UNIVERSIDAD PRIVADA ANTENOR ORREGO

ESCUELA DE POSTGRADO

EVALUACIÓN DE LA DIVERSIDAD DE MOSCAS DE LA FRUTA EN LOS VALLES DE MOTUPE Y OLMOS EN EL PERIODO 2017-2018 DE LA REGIÓN LAMBAYEQUE

TESIS

PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS AGRARIAS MENCION EN PROTECCION DE CULTIVOS

AUTORA: Ing. Margarita Ruiz Graus

ASESOR: Dr. Juan Carlos Cabrera La Rosa

Trujillo – Perú 2020

MIEMBROS DEL JURADO:

Dr. Milton Américo Huanes Mariños **PRESIDENTE** Dr. José Guillermo González Cabeza **SECRETARIO** Dra. Blanca Flor Robles Pastor **VOCAL**

Dr. Juan Carlos Cabrera La Rosa ASESOR

DEDICATORIA

A la memoria de mi querida madre: Virginia Graus	3
A Julio Ruiz, mi amado padre	

A mi familia:

María Lourdes y Jorge Alberto, quienes son mi estímulo de superación.

AGRADECIMIENTO

Agradezco al Altísimo por darme salud y fortaleza para cumplir con una meta más en mi vida.

Mi sincero reconocimiento al Dr. Juan Carlos Cabrera La Rosa, profesor y asesor del presente trabajo, por su orientación y acertados consejos a lo largo del desarrollo de esta investigación.

A mis amigos Wilson Guerrero, Denis Pacheco y Miguel Monja quienes me brindaron su apoyo en la realización del presente trabajo de investigación. Para ellos: Mi sincera gratitud y que Dios los bendiga.

AGRADECIMIENTO

Al SERVICIO NACIONAL DE SANIDAD AGRARIA (SENASA), mi especial agradecimiento al personal técnico de la Subdirección de Moscas de la Fruta y Proyectos Fitosanitarios, quienes permitieron el uso de la data del SIIMF para la realización de este trabajo de investigación.

Mi gratitud a la Ing. Esmilda Arévalo Tiglia, Directora Ejecutiva del SENASA LAMBAYEQUE, por su disposición y apoyo para la ejecución del presente trabajo.

RESUMEN

En el trabajo, se analizó la diversidad de las moscas de la fruta en base a las capturas en trampas con atrayentes, el registro de hospedantes y el cálculo de los índices de diversidad de *Ceratitis capitata* y el complejo *Anastrepha* spp. en los valles de Motupe y Olmos en la región Lambayeque en los años 2017 y 2018.

Las muestras de adultos de mosca de la fruta fueron colectadas en cuatro sectores del valle de Motupe (Motupe, Arrozal Tongorrape y Chochope) y en cuatro del valle Olmos (San Cristóbal, Insculas, Las Norias y Olmos). La identificación de los insectos se realizó de acuerdo a los procedimientos de trampeo y muestreo de frutos establecidos en el Manuel del Sistema Nacional de Vigilancia de Moscas de la Fruta de SENASA – Perú. En el trabajo se registró que los picos poblacionales más altos de adultos de *Ceratitis capitata* en el valle de Motupe fueron en los meses de febrero (Moscas Trampas por Día; MTD = 1.438), y abril (4.631) y en el valle de Olmos, en los meses de enero (2.855) y abril (0.317) en los años 2017 y 2018, respectivamente. Los picos más altos del complejo de especies de *Anastrepha* en el valle de Motupe también fueron en los meses de febrero (0.79), y abril (2.01), pero en el valle de Olmos fueron en enero (1.33) y marzo (1.18) en los años 2017 y 2018, respectivamente.

Los registros de hospederos verificados en el presente trabajo para *Ceratitis capitata* (Wiedemann) fueron: café arábico, carambola, cirolero, falso almendro, granado, mandarina, mango, naranja agria, naranjo dulce, pomarrosa, tangelo, vichayo, guayabo, pimiento zapote, ají, ají paprika, cerezo, chirimoyo, duraznero, lima dulce, limón rugoso, manzano, papaya, toronja, de *Anastrepha fraterculus* (Wiedemann) fueron: anona, carambola, cerezo, cirolero, falso almendro, guayabo, mandarino, mango, pomarrosa, toronja, zapote, tangelo, de *Anastrepha obliqua* (Macquart) fueron cirolero, carambola y mango, de *Anastrepha distincta* fue pacae / guaba, y de *Anastrepha chiclayae* fue corrocoto.

En la evaluación de diversidad alfa que considera la diversidad intrínseca de cada comunidad, según el índice de Margaleff el valle Olmos fue el más rico en especies (0.8317), según el índice de Simpson el valle de Olmos fue el más diverso (0.6734) y según el índice de Shannon – Wiener el valle de Olmos fue el más diverso (1.7338) todo en el año 2018. Para la diversidad beta, que mide la tasa de cambio para una misma especie en dos comunidades adyacentes, para el valle Motupe, según el índice de Jaccard los sectores Motupe y Arrozal tienen el más alto porcentaje de similitud (57.14%) en

ambos años, según el índice de Whittaker el mayor recambio de especies se dio en los

sectores Motupe y Chochope (0.5555) en el 2017; para el valle Olmos según el índice de

Jaccard los sectores San Cristóbal e Insculas; Insculas y Olmos y Las Norias y Olmos

tienen el más alto porcentaje de similitud (40%) en el 2018, según el índice de Whittaker

el mayor recambio de especies se dio en los sectores Insculas y Las Norias (0.38) en

2018.

Se concluye que las moscas de la fruta Ceratitis capitata y el complejo Anastrepha

presentan una gran diversidad y amplia distribución en hospedantes cultivados y no

cultivados de los dos valles Motupe y Olmos debido a la gran abundancia de alimentación.

PALABRAS CLAVES: diversidad, fluctuación poblacional Ceratitis capitata,

complejo Anastrepha

7

ABSTRACT

In this research, the diversity of fruit flies was analyzed based on catches in traps with attractants, the registration of hosts and the calculation of the diversity indices of Ceratitis capitata and the Anastrepha spp complex in Motupe and Olmos valleys in the Lambayeque region in 2017 and 2018.

The samples of fruit fly adults were collected in four sectors of the Motupe Valley (Motupe, Arrozal Tongorrape and Chochope), and in four of the Olmos Valley (San Cristóbal, Insculas, Las Norias and Olmos). Insects were sampled according to the trapping and fruit sampling procedures established in the Manuel of the National Fruit Flies Surveillance System of SENASA - Peru.

This investigation recorded that the highest adult population peaks of Ceratitis capitata in the Motupe Valley were in February (Fly Traps per Day; MTD = 1,438) and April (4,631), and in the Olmos Valley, in January (2,855) and April (0.317) in the years 2017 and 2018, respectively. The highest peaks of the Anastrepha species complex in Motupe Valley were also in February (0.79) and April (2.01), but in Olmos Valley they were in January (1.33) and March (1.18) in the years 2017 and 2018, respectively.

The records of verified hosts for Ceratitis capitata (Wiedemann) were: Arabica coffee, carambola, cirolero, false almond, pomegranate, tangerine, mango, sour orange, sweet orange, pomarrosa, tangelo, vichayo, guava, zapote pepper, chili pepper, paprika chili pepper, cherry, custard apple, peach / peach tree, sweet lime, rough lemon, apple tree, papaya, grapefruit; for Anastrepha fraterculus (Wiedemann) were: custard apple, carambola, cherry, cirolero, false almond, guava, mandarin, mango, Rosemary, grapefruit, zapote, tangelo; for Anastrepha obliqua (Macquart) were cirolero, carambola, mango; for Anastrepha was different pacae / guaba; and for Anastrepha chiclayae was corrocoto.

In the evaluation of alpha diversity that considers the intrinsic diversity of each community, according to the Margaleff index the Olmos valley was the richest in species (0.8317), according to the Simpson index the Olmos valley was the most diverse (0.6734) and according to the Shannon - Wiener index, the Olmos valley was the most diverse (1,7338) in 2018. For beta diversity, which measures the exchange rate for the same species in two adjacent communities, for the Motupe valley, according to the Jaccard index, the Motupe and Arrozal sectors have the highest percentage of similarity (57.14%)

in both years, according to the Whittaker index, the highest species turnover occurred in

the Motupe and Chochope sectors (0.5555) in 2017; for the Olmos valley according to

the Jaccard index, the San Cristobal and Insculas sectors; Insculas and Olmos and Las

Norias and Olmos have the highest percentage of similarity (40%) in 2018. According to

the Whittaker index, the greatest exchange of species occurred in the Insculas and Las

Norias sectors (0.38) in 2018.

It is concluded that Ceratitis capitata and Anastrepha complex have a great diversity and

wide distribution in cultivated and uncultivated hosts in Motupe and Olmos valleys due

to the great abundance of food.

KEYWORDS: diversity, population fluctuation *Ceratitis capitata*, Anastrepha complex

9

CONTENIDO

PORTADAi
MIEMBROS DEL JURADOii
DEDICATORIAiii
AGRADECIMIENTOiv
RESUMENv
ABSTRACTvii
TABLA DE CONTENIDOS
INDICE DE FIGURASxi
INDICE DE TABLASxiii
LISTA DE ANEXOSxiv
I. INTRODUCCION
II. REVISION DE LITERATURA
MATERIAL Y MÉTODOS
1.1 Ubicación. 21
1.2 Población de Estudio
1.3 Muestra
1.4 Operacionalización de variables. 22
1.5 Procedimiento
1.6 Técnica de recolección de datos
1.7 Procesamiento y Análisis Estadístico
RESULTADOS
1.8 Fluctuación de mosca de la fruta de Ceratitis capitata (Wied) en los valles de Motupe
y Olmos En el periodo enero 2017 hasta setiembre
201825
1.9 Fluctuación del complejo Anastrepha spp en los valles de Motupe y Olmos En el
periodo enero 2017 hasta setiembre 2018
1.10 Frecuencia del Complejo Anastrepha spp. capturadas en trampas Multilure en
los valles Motupe y Olmos en el periodo enero 2017 hasta setiembre
201831
1.11Fluctuación mensual de Ceratitis capitata versus los datos meteorológicos en los
valles Motupe y Olmos 2017 – 2018

1	.12 Fluctuaci	ón mer	isual d	lel co	mplejo	Anastrepha	spp.	versus	los	datos
	meteoroló	gicos	en	los	valles	Motupe	y	Olmos	2017	7 –
	2018						• • • • • • • • •			40
1	.13 Identifica	ción de	hospeda	intes c	ultivado	s y no cultiva	dos de	la mosca	a de la	ı fruta
	en los val	les Motı	ipe y Ol	mos						47
1	.14 Porcenta	ije de in	festació	n						55
1	.15 Evaluac	ión de la	a biodiv	ersida	d alfa					60
1	.16 Evaluació	n de la o	diversid	ad beta	a	• • • • • • • • • • • • • • • • • • • •				61
DISC	CUSION				• • • • • • • • • •					63
CON	CLUSIONES	.								69
REC	OMENDACI	ONES								71
REF	ERENCIAS									72
ANE	XOS									78

INDICE DE FIGURAS

Figura N° 1.	Fluctuación mensual de Ceratitis capitata en el valle Motupe del año
	2017 (enero-diciembre) y 2018 (enero – setiembre) capturadas en las
	trampas Jackson
Figura N° 2. F	luctuación mensual de <i>Ceratitis capitata</i> en el valle Olmos del año 2017
	(enero-diciembre) y 2018 (enero – setiembre) capturadas en las trampas
	Jackson26
Figura N° 3. F	Fluctuación mensual de <i>Ceratitis capitata</i> en los valles Motupe y Olmos
C	de enero 2017 hasta setiembre 2018 capturadas en las trampas
	Jackson27
Figura N° 4.	Fluctuación mensual del Complejo <i>Anastrepha</i> en el valle Motupe de
	enero 2017 hasta setiembre 2018 capturadas en las trampas
	Multilure29
J	Fluctuación del Complejo <i>Anastrepha</i> en el valle Olmos de enero 2017 hasta setiembre 2018 capturadas en las trampas Multilure
	Fluctuación del Complejo <i>Anastrepha</i> en los valles de Motupe y Olmos de enero 2017 hasta setiembre 2018 capturadas en trampas Multilure
C	Complejo <i>Anastrepha</i> del valle Motupe capturadas en trampas Multilure año 2017 y 201831
_	Complejo <i>Anastrepha</i> del valle Olmos capturadas en trampas Multilure año 2017 y 2018
O	Comparación de la fluctuación poblacional de <i>Ceratitis capitata</i> versus la Precipitación del valle Motupe 2017-201834
	Comparación de la fluctuación poblacional de <i>Ceratitis capitata</i> versus
O	la Humedad relativa (%) del valle Motupe 2017-2018
Figura N° 11.	Comparación de la fluctuación poblacional de Ceratitis capitata versus
	la Temperatura mínima y máxima del valle Motupe 2017-
	2018

Figura N° 12	. Comparación de la fluctuación poblacional de Ceratitis capitata versus
	precipitación del valle Olmos 2017
Figura N° 13	. Comparación de la fluctuación poblacional de Ceratitis capitata versus
	Humedad relativa valle Olmos 2017-201838
Figura N° 14	. Comparación de la fluctuación poblacional de Ceratitis capitata versus
	la Temperatura mínima y máxima del valle Olmos 2017- 2018
Figura N° 15	c. Comparación de la fluctuación poblacional del complejo <i>Anastrepha</i> versus precipitación del valle Motupe 2017
Figura N° 16	Comparación de la fluctuación poblacional del complejo <i>Anastrepha</i> versus Humedad relativa valle Motupe 2017-201842
Figura N° 17	versus la Temperatura mínima y máxima del valle Motupe 2017-2018
Figura N° 18	S. Comparación de la fluctuación poblacional del complejo <i>Anastrepha</i> versus precipitación del valle Olmos 2017
Figura N° 19	Comparación de la fluctuación poblacional del complejo <i>Anastrepha</i> versus Humedad relativa valle Olmos 2017-201845
Figura N° 20	Comparación de la fluctuación poblacional del complejo <i>Anastrepha</i> versus la Temperatura mínima y máxima del valle Olmos 2017-2018

INDICE DE TABLAS

Tabla Nº 1. Recuperación de adultos de moscas de la fruta de diferentes cultivos
hortofrutícolas evaluados en el valle de Motupe 2017 (enero -
diciembre)48
3227-222-2-)
Tabla N° 2. Recuperación de adultos de moscas de la fruta de los diferentes cultivos
hortofrutícolas evaluados en el valle de Motupe en el año 2018 (enerc
– setiembre)
Tabla N° 3. Recuperación de adultos de moscas de la fruta adultos de diferentes
-
cultivos hortofrutícolas evaluados en el valle de Olmos 2017 (enero -
diciembre)51
Tabla Nº 4. Recuperación de la mosca de la fruta adultos de diferentes cultivos
hortofrutícolas evaluados en el valle de Olmos 2018 (enero -
setiembre)52
Tabla N° 5. Especies de mosca de la fruta recuperadas por hospedante en los valles de
Motupe y Olmos, periodo 2017 -201853
Tabla N° 6. Resumen de los hospedante en los valles de Motupe y Olmos, periodo
2017 - 201854
Tabla N° 7. Porcentaje de infestación del valle Motupe 201755
Tabla N° 8 . Porcentaje de infestación del valle Motupe 201856
Tabla N° 9. Porcentaje de infestación del valle Olmos 2017
Tabla N° 10. Porcentaje de infestación del valle Olmos 2018
Tabla N°11. Índices de diversidad alfa de los valles Motupe y Olmos60
Tabla 1 11. Indices de diversidad ana de los valles Motupe y Olinos
Tabla N° 12. Índices de diversidad beta del valle Motupe
Tabla N° 13. Índices de diversidad beta del valle Olmos

LISTA DE ANEXOS

Anexo N° 1: Ubicación geográfica de los Valles Motupe y Olmos del departamento Lambayeque	
Anexo N°2: Datos meteorológicos de las Estaciones meteorológicas Automáticas Tongorrape (Motupe) y Olmos del periodo enero 2017 hasta jur 2018	nic
Anexo N° 3: Etapas técnicas para el control de las moscas de la fruta	80
Anexo N° 4: Fluctuación poblacional de <i>C. capitata</i> del valle Motupe 2017-20 versus los datos meteorológicos de la Estación Meteorológica Automáti Tongorrape.	ica
Anexo N° 5: Fluctuación poblacional de <i>C. cápita</i> del valle Olmos 2017-20 versus los datos meteorológicos de la Estación Meteorológica Automátionos	ica
Anexo N° 6: Fluctuación poblacional del complejo Anastrepha del valle Motupe 201 2018 versus los datos meteorológicos de la Estación Meteorológicos Automática Tongorrape	ica
Anexo Nº 7: Fluctuación poblacional del complejo Anastrepha del valle Olmos 201 2018 versus los datos meteorológicos de la Estación Meteorológicos Automática Olmos	ica
Anexo N° 8: Evaluación global de la distribución estacional de la mosca mediterránea la fruta, <i>Ceratitis capitata</i> (Diptera: Tephritidae)	
Anexo N° 9: Fenología de los hospedantes de las moscas de la fruta del valle Motu 2018	-
Anexo N° 10: Fenología de los hospedantes de las moscas de la fruta del valle Motu 2018	ıpe
Anexo N°11: Fenología de los hospedantes de las moscas de la fruta del valle Olm 2018	
Anexo N° 12: Fenología de los hospedantes de las moscas de la fruta del valle Olm 2018	
Anexo N° 13: Capturas mensuales de <i>Ceratitis capitata</i> en trampas Jackson por sector en el valle Motupe, 2017	

Anexo Nº 14:	Capturas mensuales de Ceratitis capitata en trampas Jackson por sectores
	en el valle Motupe, 201890
Anexo N° 15:	Capturas mensuales de Ceratitis capitata en trampas Jackson por sectores
	en el valle Olmos, 201791
Anexo N° 16:	Capturas mensuales de Ceratitis capitata en trampas Jackson por sectores
	en el valle Olmos, 201891
Anexo Nº 17:	Capturas mensuales del complejo Anastrepha spp en trampas Multilure en
	los sectores valle Motupe, 201792
Anexo Nº 18:	Capturas mensuales del complejo Anastrepha spp en trampas Multilure en
	los sectores valle Motupe, 201894
Anexo Nº 19:	Capturas mensuales del complejo <i>Anastrepha spp</i> en trampas Multilure en
	los sectores valle Olmos 201795
Anexo N° 20:	Capturas mensuales del complejo <i>Anastrepha spp</i> en trampas Multilure en
	los sectores valle Olmos 2018
Anexo Nº	21: Red de trampeo Jackson y Multilure valle Olmos
	2018
Anexo N° 22:	Red de trampeo: Jackson y Multilure valle Motupe 2018100
Anexo N° 23:	Especies de mosca de la fruta capturadas por la redes de trampeo en los
	valles Motupe y Olmos

I. INTRODUCCION

A nivel mundial las exportaciones en el Perú han aumentado considerablemente, en el año 2016 las exportaciones alcanzan los U\$ 5,557 millones, el 2017 las exportaciones llegan a los U\$ 5,712 millones, para junio del año 2018 las exportaciones ya se elevaron a los U\$ 2,749 millones, con un incremento de 19.4 frente al mismo período del 2017 (AGRODATAPERU, 2018; SUNAT, 2018), la producción de frutas en el periodo 2001 y 2012 ha incremento 3,5% (FAO, 2018).

En la actualidad la mosca de la fruta es considerada una plaga de importancia económica en muchos países de exportación frutícola ((Vaníčková et al., 2015). Siendo estudiada por primera vez en Costa Rica en frutos de guayaba, donde describieron la biología, morfología y su ecología (Keilin y Preciado, 1913). Este insecto pertenece a la familia Tephritidae se encuentra entre las familias más grandes de los Dípteros, incluye aproximadamente 4000 especies de 500 géneros se distribuyen en regiones tropicales, subtropicales y templadas, de las cuales 200 especies son económicamente importantes (Shafiq Ansari, Hasan, y Ahmad, 2012). Esta plaga está muy distribuida, se encuentra presente en diferentes cultivos frutícolas (Qin, Paini, Wang, Fang, y Li, 2015), estos insectos pueden atacar a las cucurbitáceas como el pepino, la calabaza de botella, la calabaza y la calabaza amarga generando grandes pérdidas económicas (Ganie, Khan, Ahangar, Bhat, y Hussain, 2013).

De acuerdo a los anterior se planteó como objetivo general de esta investigación: Evaluar la diversidad de moscas de la fruta en los valles de Motupe y Olmos en el periodo 2017-2018 de la Región Lambayeque. Para lo cual se plantearon los objetivos específicos: Analizar la diversidad y distribución de la mosca de la fruta entre los valles de Motupe y Olmos del departamento Lambayeque; Identificar las especies de mosca de la fruta del Complejo *Anastrepha spp*; Conocer los principales cultivos hospedantes de la mosca de la fruta de los Valles Motupe y Olmos del departamento Lambayeque.

