	4.99
456	37.60	4.95
462	37.76	4.90
468	37.91	4.86
474	38.06	4.82
480	38.21	4.78
486	38.36	4.74
492	38.51	4.70
498	38.65	4.66
504	38.80	4.62
510	38.94	4.58
516	39.08	4.54
522	39.22	4.51
528	39.36	4.47
534	39.50	4.44
540	39.63	4.40
546	39.77	4.37
552	39.90	4.34
558	40.04	4.31
564	40.17	4.27
570	40.30	4.24
576	40.43	4.21
582	40.56	4.18

Método Daniel F. Campos

Tabla 59: Factores del Método Daniel F. Campos Duración en Horas

Duración (hr)	Factor
1	0.30
2	0.39
3	0.46
4	0.52
5	0.57
6	0.61
8	0.68
12	0.80
18	0.91
24	1.00

Tabla 60: Factores del Método Daniel F. Campos Duración en Minutos

Duración (min)	Factor
60	0.30
120	0.39
180	0.46
240	0.52
300	0.57
360	0.61
480	0.68
720	0.80
1080	0.91
1440	1.00

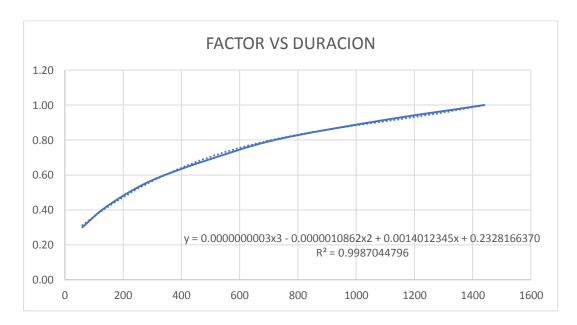


Ilustración 78: Gráfica Interpolación de Factores

Tabla 61: Resultados de Intensidades Mediante Método de Daniel F. Campos

Duración (min)	Factor	Pd (mm)	i (mm/h)
6	0.241	10.62 10.98	106.19 54.92
18	0.258	11.35	37.82
24	0.266	11.70	29.26
30	0.274	12.06	24.12
36	0.282	12.41	20.68
42	0.290	12.76	18.23
48	0.298	13.10	16.38
54	0.305	13.45	14.94
60	0.313	13.78	13.78
66	0.321	14.12	12.83
72	0.328	14.45	12.04
78 84	0.336	14.78	11.37 10.79
90	0.343	15.10 15.43	10.79
96	0.358	15.74	9.84
102	0.365	16.06	9.45
108	0.372	16.37	9.10
114	0.379	16.68	8.78
120	0.386	16.99	8.49
126	0.393	17.29	8.23
132	0.400	17.59	8.00
138	0.406	17.89	7.78
144	0.413	18.18	7.58
150	0.420	18.47	7.39
156	0.426	18.76	7.22
162	0.433	19.05	7.05
168	0.439	19.33	6.90
174	0.445	19.61	6.76
180	0.452	19.88	6.63
186	0.458	20.16	6.50
192 198	0.464	20.43	6.38 6.27
204	0.476	20.96	6.16
210	0.482	21.22	6.06
216	0.488	21.48	5.97
222	0.494	21.74	5.87
228	0.499	21.99	5.79
234	0.505	22.24	5.70
240	0.511	22.49	5.62
246	0.516	22.73	5.54
252	0.522	22.97	5.47
258	0.527	23.21	5.40
264	0.533	23.45	5.33
270	0.538	23.68	5.26
276	0.543	23.91	5.20
282	0.548	24.14 24.37	5.14
288 294	0.553	24.57	5.08
300	0.564	24.39	4.96
306	0.568	25.03	4.91
312	0.573	25.25	4.85
318	0.578	25.46	4.80
324	0.583	25.67	4.75
330	0.588	25.88	4.70
336	0.592	26.08	4.66
342	0.597	26.29	4.61
348	0.602	26.49	4.57
354	0.606	26.68	4.52
360	0.610	26.88	4.48
366	0.615	27.07	4.44
372	0.619	27.26	4.40
378	0.623	27.45	4.36
384	0.628	27.64	4.32
390	0.632	27.82	4.28

396	0.636	28.00	4.24
402	0.640	28.18	4.21
408	0.644	28.36	4.17
414	0.648	28.53	4.14
420	0.652	28.71	4.10
426	0.656	28.88	4.07
432	0.660	29.04	4.03
438	0.663	29.21	4.00
444	0.667	29.37	3.97
450	0.671	29.53	3.94
456	0.674	29.69	3.91
462	0.678	29.85	3.88
468	0.681	30.00	3.85
474	0.685	30.16	3.82
480	0.688	30.31	3.79
486	0.692	30.46	3.76
492	0.695	30.60	3.73
498	0.698	30.75	3.70

Finalmente hemos recolectado los datos para procesar y elegir la intensidad para el estudio.

Tabla 62: Tabla Resumen de Métodos para Hallar la Intensidad

Duración	Pd	D.Peschke	SCS	F. Bell	DF Campos
d (min)	(mm)	i (mm/h)	i (mm/h)	i (mm/h)	i (mm/h)
6	11.19	111.87	60.37	65.04	106.19
12	13.30	66.52	51.12	47.59	54.92
18	14.72	49.07	45.29	38.46	37.82
24	15.82	39.55	39.21	32.75	29.26
30	16.73	33.46	33.46	28.79	24.12
36	17.51	29.18	29.28	25.84	20.68
42	18.20	25.99	26.14	23.55	18.23
48	18.81	23.52	23.67	21.70	16.38
54	19.38	21.53	21.63	20.18	14.94
60	19.89	19.89	19.98	18.90	13.78
66	20.37	18.52	18.58	17.80	12.83
72	20.82	17.35	17.40	16.85	12.04
78	21.24	16.34	16.38	16.02	11.37
84	21.64	15.46	15.48	15.28	10.79
90	22.02	14.68	14.70	14.61	10.28
96	22.37	13.98	14.00	14.02	9.84
102	22.71	13.36	13.37	13.48	9.45
108	23.04	12.80	12.81	12.99	9.10
114	23.36	12.29	12.30	12.54	8.78
120	23.66	11.83	11.84	12.13	8.49
126	23.95	11.40	11.41	11.75	8.23
132	24.23	11.01	11.02	11.40	8.00
138	24.50	10.65	10.66	11.07	7.78
144	24.76	10.32	10.33	10.76	7.58
150	25.01	10.01	10.01	10.48	7.39
156	25.26	9.72	9.72	10.21	7.22
162	25.50	9.44	9.45	9.96	7.05
168	25.73	9.19	9.20	9.72	6.90
174	25.96	8.95	8.96	9.50	6.76
180	26.18	8.73	8.74	9.28	6.63
186	26.40	8.51	8.52	9.08	6.50
192	26.61	8.31	8.32	8.89	6.38
198	26.81	8.12	8.13	8.71	6.27
204	27.01	7.94	7.95	8.54	6.16
210	27.21	7.77	7.78	8.38	6.06
216	27.40	7.61	7.62	8.22	5.97
222	27.59	7.46	7.46	8.07	5.87
228	27.77	7.31	7.31	7.93	5.79
234	27.96	7.17	7.17	7.79	5.70
240	28.13	7.03	7.03	7.66	5.62

246	20.21	6.00	6.00	7.52	5.54
246	28.31	6.90	6.90	7.53	5.54
252	28.48	6.78	6.78	7.41	5.47
258	28.65	6.66	6.66	7.29	5.40
264	28.81	6.55	6.54	7.18	5.33
270	28.97	6.44	6.43	7.07	5.26
276	29.13	6.33	6.33	6.97	5.20
282	29.29	6.23	6.23	6.87	5.14
288	29.44	6.13	6.13	6.77	5.08
294	29.60	6.04	6.03	6.68	5.02
300	29.75	5.95	5.94	6.59	4.96
306	29.89	5.86	5.85	6.50	4.91
312	30.04	5.78	5.77	6.41	4.85
318	30.18	5.69	5.69	6.33	4.80
324	30.32	5.62	5.61	6.25	4.75
330	30.46	5.54	5.53	6.17	4.70
336	30.60	5.46	5.46	6.10	4.66
342	30.74	5.39	5.39	6.02	4.61
348	30.87	5.32	5.32	5.95	4.57
354	31.00	5.25	5.25	5.88	4.52
360	31.13	5.19	5.19	5.82	4.48
366	31.26	5.13	5.12	5.75	4.44
372	31.39	5.06	5.06	5.69	4.40
378	31.52	5.00	5.00	5.63	4.36
384	31.64	4.94	4.94	5.57	4.32
390	31.76	4.89	4.89	5.51	4.28
396	31.88	4.83	4.83	5.45	4.24
402	32.00	4.78	4.78	5.39	4.21
408	32.12	4.72	4.73	5.34	4.17
414	32.24	4.67	4.68	5.29	4.14
420	32.36	4.62	4.63	5.24	4.10
426	32.47	4.57	4.58	5.18	4.07
432	32.59	4.53	4.53	5.14	4.03
438	32.70	4.48	4.48	5.09	4.00
444	32.81	4.43	4.44	5.04	3.97
450	32.92	4.39	4.39	4.99	3.94
456	33.03	4.35	4.35	4.95	3.91
462	33.14	4.30	4.31	4.90	3.88
468	33.24	4.26	4.26	4.86	3.85
474	33.35	4.22	4.22	4.82	3.82
480	33.46	4.18	4.18	4.78	3.79
486	33.56	4.14	4.14	4.74	3.76
492	33.66	4.11	4.11	4.70	3.73
498	33.76	4.07	4.07	4.66	3.70
170	30173	1107	1107	1100	0170

Para el estudio de esta cuenca se utilizó la Estación Chosica para la sub-cuenca baja W60 y la Estación Matucana para las Sub-cuencas superiores W50 y W40; después del análisis del registro histórico de precipitaciones máximas en 24 horas, se determinó que la precipitación de diseño relacionada a un periodo de retorno de 100 años es **44.03** Para el cálculo de las intensidades se utilizó varios métodos, descartando F. Bell y Daniel F. Campos por tener resultados alejados.