II. REVISION DE LITERATURA

En el Perú la mosca de la fruta está distribuida en diferentes pisos altitudinales incluyendo las tres regiones costa, sierra y selva, el género Anastrepha se encuentra bien distribuida en la zona noreste en los departamentos de Tumbes, Piura, Lambayeque y La Libertad (Korytkowski y Ojeda, 1968; Korytkowski y Ojeda, 1969), actualmente está tomando mucha importancia el estudio de la mosca de la fruta debido al gran aumento de las zonas agrícolas y el aumento de las exportaciones (SENASA, 2007). No todas las especies de la mosca de la fruta atacan al mismo cultivo, esto es debido a la composición nutricional de la fruta, es por ello que las especies polífagas sobreviven mejor en las frutas que presentan mayores concentraciones de carbohidratos, fibra y lípidos que las especies oligófagas (Hafsi et al., 2016).

Muchos investigadores manifiestan para tener un mejor manejo hay que comprender la dinámica población de estos insectos (Aluja, Ordano, Guillén, y Rull, 2012). Se han realizado trabajos de investigación en diferentes lugares del mundo como por ejemplo, en Bolivia donde se evaluó un modelo de fluctuación poblacional de moscas de la fruta *Ceratitis capitata* y *Anastrepha* spp en dos rutas en el municipio de Caranavi, utilizando una metodología de trampeo en campo durante los años 2008, 2009 y 2010, en los resultados se encontró que la especie *C. capitata* llega a su máximo de población en agosto, durante la época seca y de maduración de cítricos, en tanto que el complejo Anastrepha spp., en diciembre, coincidiendo con temperaturas altas y maduración de mangos, paltas y naranjas, la especie *C. capitata* presenta una relación inversa con la variable ambiental evapotranspiración, y la precipitación para el género *Anastrepha* spp. (Conde, Loza, Asturizaga, Ugarte, y Jiménez, 2018).

Rodríguez, González, Rodríguez, Lomelí, y Miranda (2018), estudiaron la diversidad de especies y dinámica poblacional de moscas de la fruta (Diptera: Tephritidae) en los municipios de Tetipac y Atoyac de Álvarez, Guerrero, México, la muestra se obtuvo de la red oficial de monitoreo de la Campaña Nacional contra Moscas de la Fruta (CNMF) de la Dirección General de Sanidad Vegetal, SENASICA, SAGARPA, en la evolución de los resultados se encontraron 11 especies de moscas de la fruta: *Anastrepha ludens* (Loew), *A. striata* Schiner, *A. obliqua* (Macquart), *A. serpentina* (Wiedemann), *A. spatulata* Stone, *A. bicolor* (Stone), *A. dentata* (Stone), *A. chiclayae* Greene, *Toxotrypana curvicauda* Gerstaecker, *Rhagoletis ramosae* Hernandez-

Ortiz, y *Zonosemata cocoyoc* Bush, al realizar el índice de diversidad en Tetipac se registró el mayor número de especies de acuerdo a los índices Shannon-Wiener (H') y Simpson (λ) (H' = 1.30; λ = 0.68), la abundancia total fue de 1,546 ejemplares (Tetipac: 1,085 y Atoyac de Álvarez: 461), el mayor número de moscas de la fruta se registraron en los meses de febrero y octubre coincidiendo con las etapas fenológicas de fructificación, maduración y cosecha de frutos de cada área.

Bernardo (2014) para el periodo febrero 2011 a marzo 2012 en Lima Perú encontró que las especies más abundantes fueron *Ceratitis capitata* y *Anastrepha fraterculus*, con el 88.02 y 11.86 por ciento, la población más alta fue *Ceratitis capitata*, en febrero de 2012 alcanzó un MTD semanal de 12.06; mientras que la población más baja ocurrió en noviembre con un MTD semanal de 0.11, con respecto al complejo Anastrepha, la población más alta ocurrió en febrero de 2012, con un MTD semanal de 3.28; sin registrarse capturas en octubre y noviembre.

En los valles de Chao y Viru, La Libertad, Zafra (2015) estudio la preferencia de *Ceratitis capitata* Wiedemann, *Anastrepha fraterculus* Wiedemann y *A. distincta* Greene, al realizar los análisis de diversidad encontró que *C. capitata* presenta dominancia frente a las otras especies con respecto a los hospederos, mientras que la especie *A. distincta* presenta dominancia solo en pacae, los principales hospederos donde se encontró mayor número de moscas de la fruta fueron el guayabo y el mango.

Las especies de la mosca de la fruta más abundantes en el sector Pachachaca Abancay - Apurímac fueron *Anastrepha fraterculus*, *Anastrepha distincta*, *Anastrepha serpentina*, *Anastrepha manihoti* y *Ceratitis capitata*, especialmente en los meses de octubre y noviembre con un MTD de 17.43 y 20.59, los principales cultivos evaluados fueron guayaba, chirimoya, guaba o pacae, naranja y limón, siendo la guayaba la fruta con mayor número de infestación y el limón sin ninguna infestación (Huaraca, 2018).

En el sector Socco y Amoca - Apurímac se identificaron 19 especies de la mosca de la fruta, las especies más abundantes fueron *Anastrepha fraterculus*, *Anastrepha distincta*, *Anastrepha schultzi*, *Anastrepha atrox*, *Anastrepha serpentina*, *Ceratitis capitata* y Anastrepha sp. *Anastrepha fraterculus* fue la especie más abundante en ambos sectores con un 75.77%. En la evaluación de los cultivos la chirimoya fue la fruta con mayor infestación con un 83.3% seguido de la guayaba con 73.8% de infestación (Obregón, 2017).

En el valle de Abancay – Apurímac se estudió la fluctuación poblacional encontrándose 10 especies A. fraterculus (37.38%), A. distincta (36.10%), A. serpentina (0.22%), A. schultzi (1.67%), A. manihoti (0.26%), A. chiclayae (0.02%), Anastrepha sp. 1 (0.70%), A. pickeli (0.01%), A. atrox (0.12%) y Ceratitis capitata (23.52%). Las especies dominantes son las especies A. fraterculus, A. distincta y C. capitata ocupando un 97.00% del total de moscas capturadas, las mayores poblaciones tienen relación con la época de lluvia y transiciones secas (diciembre a mayo), las especies Anastrepha fraterculus, A. distincta y A. manihoti sus poblaciones tienden aumentar cuando hay precipitación, a comparación de A. atrox que disminuye cuando hay precipitación, también se encontró que las especies A. distincta, A. manihoti, A. chiclayae y C. capitata disminuyen sus poblaciones cuando la temperatura esta elevada o máxima (Ramos, 2017).

MATERIALES Y MÉTODOS

El presente trabajo de investigación presento un enfoque cuantitativo porque nos permitió analizar datos, medir numéricamente la diversidad poblacional de la mosca de la fruta de los valles Olmos y Motupe del departamento de Lambayeque, durante el periodo comprendido de enero del 2017 hasta agosto del 2018.

En esta investigación se utilizó el diseño no experimental – descriptivo, por la asignación de la investigación es observacional, por la recolección de datos es transversal y por su naturaleza de estudio es retrospectiva.

1.1 Ubicación

El presente trabajo de investigación se realizó en el valle de Olmos ubicado en el distrito de Olmos y el valle de Motupe, ubicados en distrito Motupe, ambos ubicados en la provincia de Lambayeque del departamento de Lambayeque – Perú (Anexo 1), durante el periodo de enero del año 2017 hasta el mes de setiembre del año 2018, dichos valles presentan una temperatura muy variable que oscila entre 20 °C y 35 °C, con poca precipitación en los meses de enero, febrero, marzo y abril (Anexo 2).

1.2 Población de Estudio

La población universo de estudio estuvo constituida por las especies de la mosca de la fruta adultas que se encuentran en el valle Olmos y Motupe, durante el periodo comprendido de enero del 2017 hasta agosto del año 2018.

1.3 Muestra

La muestra de estudio estuvo conformada por las moscas de la fruta adultas capturadas en las trampas Jackson específicas para *Ceratitis capitata* y las trampas Multilure para el complejo *Anastrepha* spp, en los valles Olmos y Motupe durante el periodo comprendido de enero del 2017 hasta setiembre del año 2018.

La identificación de estos insectos se realizó de acuerdo a los lineamientos establecidos por el SENASA en las actividades de Trampeo y Muestreo de frutos señalados en el Manual del Sistema Nacional de Vigilancia de Moscas de la Fruta (SENASA, 2007), en el valle de Olmos se tomaron 4 sectores (San Cristóbal, Insculas,

Las Norias y Olmos), y en Motupe, igualmente 4 sectores (Motupe, Arrozal Tongorrape y Chochope) todos los sectores fueron georreferenciados por el SENASA – Lambayeque.

El trabajo fue realizado en Motupe durante etapa de Prospección y Monitoreo y en Olmos en etapa de Supresión, donde se implementaron medidas de control para alcanzar niveles de baja prevalencia. (SENASA 2007). En Olmos el SENASA cuenta con una brigada que se dedica a realizar labores de control integrado en huertos abandonados.

1.4 Operacionalización de Variables

En este trabajo de investigación se consideró la siguiente variable: Diversidad de especies de la mosca de la fruta en los valles de Olmos y Motupe, durante el periodo comprendido de enero del 2017 hasta agosto del año 2018.

VARIABLES	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA
	Variabilidad entre los organismos terrestres	Identifica la diversidad biológica a nivel de especies de la mosca de fruta, plaga de importancia económica en el valle de Olmos y Motupe	Diversidad alfa	Índice de Margalef	Intervalo
				Índice de dominancia de Simpson	Intervalo
Diversidad, Fluctuación de especies	vivientes dentro de un lugar específico o de varios lugares			Índice de equidad de Shannon - Wiener	Intervalo
	comunidades (Martínez, Sosa y		Diversidad beta	Índice de Similitud de Jaccard	Intervalo
	Álvarez, 2014)			Índice de reemplazo de Whittaker	Intervalo

1.5 Procedimientos

El trabajo de investigación se realizó durante el periodo de enero del año 2017 hasta agosto del año 2018, la selección de los puntos de muestreo y ubicación de las trampas para *Ceratitis capitata* y el complejo *Anastrepha* spp, fueron proporcionadas por la red de trampeo y muestreo de frutos del SENASA – Lambayeque del proyecto Mosca de la fruta.

En total se realizaron 1309 puntos de muestreo, cada uno con su respectiva trampa, estos puntos fueron divididos en 879 puntos de muestreo con sus respectivas trampas para el valle Olmos distribuido en 4 sectores (Olmos, San Cristóbal, Insculás y Las Norias) con un promedio de 20 mil hectáreas, y 430 puntos de muestreo con sus respectivas

trampas para el valle Motupe distribuido en 4 sectores (Motupe, Arrozal, Tongorrape y

Chochope) con un promedio de 13,904 hectáreas.

1.6 Técnica de recolección de datos

Los datos obtenidos de las trampas para Ceratitis. capitata y el complejo

Anastrepha spp del valle Olmos y Motupe en el periodo de enero del año 2017 hasta

agosto del año 2018, fueron proporcionados por el SENASA -LAMBAYEQUE a través

de SIIMF (Sistema Integrado de Información de Mosca de la Fruta), los cuales se

introdujeron en una base de datos diseñada por la investigadora.

1.7 Procesamiento y Análisis Estadístico

El procesamiento estadístico de datos se realizó con el programa Microsoft Excel

versión 2016 y programa estadístico IBM SPSS.V.24 para Windows.

Para la evaluación de la densidad poblacional de las moscas de fruta capturadas en

las trampas se realizó mediante la fórmula Moscas por Trampa por Día (MTD), relación

establecida por (Aluja, 1993) que consiste en lo siguiente:

 $MTD = \frac{N^{\circ} total de moscas}{N^{\circ} de trampas x 7} = \frac{M}{(T)X(D)}$

MTD: Mosca por Trampa por día

M: número total de moscas capturadas

T: número de trampas revisadas

D: número promedio de días de exposición de las trampas en campo

La función de esta fórmula fue conseguir el tamaño de la población adulta en un espacio

y tiempo determinado.

Para la evaluación de diversidad de las poblaciones de la mosca de fruta en los

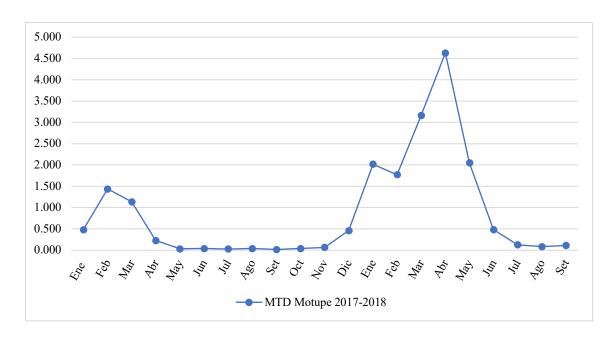
sectores de los valles Olmos y Motupe se utilizó la biodiversidad alfa donde se evaluó el

Índice de Margalef, Índice de dominancia de Simpson, Índice de equidad de Shannon –

Wiener y la diversidad beta donde se evaluó el Índice de Similitud de Jaccard e Índice de

reemplazo de Whittaker.

24


RESULTADOS

1.8 Fluctuación de mosca de la fruta de *Ceratitis capitata* (Wied) en los valles de Motupe y Olmos en el periodo enero 2017 hasta setiembre 2018.

La evaluación de la fluctuación de la población de moscas de la fruta, fue determinada mensualmente y expresada en mosca/trampa/día o MTD (Anexo 3), donde se estableció el comportamiento de la población desde enero del 2017 hasta setiembre del 2018. En la Figura N° 1 se muestra el MTD mensual del valle Motupe de los años 2017 (enero-diciembre) y del año 2018 (enero – setiembre), las moscas capturadas en trampas Jackson (trampa específica para *C. capitata*); el valor más alto de MTD (MTD = 1.438) fue en el mes de febrero, seguido por el mes de marzo con un MTD = 1.135, luego empieza a descender desde mayo a noviembre, que casi no se registran especímenes de *C. capitata*, considerándose como los meses de menor valor numérico de MTD (MTD < 0.04), luego la fluctuación empieza a subir en el mes de diciembre del año 2017; para el año 2018 el valor más alto de MTD o pico más alto de la fluctuación fue abril (MTD = 4.631), luego empieza a descender desde julio a setiembre que casi no se registran especímenes de la mosca de la fruta (MTD < 0.4).

En la Figura N° 2 se observa el MTD mensual del valle Olmos de los años 2017 (enero-diciembre) y el año 2018 (enero – setiembre). Las moscas capturadas en trampas Jackson, el mes de enero presento el índice más alto de MTD (MTD = 2.855) o pico más alto de la fluctuación seguido por el mes de febrero (MTD = 1.661), luego empieza a descender hasta el mes de mayo que permanece con una variación mínima casi en línea casi recta hasta octubre (MTD < 0.02), luego la fluctuación empieza a subir en el mes de diciembre (MTD = 0.044) en el año 2017; para el año 2018 el pico más alto de la fluctuación fue el mes de abril con valor de MTD = 0.317, luego empieza a disminuir el registro de especímenes hasta el mes de julio hasta permanecer casi en línea recta hasta el mes de setiembre (MTD < 0.04).

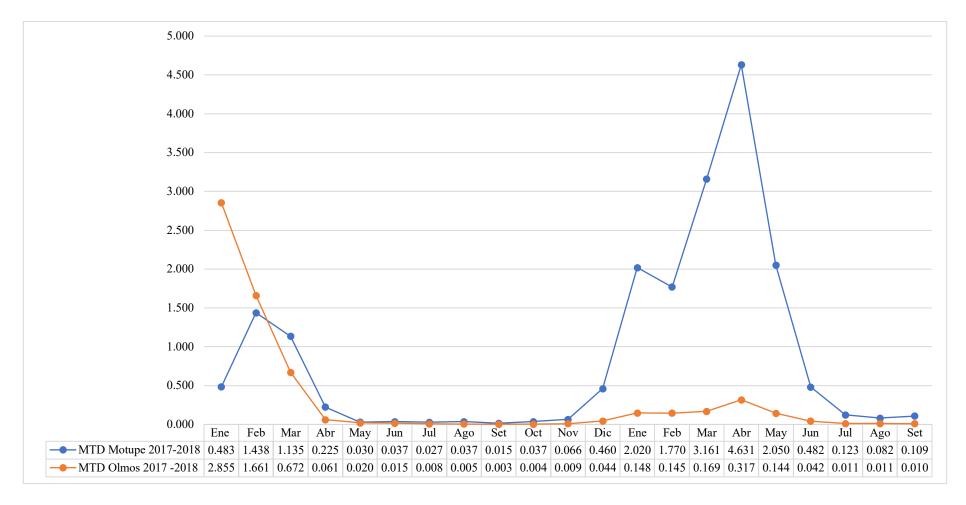
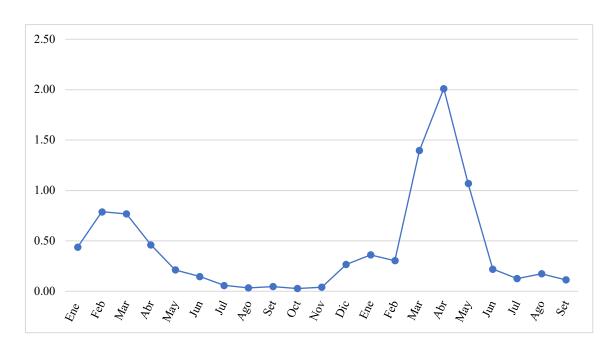
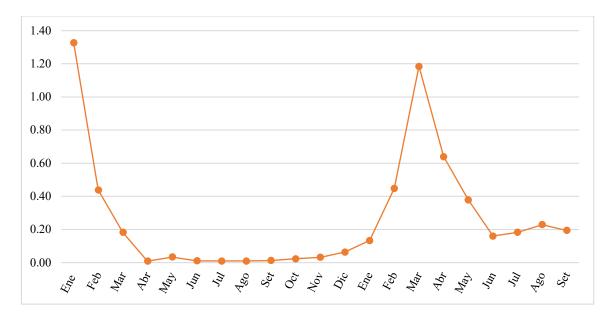

En la Figura N° 3. Se aprecia la comparación de la fluctuación de *Ceratitis capitata* (Wied) de los valles Motupe y Olmos, los valores MTD más altos se aprecia en el valle Motupe (línea azul), y los valores MTD más bajos es para el valle Olmos en el mismo año (línea naranja).

Figura Nº 1. Fluctuación mensual de *Ceratitis capitata* en el valle Motupe del año 2017 (enero-diciembre) y 2018 (enero – setiembre) capturadas en trampas Jackson.

Figura Nº 2. Fluctuación mensual de *Ceratitis capitata* en el valle Olmos del año 2017 (enero-diciembre) y 2018 (enero – setiembre) capturadas en trampas Jackson.


Figura N° 3. Fluctuación mensual de *Ceratitis capitata* en los valles Motupe y Olmos de enero 2017 hasta setiembre 2018 capturadas en trampas Jackson.

1.9 Fluctuación del complejo *Anastrepha* spp en los valles de Motupe y Olmos en el periodo enero 2017 hasta setiembre 2018.


En la Figura N° 4 se muestra el MTD mensual del complejo *Anastrepha* del año 2017 (enero-diciembre) y el año 2018 (enero – setiembre) del valle Motupe. El mes de febrero presento el índice más alto de MTD (MTD = 0.79), considerándose el pico más alto de la fluctuación seguido por el mes de marzo con un MTD de 0.77, luego empieza a descender el registro de especímenes hasta el mes de julio (MTD =0.06) que permanece casi en forma recta hasta noviembre, considerándose como los meses de menor valor numérico o picos más bajos de MTD, luego la población empieza a subir en diciembre todo esto en el año 2017; para el año 2018 el MTD más alto fue el mes de abril (MTD = 2.01), luego empieza a descender desde de junio y permanece casi en forma recta hasta el mes de setiembre (MTD =0.11).

En la Figura N° 5 se aprecia los MTD mensual del año 2017 (enero-diciembre) y el año 2018 (enero – setiembre) del valle Olmos de las moscas capturadas en trampas Multilure, el mes de enero presento el más alto índice MTD (MTD = 1.33) o pico más alto de la fluctuación, seguido por el mes de febrero (MTD = 0.44), luego empieza a descender el registro de especímenes hasta el mes de abril con una variación mínima casi en línea recta hasta noviembre (MTD = 0.03), luego la población se incrementó en el mes de diciembre (MTD = 0.06) todo ocurrido en el año 2017; para el año 2018 el pico más alto de la fluctuación fue el mes de marzo con valor de MTD = 1.18, luego empieza a descender desde el mes de junio y permaneció casi en línea recta hasta el mes de setiembre, mes en el que registró un MTD de 0.19

En la Figura N° 6. Se aprecia la comparación de la fluctuación del complejo *Anastrepha* de los dos valles Motupe y Olmos, los valores MTD más altos son para el valle Motupe (línea azul) año 2018, y los valores MTD más bajos es para el valle Olmos (línea naranja) año 2017.

Figura N° 4. Fluctuación mensual del Complejo *Anastrepha spp.* en el valle Motupe de enero 2017 hasta setiembre 2018 capturadas en trampas Multilure.

Figura N° 5. Fluctuación del Complejo *Anastrepha* en el valle Olmos de enero 2017 hasta setiembre 2018 capturadas en trampas Multilure.

Figura N° 6. Fluctuación del Complejo *Anastrepha* spp.en los valles de Motupe y Olmos de enero 2017 hasta setiembre 2018 capturadas en trampas Multilure.

1.10 Frecuencia del Complejo Anastrepha capturadas en trampas Multilure en los valles Motupe y Olmos en el periodo enero 2017 hasta setiembre 2018.

En el registro de la mosca de la fruta del valle Motupe en la Figura 7, se aprecia la evaluación del complejo *Anastrepha*, la especie más abundante fue *Anastrepha fraterculus* con un total de 28247 adultos capturados en el año 2018 y 6932 adultos capturados en el año 2017, seguido por *Anastrepha chiclayae* con 2946 adultos capturados en el año 2018 y *Anastrepha distincta* con 1603 adultos en el año 2018, las especies *Anastrepha serpentina* y *A. grandis* fueron las que tuvieron menos capturas durante los dos años respectivamente.

En la evaluación del complejo *Anastrepha* del valle Olmos en la Figura 8, se observa la especie más abundante fue *Anastrepha fraterculus* con 4243 especies capturadas, seguida por la especie *Anastrepha chiclayae* con 1912 especies capturadas en el año 2017, la especie más abundante fue *Anastrepha chiclayae* con 19526 especies capturadas, seguida por *Anastrepha fraterculus* con 17681 especies capturadas en el año 2018. Las especies *A. serpentina, A. grandis, A. manihoti, A. dissimilis, A. macrura* y *Anastrepha* sp., tuvieron las menores capturas durante los dos años.

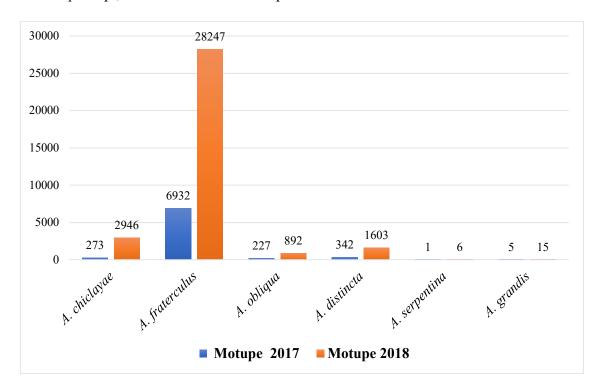


Figura N° 7. Capturas del Complejo *Anastrepha* spp. en trampas Multilure en el valle Motupe durante el periodo 2017-2018.

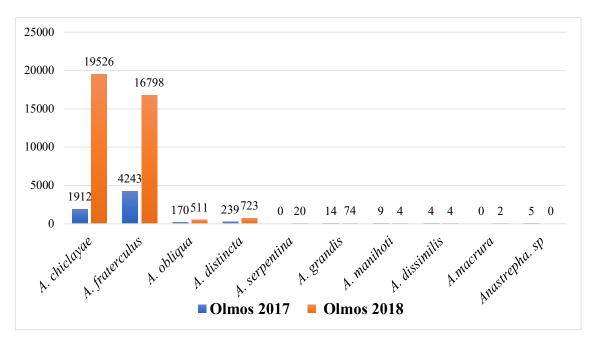


Figura N° 8. Capturas del Complejo *Anastrepha* spp. en trampas Multilure en el valle Olmos durante el periodo 2017 - 2018.

1.11 Fluctuación mensual de *Ceratitis capitata* versus los datos meteorológicos en los valles Motupe y Olmos 2017 – 2018.

En el valle Motupe se observa que la mayor precipitación fue en el mes de marzo con 425.6 ml seguido del mes de febrero con 199.8 ml, en el mes de julio no hubo precipitación todo esto ocurrido en el año 2017, para el año 2018 el mes que se registró mayor precipitación fue el mes de abril con 17.9 ml, los meses de junio, julio, agosto y setiembre no registraron precipitación (Figura N° 9 Anexo 4).

El más alto valor de humedad relativa fue en el mes de marzo con 84% seguido por los meses de abril, mayo, julio, agosto con 82% respectivamente, ocurrido en el año 2017, para el año 2018 el mes de junio presento un 78% de humedad relativa siendo el máximo valor seguido por el mes de julio con 77% de humedad relativa respectivamente (Figura N° 10 y Anexo 4). La mínima temperatura registrada para el año 2017 y 2018 fue en el mes de noviembre 14.2 °C y el mes de setiembre con 14.6 °C respectivamente, la máxima temperatura registrada en el año 2017 y 2018 fueron los meses de enero con 33.5 °C, y abril con 33.4 °C respectivamente (Figura N° 11, Anexo 4).

En el valle de Olmos, se observa que en el año 2017 la mayor precipitación fue en el mes de marzo con un valor de 764.4 ml seguido por el mes de febrero con 329.7 ml y para los meses de junio, julio y noviembre no se registró precipitación, en el año 2018 el mes de mayor precipitación fue el mes de enero con 33.7 ml. seguido por el mes de abril 20.8 ml, los meses de junio, julio, agosto y setiembre no se registraron precipitaciones, el más alto valor de MTD fue en el año 2017 en el mes de enero con 2.855 seguido por el mes de febrero con MTD de 1.661, respectivamente (Figura N° 12, Anexo 5).

El mayor porcentaje de humedad relativa fueron en los meses de marzo con 91%, seguido por el mes de mayo con 90% para el año 2017, y los meses de junio y julio con 77%, seguido por los meses de mayo y agosto con 74% para el año 2018 respectivamente (Figura N° 13, Anexo 5). La temperatura mínima registrada en los años 2017 y 2018 fue el mes de noviembre con 13.4 °C, y el mes de julio con 14.2 °C, respectivamente, la máxima temperatura registrada en el año 2017 y 2018 fue el mes de enero con 34.2 °C, y de abril con 34.7 °C respectivamente (Figura N° 14, Anexo 5).

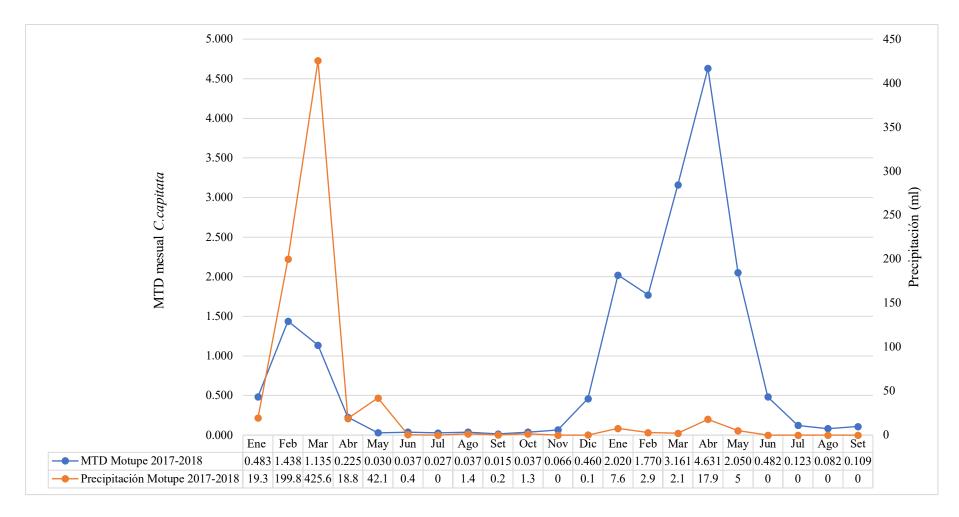


Figura Nº 9. Comparación de la fluctuación poblacional de Ceratitis capitata versus la Precipitación del valle Motupe 2017-2018

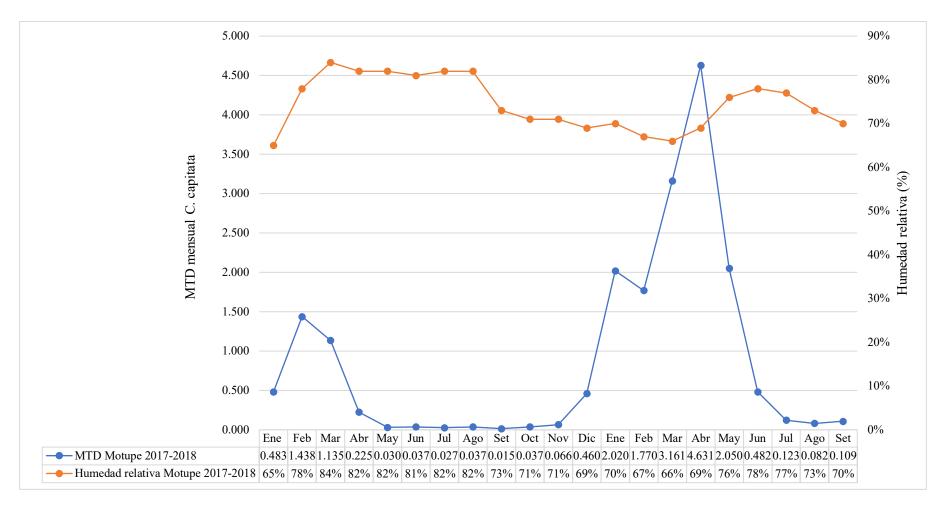


Figura N° 10. Comparación de la fluctuación poblacional de *Ceratitis capitata* versus la Humedad relativa (%) del valle Motupe 2017-2018

Fuente: Elaboración propia – datos SENASA

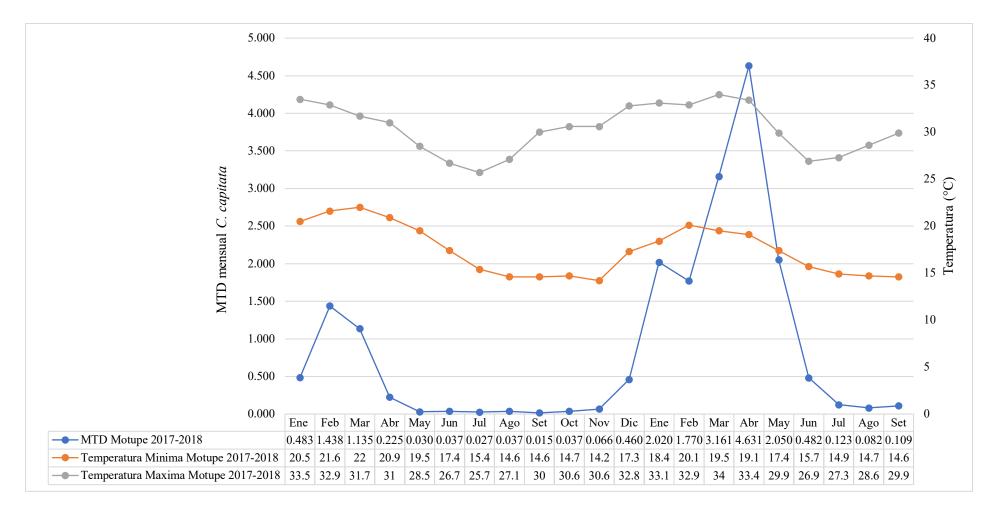


Figura Nº 11. Comparación de la fluctuación poblacional de *Ceratitis capitata* versus la Temperatura mínima y máxima del valle Motupe 2017-2018

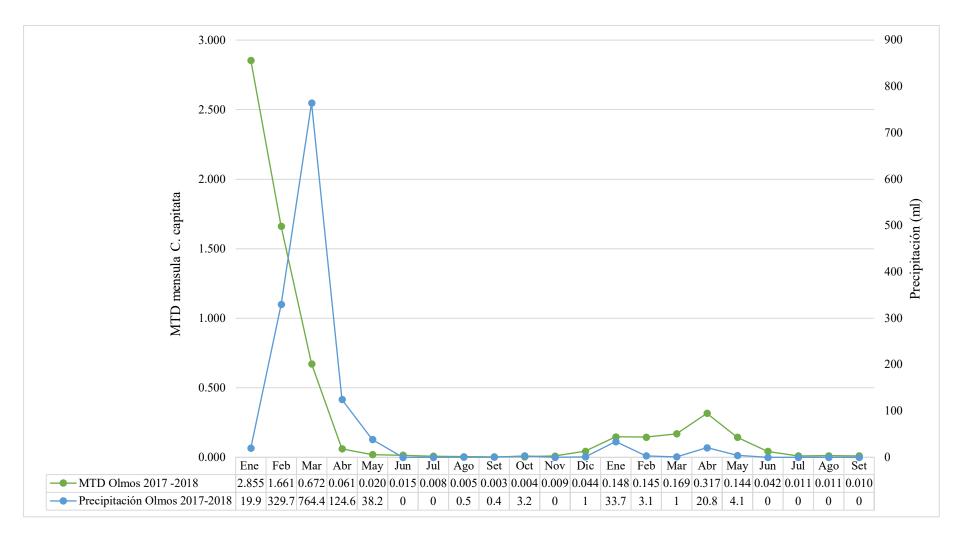


Figura Nº 12. Comparación de la fluctuación poblacional de Ceratitis capitata versus precipitación del valle Olmos 2017

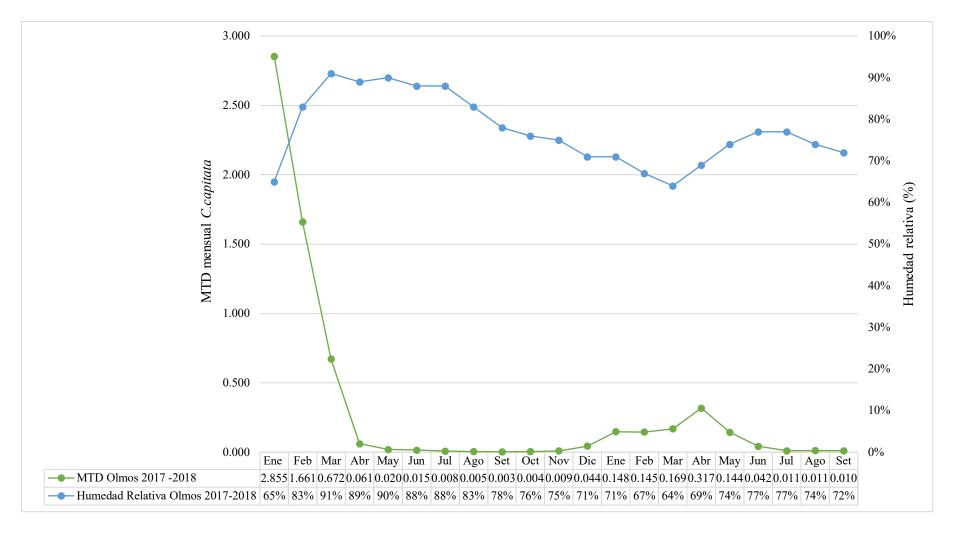


Figura N° 13. Comparación de la fluctuación poblacional de Ceratitis capitata versus Humedad relativa valle Olmos 2017-2018.

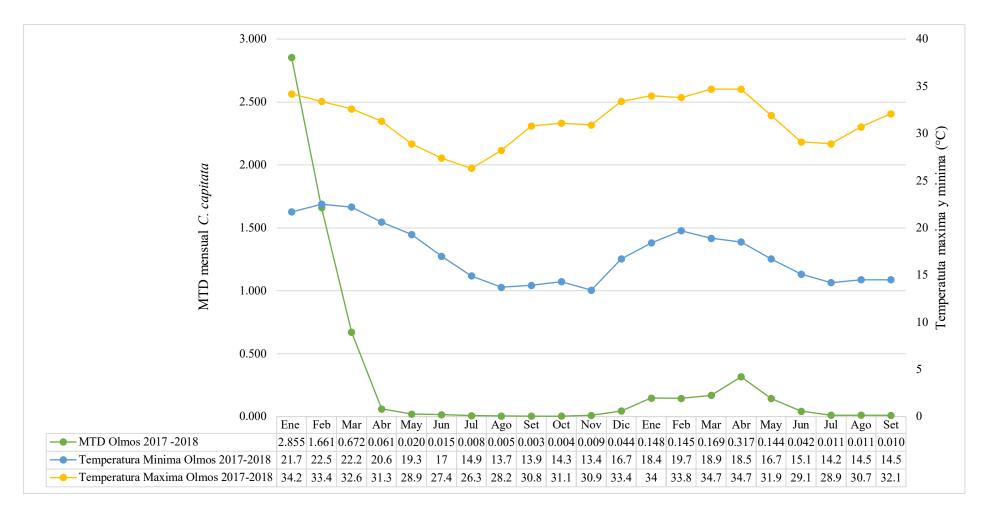


Figura N° 14. Comparación de la fluctuación poblacional de *Ceratitis capitata* versus la Temperatura mínima y máxima del valle Olmos 2017-2018.

1.12 Fluctuación mensual del complejo *Anastrepha* spp- versus los datos meteorológicos en los valles Motupe y Olmos 2017 – 2018.

En el valle de Motupe se aprecia que la máxima precipitación registrada en el año 2017 fue en el mes de marzo con 425.6 ml, y los meses de julio y noviembre no registraron precipitaciones. En el año 2018 la máxima precipitación registrada fue en el mes de abril con 17.9 ml, y en los meses de junio, julio, agosto y setiembre no se registraron precipitaciones, el mayor valor MTD fue registrado en el mes de abril con 2.01, y el mínimo valor fue registrado en los meses de agosto y octubre con valores de 0.03 respectivamente (Figura N° 15, Anexo 6).

El más alto valor de humedad relativa fue registrado en el mes de marzo con 84% y el mínimo valor fue registrado en el mes de enero con 65% del año 2017 (Figura N° 16, Anexo 6). La temperatura mínima registrada para el año 2017 y 2018 fue el mes de noviembre con 14.2 °C, y setiembre con 14.6 °C, respectivamente, la máxima temperatura registrada en el año 2017 y 2018 fue en el mes de enero con 33.5 °C, y en marzo con 34 °C, respectivamente (Figura N° 17, Anexo 6).

En el valle de Olmos se puede ver que la máxima precipitación registrada en el año 2017 fue en el mes de marzo con 764.4 ml, y los meses de junio, julio y noviembre no registraron precipitaciones, en el año 2018 la máxima precipitación fue registrada en el mes de enero con 33.7 ml, los meses de junio, julio, agosto y setiembre no registraron precipitaciones; el mayor valor MTD se registró en el mes de enero con un valor de 1.33 y el mínimo valor se registraron en los meses de abril, junio, julio, agosto y setiembre del año 2017 (Figura N° 18, Anexo 7). La máxima humedad relativa registrada en el 2017 fue en el marzo con 91%, y la mínima fue en el mes de marzo del 2018 con 64% respectivamente (Figura N° 19, Anexo 7). La mínima temperatura registrada en el año 2017 y 2018 fue en el mes de noviembre con 13.4 °C, y julio con 14.2 °C, respectivamente, la máxima temperatura registrada en el año 2017 y 2018 fue en el mes de enero con 34.2 °C, y en los meses de marzo y abril con 34.7 °C, respectivamente (Figura 20, Anexo 7).