Tabla 63: Resumen de Resultados Intensidades

METODO	INTENSIDAD
SCS	4.07
D.PESCHKE	4.07
F. BELL	4.66
DF CAMPOS	3.70
INTENSIDAD DE DISEÑO	4.07

Con respecto a los caudales se analizó por 2 métodos los cuales son el método del hidrograma Triangular y el HEC HMS, ya que estos métodos dan mejor resultado para cuencas grandes.

CÁLCULO DE CAUDALES

Método Hidrograma Unitario Triangular

Tabla 64: Datos para Método H. U. Triangular

DATOS INICIALES		
T Pmax 24h		
100 44.03		

Cálculo de la duración de la lluvia efectiva:

Para cuencas grandes:

$$d_e = 2\sqrt{t_c}$$

Para cuencas pequeñas:

$$d_e = t_c$$

Consideramos la cuenca como cuenca grande.

Tabla 65: Lluvia Efectiva

T. de concentración	6.4285
de = 2 raíz(Tc)	5.071 Hrs

Cálculo de la lámina de lluvia neta y de la intensidad de lluvia.

$$P = P_{24h} (\frac{D}{1440})^{0.25}$$

Se hace uso de la fórmula de Dyck y Peschke (1978)

$$D = de = 5.071 \text{ hrs}$$

$$D = 304.25 \text{ min}$$

T	Pmáx 24h	P (durac.)	i (mm/h)
100	44.03	29.85	5.89

Cálculo del tiempo para alcanzar el pico del hidrograma.

$$t_p = \frac{de}{2} + t_r$$

Fórmulas para el tiempo de retraso:

$$t_r = 0.6t_c$$

Según Chow:

$$t_r = 0.005 (\frac{L}{\sqrt{S}})^{0.64}$$

Donde:

tr: Tiempo de retraso, en hr.

tc: Tiempo de concentración, en hr.

L: Longitud del cauce principal, en m.

S: Pendiente de cauce, en %.

Calculamos el tiempo de retraso con la fórmula "a" mostrada en la ilustración 51, posteriormente hemos calculado el tiempo pico.

de / 2 =	2.535 Hrs
tr = 0.6Tc =	3.857 Hrs
tp =	6.393 Hrs
tp =	383.554 min

Cálculo del caudal pico.

$$Pe = \frac{(P - Ia)^2}{P + 0.80S} = \frac{(P - 0.20S)^2}{P + 0.80S}$$

Donde:

$$S = \frac{1000}{CN} - 10$$

$$Ia = 0.20S$$

En las expresiones anteriores:

Pe: Precipitación efectiva, en pulgadas.

P: Precipitación de diseño, en pulgadas

S: Abstracción inicial.

CN: Numero hidrológico o número de curva.

Formula de Caudal Máximo:

$$Qmax = 0.208 * \frac{A * Pe}{Tp}$$

Datos para el cálculo:

Área = 702.074 Km2

PE: según SCS

CN = 81 S = 2.346

Т	Pmax 24h	P (durac)	P (pulg)	PE (Pulg)	PE (mm)	Qmax (m3/s)
100	44.03	29.85	1.175	0.163	4.150	94.800

Método HEC – HMS

Para este caso ya teníamos la data preparada y como se explicó en el estudio anterior (Quebrada Chutana) todo el procedimiento que enmarca el software HEC – HMS, en esta oportunidad procedemos a mostrar los resultados de la cuenca del Rio Chilca.

La gran diferencia es que en este estudio incluiremos los datos de tiempos de precipitación en la pestaña COMPONENTS – TIME-SERIES DATA MANAGER.

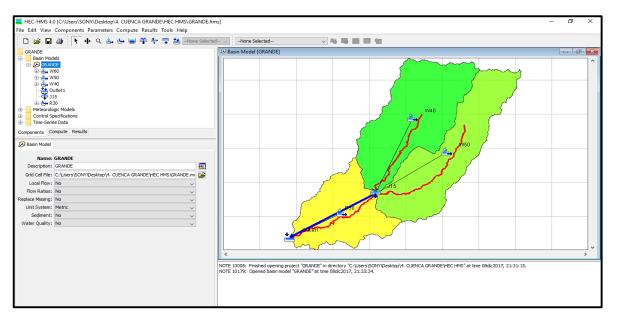


Ilustración 79: Creación del Proyecto en HEC – HMS

Hemos cargado la cuenca que se divide en tres subcuencas, dos en la parte alta (W40 y W50) y una en la parte baja (W60). Luego incluimos los datos de cada una de las subcuencas tales como Área, Número de Curva, Tiempo de Retardo.

Tabla 66: Datos r	ara estudio de	l Caudal en	HFC - HMS
Tubia oo. Daios i	ата емиано ает	і Санаан еп	THE THIND

SUBCUENCA	Pmax 24h	T CONCENTRACION	de	D	P (durac)	i (mm/h)
W40	44.03	7.38	5.432	325.94	30.37	5.59
W50	44.03	8.54	5.845	350.71	30.93	5.29
W60	27.61	6.86	5.237	314.21	18.87	3.60

Tabla 67: Número de Curva

SUBCUENCA	de / 2 =	tr = 0.6Tc =	tp (hrs) =	tp (min) =	AREA (km2)	CN
W40	2.716	4.43	7.143	428.57	274.47	75.045
W50	2.923	5.12	8.047	482.85	256.48	75.676
W60	2.618	4.11	6.732	403.92	171.58	81

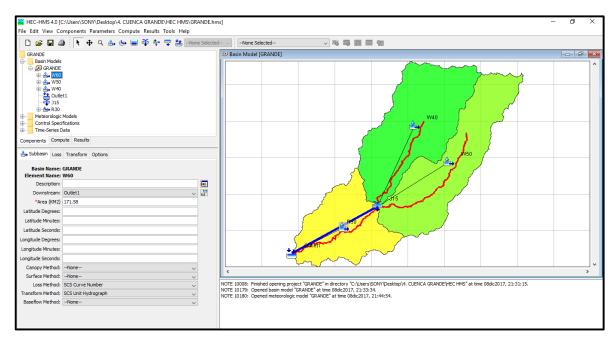


Ilustración 80: Basin Models

Ilustración 81: Metereologic Models

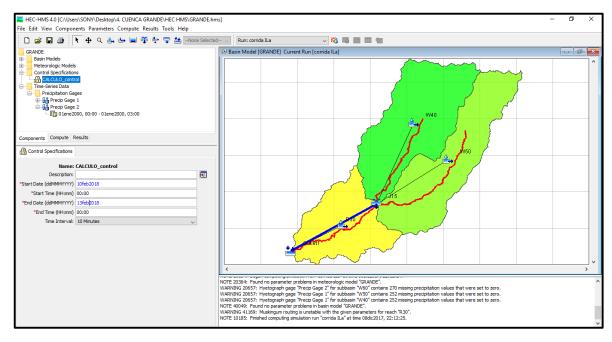


Ilustración 82: Control Specifications, Intervalo de Tiempo 10 Minutos

En esta sección Ingresamos los datos de precipitación con intervalos de tiempo de 10 minutos durante 5 horas e intervalos de tiempo de 5 minutos durante 3 horas.