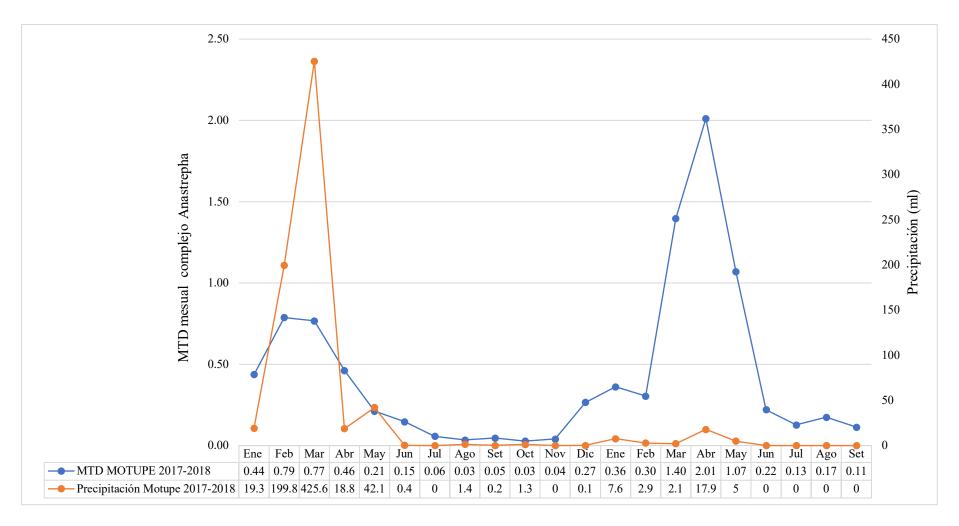


Figura N° 15. Comparación de la fluctuación poblacional del complejo Anastrepha versus precipitación del valle Motupe 2017

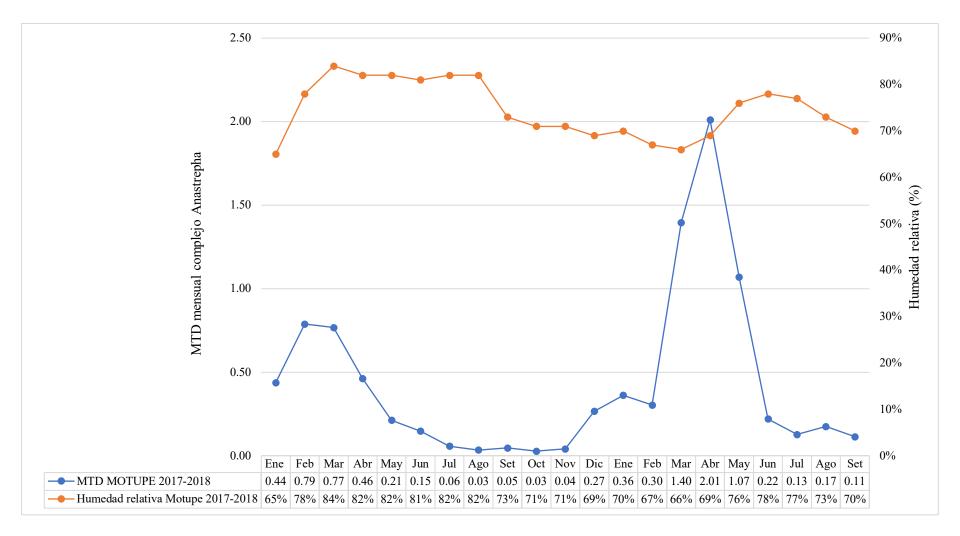


Figura N° 16. Comparación de la fluctuación poblacional del complejo *Anastrepha* versus Humedad relativa valle Motupe 2017-2018

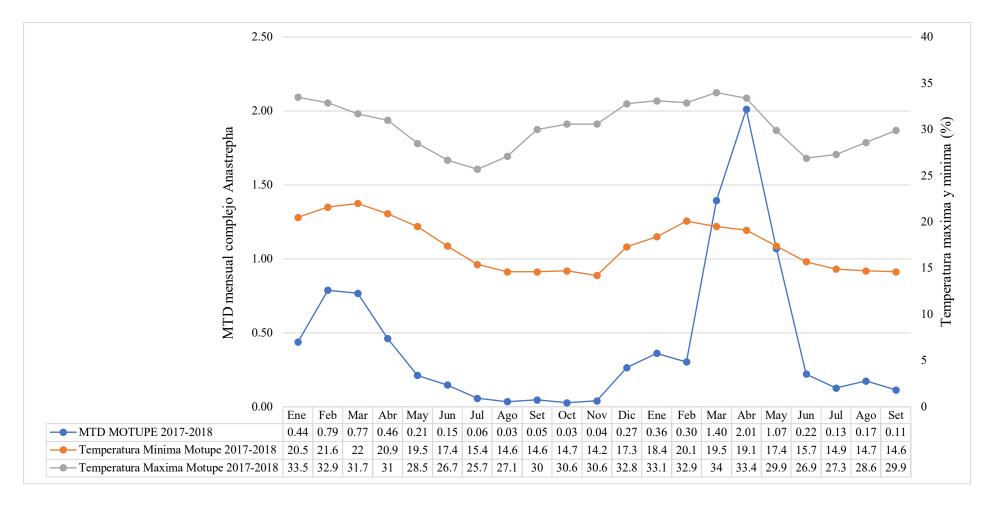


Figura N° 17. Comparación de la fluctuación poblacional del complejo *Anastrepha* versus la Temperatura mínima y máxima del valle Motupe 2017-2018

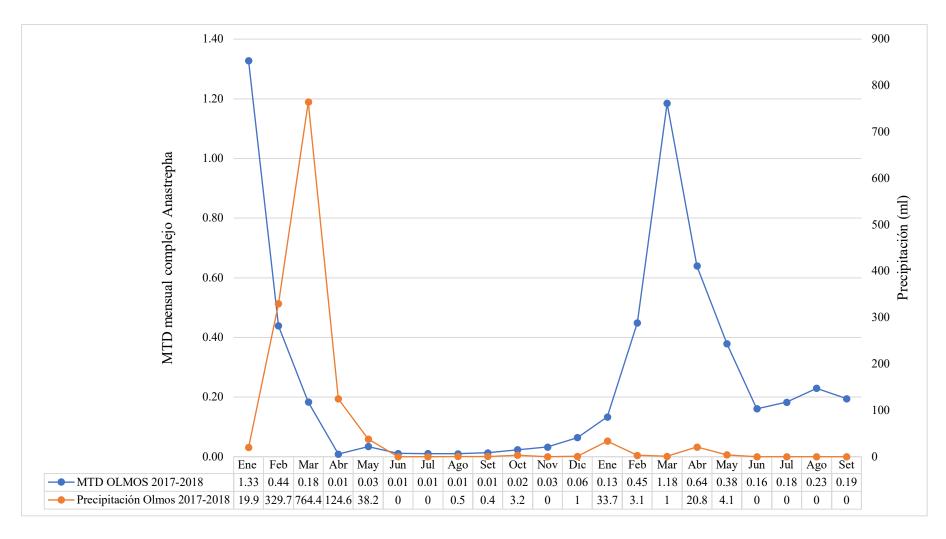


Figura Nº 18. Comparación de la fluctuación poblacional del complejo Anastrepha spp.versus precipitación del valle Olmos 2017

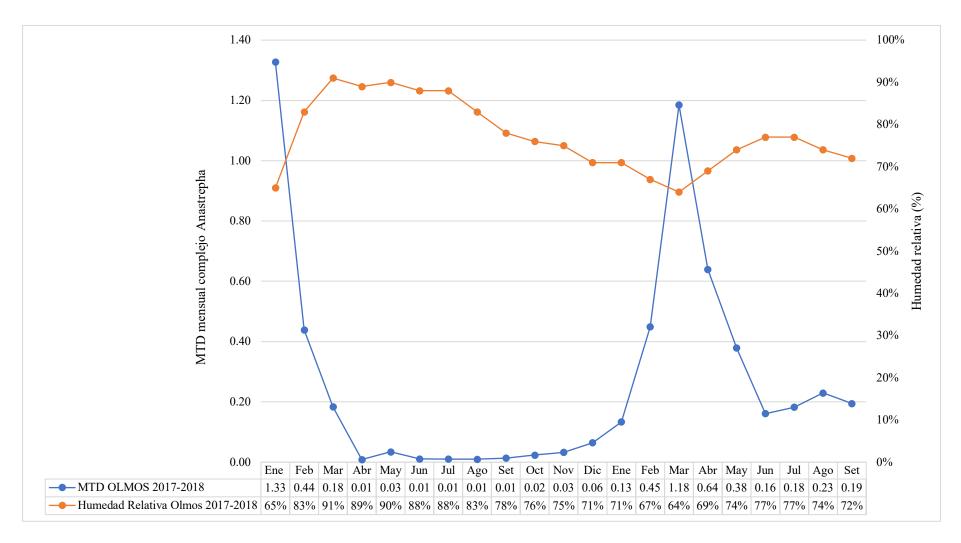


Figura N° 19. Comparación de la fluctuación poblacional del complejo *Anastrepha* spp.versus Humedad relativa valle Olmos 2017-2018

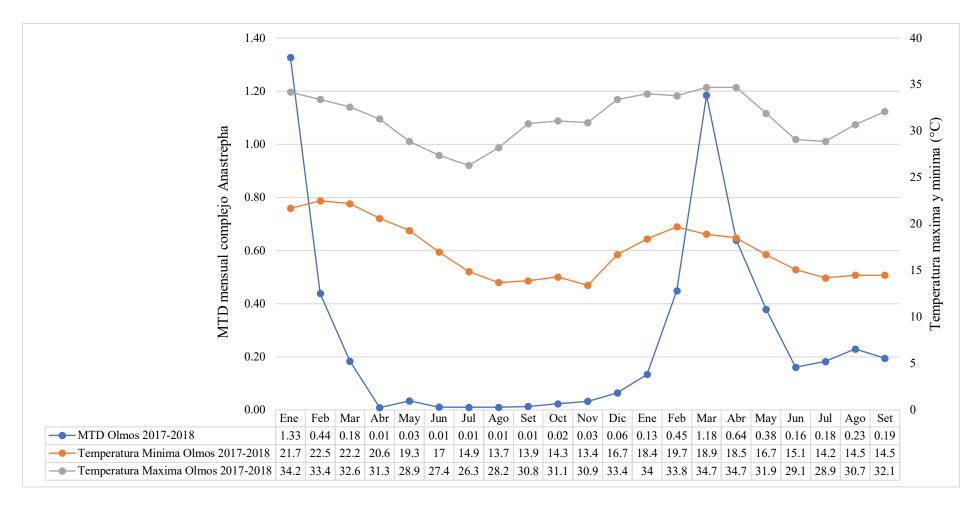


Figura N° 20. Comparación de la fluctuación poblacional del complejo *Anastrepha spp.* versus la Temperatura mínima y máxima del valle Olmos 2017-2018

1.13 Identificación de hospedantes cultivados y no cultivados de la mosca de la fruta en los valles Motupe y Olmos.

De la evaluación de los frutos colectados en el valle Motupe para la recuperación de adultos de moscas de la fruta en el años 2017 (enero – diciembre); en la tabla 1, se observa que *Anastrepha distincta* solo se encontró en frutos de guaba, *Anastrepha fraterculus* (Wied) se encontró en frutos de anona, carambola, cerezo, cirolero, falso almendro, guayabo, mandarina, mango, pomarrosa y toronja, *Anastrepha obliqua* solo se encontró en frutos de cirolero, *Ceratitis capitata* (Wied) se encontró en la gran mayoría de frutos estudiados a excepción de anona, cerezo, guaba; palto y toronja.

En la tabla 2 se aprecia que la especie *Anastrepha chiclayae* solo se encontró en frutos de corrocoto, *Anastrepha fraterculus* (Wied) se encontraron en frutos de carambola, cerezo, cirolero, falso almendro, guayabo, mango y zapote, y la especie *Ceratitis capitata* (Wied) en la gran mayoría de frutos colectados a excepción de cerezo y corrocoto, todos estos frutos colectados en el año 2018.

En el valle Olmos en el año 2017 (enero – diciembre), se aprecia en la tabla 3 la especie *Anastrepha chiclayae* solo se encontró en frutos de corrocoto, *Anastrepha distincta* solo se encontró en frutos de guaba, *Anastrepha fraterculus* (Wied) se encontró en frutos de carambola, cerezo, cirolero, guayabo, mango y tangelo, *Anastrepha obliqua* se encontró en el frutos de carambola y cirolero, *Ceratitis capitata* (Wied) se encontró en la gran mayoría de los frutos colectados y estudiados a excepción de los frutos de corrocoto, guaba y tangelo.

En la Cuadro 4 se observa que la especie *Anastrepha chiclayae* se encontró solo en frutos de corrocoto, *Anastrepha distincta* se encontró en frutos de guaba, *Anastrepha fraterculus* (Wied) se encontró en frutos de carambola, cirolero, guayaba y mango, *Anastrepha obliqua* se encontró en frutos de cirolero y mango criollo, y la especie *Ceratitis capitata* (Wied) se encontró en la mayoría de frutos estudiados a excepción de los frutos de corrocoto, guayabo y guaba, frutos colectados en el año 2018. En la tabla 5 y tabla 6 se aprecia el resumen de las moscas de las frutas y sus hospedantes, la especie que presento más hospedantes fue *Ceratitis capitata* (Wied) siendo la especie más polífaga, seguida por *Anastrepha fraterculus* (Wied). Anexo 8.

Tabla N° 1. Recuperación de adultos de moscas de la fruta de diferentes cultivos evaluados en el valle de Motupe 2017 (enero – diciembre).

	Anastr distir	_	frater			1. iqua	Cera capi		Total	Total	Total
ESPECIES							(Wi	ed)	MACHOS	HEMBRA	1000
	M	Н	M	Н	M	Н	M	Н			
ANONA			1	0					1	0	1
(Annona squamosa)											
CAFE ARÁBICO (Coffea arabica)							52	66	52	66	118
CARAMBOLA (Averrhoa carambola)			7	3			12	34	19	37	56
CEREZO			41	35					41	35	76
(Prunus carasus)											
CIROLERO			5	2	1	2	35	52	41	56	97
(Spondia purpurea)											
FALSO ALMENDRO (Terminalia catappa)			5	9			18	23	23	32	55
GRANADO							1	0	1	0	1
(Punica granatum)											
GUAYABO			8	7					8	7	15
(Psidium guajaba)											
MANDARINO (Citrus reticulata)			1	2			41	44	42	46	88
MANGO CRIOLLO (Mangifera indica)			20	22			8	7	28	29	57
MANGO KENT			37	70			49	84	86	154	240
(Manguifera indica)											
NARANJO AGRIO (Citrus aurantium)							8	3	8	3	11

PACAE /GUAE	BA 94	114					94	114	208
(Inga spp)									
PALTO							0	1	1
(Persia americana)									
POMARROSA			4	8	9	37	13	45	58
(Eugenia spp)									
TANGELO					7	1	7	1	8
(Citrus tangelo)									
TORONJA			4	0			4	0	4
(Citrus paradisi)									
VICHAYO					1	2	1	2	3
(Capparis ovalifolia)								

Tabla N° 2. Recuperación de adultos de moscas de la fruta de los diferentes cultivos evaluados en el valle de Motupe en el año 2018 (enero – setiembre).

	Anast chicl	_	frate	rtrepha erculus Vied)	сар	ratitis vitata Vied)	Total	Total	Total
ESPECIES	M	Н	M	Н	M	Н	MACHOS	HEMBRAS	
CAFE ARÁBICO					50	65	50	65	115
(Coffea arabica)									
CARAMBOLA			14	18	32	50	46	68	114
(Averrhoa carambola)									
CEREZO			7	11			7	11	18
(Prunus carasus)									
CIROLERO			12	16	14	20	26	36	62
(Spondia purpurea)									

CORROCOTO	4	4					4	4	8
(Passiflora foetida)									
FALSO ALMENDRO			1	1	27	31	28	32	60
(Terminalia catappa)									
GUAYABO			6	13	2	3	8	16	24
(Psidium guajaba)									
MANDARINO					5	3	5	3	8
(Citrus reticulata)									
MANGO CRIOLLO			48	74			48	74	122
(Mangifera indica)									
MANGO KENT					18	28	18	28	46
(Mangifera indica)									
NARANJO AGRIO					31	40	31	40	71
(Citrus aurantium)									
NARANJO DULCE					16	14	16	14	30
(Citrus sinensis)									
PIMIENTO					2	0	2	0	2
(Capsicum annum)									
TANGELO					26	33	26	33	59
(Citrus tangelo)									
ZAPOTE			1	0	38	53	39	53	92
(Achras sapota)									

Tabla N° 3. Adultos de moscas de la fruta recuperados de los diferentes cultivos hortofrutícolas muestreados en el valle de Olmos 2017 (enero – diciembre)

	1	4	1	4	1	4	A ob	liqua	Cera	titis			
ESPECIES	chicl	layae	disti	incta		rculus ied)			capit (Wie		Total MAC	Total HEMBR	
	M	Н	M	Н	M	Н	M	Н	M	Н	HOS	AS	Total
AJÍ									4	5	4	5	9
(Capsicum frutesceens)													
AJI PÁPRIKA (Capsicum annum)									23	28	23	28	51
CAFE ARÁBICO (Coffea arabica)									15	26	15	26	41
CARAMBOLA (Averrhoa carambola)					21	31	1	0	72	10 7	94	138	232
CEREZO					10	4			23	29	33	33	66
(Prunus carasus)													
CHIRIMOYO (Annona cherimola)									118	11 9	118	119	237
CIROLERO (Spondia purpurea)					0	1	27	25	159	17 2	186	198	384
CORROCOTO (Passiflora foetida)	2	3									2	3	5
DURAZNERO / MELOCOTONERO (<i>Prunus pérsica</i>)									13	8	13	8	21
FALSO ALMENDRO (Terminalia catappa)									23	37	23	37	60
GRANADO									3	4	3	4	7
(Punica granatum)													
GUAYABO					138	124			20	24	158	148	306
(Psidium guajaba)													
LIMA DULCE									11	13	11	13	24
(Citrus limrtta)													
LIMÓN RUGOSO (Citrus jamblriri)									10	5	10	5	15
MANDARINO									35	57	35	57	92
(Citrus reticulata)													

MANGO CRIOLLO (Mangifera indica)			35	47	32	30	67	77	144
MANGO KENT (Mangifera indica)			125	149	14	9	139	158	297
MANZANO					16	15	16	15	31
(Malus sylvestris)									
NARANJO DULCE (Citrus sinensis)					11	17	11	17	28
PACAE / GUABA (Inga spp)	15	13					15	13	28
PAPAYA					1	3	1	3	4
(Carica papaya)									
TANGELO			9	6			9	6	15
(Citrus tangelo)									
TORONJA					10	7	10	7	17
(Citrus paradisi)									
VICHAYO					14	21	14	21	35
(Capparis ovalifolia)									

Tabla N° 4. Adultos de mosca de la fruta recuperadas de los diferentes cultivos hortofrutícolas muestreados en el valle de Olmos 2018 (enero – setiembre).

ESPECIES	A. chic	layae	A. di	stincta	•	terculus Vied)	A obi	liqua	<i>Ceratitis</i> <i>capitata</i> (Wied)		Total MACHOS	Total HEMBRAS	Total
,	M	H	M	H	M	Н	M	H	M	H			
CAFE ARÁBICO									29	36	29	36	65
(Coffea arabica)													
CARAMBOLA					3	5			13	19	16	24	40
(Averrhoa carambola)													
CEREZO									0	2	0	2	2
(Prunus carasus)													
CIROLERO					30	34	18	24	9	13	57	73	130
(Spondia purpurea)													
CORROCOTO	35	40									35	40	75
(Passiflora foetida)													

FALSO ALMENDRO							17	17	17	17	34
(Terminalia catappa)											
GUAYABO			30	33					30	33	63
(Psidium guajaba)											
LIMÓN RUGOSO							0	2	0	2	2
(Citrus jamblriri)											
MANDARINO							20	25	20	25	45
(Citrus reticulata)											
MANGO CRIOLLO			44	52	1	1	10	12	55	65	120
(Mangifera indica)											
MANGO KENT			19	56			6	9	25	65	90
NARANJO DULCE							12	15	12	15	27
(Citrus sinensis)											
PACAE / GUABA	54	83							54	83	137
(Inga spp)											
PAPAYA (Carica papaya)							28	37	28	37	65

Tabla N° 5. Especies de mosca de la fruta recuperadas por hospedante en los valles de Motupe y Olmos, periodo -2018

Especie\hospedante	Motupe 2017	Motupe 2018	Olmos 2017	Olmos 2018
Anastrepha distincta	pacae		pacae	pacae
Anastrepha fraterculus (Wied)	mango, cirolero, mandarino, cerezo, pomarrosa, carambola, falso almendro, guayabo, toronja, anona	carambola, cerezo, cirolero, falso almendro, guayabo, mango, zapote	carambola, cerezo, cirolero, guayabo, mango, tangelo	carambola, cirolero, guayabo, mango
Anastrepha obliqua	cirolero		carambola, cirolero	cirolero, mango
Ceratitis capitata (Wied)	mango, cirolero, mandarino, pomarrosa, carambola, falso	café arábico, carambola, cirolero, falso almendro, guayabo, mandarino, mango, naranjo agrio,	ají, ají paprika, café arábico, carambola, cerezo, chirimoyo, cirolero, duraznero,	café arábico, carambola, cerezo,

narai	nendro, njo agrio, o, vichayo	naranjo dulce, pimiento, tangelo, zapote	falso almendro, granado, guayabo, lima dulce, limón rugoso, mandarino, mango, manzano, naranjo dulce, papaya, toronja, vichayo	cirolero, falso almendro, limón rugoso, mandarino, mango, naranja dulce, papaya
Anastrepha chiclayae		corrocoto	corrocoto	corrocoto

Tabla N° 6. Resumen de los hospedantes de moscas de la fruta en los valles de Motupe y Olmos, periodo 2017 -2018

ESPECIES	HOSPEDANTE						
Ceratitis capitata (Wied)	Café arábico, carambola, cirolero, falso almendro, granado,						
	mandarina, mango, naranja agria, naranjo dulce, pomarrosa,						
	tángalo, vichayo, guayabo, pimiento, zapote, ají, ají paprika,						
	cerezo, chirimoyo, duraznero, lima dulce, limón rugoso,						
	manzano, papaya y toronja.						
Anastrepha fraterculus (Wied)	Anona, carambola, cerezo, cirolero, falso almendro,						
	guayabo, mandarino, mango, pomarrosa, toronja, zapote,						
	tangelo.						
Anastrepha obliqua	Cirolero, carambola, mango criollo						
Anastrepha distincta	Guaba,						
Anastrepha chiclayae	Corrocoto						

1.14 Porcentaje de infestación

En la evaluación de los frutos de 41 especies vegetales: cultivadas y no cultivadas en el valle de Motupe en el año 2017 en la tabla 7 muestra que la Pomarrosa presento el mayor porcentaje de infestación con 37.037%, seguida por cerezo con 24 % de infestación, y guayabo con 20 % de infestación (Anexo 9).