Tabla 68: Datos Iniciales del Hietograma cada 10 Minutos

HIETOGRAMA PARA PERIODO RETORNO 100 AÑOS			
Duración de la tormenta (h)	5		
Intensidad de lluvia (mm/h)	5.58		
Precipitación en 24 horas (mm)	27.89		
Intervalos de tiempo (min)	10		

Tabla 69: Precipitaciones cada 10 Minutos

Instante (min)	Intensidad (mm/h)	Precipitaci ón acumulad a (mm)	Precipitaci ón (mm)	Intensid ad parcial (mm/h)	Precipitaci ón Alternada (mm)	Int. Parcial Alterna da (mm)
10	38.63	6.44	6.44	38.63	0.44	2.63
20	26.57	8.86	2.42	14.51	0.45	2.71
30	21.34	10.67	1.82	10.89	0.47	2.81
40	18.27	12.18	1.51	9.06	0.49	2.91
50	16.20	13.50	1.32	7.90	0.50	3.03
60	14.68	14.68	1.18	7.08	0.53	3.16
70	13.51	15.76	1.08	6.47	0.55	3.31
80	12.57	16.75	1.00	5.99	0.58	3.48
90	11.79	17.69	0.93	5.60	0.61	3.68
100	11.14	18.57	0.88	5.27	0.65	3.91
110	10.58	19.40	0.83	4.99	0.70	4.19
120	10.09	20.19	0.79	4.75	0.76	4.54
130	9.67	20.95	0.76	4.54	0.83	4.99
140	9.29	21.67	0.73	4.36	0.93	5.60
150	8.95	22.37	0.70	4.19	1.08	6.47
160	8.64	23.05	0.67	4.04	1.32	7.90
170	8.36	23.70	0.65	3.91	1.82	10.89
180	8.11	24.33	0.63	3.79	6.44	38.63
190	7.88	24.94	0.61	3.68	2.42	14.51
200	7.66	25.54	0.60	3.57	1.51	9.06
210	7.46	26.12	0.58	3.48	1.18	7.08
220	7.28	26.68	0.56	3.39	1.00	5.99
230	7.10	27.23	0.55	3.31	0.88	5.27
240	6.94	27.77	0.54	3.23	0.79	4.75
250	6.79	28.30	0.53	3.16	0.73	4.36
260	6.65	28.81	0.52	3.09	0.67	4.04
270	6.52	29.32	0.50	3.03	0.63	3.79
280	6.39	29.81	0.49	2.97	0.60	3.57
290	6.27	30.30	0.49	2.91	0.56	3.39
300	6.15	30.77	0.48	2.86	0.54	3.23
310	6.05	31.24	0.47	2.81	0.52	3.09
320	5.94	31.70	0.46	2.76	0.49	2.97
330	5.85	32.15	0.45	2.71	0.48	2.86
340	5.75	32.60	0.44	2.67	0.46	2.76
350	5.66	33.04	0.44	2.63	0.44	2.67
360	5.58	33.47	0.43	2.59	0.43	2.59

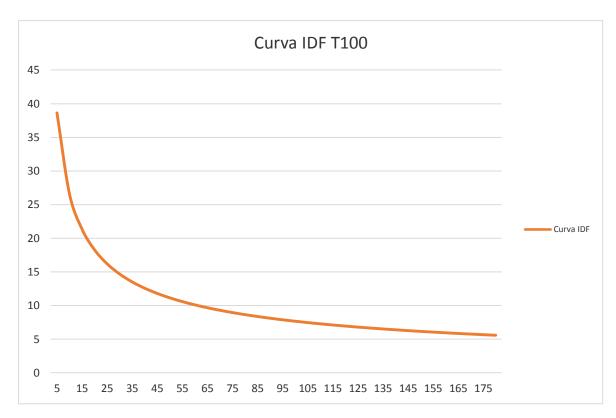


Ilustración 83: Curva IDF 10 Minutos

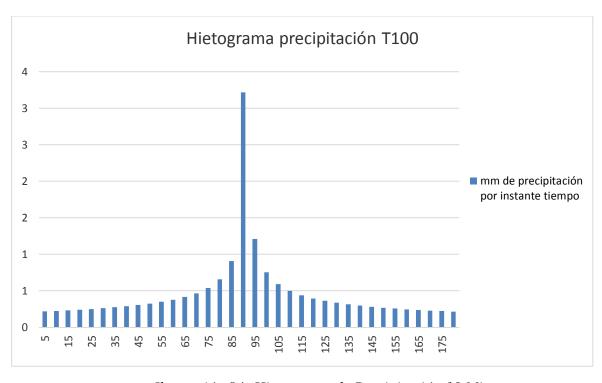


Ilustración 84: Hietograma de Precipitación 10 Minutos

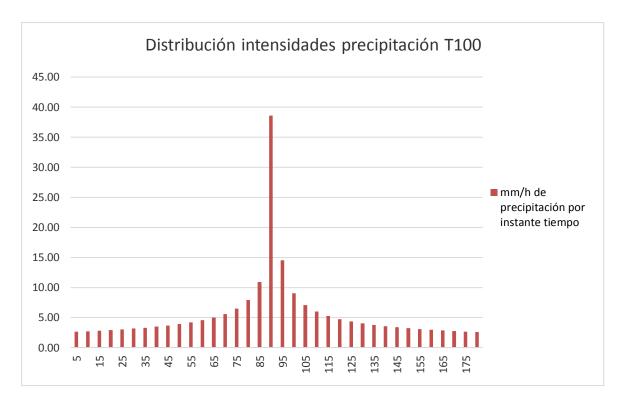


Ilustración 85: Distribución de Intensidades 10 Minutos

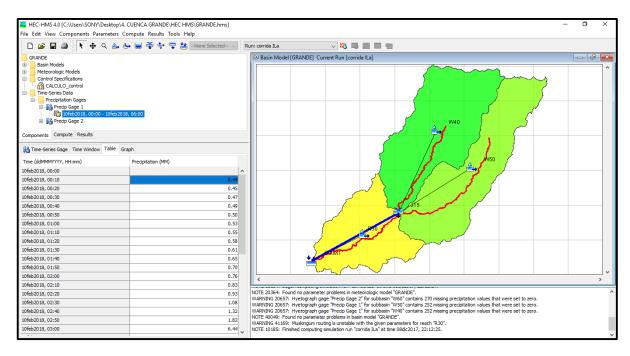


Ilustración 86: Precipitation Gage 1 cada 10 Minutos

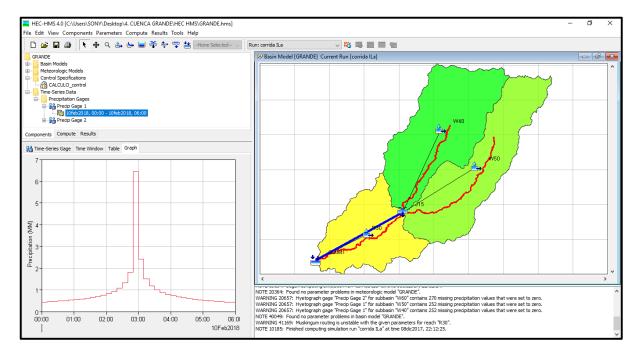


Ilustración 87: Hietograma en HEC – HMS 10 Minutos

Tabla 70: Datos Iniciales del Hietograma cada 5 Minutos

HIETOGRAMA PARA PERIODO RETORNO 100 AÑOS			
Duración de la tormenta (h)	3		
Intesidad de lluvia (mm/h)	5.58		
Precipitación en 24 horas (mm)	16.73		
Intervalos de tiempo (min)	5		

Tabla 71: Precipitaciones cada 5 Minutos

Instante (min)	Intensidad (mm/h)	Precipita ción acumulad a (mm)	Precipita ción (mm)	Intensi dad parcial (mm/h)	Precipita ción Alternad a (mm)	Int. Parcial Alterna da (mm)
5	38.63	3.22	3.22	38.63	0.22	2.63
10	26.57	4.43	1.21	14.51	0.23	2.71
15	21.34	5.34	0.91	10.89	0.23	2.81
20	18.27	6.09	0.75	9.06	0.24	2.91
25	16.20	6.75	0.66	7.90	0.25	3.03
30	14.68	7.34	0.59	7.08	0.26	3.16
35	13.51	7.88	0.54	6.47	0.28	3.31
40	12.57	8.38	0.50	5.99	0.29	3.48
45	11.79	8.84	0.47	5.60	0.31	3.68
50	11.14	9.28	0.44	5.27	0.33	3.91
55	10.58	9.70	0.42	4.99	0.35	4.19
60	10.09	10.09	0.40	4.75	0.38	4.54
65	9.67	10.47	0.38	4.54	0.42	4.99
70	9.29	10.84	0.36	4.36	0.47	5.60
75	8.95	11.19	0.35	4.19	0.54	6.47
80	8.64	11.52	0.34	4.04	0.66	7.90
85	8.36	11.85	0.33	3.91	0.91	10.89
90	8.11	12.16	0.32	3.79	3.22	38.63
95	7.88	12.47	0.31	3.68	1.21	14.51
100	7.66	12.77	0.30	3.57	0.75	9.06
105	7.46	13.06	0.29	3.48	0.59	7.08
110	7.28	13.34	0.28	3.39	0.50	5.99
115	7.10	13.62	0.28	3.31	0.44	5.27
120	6.94	13.89	0.27	3.23	0.40	4.75
125	6.79	14.15	0.26	3.16	0.36	4.36
130	6.65	14.41	0.26	3.09	0.34	4.04
135	6.52	14.66	0.25	3.03	0.32	3.79
140	6.39	14.91	0.25	2.97	0.30	3.57
145	6.27	15.15	0.24	2.91	0.28	3.39
150	6.15	15.39	0.24	2.86	0.27	3.23
155	6.05	15.62	0.23	2.81	0.26	3.09
160	5.94	15.85	0.23	2.76	0.25	2.97
165	5.85	16.08	0.23	2.71	0.24	2.86
170	5.75	16.30	0.22	2.67	0.23	2.76
175	5.66	16.52	0.22	2.63	0.22	2.67
180	5.58	16.73	0.22	2.59	0.22	2.59