En la tabla 8 se observa la evaluación de 28 frutos especies vegetales cultivadas y no cultivadas, donde se encontró que los frutos del naranjo agrio y zapote presentaron el más alto porcentaje de infestación con 62.5 %, seguida de cerezo con 12.5 % de infestación Motupe 2018 (Anexo 10).

En la tabla 9 se aprecia la evaluación de 36 frutos de especies vegetales cultivadas y no cultivadas, donde se determinó que los frutos de guaba presento el más alto porcentaje de infestación con 12.12 % seguida de guayabo con 12% de infestación Olmos 2017 (Anexo 11).

En la tabla 10 se observa la evaluación de 32 frutos de especies vegetales cultivadas y no cultivadas donde se encontró que los frutos de la papaya presentaron el más alto porcentaje de infestación con 25 %, seguida por los frutos de pacae con 17.5438 % de infestación Olmos 2018 (Anexo 12).

Tabla N° 7. Porcentaje de infestación en frutos del valle Motupe 2017

FRUTOS	FRUTOS REVISADOS	FRUTOS INFESTADOS	PORCENTAJE DE INFESTACION
POMARROSA (Eugenia spp)	27	10	37.037 %
CEREZO (Prunus carasus)	100	24	24 %
GUAYABO (Psidium guajaba)	10	2	20 %
PACAE / GUABA (Inga spp)	128	23	17.9687 %
FALSO ALMENDRO (Terminalia catappa)	168	15	8.9285 %
NARANJO AGRIO (Citrus aurantium)	12	1	8.3333 %
CIROLERO (Spondia purpurea)	409	23	5.6234 %
GRANADO (<i>Punica granatum</i>)	46	2	4.3478 %
CAFE ARÁBICO (Coffea arabica)	980	38	3.8775 %
CARAMBOLA (Averrhoa carambola)	533	19	3.5647 %
ANONA (Annona squamosa)	29	1	3.4482 %
MANDARINO (Citrus reticulata)	603	16	2.6533 %
TORONJA (Citrus paradisi)	40	1	2.5 %
VICHAYO (Capparis ovalifolia)	42	1	2.3809 %
MANGO (Mangifera indica)	4235	64	1.5112 %
PALTO (Persia americana)	2387	0	0

TANGELO (Citrus tangelo)	707	1	0.1414 %
CHIRIMOYO (Annona cherimola)	8	0	0
CORROCOTO (Passiflora foetida)	64	0	0
GUANÁBANO (Annona muricata)	5	0	0
HIERBA MORA (Solanum nigrum)	575	0	0
LIMA DULCE (Citrus limetta)	499	0	0
LIMÓN RUGOSO (Citrus jamblriri)	90	0	0
LIMÓN SUTIL (Citrus aurantifolia)	809	0	0
LIMON TAHITI (Citrus latifolia)	34	0	0
LUCUMO (Lucuma obovata)	8	0	0
MAMEY (Mammea americana)	83	0	0
MARACUYA (Passiflora flavicorpa)	125	0	0
MARAÑON (Anacardium occidentale)	5	0	0
MEMBRILLO (Cydonia oblonga)	4	0	0
NARANJO DULCE (Citrus sinensis)	370	0	0
NÍSPERO DEL JAPON (Eriobotrya japónica)	37	0	0
PAPAYA (Carica papaya)	9	0	0
PIMIENTO (Capsicum annum)	80	0	0
ROSAL (Rosal spp)	30	0	0
TAPERIBÁ (MANGO-CIRUELO) (Spondia cytherea)	202	0	0
TOMATILLO (Solanum pimpinellifolium)	220	0	0
VID (Vitis vinífera)	460	0	0
YUCA (Manihot sculenta)	168	0	0
ZAPALLO (Curcubita máxima)	11	0	0
ZAPOTE (Achras sapota)	12	0	0

Tabla N° 8. Porcentaje de infestación en frutos del valle Motupe 2018

FRUTOS	FRUTOS REVISADOS	FRUTOS INFESTADOS	PORCENTAJE DE
			INFESTACION
NARANJO AGRIO (Citrus aurantium)	8	5	62.5 %
ZAPOTE (Achras sapota)	8	5	62.5 %
CEREZO (Prunus carasus)	40	5	12.5 %
FALSO ALMENDRO (Terminalia catappa)	133	14	10.5263 %
GUAYABO (Psidium guajaba)	20	2	10 %
CAFE ARÁBICO (Coffea arabica)	1020	34	3.3333 %
CIROLERO (Spondia purpurea)	714	20	2.8011 %
CARAMBOLA (Averrhoa carambola)	1013	22	2.1717 %
MANDARINO (Citrus reticulata)	213	2	0.9389 %
PIMIENTO (Capsicum annum)	108	1	0.9259 %
NARANJO DULCE (Citrus sinensis)	992	9	0.9072 %

CORROCOTO (Passiflora foetida)	460	3	0.6521 %
MANGO (Mangifera indica)	5552	31	0.5583 %
TANGELO (Citrus tangelo)	1688	7	0.4146 %
PALTO (Persia americana)	2104	0	0
CACAO (Theobroma cacao)	4	0	0
HIERBA MORA (Solanum nigrum)	260	0	0
HIGUERA (Ficus carica)	5	0	0
LIMA DULCE (Citrus limetta)	453	0	0
LIMON CRAVO (Citrus limonia)	3	0	0
LIMÓN RUGOSO (Citrus jamblriri)	121	0	0
LIMÓN SUTIL (Citrus aurantifolia)	3720	0	0
LIMON TAHITI (Citrus latifolia)	5	0	0
MAMEY (Mammea americana)	96	0	0
PACAE / GUABA (Inga spp)	8	0	0
TAPERIBÁ (MANGO-CIRUELO)	700	0	0
(Spondia cytherea)	24	0	0
TORONJA (Citrus paradisi)	24	0	0
VID (Vitis vinífera)	2040	0	0

Tabla N° 9. Porcentaje de infestación en frutos del valle Olmos 2017

FRUTOS	FRUTOS REVISADOS	FRUTOS INFESTADOS	PORCENTAJE DE INFESTACION
PACAE / GUABA (Inga spp)	33	4	12.1212 %
GUAYABO (Psidium guajaba)	350	42	12 %
FALSO ALMENDRO (Terminalia catappa)	266	15	5.639 %
CEREZO (Prunus carasus)	389	20	5.1413 %
CIROLERO (Spondia purpurea)	2706	98	3.6215 %
AJI PÁPRIKA (Capsicum annum)	266	9	3.3834 %
PAPAYA (Carica papaya)	40	1	2.5 %
VICHAYO (Capparis ovalifolia)	288	7	2.4305 %
MANGO (Mangifera indica)	3019	73	2.418 %
CARAMBOLA (Averrhoa carambola)	2278	51	2.2388 %
MANDARINO (Citrus reticulata)	1315	21	1.5969 %
AJÍ (Capsicum frutescens)	70	1	1.4285 %
CORROCOTO (Passiflora foetida)	200	2	1 %
CAFE ARÁBICO (Coffea arabica)	1500	14	0.9333 %
NARANJO DULCE (Citrus sinensis)	612	5	0.8169 %
TORONJA (Citrus paradisi)	129	1	0.7751 %
GRANADO	383	1	0.261 %

LIMÓN RUGOSO (Citrus jamblriri)	964	2	0.2074 %
TANGELO (Citrus tangelo)	1021	2	0.1958 %
LIMA DULCE (Citrus limetta)	2117	2	0.0944 %
DÁTIL (Phoenix dactylifera)	16	0	0
GUANÁBANO (Annona muricata)	2	0	0
HIGUERA (Ficus carica)	17	0	0
LIMÓN DULCE (Citrus limettioides)	55	0	0
LIMÓN SUTIL (Citrus aurantifolia)	252	0	0
LIMON TAHITI (Citrus latifolia)	217	0	0
MARAÑON (Anacardium occidentale)	31	0	0
MEMBRILLO (Cydonia oblonga)	2	0	0
NARANJO AGRIO (Citrus aurantium)	4	0	0
PALTO (Persia americana)	304	0	0
PIMIENTO (Capsicum annum)	118	0	0
POMARROSA (Eugenia spp)	14	0	0
ROSAL (Rosal spp)	45	0	0
TAPERIBÁ (MANGO-CIRUELO)	643	0	0
(Spondia cytherea)			
TOMATILLO (Solanum pimpinellifolium)	25	0	0
VID (Vitis vinífera)	180	0	0

Tabla N° 10. Porcentaje de infestación en frutos del valle Olmos 2018

FRUTOS	FRUTOS REVISADOS	FRUTOS INFESTADOS	PORCENTAJE DE INFESTACION
PAPAYA (Carica papaya)	16	4	25 %
PACAE / GUABA (Inga spp)	57	10	17.5438 %
MANZANO (Malus sylvestris)	10	1	10 %
GUAYABO (Psidium guajaba)	95	8	8.421 %
FALSO ALMENDRO (Terminalia catappa)	70	5	7.1428 %
CIROLERO (Spondia purpurea)	635	43	6.7716 %
CORROCOTO (Passiflora foetida)	1184	26	2.1959 %
CAFE ARÁBICO (Coffea arabica)	720	13	1.8055 %
MANGO (Mangifera indica)	3133	49	1.5639 %
MANDARINO (Citrus reticulata)	738	7	0.9485 %
CARAMBOLA (Averrhoa carambola)	1250	8	0.64 %
CEREZO (Prunus carasus)	160	1	0.625 %
NARANJO DULCE (Citrus sinensis)	748	3	0.401 %
LIMÓN RUGOSO (Citrus jamblriri)	491	1	0.2036 %
TANGELO (Citrus tangelo)	925	1	0.1081 %
AJÍ (Capsicum frutescens)	104	0	0
AJI PÁPRIKA (Capsicum annum)	103	0	0
CHIRIMOYO (Annona cherimola)	4	0	0
DÁTIL (Phoenix dactylefera)	16	0	0

GRANADO (Punica granatum)	19	0	0
HIGUERA (Ficus carica)	5	0	0
LIMA DULCE (Citrus limetta)	427	0	0
LIMÓN (LIMÓN IMPERIAL) (Citrus limon)	5	0	0
LIMÓN SUTIL (Citrus aurantifolia)	120	0	0
LIMON TAHITI (Citrus latifolia)	233	0	0
PALTO (Persia americana)	167	0	0
PIMIENTO (Capsicum annum)	48	0	0
TAPERIBÁ (MANGO-CIRUELO) (Spondia	555	0	0
cytherea)			
TOMATILLO (Solanum pimpinellifolium)	25	0	0
TORONJA (Citrus paradisi)	62	0	0
VICHAYO (Capparis ovalifolia)	726	0	0
VID (Vitis vinifera)	100	0	0

1.15 Evaluación de la biodiversidad alfa

En la tabla 11 se aprecia los índices de diversidad alfa, para el estudio de riqueza de especies de la mosca de la fruta en los dos valles Motupe y Olmos se utilizó el índice de Margalef donde se aprecia que el valle Olmos en el año 2018 es el más rico en especies de mosca de la fruta con un valor de 0.8317 comparado con el año 2017 del valle Olmos y los años 2017 y 2018 del valle Motupe

Para el estudio de la dominancia se utilizó el índice de diversidad de Simpson donde se observa que el valle de Olmos 2018 presenta el más alto valor de diversidad con 0.6734, comparado con el año 2017 del valle Olmos y de los años 2017 y 2018 del valle Motupe, indicando que el valle de Olmos en el año 2018 presenta baja dominancia de especies de mosca de la fruta respecto al año 2017 del valle Olmos y de los años 2017 y 2018 del valle Motupe; para el índice de Shannon – Wiener se observa que en el valle de Olmos en el año 2018 presenta un valor de 1.7338 indicando que presenta mayor diversidad de mosca de la fruta respecto al año 2017 del valle Olmos y los años 2017 y 2018 del valle Motupe .

Tabla N° 11. Índices de diversidad alfa de los valles Motupe y Olmos

HABITAD	N	SECTORES	MARGALEF	SIMPSOM	SHANNON –
	(TOTAL)				WIENER
VALLE MOTUPE 2017	29159	4 SECTORES	0.5836	0.405	1.016
VALLE MOTUPE 2018	93522	4 SECTORES	0.5242	0.4983	1.2587
VALLE OLMOS 2017	65748	4 SECTORES	0.7211	0.1855	0.5987
VALLE OLMOS 2018	50017	4 SECTORES	0.8317	0.6734	1.7338

1.16 Evaluación de la diversidad beta

En la tabla 12 se observa los índices de diversidad beta, para el estudio de similitud de especies de la mosca de la fruta en el valle de Motupe distribuido en 4 sectores (Motupe, Arrozal, Tongorrape y Chochope), se utilizó el índice de Jaccard donde se ve que los sectores Motupe con Arrozal tienen un porcentaje de 57.14% de similitud tanto para el año 2017 y 2018 respectivamente, para el estudio de reemplazo o recambio de especies de la mosca de la fruta se utilizó el índice de Whittaker, donde se observa que Motupe con Chochope mostro el valor más alto de diversidad con 0.5555 a comparación de los otros sectores del año 2017, en la evaluación del sector Motupe con Chochope del año 2018 se encontró que presentó el valor más alto de diversidad con 0.4 a comparación de los otros sectores.

En la tabla 13 se observa los índices de diversidad beta, para el estudio de similitud de especies de la mosca de la fruta en el valle de Olmos distribuido en 4 sectores (San Cristóbal, Insculas, Las Norias y Olmos), se utilizó el índice de Jaccard donde se observa que los sectores San Cristóbal con Insculas tienen un porcentaje de similitud de 28.57% para el año 2017 y para el año 2018 fueron los sectores Las Norias con Olmos con un

porcentaje de 40% respectivamente, para el estudio de reemplazo o recambio de especies de la mosca de la fruta se utilizó el índice de Whittaker, donde se observa que los sectores Las Norias con Olmos presentaron el valor más alto de diversidad con 0.3846 a comparación de los otros sectores en el año 2017, para el año 2018 los sectores Insculas con Las Norias presentaron el valor más alto de diversidad con 0.38 respectivamente a comparación de los otros sectores.

Tabla N° 12: Índices de diversidad beta del valle Motupe

	моти	J PE 2017	MOTUPE 2018	
LOCALIDAD -	JACCARD	WHITTAKER	JACCARD	WHITTAKER
Motupe Vs	0 %	0.5555	25%	0.4
Chochope				
Motupe Vs	57.14%	0.2727	57.14%	0.2727
Arrozal				
Motupe Vs	25%	0.2727	37.5%	0.2727
Tongorrape				
Chochope Vs	0%	0.4	22.2222%	0.2727
Arrozal				
Chochope Vs	0%	0.4	37.5%	0.2727
Tongorrape				
Arrozal Vs	20%	0.1666	50%	0.1666
Tongorrape				

Tabla N° 13. Índices de diversidad beta del valle Olmos

LOCALIDAD	OLM	OS 2017	OLMOS 2018		
LOCALIDAD -	JACCARD	WHITTAKER	JACCARD	WHITTAKER	
San Cristóbal Vs Insculas	28.57%	0	33.33%	0.125	
San Cristóbal Vs Las Norias	15.38%	0.2	36.36%	0.2	
San Cristóbal Vs Olmos	14.28%	0.125	21.42%	0.0588	
Insculas Vs Las Norias	15.38%	0.2	30%	0.38	
Insculas Vs Olmos	14.28%	0.125	36.36%	0.2	
Las Norias Vs Olmos	18.18%	0.3846	40%	0.2857	

DISCUSION

El presente trabajo de investigación nos ha permitido conocer cuál de las especies de la mosca de la fruta son más prevalentes, la diversidad poblacional en los valles de Motupe y Olmos en el periodo 2017-2018 de la región Lambayeque, así mismo nos ha permitido saber cuál de todas de las especies, es una plaga de importancia económica para la región Lambayeque, esta plaga tiene muchos cultivos frutícolas de exportación como hospedantes.

Los niveles poblacionales de *C. capitata* alcanzaron sus niveles más altos en el valle Motupe durante el periodo enero a abril, época de producción estacional de la mayoría de hospedantes de mosca de la fruta: mango, ciruela, guayaba, café, cítricos; mientras que en el valle de Olmos los hospedantes que influyeron directamente en el incremento poblacional de esta especie fueron: el vichayo (*Capparis ovalifolia*), ají paprika (*Capsicum annuum*), además de los hospedantes mango, papaya, ciruela y guayaba (figura N° 1). De Villiers, Manrakhan, Addison, y Hattingh, (2013) la población de *C. capitata* aumenta cuando hay un incremento de alimento. Otros autores manifiestan que aceites de los hospedantes estimulan la oviposición de mosca de la fruta como la *C. capitata*, Ioannou, Papadopoulos, Kouloussis, Tananaki, y Katsoyannos (2012) encontraron que los aceites de los cítricos como naranja dulce, mandarina satsuma, naranja amarga, toronja y limón estimulan la ovoposición de este insecto.

En años evaluados, 2017 y 2018, se puede observar que la curva de fluctuación poblacional de *C. capitata* se inicia en el mes de diciembre hasta el mes de abril, meses donde alcanza sus mayores niveles, periodo a partir del cual empieza a descender hasta los meses de junio, julio y agosto, manteniéndose así hasta el mes de noviembre. Como consecuencia de la variedad de hospedantes que presentan ambos valles de producción, los cuales ofrecen abundante sustrato de oviposición y alimentación suficiente para reproducirse y multiplicarse rápidamente y además de un clima de verano óptimo en temperatura y humedad relativa favorables para efectuar su ciclo biológico en menos de 30 días. (Tabilio et al., 2013) el mecanismo de interacción entre fruta y la plaga es muy importante en el aumento de la población, debido que si hay abundancia de frutas la plaga también aumentara.

Además, se puede observar en ambos valles que el fenómeno de El Niño Costero ocurrido en los meses de verano del 2017 con precipitaciones pluviales intensas por encima de lo normal, incidieron directamente en la disminución de las poblaciones de *C. capitata* (asfixiando pupas). Así, se puede observar que en el valle Motupe los niveles poblacionales de *C. capitata* en febrero alcanzaron un MTD de 1.438 y al mes de noviembre fue de 0.066, índice de infestación que expresado en MTD, pertenece a un MTD de Baja Prevalencia. Terblanche, Nyamukondiwa y Kleynhans (2010); Ricalde, Nava, Loeck y Donatti (2012) estudiaron a nivel de laboratorio el comportamiento de *C. capitata* criadas en el laboratorio donde encontraron que las grandes fluctuaciones de temperatura pueden limitar la respuesta de adaptación, generando la disminución de la población debido a la baja producción de huevos, y bajo desarrollo larval, las variaciones de temperaturas que limito la supervivencia fue entre 15 y 30 °C, y las variaciones de temperaturas de 20 y 25 °C a 35 °C no limito el desarrollo de las moscas.

A diferencia del año 2018 con precipitaciones pluviales normales los índices poblacionales de C. capitata fueron de 4.631en abril y descendió al mes de julio con un MTD de 0.123.

Asimismo, para el valle de Olmos durante el 2017, el efecto de las precipitaciones fue mayor, ya que las precipitaciones pluviales en esa zona de producción fueron más intensas que en Motupe (como se observa en el anexo 2). Los MTD disminuyeron desde 2.855 en enero a abril con 0.061, disminuyendo aún más en los siguientes meses, hasta alcanzar en noviembre un MTD de 0.009 (nivel para área en erradicación) Anexo 3. A diferencia del 2018 que los niveles poblacionales fueron menores con respecto al 2017, alcanzando al mes de abril un MTD de 0.317 como su nivel más alto y su nivel más bajo en setiembre con un valor de 0.010. Szyniszewska y Tatem (2014) *Ceratitis capitata*, es una plaga de importancia económica debido a su amplio rango de hospedadores, que incluye cientos de frutas y verduras, tiene la capacidad para invadir y adaptarse a nichos ecológicos en regiones tropicales y subtropicales del mundo como se aprecia en el Anexo 8. Papanicolaou et al., (2016), la adaptación de este insecto es debido a genes únicos que presenta a comparación de otras especies, estas secuencias genéticas están relacionadas con la invasividad y la adaptación del huésped, quimioreceptores, el metabolismo de toxinas e insecticidas, proteínas de la cutícula, opsinas y aquaporinas.