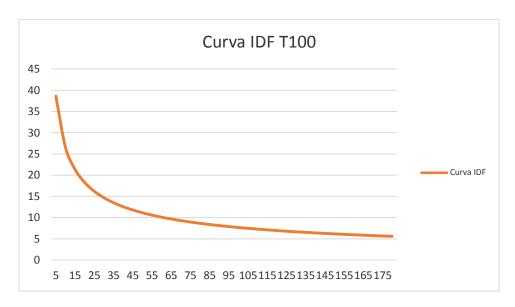


Ilustración 88: Curva IDF 5 Minutos

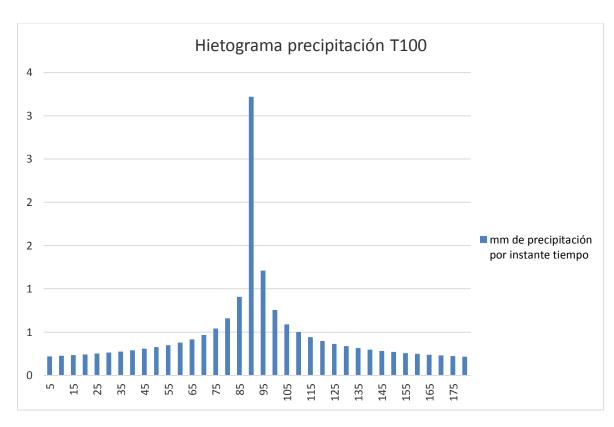


Ilustración 89: Hietograma de Precipitación 5 Minutos

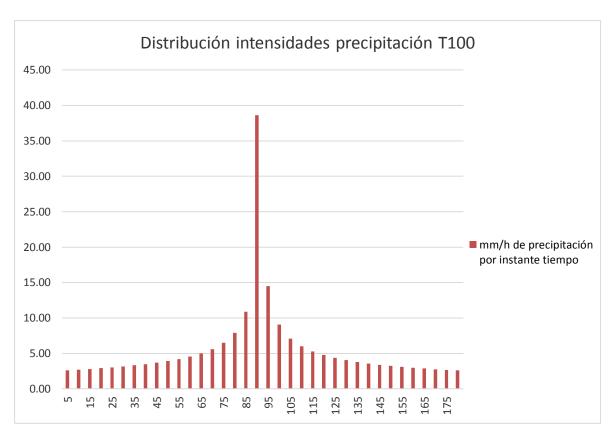


Ilustración 90: Distribución de Intensidades 5 Minutos

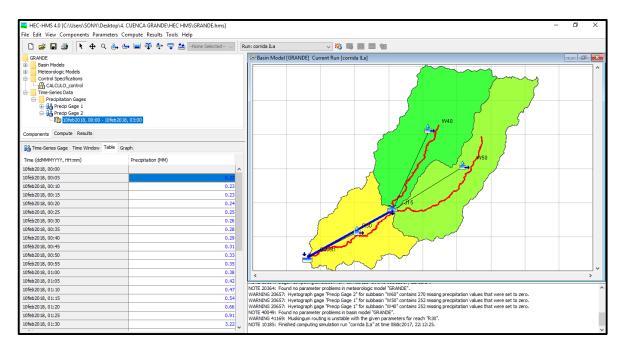


Ilustración 91: Precipitation Gage 2 cada 5 Minutos

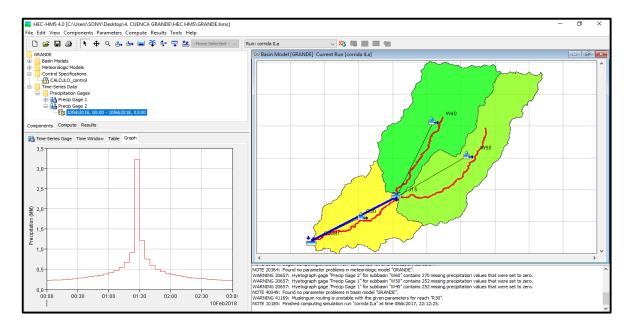


Ilustración 92: Hietograma en HEC – HMS 5 Minutos

Obtuvimos los siguientes resultados de la simulación.

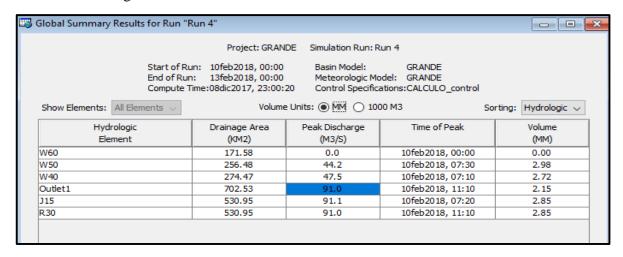


Ilustración 93: Caudal de Diseño

Finalizamos el análisis de los caudales por 2 métodos los cuales fueron el método del hidrograma Triangular y el HEC HMS, ya que estos métodos dan mejor resultado para cuencas grandes, promediamos los resultados de los otros dos métodos y nos dio 92.90 m3/s.

Tabla 72: Tabla Resumen de los Métodos y sus Resultados

METODOS	T = 100
H. Triangular:	94.80
HEC HMS	91.00
Utilizar	92.90

CAPÍTULO IV: RESULTADOS

IV. RESULTADOS

En el capítulo de resultados expondremos el proceso que demanda el programa Iber para finalizar con el estudio, y a través de los resultados que obtenemos brindar las recomendaciones adecuadas, y estaríamos cumpliendo con el objetivo final de nuestro estudio.

Ahora, iniciamos con el proceso que demanda el programa Iber, el cual consta en primer lugar de la creación del archivo, posteriormente importamos el archivo de extensión DXF que contiene la figura topográfica referencial del área en estudio, para la creación de la superficie, también designamos los diferentes usos de suelos tanto para el distrito como también para el rio.

Con los datos obtenidos en los estudios hidrológicos designamos el ingreso y salida del fluido, también ingresando los caudales que tiene la quebrada Chutana como el Rio Chilca.

Luego importamos la malla que contiene la forma del terreno el cual nos mostrara el recorrido del flujo y finalmente ingresamos el tiempo de simulación, calculamos y obtenemos los resultados, los cuales nos servirán para analizar y brindar las recomendaciones pertinentes para estos sucesos en el futuro.

4.1. Simulación Iber

Creamos el proyecto en el cual trabajaremos la simulación y se establece una carpeta donde se guardará todo el avance de la simulación incluyendo los resultados que obtendremos.

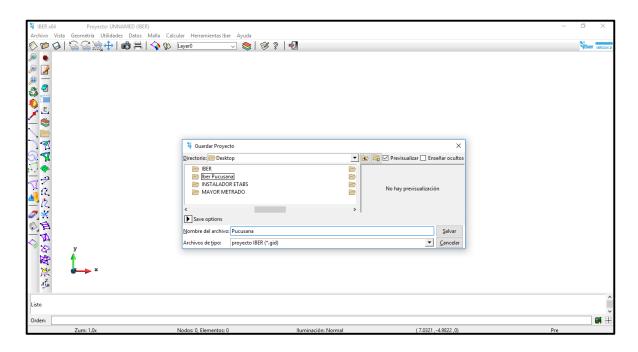


Ilustración 94: Creación de Proyecto

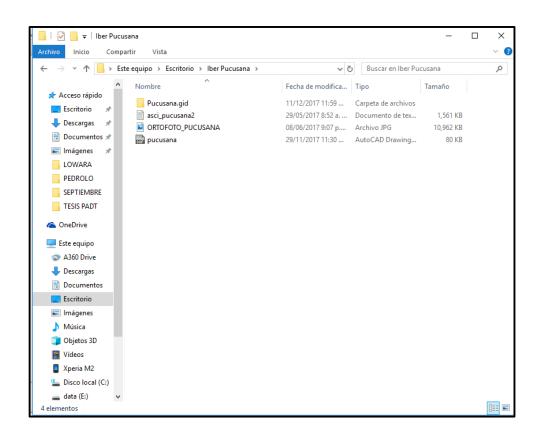


Ilustración 95: Carpeta de Simulación

Insertamos el archivo Pucusana.dxf; el cual contiene las zonas previamente establecidas en Autocad.

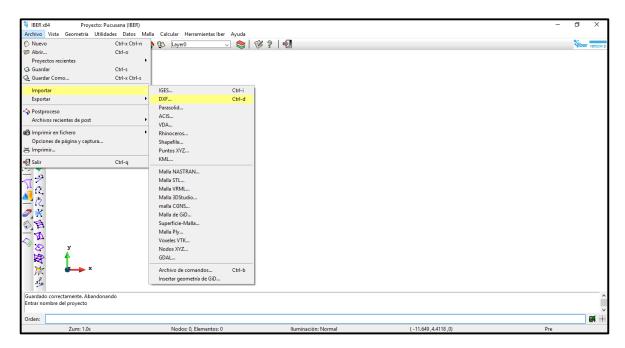


Ilustración 96: Importación de Archivo DXF

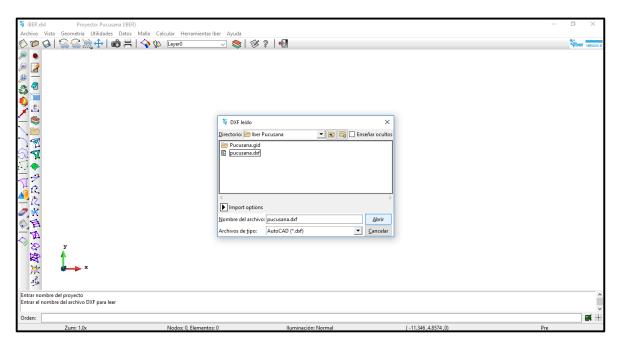


Ilustración 97: Archivo Pucusana.dxf

En la imagen siguiente podemos apreciar la geometría del área que estudiamos, además apreciamos que esta con una triangulación topográfica.