Durante la investigación realizada se pudo observar que un factor que pudo influenciar en la disminución de los MTDs en Olmos para *C. capitata c*on respecto a Motupe, se debió a que en la zona de producción Olmos existió presencia de una brigada de control integrado de mosca de la fruta del SENASA la cual realiza el control de la plaga en aquellos huertos abandonados donde existen hospedantes de mosca de la fruta. Las labores de control integrado contra mosca de la fruta consistieron en recojo y enterrado de frutos caídos, aplicación de cebo tóxico y eliminación de frutos remanentes. Lo que no sucede en Motupe, existen huertos abandonados con hospedantes de mosca de la fruta donde no se realiza el control de la plaga, permitiendo que se incrementen las poblaciones de *C. capitata*.

Para el complejo *Anastrepha* los niveles poblacionales se vieron influenciados por los siguientes factores: la diversidad de hospedantes que se presentan en el valle tales como mango, carambola, guayaba, guaba, corrocoto, ciruela, tangelo y cerezo y condiciones óptimas de temperatura y humedad relativa, es decir temperaturas mayores a 30°C y humedad relativa mayores a 80% como se aprecia en el Anexo 2. Segura et al., (2006) refieren que la abundancia de las poblaciones de las moscas de la fruta depende mucho de las condiciones ambientales locales (por ejemplo, humedad relativa y grado de perturbación) de cada localidad.

En el año 2017 en el valle de Motupe la especie con mayor población fue *A. fraterculus*, seguido de *A. chiclayae*. Sin embargo, en el 2018 se puede observar un incremento significativo (figura 7) de los niveles poblacionales de *A. fraterculus* de hasta 28247 especimenes capturados, seguido de *A. chiclayae* con 2946 de adultos capturados y *A. distincta* con 1603 adultos y *A. obliqua* con 892 capturas, debido a la alta producción de mango, corrocoto, pacae, ciruela y carambola, como consecuencia de condiciones climáticas favorables generado por el efecto Post Niño Costero (anexo 2), el cual se ve reflejado en el incremento poblacional de moscas de la fruta del Complejo *Anastrepha*, mostrando MTDs de 1.4, 2.01 y 1.07 en los meses de marzo, abril y mayo, respectivamente, que comparado con el 2017 son mayores a cualquier mes de ese año (Figura N°4). Segura et al., (2006) menciona que las plagas de importancia económica en argentina son las especies de *Ceratitis capitata* (Wiedemann) y *Anastrepha fraterculus* (Wiedemann), datos muy parecidos a nuestra investigación. Gonzáles et al., (2011) en un estudio realizado en Bolivia también encontraron que las especies más abundantes fueron *Anastrepha fraterculus* (Wiedemann) y *Ceratitis capitata* (Wiedemann), (Canal, Galeano,

y Castañeda, 2018) (Gómez, Paulin, Oroño, Ovruski, y Vilardi, 2016) en Colombia y México la plaga de importancia económica también es *Anastrepha fraterculus* (Wiedeman), mencionan que la temperatura, la precipitación y presencia de especies frutícolas hospedantes en estado de maduración explican el aumento de las poblaciones de estas moscas.

Al igual que en el valle Motupe, en Olmos durante el año 2017 se puede observar que los niveles poblacionales del Complejo Anastrepha se iniciaron con un MTD de 1.33 en enero, luego 0.44 en febrero y 0.18 en marzo, siendo éstos los niveles más altos del año para luego disminuir a niveles de baja prevalencia a valores menores de 0.06, a diferencia del año 2018 donde los niveles se incrementaron significativamente llegando a 1.18 de MTD en marzo y 0.64 en abril, esto debido a las condiciones climáticas favorables generadas por efecto post niño costero.

Se puede apreciar que el fenómeno del Niño Costero también influyó en el control de moscas del Complejo Anastrepha, disminuyendo sus niveles poblacionales a partir del mes de abril con MTD de 0.01 hasta 0.06 en diciembre (2017).

En el valle Olmos se puede apreciar que en el año 2017 la especie más abundante fue A. fraterculus con 4243 especímenes, seguido de A. chiclayae con 1912 adultos (figura N° 8). Sin embargo para el 2018, después de la ocurrencia del fenómeno de El Niño costero las poblaciones de A. chiclayae pasan a ocupar el primer lugar en capturas llegándose a registrar 19526 adultos de esta especie, desplazando a Anastrepha fraterculus con 16798 capturas (Figura N°8). Esto debido a que en el valle de Olmos como consecuencia de las precipitaciones ocurridas durante el fenómeno de El Niño, la especie arvense conocida como corrocoto (Passiflora foetida) incrementó sus poblaciones cubriendo grandes áreas en el valle de Olmos, permitiendo a A. chiclayae incrementar sus niveles poblacionales por ser ésta especie vegetal su hospedante natural.

En la presente investigación se registraron siete especies de mosca de la fruta en el año 2017 en el valle Motupe (Ceratitis capitata, Anastrepha chiclayae, A. fraterculus, A. obliqua, A. distincta, A. grandis y A. serpentina) y en el año 2018 se encontraron siete especies (Ceratitis capitata, Anastrepha chiclayae, A. fraterculus, A. obliqua, A. distincta, A. grandis y A. serpentina); para el valle Olmos en el año 2017 se registraron nueve especies de mosca de la fruta (Ceratitis capitata, Anastrepha chiclayae, A. fraterculus, A. obliqua, A. distincta, A. grandis, A. manihoti, A. dissimilis y Anastrepha

sp), y en el año 2018 se registraron 10 especies de mosca de la fruta (*Ceratitis capitata, Anastrepha chiclayae, A. fraterculus, A. obliqua, A. distincta, A. grandis, A. manihoti, A. dissimilis, A. serpentina y A. macrura*).

La mosca de la fruta presenta gran diversidad en los valles de Motupe y Olmos en los años 2017 y 2018, en la evaluación del índice alfa (riqueza de Margalef, equidad de Shannon-Wiener y dominancia de Simpson) para los dos valles evaluados, en los dos años 2017 y 2018 se encontró que el valle de Olmos en el año 2018 presento mayor diversidad de especies de mosca de la fruta para los tres índices evaluados, a comparación del valle Motupe en los años 2017 y 2018 y Olmos en el año 2017 (tabla 11), según Rodríguez, González, Rodríguez, Lomelí, y Miranda, (2018) tras la evaluación de la diversidad de especies de mosca de la fruta en dos municipios Tetipac y Atoyac en México, en los resultados encontraron un total de 11 especies A. ludens (Loew), A. striata Schiner, A. obliqua (Macquart), A. serpentina (Wiedemann), A. spatulata Stone, A. bicolor (Stone), A. dentata (Stone), A. chiclayae Greene, Toxotrypana curvicauda Gerstaecker, Rhagoletis ramosae Hernandez-Ortiz, y Zonosemata cocoyoc Bush, a la evaluación del índice de equidad de Shannon - Wiener y dominancia de Simpson se encontró que el distrito de Tetipac registro mayor diversidad con un índice de Shannon-Wiener = 1.30 y Simpson = 0.68, esto puede ser debido a las etapas fenológicas de fluctuación maduración y cosecha de los frutos.

Bernardo (2014) en su trabajo realizado de los campos de cultivo del Programa de Frutales de la Universidad Nacional la Molina, evaluó la diversidad alfa (riqueza de Margalef, equidad de Shannon-Wiener y dominancia de Simpson) y beta (similitud de Jaccard) de la mosca de la fruta en diferentes hábitats de cultivos (mandarina, lúcumo, cítricos, durazno y palto), el hábitat con mayor diversidad con los tres índices alfa evaluados fue el cultivo de lúcumo esto puede ser debido a su frondoso follaje que presenta todo el año. La diversidad biológica de las moscas de la fruta en el Perú es debido a diversidad de pisos altitudinales que se encuentran en cada región (Norrbom, Rodriguez, Steck, Sutton, y Nolazco, 2015).

En el estudio de similitud de Jaccard en el valle Motupe se encontró que los sectores Motupe y Arrozal presentan el mayor porcentaje de similitud con 57.14% tanto para el año 2017 y 2018 respectivamente, para el valle Olmos se encontró mayor similitud en los sectores San Cristóbal e Insculas con un porcentaje de similitud de 28.57% para el año

2017 y para el año 2018 los sectores Las Norias vs Olmos con porcentaje de 40% de similitud respectivamente. Según Bernardo (2014) en su investigación realizada en los campos de cultivo del Programa de Frutales de la Universidad Nacional la Molina, en la evaluación del índice de similitud de Jaccard se encontró que el cultivo de cítricos y palto son las que tienen mayor similitud en cuanto a la composición de especies de moscas con 92.77 % por ciento de similitud, el investigador menciona que puede ser debido a la cercanía de los cultivos.

En conclusión, los resultados de nuestro trabajo de investigación permiten comprobar que en los valles de Motupe y Olmos de la región Lambayeque sí existe gran variedad de moscas de la fruta, es muy importante conocer la bio-ecológica de estos insectos para realizar programas de manejo integrado de plagas, el conocimiento de la forma y estructura poblacional de estos insectos plagas de frutas, su biología, genética o morfología es una herramienta de ayuda en la toma de decisiones para el control de la plaga.

CONCLUSIONES

Al concluir la presente investigación se plantearon las siguientes conclusiones

- Con respecto al índice de diversidad alfa en los dos valles Motupe y Olmos en los años 2017 y 2018, el valle de Olmos en el año 2018 presento mayor diversidad de especies, para el índice de diversidad beta en el valle de Motupe los sectores de Motupe y Arrozal presentan mayor similitud de especies, y los sectores de Motupe y Chochope presentaron mayor reemplazo o recambio de especies; para el valle Olmos, los sectores Insculas vs Olmos y Las Norias vs Olmos presentaron mayor similitud de especies, y los sectores Insculas vs Las Norias presentaron mayor recambio de especies.
- En la investigación se registraron siete especies de mosca de la fruta en el valle Motupe en los años 2017 y 2018 (Ceratitis capitata, Anastrepha chiclayae, A. fraterculus, A. obliqua, A. distincta, A. grandis y A serpentina), en el valle Olmos se registraron nueve especies en el año 2017 (Ceratitis capitata, Anastrepha chiclayae, A. fraterculus, A. obliqua, A. distincta, A. grandis, A. manihoti, A. dissimilis y Anastrepha. sp), y 10 especies para el año 2018 (Ceratitis capitata, Anastrepha chiclayae, A. fraterculus, A. obliqua, A. distincta, A. grandis, A. manihoti, A. dissimilis, A. serpentina y A. macrura).
- Las poblaciones de las moscas de la fruta encontradas en los valles de Motupe y Olmos son permanentes en todo el año fluctuando sus poblaciones de acuerdo a la estación anual y a la fenología de las especies frutícolas; para *Ceratitis capitata* los hospedantes fueron café arábico, carambola, cirolero, falso almendro, granado, mandarina, mango, naranja agria, naranjo dulce, pomarrosa, tangelo, vichayo, guayabo, pimiento zapote, ají, ají paprika, cerezo, chirimoyo, duraznero, lima dulce, limón rugoso, manzano, papaya, toronja; *A. fraterculus* (Wied) fueron anona, carambola, cerezo, cirolero, falso almendro, guayabo, mandarino, mango, pomarrosa, toronja, zapote y tangelo; *A. obliqua* fueron cirolero, carambola y mango; *A. distincta* fue guaba y para *A. chiclayae* fue corrocoto.

• Para las especies del Complejo *Anastrepha* la temperatura y humedad relativa altas (mayor a 30°C y mayor a 80%, respectivamente) influyeron directamente en el incremento poblacional de estas especies, a diferencia de *Ceratitis capitata* que prefiere climas cálidos pero secos (humedad relativa menor a 70%); el fenómeno de El Niño Costero influyo en la diminución de los niveles poblacionales tanto de *Ceratitis capitata* como del Complejo *Anastrepha* durante el año 2017; la especie *Anastrepha. chiclayae* es la que presento mayor nivel poblacional en el valle Olmos debido a que su hospedante natural incremento sus áreas generado por las altas precipitaciones que aumentaron la reproducción de *Passiflora foetida* (corrocoto).

RECOMENDACIONES

Al concluir la presente investigación se recomienda:

- Realizar trabajos de investigación anualmente con respecto a la diversidad de las moscas de la fruta en los valles de Motupe y Olmos.
- Extender el trabajo de investigación realizando un monitoreo en los otros valles de la región Lambayeque con el fin de cubrir la mayor área posible para tener un mejor conocimiento de la fluctuación y comportamiento de la mosca de la fruta para un mejor control.
- Realizar muestreos de especies vegetales no cultivables o silvestres con la finalidad de conocer probables nuevas especies de moscas la fruta.

REFERENCIAS

- AGRODATAPERU. (2018). Exportaciones agropecuarias julio 2018. Recuperado el 30 de julio del 2018, de https://www.agrodataperu.com
- Aluja, M., Ordano, M., Guillén, L., & Rull, J. (2012). Understanding long-term fruit fly (Diptera: Tephritidae) population dynamics: implications for areawide management. *Journal of Economic Entomology*, 105(3), 823-836. https://doi.org/10.1603/EC11353
- Aluja Schuneman, Martin. Manejo integrado de la mosca de la fruta.

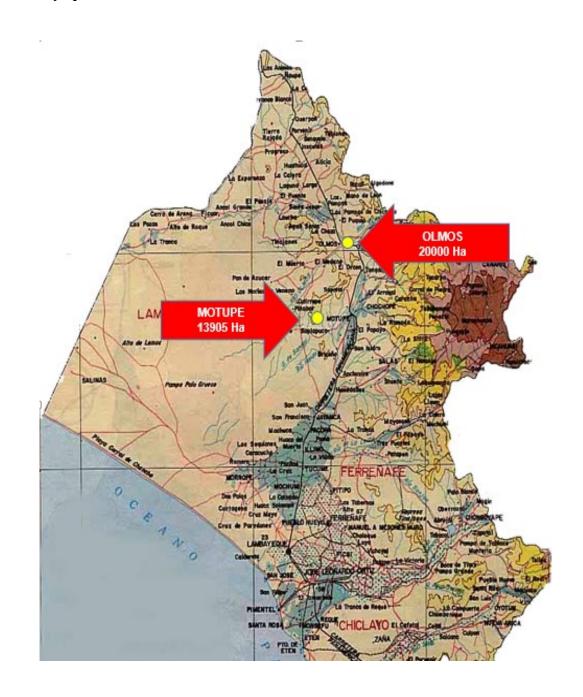
 México. Editorial Trillas, 1993. 251 p.
- Bernardo, J. (2014). Diversidad y dinámica poblacional de Ceratitis capitata Wiedemann y Anastrepha spp. (Diptera: Tephritidae) en La Molina. Lima, Perú (Tesis de pregrado). Universidad Nacional Agraria La Molina, Lima, Perú.
- Canal, N. A., Galeano, P. E., & Castañeda, M. del R. (2018). Phenotypic Structure of Colombian Populations of Anastrepha fraterculus Complex (Diptera: Tephritidae). *Florida Entomologist*, *101*(3), 486-497. https://doi.org/10.1653/024.101.0307
- Conde-Blanco, E. A., Loza-Murguia, M. G., Asturizaga-Aruquipa, L. B., Ugarte-Anaya,
 D., & Jiménez-Espinoza, R. (2018). Modelo de fluctuación poblacional de moscas de la fruta Ceratitis capitata (Wiedemann 1824) y Anastrepha spp (Díptera: Tephritidae) en dos rutas en el municipio de Caranavi, Bolivia. *Journal of the Selva Andina Research Society*, 9(1), 3-24.
- De Villiers, M., Manrakhan, A., Addison, P., & Hattingh, V. (2013). The Distribution, Relative Abundance, and Seasonal Phenology of Ceratitis capitata, Ceratitis rosa,

- and Ceratitis cosyra (Diptera: Tephritidae) in South Africa. *Environmental Entomology*, 42(5), 831-840. https://doi.org/10.1603/EN12289
- FAO. (2018). Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). División Estadísticas. Recuperado el 20 de julio del 2018, de http://www.fao.org/statistics
- Ganie, S. A., Khan, Z. H., Ahangar, R. A., Bhat, H. A., & Hussain, B. (2013). Population Dynamics, Distribution, and Species Diversity of Fruit Flies on Cucurbits in Kashmir Valley, India. *Journal of Insect Science*, 13. https://doi.org/10.1673/031.013.6501
- Gómez, P. V., Paulin, L. E., Oroño, L., Ovruski, S. M., & Vilardi, J. C. (2016).
 Morphometric Differentiation Among Anastrepha fraterculus (Diptera:
 Tephritidae) Exploiting Sympatric Alternate Hosts. *Environmental Entomology*,
 45(2), 508-517. https://doi.org/10.1093/ee/nvv224
- Gonzáles, M., Loza-Murguía, M., Smeltekop, H., Cuba, N., Almanza, J. C., & Ruiz, M. (2011). Dinámica poblacional de adultos de la mosca boliviana de la fruta Anastrepha sp. (Díptera: Tephritidae) en el Municipio de Coroico, Departamento de La Paz, Bolivia. *Journal of the Selva Andina Research Society*, 2(2), 2-12.
- Hafsi, A., Facon, B., Ravigné, V., Chiroleu, F., Quilici, S., Chermiti, B., & Duyck, P.-F.
 (2016). Host plant range of a fruit fly community (Diptera: Tephritidae): does fruit composition influence larval performance? *BMC Ecology*, 16(1), 40. https://doi.org/10.1186/s12898-016-0094-8
- Huaraca, R. (2018). Identificación de las especies (Anastrepha sp. y Ceratitis capitata) Y hospedantes de la mosca de la fruta en el sector Pachachaca, Abancay Apurimac (Tesis de pregrado). Universidad Tecnológica de los Andes, Apurimac. Perú.

- Ioannou, C. S., Papadopoulos, N. T., Kouloussis, N. A., Tananaki, C. I., & Katsoyannos,
 B. I. (2012). Essential oils of citrus fruit stimulate oviposition in the
 Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae). *Physiological Entomology*, 37(4), 330-339. https://doi.org/10.1111/j.1365-3032.2012.00847.x
- Keilin, D. y Picado, C. (1913). Evolution et formes larvaires du Diachasma crawfordi n.sp. Braconidae parasite d'une mouche des fruits [Anastrepha striata Schiner].Bull. Sci. Fr. Belg. 47, 203–214.
- Korytkowski, C y Ojeda, D. (1968). Especies del género Anastrepha Schiner 1868 en el noroeste peruano. Rev Per de Ent, 11(1): 32-70.
- Korytkowski, C y Ojeda, D. (1969). Distribución ecológica de especies del género Anastrepha Schiner en el noroeste peruano. Rev Per de Ent. 12(1): 71-95.
- Martínez-Meyer, E., Sosa-Escalante, J. E., & Álvarez, F. (2014). El estudio de la biodiversidad en México: ¿una ruta con dirección? *Revista Mexicana de Biodiversidad*, 85, 1-9. https://doi.org/10.7550/rmb.43248
- Norrbom, A. L., Rodriguez, E. J., Steck, G. J., Sutton, B. A., & Nolazco, N. (2015). New species and host plants of Anastrepha (Diptera: Tephritidae) primarily from Peru and Bolivia. *Zootaxa*, 4041(1), 1-94. https://doi.org/10.11646/zootaxa.4041.1.1
- Obregón, L. Análisis situacional de la mosca de la fruta (Ceratitis capitata) y el complejo Anastrepha spp. en Socco y Amoca - Aymaraes, 2016 (Tesis de pregrado). Universidad Tecnológica de los Andes, Apurimac. Perú.
- Papanicolaou, A., Schetelig, M. F., Arensburger, P., Atkinson, P. W., Benoit, J. B., Bourtzis, K., ... Handler, A. M. (2016). The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the

- biology and adaptive evolution of a highly invasive pest species. *Genome Biology*, 17(1), 192. https://doi.org/10.1186/s13059-016-1049-2
- Qin, Y., Paini, D. R., Wang, C., Fang, Y., & Li, Z. (2015). Global Establishment Risk of Economically Important Fruit Fly Species (Tephritidae). *PLOS ONE*, *10*(1). https://doi.org/10.1371/journal.pone.0116424
- Ramos, A. (2017). Especies de mosca de la fruta (Diptera: Tephritidae) y sus hospedantes en el valle de Abancay Apurimac (Tesis de pregrado). Universidad Nacional de San Antonio de Abad del Cusco, Cusco, Perú.
- Ricalde, M. P., Nava, D. E., Loeck, A. E., & Donatti, M. G. (2012). Temperature-dependent development and survival of Brazilian populations of the Mediterranean fruit fly, Ceratitis capitata, from tropical, subtropical and temperate regions. *Journal of Insect Science*, 12(1). https://doi.org/10.1673/031.012.3301
- Rodríguez-Rodríguez, S. E., González-Hernández, H., Rodríguez-Leyva, E., Lomelí-Flores, J. R., & Miranda-Salcedo, M. A. (2018). Species Diversity and Population Dynamics of Fruit Flies (Diptera: Tephritidae) in Guerrero, Mexico. *Florida Entomologist*, 101(1), 113-118. https://doi.org/10.1653/024.101.0120
- Segura, D. F., Vera, M. T., Cagnotti, C. L., Vaccaro, N., De Coll, O., Ovruski, S. M., & Cladera, J. L. (2006). Relative Abundance of Ceratitis capitata and Anastrepha fraterculus (Diptera: Tephritidae) in Diverse Host Species and Localities of Argentina. *Annals of the Entomological Society of America*, 99(1), 70-83. https://doi.org/10.1603/0013-8746 (2006)099[0070: RAOCCA] 2.0.CO; 2
- SENASA (2007). Manual del sistema nacional de vigilancia de moscas de la fruta. Subdirección de Moscas de la Fruta y Proyectos Fitosanitarios

- SENAMHI (2018). Datos. Recuperado el 25 de julio del 2018, de https://web2.senamhi.gob.pe/
- Shafiq Ansari, M., Hasan, F., & Ahmad, N. (2012). Threats to fruit and vegetable crops: Fruit flies (Tephritidae) ecology, behaviour, and management. *Journal of Crop Science and Biotechnology*, *15*(3), 169-188. https://doi.org/10.1007/s12892-011-0091-6
- SUNAT. (2018). Superintendencia Nacional de Aduanas y de Administración Tributaria.


 Recuperado el 20 de julio del 2018, de http://www.sunat.gob.pe/aduanas.html
- Szyniszewska, A. M., & Tatem, A. J. (2014). Global Assessment of Seasonal Potential Distribution of Mediterranean Fruit Fly, Ceratitis capitata (Diptera: Tephritidae). *PLOS ONE*, *9*(11), e111582. https://doi.org/10.1371/journal.pone.0111582
- Vaníčková, L., Hernández-Ortiz, V., Bravo, I. S. J., Dias, V., Roriz, A. K. P., Laumann, R. A., ... do Nascimento, R. R. (2015). Current knowledge of the species complex Anastrepha fraterculus (Diptera, Tephritidae) in Brazil. *ZooKeys*, (540), 211-237. https://doi.org/10.3897/zookeys.540.9791
- Tabilio, M. R., Fiorini, D., Marcantoni, E., Materazzi, S., Delfini, M., De Salvador, F. R., & Musmeci, S. (2013). Impact of the Mediterranean fruit fly (Medfly) Ceratitis capitata on different peach cultivars: The possible role of peach volatile compounds. *Food Chemistry*, 140(1), 375-381. https://doi.org/10.1016/j.foodchem.2013.02.074
- Terblanche, J., Nyamukondiwa, C., & Kleynhans, E. (2010). Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). *Entomologia Experimentalis et Applicata*, 137(3), 304-315. https://doi.org/10.1111/j.1570-7458.2010.01067.x

Zafra, H. (2015). Presencia de *Ceratitis capitata Wiedemann, Anastrepha fraterculos Wiedemann y A. distinta Greene*, en plantas hospederas en los valles de Chao y

Virú, La Libertad, enero – agosto, 2015 (Tesis de pregrado). Universidad Nacional de Trujillo, Trujillo, Perú.

ANEXOS

Anexo 1: Ubicación geográfica de los Valles Motupe y Olmos del departamento de Lambayeque.

Anexo 2: Datos meteorológicos de las Estaciones meteorológicas Automáticas de Tongorrape (Motupe) y Olmos del periodo enero 2017 hasta junio 2018.

ESTACIÓN METEOROLÓGICA AUTOMÁTICA OLMOS AÑO 2017

MESES	T°. MAX	T°. MIN	HR	PP
MESES	(°C)	(°C)	(%)	(ml.)
ENE	34.2	21.7	65	19.9
FEB	33.4	22.5	83	329.7
MAR	32.6	22.2	91	764.4
ABR	31.3	20.6	89	124.6
MAY	28.9	19.3	90	38.2
JUN	27.4	17	88	0
JUL	26.3	14.9	88	0
AGO	28.2	13.7	83	0.5
SET	30.8	13.9	78	0.4
OCT	31.1	14.3	76	3.2
NOV	30.9	13.4	75	0
DIC	33.4	16.7	71	1

Fuente: SENAMHI - Lambayeque

ESTACIÓN METEOROLÓGICA AUTOMÁTICA TONGORRAPE AÑO 2017

MESES	T°. MAX (°C)	T°. MIN (°C)	HR (%)	PP (ml.)
ENE	33.5	20.5	65	19.3
FEB	32.9	21.6	78	199.8
MAR	31.7	22	84	425.6
ABR	31	20.9	82	18.8
MAY	28.5	19.5	82	42.1
JUN	26.7	17.4	81	0.4
JUL	25.7	15.4	82	0
AGO	27.1	14.6	82	1.4
SET	30	14.6	73	0.2
OCT	30.6	14.7	71	1.3
NOV	30.6	14.2	71	0
DIC	32.8	17.3	69	0.1

ESTACIÓN METEOROLÓGICA AUTOMÁTICA OLMOS AÑO 2018

MESES	T°. MAX (°C)	T°. MIN (°C)	HR (%)	PP (ml.)
ENE	34	18.4	71	33.7
FEB	33.8	19.7	67	3.1
MAR	34.7	18.9	64	1
ABR	34.7	18.5	69	20.8
MAY	31.9	16.7	74	4.1
JUN	29.1	15.1	77	0
JUL	28.9	14.2	77	0
AGO	30.7	14.5	74	0
SET	32.1	14.5	72	0

Fuente: SENAMHI – Lambayeque

ESTACIÓN METEOROLÓGICA AUTOMÁTICA TONGORRAPE AÑO 2018

MESES	T°. MAX (°C)	T°. MIN (°C)	HR (%)	PP (ml.)
ENE	33.1	18.4	70	7.6
FEB	32.9	20.1	67	2.9
MAR	34	19.5	66	2.1
ABR	33.4	19.1	69	17.9
MAY	29.9	17.4	76	5
JUN	26.9	15.7	78	0
JUL	27,3	14,9	77	0
AGO	28.6	14.7	73	0
SET	29.9	14.6	70	0

Anexo 3: Etapas técnicas para el control de las moscas de la fruta

ETAPA	DENSIDADES DE CAPTURAS (MTD)	
Prospección y Monitoreo	Mayor a 1	
Supresión	De 1 a mayor de 0.01	
Erradicación	De 0.01 a 0.000	
Prevención	Igual a 0.000	

Fuente: SENASA – 2007 (Manual del Sistema Nacional de Vigilancia de Moscas de la Fruta).

Anexo 4: Fluctuación poblacional de *C. capitata* en el valle Motupe 2017-2018 versus los datos meteorológicos de la Estación Meteorológica Automática Tongorrape

			Humedad	Temperatura	Temperatura
	MTD	Precipitación	relativa	Mínima	Máxima
MES	Motupe	Motupe	Motupe	Motupe	Motupe
	2017-	2017-2018	2017-2018	2017-2018	2017-2018
	2018	(ml)	(%)	(°C)	(°C)
Ene	0.483	19.3	65%	20.5	33.5
Feb	1.438	199.8	78%	21.6	32.9
Mar	1.135	425.6	84%	22	31.7
Abr	0.225	18.8	82%	20.9	31
May	0.030	42.1	82%	19.5	28.5
Jun	0.037	0.4	81%	17.4	26.7
Jul	0.027	0	82%	15.4	25.7
Ago	0.037	1.4	82%	14.6	27.1
Set	0.015	0.2	73%	14.6	30
Oct	0.037	1.3	71%	14.7	30.6
Nov	0.066	0	71%	14.2	30.6
Dic	0.460	0.1	69%	17.3	32.8
Ene	2.020	7.6	70%	18.4	33.1
Feb	1.770	2.9	67%	20.1	32.9

Mar	3.161	2.1	66%	19.5	34
Abr	4.631	17.9	69%	19.1	33.4
May	2.050	5	76%	17.4	29.9
Jun	0.482	0	78%	15.7	26.9
Jul	0.123	0	77%	14.9	27.3
Ago	0.082	0	73%	14.7	28.6
Set	0.109	0	70%	14.6	29.9

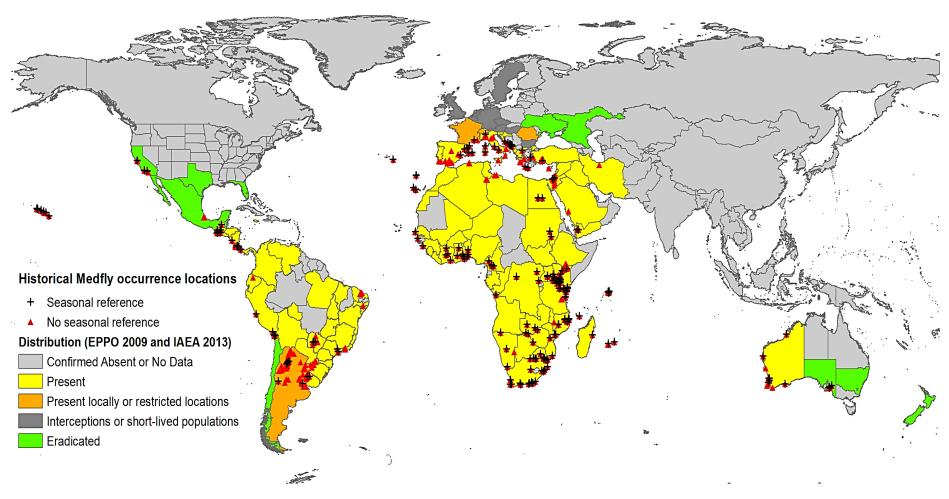
Anexo 5: Fluctuación poblacional de *C. capita*ta del valle Olmos 2017-2018 versus los datos meteorológicos de la Estación Meteorológica Automática Olmos.

	MTD	Precipitación	Humedad	Temperatura	Temperatura
MES	Olmos	Olmos 2017-	Relativa	Mínima	Máxima
WIES	2017 -2018	2018	Olmos 2017-	Olmos 2017-	Olmos 2017-
	2017 -2010	2010	2018	2018	2018
Ene	2.855	19.9	65%	21.7	34.2
Feb	1.661	329.7	83%	22.5	33.4
Mar	0.672	764.4	91%	22.2	32.6
Abr	0.061	124.6	89%	20.6	31.3
May	0.020	38.2	90%	19.3	28.9
Jun	0.015	0	88%	17	27.4
Jul	0.008	0	88%	14.9	26.3
Ago	0.005	0.5	83%	13.7	28.2
Set	0.003	0.4	78%	13.9	30.8
Oct	0.004	3.2	76%	14.3	31.1
Nov	0.009	0	75%	13.4	30.9
Dic	0.044	1	71%	16.7	33.4
Ene	0.148	33.7	71%	18.4	34
Feb	0.145	3.1	67%	19.7	33.8
Mar	0.169	1	64%	18.9	34.7
Abr	0.317	20.8	69%	18.5	34.7
May	0.144	4.1	74%	16.7	31.9

Jun	0.042	0	77%	15.1	29.1
Jul	0.011	0	77%	14.2	28.9
Ago	0.011	0	74%	14.5	30.7
Set	0.010	0	72%	14.5	32.1

Anexo 6: Fluctuación poblacional del Complejo Anastrepha spp. del valle Motupe 2017-2018 versus los datos meteorológicos de la Estación Meteorológica Automática Tongorrape.

	MTD		Humedad	Temperatura	Temperatura
MES	MOTUPE	Precipitación	relativa	Mínima	Máxima
MES		Motupe 2017-	Motupe	Motupe 2017-	Motupe 2017-
	2017-2018	2018	2017-2018	2018	2018
Ene	0.44	19.3	65%	20.5	33.5
Feb	0.79	199.8	78%	21.6	32.9
Mar	0.77	425.6	84%	22	31.7
Abr	0.46	18.8	82%	20.9	31
May	0.21	42.1	82%	19.5	28.5
Jun	0.15	0.4	81%	17.4	26.7
Jul	0.06	0	82%	15.4	25.7
Ago	0.03	1.4	82%	14.6	27.1
Set	0.05	0.2	73%	14.6	30
Oct	0.03	1.3	71%	14.7	30.6
Nov	0.04	0	71%	14.2	30.6
Dic	0.27	0.1	69%	17.3	32.8
Ene	0.36	7.6	70%	18.4	33.1
Feb	0.30	2.9	67%	20.1	32.9
Mar	1.40	2.1	66%	19.5	34
Abr	2.01	17.9	69%	19.1	33.4
May	1.07	5	76%	17.4	29.9
Jun	0.22	0	78%	15.7	26.9
Jul	0.13	0	77%	14.9	27.3


Ago	0.17	0	73%	14.7	28.6
Set	0.11	0	70%	14.6	29.9

Fuente: SENAMHI – Lambayeque

Anexo 7: Fluctuación poblacional del complejo Anastrepha del valle Olmos 2017-2018 versus los datos meteorológicos de la Estación Meteorológica Automática Olmos.

	MTD	Precipitación	Humedad Relativa	Temperatura Mínima	Temperatura Máxima
MES	OLMOS 2017-2018	Olmos 2017- 2018	Olmos 2017-	Olmos 2017-	Olmos 2017-
			2018	2018	2018
Ene	1.33	19.9	65%	21.7	34.2
Feb	0.44	329.7	83%	22.5	33.4
Mar	0.18	764.4	91%	22.2	32.6
Abr	0.01	124.6	89%	20.6	31.3
May	0.03	38.2	90%	19.3	28.9
Jun	0.01	0	88%	17	27.4
Jul	0.01	0	88%	14.9	26.3
Ago	0.01	0.5	83%	13.7	28.2
Set	0.01	0.4	78%	13.9	30.8
Oct	0.02	3.2	76%	14.3	31.1
Nov	0.03	0	75%	13.4	30.9
Dic	0.06	1	71%	16.7	33.4
Ene	0.13	33.7	71%	18.4	34
Feb	0.45	3.1	67%	19.7	33.8
Mar	1.18	1	64%	18.9	34.7
Abr	0.64	20.8	69%	18.5	34.7
May	0.38	4.1	74%	16.7	31.9
Jun	0.16	0	77%	15.1	29.1
Jul	0.18	0	77%	14.2	28.9
Ago	0.23	0	74%	14.5	30.7
	0.19	0	72%	14.5	32.1

Anexo 8: Evaluación global de la distribución estacional de la mosca mediterránea de la fruta, Ceratitis capitata (Diptera: Tephritidae)

Fuente: (Szyniszewska y Tatem, 2014)

Anexo N° 9: Fenología de los hospedantes de las moscas de la fruta del valle Motupe 2017.

	665766]	MESI	ES					
HOSPEDANTE	CODIGO HOSPEDANTE	Ene	Feb	Mar	Abr	May				Set	Oct	Nov	Dic
. H. D. (DDH/)			1		Ι	FEN	OLO	OGI	A	1			
AJI PAPRIKA ANONA	AJ												
CAFÉ	AN CF												
CARAMBOLA	СВ												
CEREZA	CZ												
CIRUELA	CC												
CORROCOTO	СО												
FALSO ALMENDRO	FA												
GRANADA	GR												
GUAYABA	GY												
LIMA DULCE	LD												
LIMON DULCE	LN												
LIMON RUGOSO	LR												
LUCUMA	LU												
MAMEY	MM												
MANZANA	MZ												
MANDARINA	MA												
MANGO	MG												
NARANJA	ND												
PACAE	PA												
PALTA HASS	PT												
PALTA FUERTE	PT												
PAPAYA	PY												
PIMIENTO	PI												
ROSAL	RO												
TANGELO	TG												
TAPERIBA	TA												
TORONJA	TJ												
VICHAYO	VI												
VID	UV												
YUCA	YC												
ZAPALLO	ZA												
ZAPOTE	ZP												

Anexo N° 10: Fenología de los hospedantes de las moscas de la fruta del valle Motupe 2018.

	CODICO						MESI	ES					
HOSPEDANTE	CODIGO HOSPEDANTE	Ene	Feb	Mar	Abr	May			Ago	Set	Oct	Nov	Dic
AJI PAPRIKA	AJ					FE:	NOLC)GIA					
ANONA	AN												
CAFÉ	CF												
CARAMBOLA	СВ												
CEREZA	CZ												
CIRUELA	CC												
CORROCOTO	CO												
FALSO ALMENDRO	FA												
GRANADA	GR												
GUAYABA	GY												
LIMA DULCE	LD												
LIMON DULCE	LN												
LIMON RUGOSO	LR												
LUCUMA	LU												
MAMEY	MM												
MANZANA	MZ												
MANDARINA	MA												
MANGO	MG												
NARANJA	ND												
PACAE	PA												
PALTA HASS	PT												
PALTA FUERTE	PT												
PAPAYA	PY												
PIMIENTO	PI												
ROSAL	RO												
TANGELO	TG												
TAPERIBA	TA												
TORONJA	TJ												
VICHAYO	VI												
VID	UV												
YUCA	YC												
ZAPALLO	ZA												
ZAPOTE	ZP												

Anexo $N^{\circ}11$: Fenología de los hospedantes de las moscas de la fruta del valle Olmos 2017.

	COPICO						MESI	ES					
HOSPEDANTE	CODIGO HOSPEDANTE	Ene	Feb	Mar	Abr	May			Ago	Set	Oct	Nov	Dic
AJI PAPRIKA	AJ					FE:	NOL()GIA		1			
ANONA	AN												
CAFÉ	CF												
CARAMBOLA	СВ												
CEREZA	CZ												
CIRUELA	CC												
CORROCOTO	CO												
FALSO ALMENDRO	FA												
GRANADA	GR												
GUAYABA	GY												
LIMA DULCE	LD												
LIMON DULCE	LN												
LIMON RUGOSO	LR												
LUCUMA	LU												
MAMEY	MM												
MANZANA	MZ												
MANDARINA	MA												
MANGO	MG												
NARANJA	ND												
PACAE	PA												
PALTA HASS	PT												
PALTA FUERTE	PT												
PAPAYA	PY												
PIMIENTO	PI												
ROSAL	RS												
TANGELO	TG												
TAPERIBA	TA												
TORONJA	TJ												
VICHAYO	VI												
VID	UV												
ZAPALLO	ZA												

Anexo N° 12: Fenología de los hospedantes de las moscas de la fruta del valle Olmos 2018.

	COPTCO						MES	ES					
HOSPEDANTE	CODIGO HOSPEDANTE	Ene	Feb	Mar	Abr	May		Jul	Ago	Set	Oct	Nov	Dic
A II D A DDIIZA			I			FE	NOL	OGIA	\	1			
AJI PAPRIKA ANONA	AJ AN												
CAFÉ	CF												
CARAMBOLA	СВ												
CEREZA	CZ												
CIRUELA	CC												
CORROCOTO	СО												
FALSO ALMENDRO	FA												
GRANADA	GR												
GUAYABA	GY												
LIMA DULCE	LD												
LIMON DULCE	LN												
LIMON RUGOSO	LR												
LUCUMA	LU												
MAMEY	MM												
MANZANA	MZ												
MANDARINA	MA												
MANGO	MG												
NARANJA	ND												
PACAE	PA												
PALTA HASS	PT												
PALTA FUERTE	PT												
PAPAYA	PY												
PIMIENTO	PI												
ROSAL	RS												
TANGELO	TG												
TAPERIBA	TA												
TORONJA	TJ												
VICHAYO	VI												
VID	UV												
ZAPALLO	ZA												

Anexo N° 13: Capturas mensuales de *Ceratitis capitata* en trampas Jackson por sectores en el valle Motupe, 2017.

ZON	IA	MOTUPE	MOTUPE	MOTUPE	MOTUPE	
SECT	OR	01 MOTUPE	02 CHOCHOPE	03 ARROZAL	04 TONGORRAPE	MOTUPE TOTAL
Enero	N° MOSCA	1360	50	1162	283	2855
Febrero	N° MOSCA	3902	456	3276	789	8423
Marzo	N° MOSCA	3028	657	1206	294	5185
Abril	N° MOSCA	477	208	233	34	952
Mayo	N° MOSCA	98	16	51	5	170
Junio	N° MOSCA	91		13	3	107
Julio	N° MOSCA	77	2	13	8	100
Agosto	N° MOSCA	82	0	24	5	111
Setiembre	N° MOSCA	32	2	25	2	61
Octubre	N° MOSCA	144	3	35	24	206
Noviembre	N° MOSCA	360	36	87	32	515
Diciembre	N° MOSCA	1492	86	852	371	2801

Anexo N° 14: Capturas mensuales de *Ceratitis capitata* en trampas Jackson por sectores en el valle Motupe, 2018.