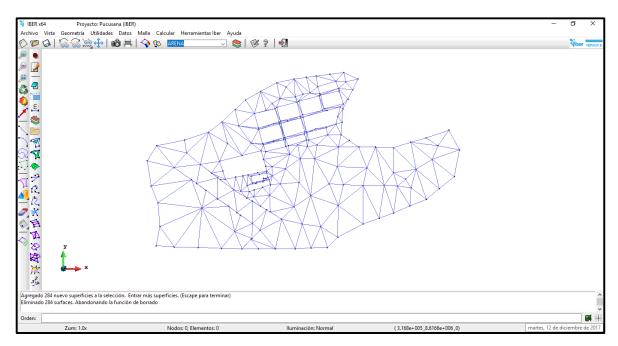


Ilustración 98: Geometría del Área en Estudio

Continuamos colapsando las líneas de la geometría, esta herramienta se aplica a todas las líneas de la triangulación.

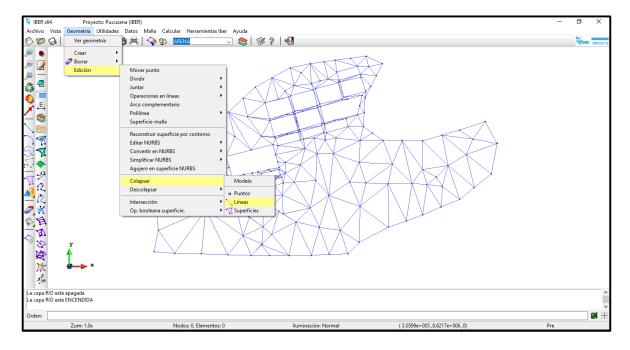


Ilustración 99: Colapsar Líneas

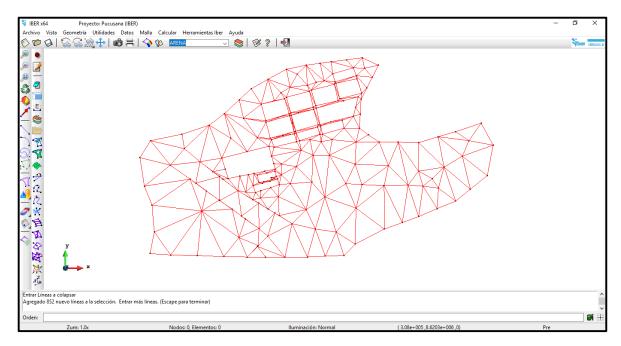


Ilustración 100: Líneas Colapsadas

A continuación, creamos la superficie para las dos áreas que tenemos en la geometría, la primera perteneciente al rio y la segunda al área urbana.

Primero ocultamos la capa del área urbana y designamos superficie por búsqueda al rio.

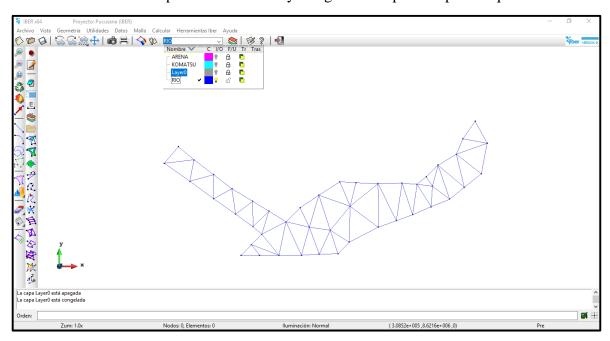


Ilustración 101: Geometría del Rio

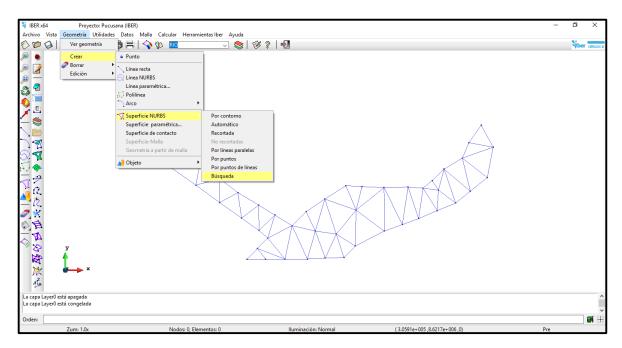


Ilustración 102: Superficie por Búsqueda del Rio

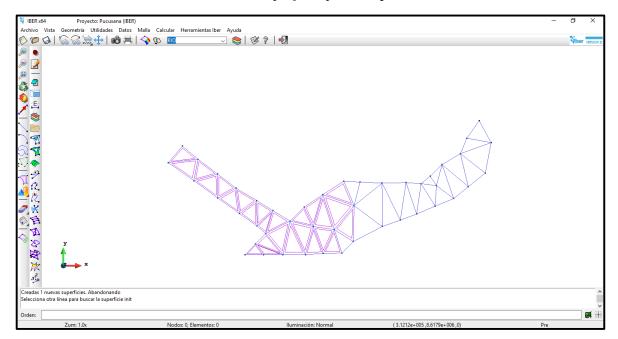


Ilustración 103: Insertando Superficie por Búsqueda

Una vez terminada la designación de superficie por búsqueda al rio, pasamos a asignarle superficie al área urbana, pero en esta ocasión asignamos por otro método que seria automático.



Ilustración 104: Creación de Superficie Automática

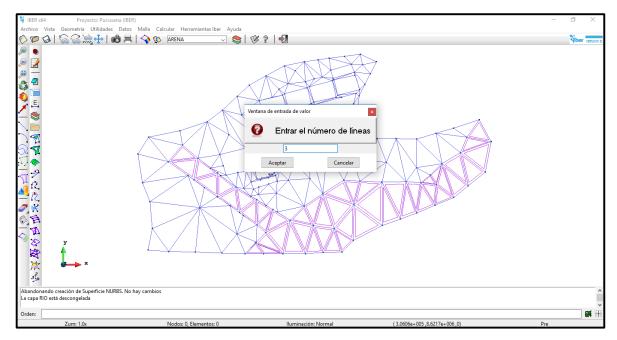


Ilustración 105: Creación de Superficie, 3 líneas

Posteriormente se crea la superficie para 4 líneas de intersección y así sucesivamente hasta que se cree la superficie total, obviando las manzanas, puesto que el flujo de simulación no ingresará en ellas.

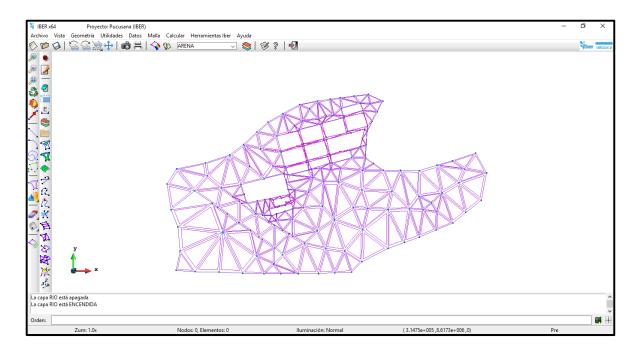


Ilustración 106: Superficie Total Creada

Como podemos apreciar todo tiene superficie menos las manzanas. Esto pasa por que el flujo debe discurrir por las calles, mas no por el interior de las manzanas.

Seguimos con la designación del uso del suelo para el rio y la zona urbana.

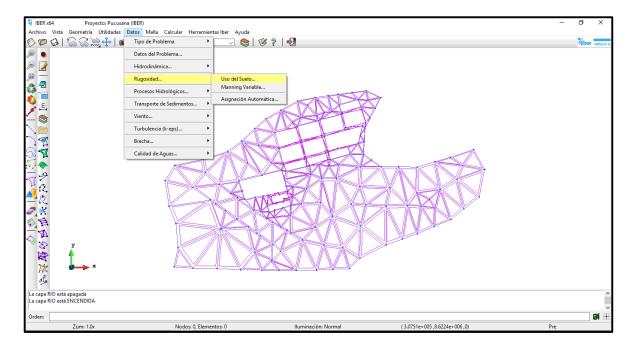


Ilustración 107: Uso de Suelo

En primer lugar, designamos el uso de suelo para el área del rio con un factor de Manning 0.025 y aplicamos.

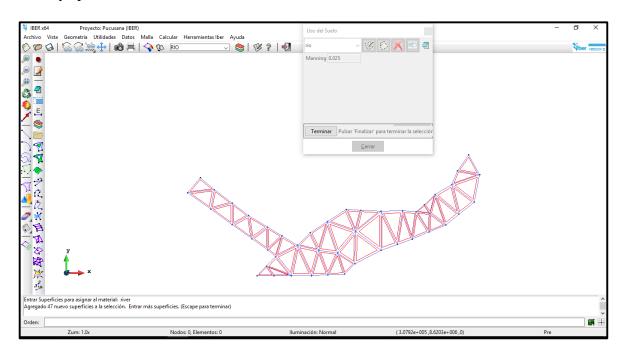


Ilustración 108: Uso de Suelo del Rio

Continuamos con la zona urbana y el uso de suelo que le designaremos es arena/arcilla con un factor Manning de 0.023 y aplicamos.