ZON	IA	MOTUPE	MOTUPE	MOTUPE	MOTUPE	MOTUPE
SECT	OR	01 MOTUPE	02 CHOCHOPE	03 ARROZAL	04 TONGORRAPE	TOTAL
Enero	N° MOSCA	8725	104	4479	1213	14521
Febrero	N° MOSCA	4779	146	4854	566	10345
Marzo	N° MOSCA	7099	1572	8639	834	18144
Abril	N° MOSCA	12537	5908	7357	2270	28072
Mayo	N° MOSCA	9344	1514	3403	536	14797
Junio	N° MOSCA	1518	750	538	102	2908
Julio	N° MOSCA	347	84	238	59	728
Agosto	N° MOSCA	239	32	278	12	561
Setiembre	N° MOSCA	181	13	447	76	717

Anexo N° 15: Capturas mensuales de *Ceratitis capitata* en trampas Jackson por sectores en el valle Olmos, 2017.

ZON	Α	OLMOS	OLMOS	OLMOS	OLMOS	011100
SECT	OR	01 SAN CRISTOBAL	02 INSCULAS	03 LAS NORIAS	04 OLMOS	OLMOS TOTAL
ENERO	N° MOSCAS	4746	26627	497	1105	32975
FEBRERO	N° MOSCAS	4045	11669	417	2092	18223
MARZO	N° MOSCAS	2864	2304	444	689	6301
ABRIL	N° MOSCAS	216	76	61	118	471
MAYO	N° MOSCAS	81	98	7	21	207
JUNIO	N° MOSCAS	55	66	11	17	149
JULIO	N° MOSCAS	29	35	9	17	90
AGOSTO	N° MOSCAS	21	23	6	12	62
SETIEMBRE	N° MOSCAS	12	6	2	15	35
OCTUBRE	N° MOSCAS	18	7	2	16	43
NOVIEMBRE	N° MOSCAS	52	51	7	22	132
DICIEMBRE	N° MOSCAS	83	282	28	71	464

Anexo N° 16: Capturas mensuales de *Ceratitis capitata* en trampas Jackson por sectores en el valle Olmos, 2018.

ZOI	NA	OLMOS	OLMOS	OLMOS	OLMOS	OLMOS
SECT	SECTOR		02 INSCULAS	03 LAS NORIAS	04 OLMOS	TOTAL
ENERO	N° MOSCAS	713	1125	48	209	2095
FEBRERO	N° MOSCAS	975	186	78	407	1646
MARZO	N° MOSCAS	1037	109	63	279	1488
ABRIL	N° MOSCAS	1270	353	575	2125	4323
MAYO	N° MOSCAS	439	374	185	1014	2012
JUNIO	N° MOSCAS	36	335	23	79	473
JULIO	N° MOSCAS	53	26	11	30	120
AGOSTO	N° MOSCAS	49	24	4	38	115
SETIEMBRE	N° MOSCAS	28	24	1	32	85

Anexo N° 17: Capturas mensuales del complejo Anastrepha spp en trampas Multi lure en los sectores valle Motupe, 2017.

	ZONA	MOTUPE	MOTUPE	MOTUPE	MOTUPE	MOTUDE
S	ECTOR	01 MOTUPE	02 CHOCHOPE	03 ARROZAL	04 TONGORRAPE	MOTUPE TOTAL
	A. chiclayae	24	0	1	1	26
	A. fraterculus	181	9	223	64	477
Enero	A. obliqua	1	0	1	0	2
	A. distincta	13	1	5	0	19
	TOTAL MOSCAS	219	10	230	65	524
	A. chiclayae	24	0	3	4	31
	A. fraterculus	309	16	199	210	734
Febrero	A. obliqua	37	1	16	15	69
	A. distincta	31	1	15	9	56
	TOTAL MOSCAS	401	18	233	238	890
	A. chiclayae	76	0	9	15	100
	A. fraterculus	704	15	408	200	1327
Marzo	A. obliqua	62	1	39	1	103
	A. distincta	37	1	14	1	53
	TOTAL MOSCAS	879	17	470	217	1583
	A. chiclayae	61	0	6	20	87
	A. fraterculus	647	6	171	314	1138
Abril	A. obliqua	32	0	5	3	40
	A. distincta	20	0	2	2	24
	TOTAL MOSCAS	760	6	184	339	1289
	A. chiclayae	9	0	1	0	10
	A. fraterculus	524	21	178	111	834
Mayo	A. obliqua	3	1	0	0	4
,	A. distincta	38	0	10	0	48
	TOTAL MOSCAS	574	22	189	111	896
	A. chiclayae	2	0	1	0	3
	A. fraterculus	197	0	79	23	299
	A. obliqua	0	0	0	0	0
Junio	A. distincta	47	0	10	1	58
	A. serpentina	0	0	0	1	1
	TOTAL MOSCAS	246	0	90	25	361
	A. chiclayae	0	0	0	0	0
Julio	A. fraterculus	40	2	56	31	129
Julio	A. obliqua	0	0	0	0	0
	A. distincta	18	0	3	1	22

	TOTAL MOSCAS	58	2	59	32	151
	A. chiclayae	0	0	0	0	0
	A. fraterculus	11	0	31	13	55
Agosto	A. obliqua	0	0	0	0	0
7.80010	A. distincta	22	0	1	1	24
	TOTAL MOSCAS	33	0	32	14	79
	A. chiclayae	0	0	0	0	0
	A. fraterculus	24	1	29	32	86
Setiembre	A. obliqua	1	0	1	2	4
	A. distincta	4	0	0	0	4
	TOTAL MOSCAS	29	1	30	34	94
	A. chiclayae	1	0	3	0	4
	A. fraterculus	34	11	58	38	141
Octubre	A. obliqua	2	0	1	0	3
0000010	A. distincta	5	0	0	0	5
	TOTAL MOSCAS	42	11	62	38	153
	A. chiclayae	1	0	2	0	3
	A. fraterculus	97	11	39	43	190
	A. obliqua	0	0	0	0	0
Noviembre	A. distincta	6	1	0	1	8
	A. grandis	0	0	3	0	3
	TOTAL MOSCAS	104	12	44	44	204
	A. chiclayae	7	0	2	0	9
	A. fraterculus	464	54	699	305	1522
	A. obliqua	0	0	2	0	2
Diciembre	A. distincta	16	0	4	1	21
	A. grandis	0	0	2	0	2
	TOTAL MOSCAS	487	54	709	306	1556

Anexo N° 18: Capturas mensuales del complejo Anastrepha spp en trampas Multi lure en los sectores valle Motupe, 2018.

	ZONA	MOTUPE	МОТИРЕ	MOTUPE	MOTUPE	MOTURE
s	ECTOR	01 MOTUPE	02 CHOCHOPE	03 ARROZAL	05 TONGORRAPE	MOTUPE TOTAL
	A. chiclayae	23	0	10	0	33
	A. fraterculus	865	31	1072	459	2427
Enero	A. obliqua	0	0	0	0	0
	A. distincta	30	1	1	4	36
	TOTAL MOSCAS	918	32	1083	463	2496
	A. chiclayae	45	3	24	4	76
	A. fraterculus	661	36	645	315	1657
Febrero	A. obliqua	2	0	10	0	12
	A. distincta	36	0	2	1	39
	TOTAL MOSCAS	744	39	681	320	1784
	A. chiclayae	125	1	86	12	224
	A. fraterculus	1864	341	4328	684	7217
	A. obliqua	48	15	147	9	219
Marzo	A. distincta	60	4	37	1	102
	A. grandis	0	0	1	0	1
	TOTAL MOSCAS	2097	361	4599	706	7763
	A. chiclayae	188	17	131	73	409
	A. fraterculus	3011	1555	4340	1427	10333
	A. obliqua	114	111	236	16	477
Abril	A. distincta	122	29	88	16	255
	A. serpentina	0	0	2	0	2
	TOTAL MOSCAS	3435	1712	4797	1532	11476
	A. chiclayae	307	21	218	157	703
	A. fraterculus	1836	787	2256	404	5283
	A. obliqua	55	15	81	2	153
Mayo	A. distincta	231	36	193	16	476
	A. serpentina	0	0	2	0	2
	TOTAL MOSCAS	2429	859	2750	579	6617
	A. chiclayae	182	19	183	71	455
	A. fraterculus	249	53	233	35	570
	A. obliqua	5	4	2	0	9
Junio	A. distincta	100	10	121	7	238
	A. grandis	0	0	0	6	6
	A. serpentina	0	0	1	0	1
	TOTAL MOSCAS	536	86	540	119	1279
	A. chiclayae	202	16	130	34	382
Julio	A. fraterculus	85	13	104	9	211
	A. obliqua	0	0	3	1	4

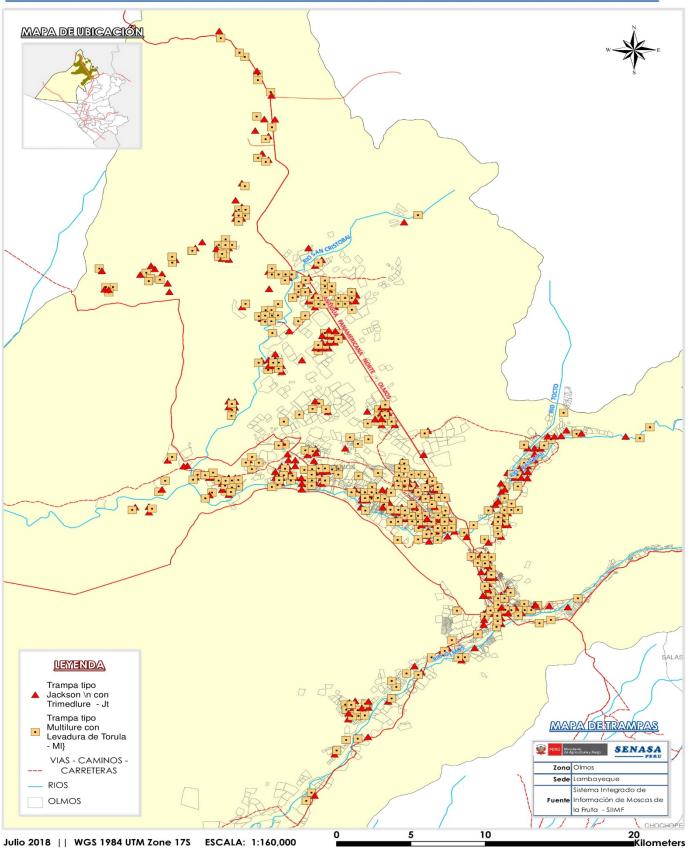
	A. distincta	33	3	93	11	140
	A. grandis	0	0	1	3	4
	A. serpentina	0	0	1	0	1
	TOTAL MOSCAS	320	32	332	58	742
	A. chiclayae	210	13	143	14	380
	A. fraterculus	72	11	149	14	246
Agosto	A. obliqua	2	1	6	0	9
Agosto	A. distincta	89	5	147	5	246
	A. grandis	0	0	0	1	1
	TOTAL MOSCAS	373	30	445	34	882
	A. chiclayae	91	7	202	17	317
	A. fraterculus	60	12	188	43	303
Setiembre	A. obliqua	2	1	3	3	9
Seciembre	A. distincta	62	5	35	5	107
	A. grandis	0	0	1	2	3
	TOTAL MOSCAS	215	25	429	70	739

Anexo N° 19: Capturas mensuales del complejo Anastrepha spp en trampas Multi lure en los sectores valle Olmos 2017.

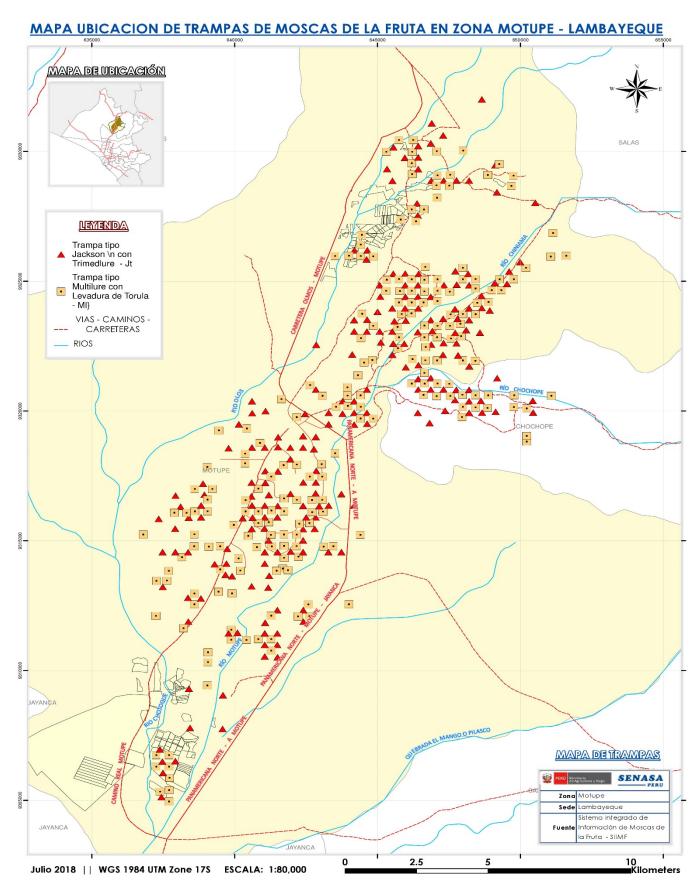
ZONA		OLMOS	OLMOS	OLMOS	OLMOS	
SECTOR		01 SAN CRISTOBAL	02 INSCULAS	03 LAS NORIAS	04 OLMOS	OLMOS TOTAL
	A. chiclayae	130	40	39	19	228
	A. fraterculus	22	21	3	56	102
Enero	A. obliqua	1	1	0	0	2
	A. distincta	0	1	0	6	7
	TOTAL MOSCAS	153	63	42	81	339
	A. chiclayae	132	117	48	43	340
	A. fraterculus	279	225	62	142	708
Febrero	A. obliqua	9	7	0	16	32
	A. distincta	3	8	1	67	79
	TOTAL MOSCAS	423	357	111	268	1159
	A. chiclayae	205	132	86	112	535
	A. fraterculus	706	439	169	316	1630
Marzo	A. obliqua	41	5	0	56	102
	A. distincta	28	8	2	78	116
	TOTAL MOSCAS	980	584	257	562	2383
Abril	A. chiclayae	32	47	8	33	120
	A. fraterculus	226	187	29	76	518
	A. obliqua	11	0	0	5	16
	A. distincta	3	2	0	16	21

	TOTAL MOSCAS	272	236	37	130	675
Mayo	A. chiclayae	5	12	1	1	19
	A. fraterculus	44	116	5	12	177
	A. obliqua	0	0	1	2	3
	A. distincta	4	2	0	10	16
	TOTAL MOSCAS	53	130	7	25	215
	A. chiclayae	0	0	0	0	0
l	A. fraterculus	18	61	8	8	95
Junio	A. distincta	4	1	1	14	20
	TOTAL MOSCAS	22	62	9	22	115
	A. chiclayae	1	3	0	0	4
	A. fraterculus	9	9	1	17	36
1	A. obliqua	1	0	0	1	2
Julio	A. distincta	4	0	0	10	14
	A. grandis	0	1	0	0	1
	TOTAL MOSCAS	15	13	1	28	57
	A. chiclayae	7	7	0	1	15
	A. fraterculus	24	18	4	23	69
Agosto	A. obliqua	1	0	0	1	2
	A. distincta	2	1	0	5	8
	TOTAL MOSCAS	34	26	4	30	94
	A. chiclayae	15	34	2	0	51
	A. fraterculus	28	15	6	20	69
Catiombro	A. obliqua	1	0	2	2	5
Setiembre	A. distincta	0	7	4	4	15
	A. grandis	1	0	0	1	2
	TOTAL MOSCAS	45	56	14	27	142
	A. chiclayae	55	30	0	1	86
	A. fraterculus	91	25	5	41	162
Ostubra	A. obliqua	1	0	0	1	2
Octubre	A. distincta	10	2	0	2	14
	A. grandis	2	0	0	1	3
	TOTAL MOSCAS	159	57	5	46	267
	A. chiclayae	185	16	1	2	204
	A. fraterculus	115	28	14	63	220
Noviembre	A. obliqua	0	2	0	1	3
Noviembre	A. distincta	3	11	5	5	24
	A. grandis	5	0	0	3	8
	TOTAL MOSCAS	308	57	20	74	459
	A. chiclayae	253	56	0	1	310
	A. fraterculus	276	77	5	99	457
Diciombra	A. obliqua	0	1	0	0	1
Diciembre	A. distincta	5	3	1	4	13
	A. grandis	8	0	0	0	8
	A. manihoti	0	0	1	1	2

Anastrepha sp	2	3	0	0	5
TOTAL MOSCAS	542	137	7	105	791


Anexo N° 20: Capturas mensuales del complejo Anastrepha spp en trampas multi lure en los sectores valle Olmos 2018.

ZONA		OLMOS	OLMOS	OLMOS	OLMOS	OLMOS
SECTOR		01 SAN CRISTOBAL	02 INSCULAS	03 LAS NORIAS	04 OLMOS	TOTAL
Enero	A. chiclayae	1010	216	5	20	1251
	A. fraterculus	444	100	6	164	714
	A. obliqua	0	0	0	0	0
	A. distincta	4	5	2	0	11
	A. grandis	5	0	0	1	6
	A. manihoti	0	0	0	0	0
	TOTAL MOSCAS	1463	321	13	185	1982
	A. chiclayae	2448	325	15	57	2845
	A. fraterculus	1638	218	28	924	2808
	A. obliqua	50	19	0	2	71
Febrero	A. distincta	20	16	2	13	51
	A. grandis	10	0	0	9	19
	A. manihoti	0	0	0	0	0
	TOTAL MOSCAS	4166	578	45	1005	5794
	A. chiclayae	2747	357	9	30	3143
	A. fraterculus	3250	346	40	487	4123
	A. obliqua	120	71	0	14	205
Marzo	A. distincta	8	24	0	9	41
IVIATZO	A. grandis	60	0	0	1	61
	A. manihoti	0	0	0	0	0
	A. serpentina	3	0	0	0	3
	TOTAL MOSCAS	6188	798	49	541	7576
	A. chiclayae	2353	452	53	289	3147
	A. fraterculus	3434	1435	282	1362	6513
Abril	A. obliqua	126	21	0	86	233
	A. distincta	21	96	3	103	223
	A. grandis	2	0	0	5	7
	A. manihoti	0	0	0	1	1
	A. dissimilis	0	1	0	0	1
	A. serpentina	1	8	1	0	10
	TOTAL MOSCAS	5937	2013	339	1846	10135
	A. chiclayae	1869	285	131	264	2549
Mayo	A. fraterculus	1061	809	166	604	2640
	A. obliqua	23	3	0	101	127


	A. distincta	35	95	8	259	397
	A. grandis	1	0	0	0	1
	A. manihoti	0	0	0	0	0
	A. dissimilis	1	0	0	0	1
	A. serpentina	0	1	0	0	1
	TOTAL MOSCAS	2990	1193	305	1228	5716
	A. chiclayae	1341	139	119	161	1760
	A. fraterculus	50	62	9	89	210
	A. obliqua	2	0	1	1	4
	A. distincta	15	40	8	72	135
Junio	A. grandis	0	0	0	0	0
	A. manihoti	0	0	0	0	0
	A. dissimilis	0	0	0	2	2
	A. serpentina	0	4	1	0	5
	TOTAL MOSCAS	1408	245	138	325	2116
	A. chiclayae	1424	175	197	228	2024
	A. fraterculus	31	40	15	107	193
	A. obliqua	4	3	0	2	9
tullia.	A. distincta	18	39	9	109	175
Julio	A. grandis	0	0	0	0	0
	A. manihoti	0	0	0	0	0
	A. serpentina	0	1	0	0	1
	TOTAL MOSCAS	1477	258	221	446	2402
	A. chiclayae	1439	246	158	100	1943
	A. fraterculus	64	62	18	36	180
	A. obliqua	3	2	0	0	5
Agosto	A. distincta	34	28	10	51	123
	A. grandis	0	0	0	0	0
	A. manihoti	0	0	0	0	0
	TOTAL MOSCAS	1540	338	186	187	2251
	A. chiclayae	547	64	142	111	864
Setiembre	A. fraterculus	68	60	38	134	300
	A. obliqua	2	0	0	0	2
	A. distincta	11	15	9	114	149
	A. grandis	0	0	0	0	0
	A. manihoti	1	0	0	2	3
	A. dissimilis	0	1	0	1	2
	A. macrura	0	2	0	0	2
	TOTAL MOSCAS	629	142	189	362	1322

Anexo N° 21: Red de trampeo Jackson y Multilure valle Olmos 2017 - 2018

MAPA UBICACION DE TRAMPAS DE MOSCAS DE LA FRUTA EN ZONA OLMOS - LAMBAYEQUE

Anexo N° 22: Red de trampeo Jackson y Multilure valle Motupe 2017 - 2018.

Anexo N° 23: Especies de moscas de la fruta capturadas en la redes de trampeo de los valles Motupe y Olmos.

Ceratitis capitata (Wied)

Anastrepha chiclayae

Anastrepha distincta

Anastrepha fraterculus (Wied)

Anastrepha obliqua

Anastrepha serpentina

Anastrepha macrura

Anastrepha manihoti

Anastrepha grandis

Anastrepha dissimilis

Anastrepha sp.