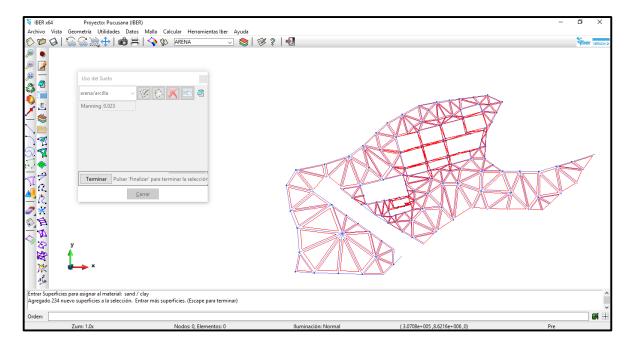


Ilustración 109: Uso de Suelo de la Zona Urbana

Ahora apreciaremos mediante colores, los dos tipos de suelos donde discurrirá el flujo de agua en la simulación que se proyectará más adelante.

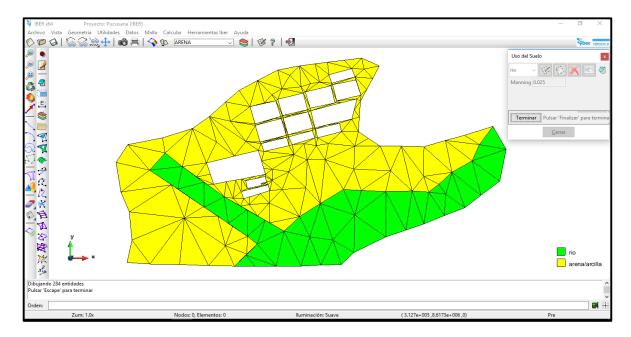


Ilustración 110: Uso de Suelos para Rio y Zona Urbana

Una vez designado el uso de suelo, seguimos con las condiciones de contorno, donde designamos las entradas y salidas del flujo, también ingresamos el valor del caudal, tanto para la quebrada Chutana, como para el Rio Chilca, datos que obtuvimos en el estudio hidrológico. Para las entradas establecemos un flujo en régimen subcritico, con los caudales de 21.05 m3/s y 92.90 m3/s para las quebrada Chutana y el rio Chilca respectivamente.

Ilustración 111: Condición de Contorno

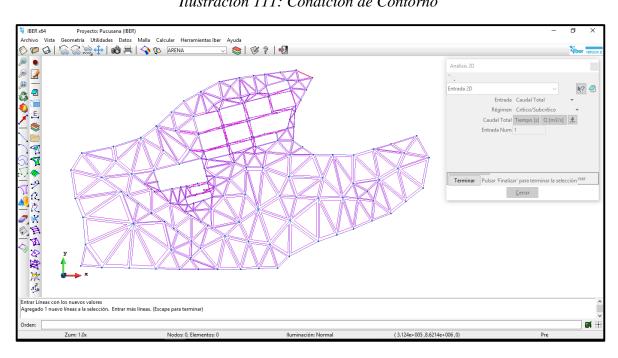


Ilustración 112: Entrada 1, Caudal 21.05 m3/s

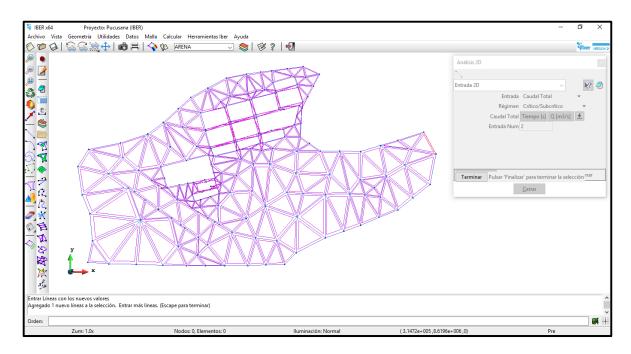


Ilustración 113: Entrada 2, Caudal 92.90 m3/s

Procedemos a indicar la salida del flujo, con un régimen supercrítico. A continuación, mostramos la imagen en la cual se aprecia toda la franja de salida que provocaría el flujo de agua.

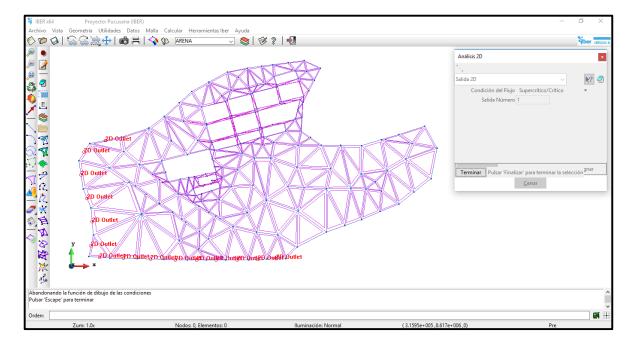


Ilustración 114: Salida del Flujo

Finalmente apreciamos tanto las entradas y las salidas del flujo mediante la imagen que le mostramos a continuación.

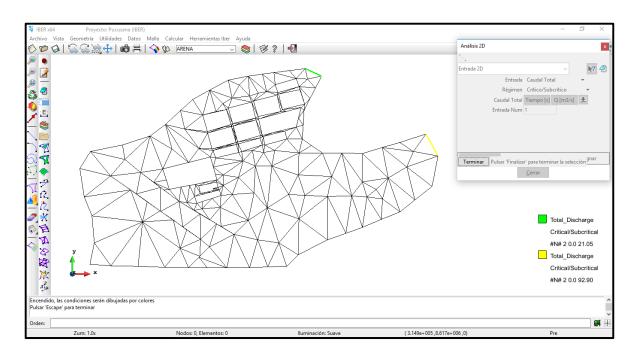


Ilustración 115: Entradas de Flujos

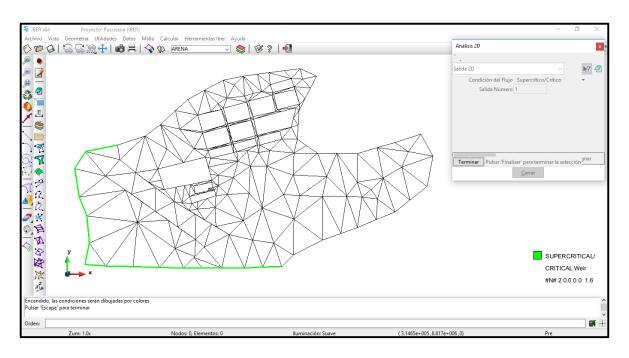


Ilustración 116: Salida del Flujo

Continuando con el proceso del programa Iber, generamos la malla no estructurada para el rio y para la zona urbana; luego importaremos su elevación mediante un archivo de extensión TXT.

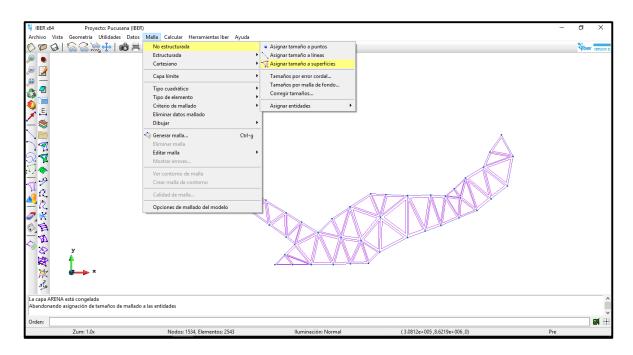


Ilustración 117: Generar Malla del Rio

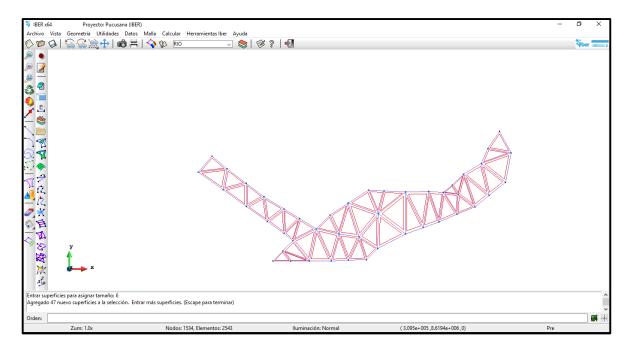


Ilustración 118: Malla de Rio Generada, Tamaño 6 m

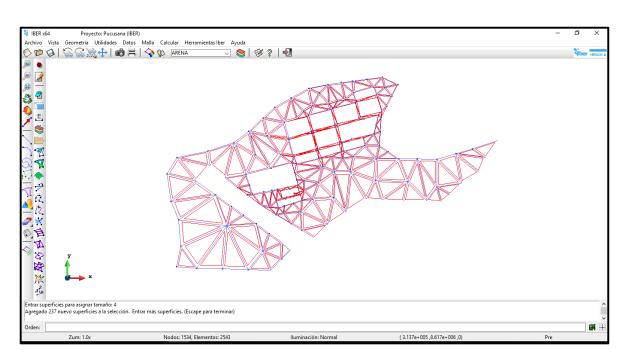


Ilustración 119: Malla de Zona Urbana Generada, Tamaño 4 m

Generamos la malla de las zonas en estudio.

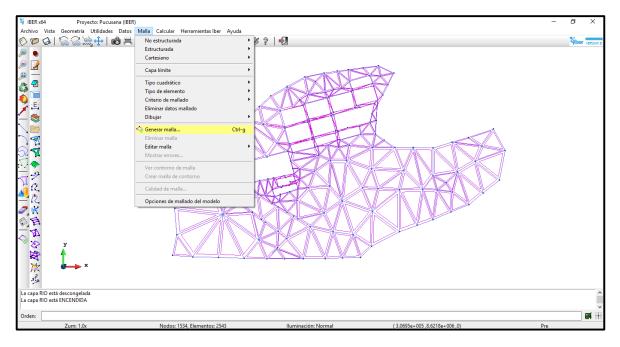


Ilustración 120: Generamos Mallas

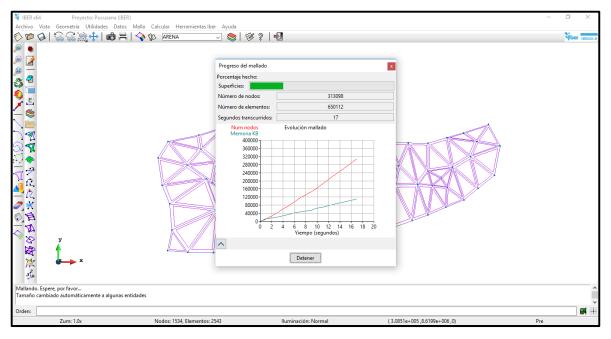


Ilustración 121: Proceso de Mallado

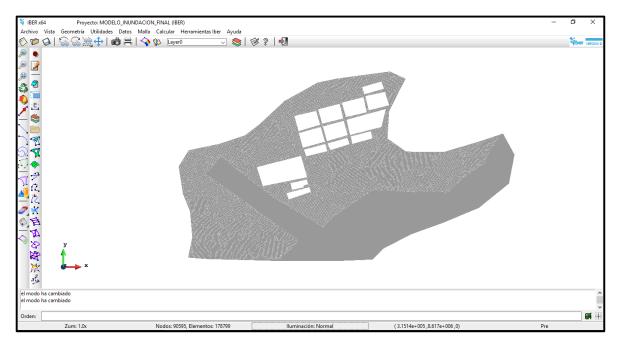


Ilustración 122: Malla del Proyecto Generada

Continuamos con la importación de los puntos del modelo digital de elevación contenidos en un archivo de texto para modificar la cota de la malla.

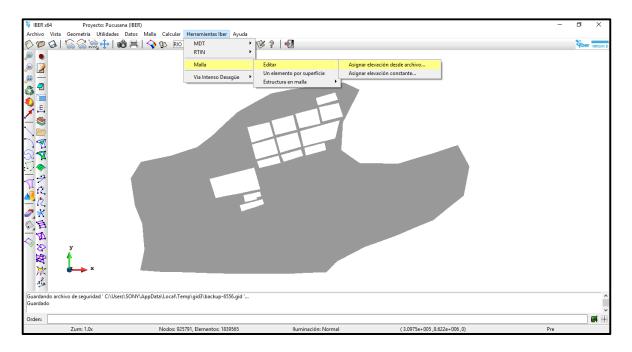


Ilustración 123: Modificación de Cota de Malla, con el Modelo Digital de Elevación

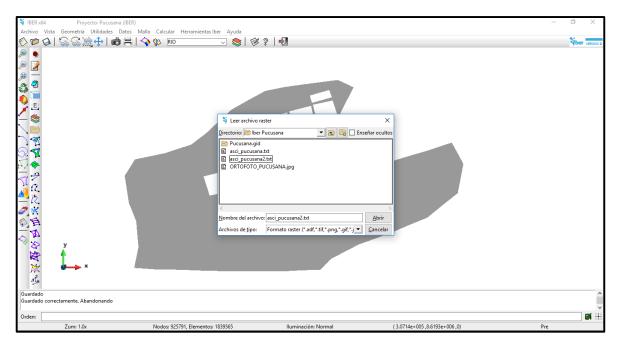


Ilustración 124: Archivo ASCI_Pucusana2.txt

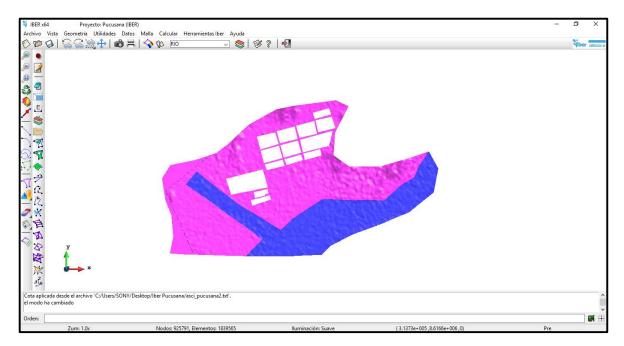


Ilustración 125: Elevación de la Malla

Finalizando los procesos en el programa Iber, ingresamos datos de tiempo de simulación aproximadamente para 14 Horas de estudio. Posteriormente calculamos la simulación para obtener nuestros resultados, los cuales nos permitirán concluir con las recomendaciones pertinentes a este estudio.

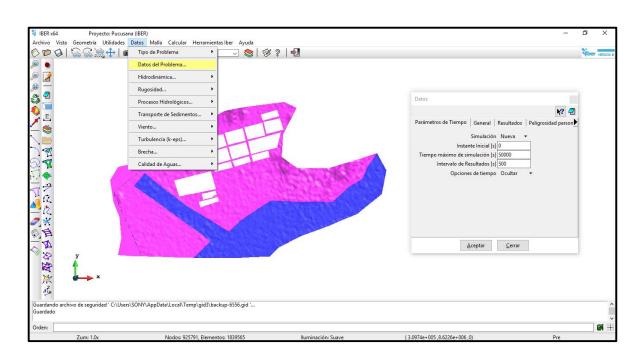


Ilustración 126: Tiempo de Simulación

Finalmente calculamos la simulación.

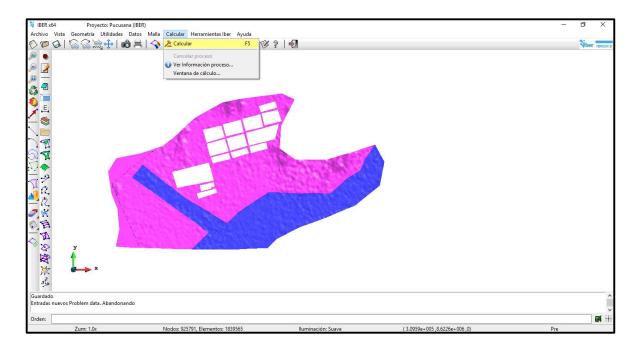


Ilustración 127: Cálculo de la Simulación

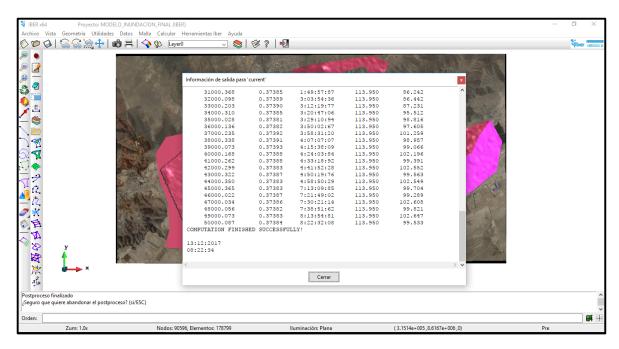


Ilustración 128: Fin del Proceso de Simulación

Pasamos al post-proceso donde veremos los resultados de la simulación, correspondiente al calado en metros (niveles de inundación).

Ilustración 129: Calado de Inundación

En la vista que mostramos a continuación podemos apreciar que, en base a la simulación dada llegaríamos a tener un calado de inundación máximo de 9.5751 m y un calado de

inundación mínimo de 0.001 m en los puntos mostrado de color rojo y azul respectivamente.

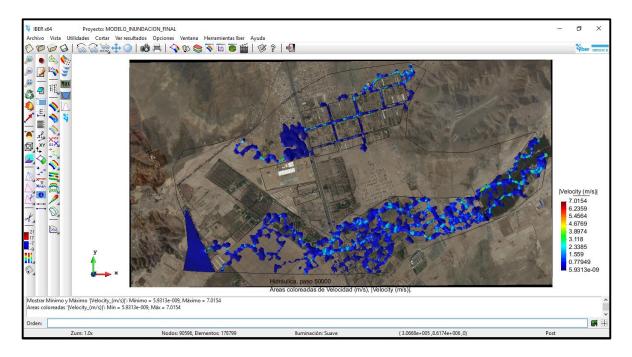


Ilustración 130: Velocidad del Flujo

En la ilustración anterior podemos verificar las velocidades alcanzadas por el flujo de los afluentes, que pueden llegar a bordear hasta los 3.00 m/s.

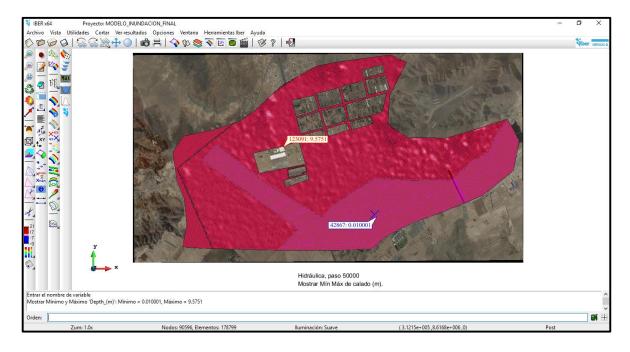


Ilustración 131: Calado de Inundación, Máximo y Mínimo

Finalizamos resumiendo los datos obtenidos por el software Iber mediante tablas de elaboración propia.

Tabla 73: Ingreso y Salida de Caudal en Simulación

Simulation time	Time Step	Time	Qin	Qout
0.000	1.00000	22:32:41:84	0.000	0.000
1000.088	0.40212	22:35:09:00	113.950	0.000
2000.166	0.40212	22:37:48:08	113.950	0.000
3000.174	0.38863	22:40:36:64	113.950	0.000
4000.074	0.38514	22:43:49:13	113.950	0.000
5000.073	0.38533	22:47:19:70	113.950	0.000
6000.300	0.38530	22:51:08:43	113.950	0.000
7000.185	0.38535	22:55:16:29	113.950	0.000
8000.103	0.38533	22:59:43:95	113.950	0.000
9000.019	0.38534	23:04:32:30	113.950	0.000
10000.321	0.38531	23:09:49:23	113.950	0.000
11000.237	0.38532	23:15:27:32	113.950	0.000
12000.154	0.38534	23:21:26:85	113.950	0.000
13000.070	0.38531	23:28:22:70	113.950	1.107
14000.370	0.38532	23:35:19:72	113.950	15.858
15000.240	0.37444	23:42:20:26	113.950	55.497
16000.017	0.37384	23:49:32:22	113.950	76.770
17000.193	0.37385	23:56:54:63	113.950	77.536
18000.342	0.37392	0:04:16:10	113.950	77.601
19000.040	0.37395	0:12:32:84	113.950	77.610
20000.182	0.37390	0:20:18:31	113.950	77.551
21000.314	0.37389	0:27:54:40	113.950	77.660
22000.055	0.37388	0:35:19:02	113.950	77.654
23000.156	0.37391	0:42:38:75	113.950	77.608
24000.256	0.37395	0:56:12:01	113.950	77.761
25000.361	0.37386	1:04:00:25	113.950	77.514
26000.092	0.37386	1:11:31:59	113.950	77.621
27000.185	0.37382	1:19:02:10	113.950	78.081
28000.280	0.37391	1:26:44:54	113.950	78.001
29000.005	0.37384	1:34:38:64	113.950	77.988
30000.267	0.37394	1:42:17:30	113.950	83.505
31000.368	0.37385	1:49:57:87	113.950	86.242
32000.098	0.37389	3:03:54:36	113.950	86.442
33000.203	0.37390	3:12:19:77	113.950	87.231
34000.310	0.37385	3:20:47:06	113.950	95.512

35000.028	0.37381	3:29:10:94	113.950	98.816
33000.028		3.29.10.94	113.930	96.610
36000.136	0.37382	3:50:02:67	113.950	97.605
37000.235	0.37392	3:58:31:20	113.950	101.259
38000.338	0.37391	4:07:07:07	113.950	98.957
39000.073	0.37393	4:15:38:09	113.950	99.066
40000.168	0.37388	4:24:03:84	113.950	102.196
41000.262	0.37388	4:33:18:92	113.950	99.391
42000.299	0.37383	4:41:52:28	113.950	102.552
43000.322	0.37387	4:50:19:76	113.950	99.563
44000.350	0.37383	4:58:50:29	113.950	102.549
45000.365	0.37383	7:13:09:85	113.950	99.704
46000.022	0.37387	7:21:49:02	113.950	99.289
47000.034	0.37386	7:30:21:14	113.950	102.608
48000.056	0.37382	7:38:51:62	113.950	99.821
49000.073	0.37383	8:13:54:81	113.950	102.647
50000.087	0.37384	8:22:32:08	113.950	99.533

Tabla 74: Resultado de Inundación

Calado de Inundación			
Máximo	9.5751 m		
Mínimo	0.0100 m		

CONCLUSIONES

- Se concluye del diagnóstico situacional que la ciudad de Pucusana se encuentra en una zona crítica, por la interacción con el Rio Chilca y la quebrada Chutana, las cuales están directamente dirigida hacia su ámbito territorial y pueden causar inundación.
- Se concluye del estudio topográfico que, al realizar nuestra tesis simulando con una topografía virtual extraída de un programa satelital de la nasa, hemos obtenido resultados no muy alejados de los que se podría presentar en la realidad, además por el tipo de topografía que presenta el área de estudio. Cave recalcar que se podría realizar el estudio topográfico mediante drone y los resultados serían mucho más exactos, pero no lo consideramos por tiempo y costos.
- Se concluye del estudio Hidrológico que, ya que la ciudad de Pucusana no cuenta con estaciones pluviométricas cerca de su ámbito territorial, hemos optado por obtener datos históricos de estaciones más próximas y que alimentan al rio que es objeto de estudio, obteniendo así los máximos caudales tanto para el rio Chilca como para la quebrada Chutana y son 92.90 m³ y 21.05 m³ respectivamente.
- Se concluye de la simulación en el programa Iber que, los tirantes generados con la simulación hidráulica alcanzan alturas promedio de 1.50 m (Ilustración 129, Página 196), tanto en la zona urbana y en el rio Chilca. Las velocidades del flujo llegan a un promedio de 3.00 m/s (Ilustración 130, Página 197), esto podría generar en caso de inundación peligro para la población asentada en la ciudad de Pucusana, además de los sembríos aledaños al rio Chilca.
- En referencia a los resultados obtenidos se recomienda estructuras hidráulicas de encausamiento tanto para el rio Chilca y para la quebrada Chutana, que se podrían proyectar en la parte inicial del desborde en la simulación (Ilustración 115, Página 189)

RECOMENDACIONES

- Recomendamos ante el estudio realizado que, con los acontecimientos que en el pasado verano hemos vivido y muchas personas lo han perdido todo, bienes y familiares, se deben realizar más estudios de esta índole, e incluso más avanzados, proyectando soluciones inmediatas para futuras catástrofes que se podrían presentar en el futuro inmediato.
- Recomendamos que para una mejor evaluación se realicen estudios topográficos con drone para mayor precisión. Estos podrían tener un costo elevado, pero la precisión que nos brindan la valen, además es un estudio de alta tecnología y que se realiza en un tiempo muy corto y va de la mano con la necesidad de las evaluaciones inmediatas.
- Recomendamos del estudio hidrológico que, se tendría que tener una estación más cercana a los afluentes que tenemos en estudio, así como también para todos los afluentes críticos que podrían generar daños, todo esto para poder generar un estudio mucho más preciso y obtener caudales reales.
- Recomendamos que se aprovechen las distintas herramientas que nos brinda el programa Iber para la simulación de inundaciones y poder evaluar los distintos puntos críticos en el país, ya que podríamos ser afectados constantemente por fenómenos del niño más fuertes.
- Recomendamos estructuras de encausamiento para el rio Chilca y para la quebrada Chutana, además podemos recomendar una estructura de defensa ribereña en el rio Chilca, la cual servirá, además de encausamiento, como protección de terrenos de cultivos aledaños.

BIBLIOGRAFIA

- Gorbeña A., Blanco G., y Vives D. (2009), Estudio de Inundabilidad del Rio Gaznata a su paso por la Localidad del Herradon, Avila (master en ingeniería y gestión del agua). EOI Escuela de Negocios, Joaquin, España.
- Melville, B.W. and Sutherland, AJ. (1988) "Design Method for Local Scour at Bridge Piers", Sociedad Americana de Ingenieros Civiles, Revista de la División Hidráulica, Vol. 114, No. 10.
- Camp A. (2016), Análisis de la problemática de inundabilidad en el municipio de Adaia (Valencia) y propuesta de soluciones (trabajo final de grado). Universitat Politécnica de Valencia, Valencia, España.
- Nunez S. (2006), Variación del Cauce del Rio Tumbes en el Sector Higuerón- Desembocadura: relación con los peligros hidrometereologicos, pp. 147-150, Lima, Perú.
- AUTORIDAD NACIONAL DEL AGUA, (2011), Tratamiento de Cauce del Rio para el Control de Inundaciones en la Cuenca Santa, Perú.
- INSTITUTO NACIONAL DE DEFENSA CIVIL, (2011), Manual de Estimación del Riesgo ante Inundaciones Fluviales, Perú.
- Entitat de Sanejament D' Algües, Proyecto de Construcción de la Nueva E.D.A.R. y Colectores Generales de Peñiscola (Castellon), Anejo Nº07.