UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

EFECTOS DE RESIDUOS DE BRONCE, COMO SUSTITUCIÓN DEL AGREGADO FINO, EN LAS PROPIEDADES DEL CONCRETO

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL LÍNEA DE INVESTIGACIÓN: CONSTRUCCIÓN Y MATERIALES

AUTORES : Br. Alva Cabellos, Estuardo Abrahan

Br. Varela Bolaños, Brayan Randy

ASESORA : Ing. Durand Orellana, Rocío del Pilar

TRUJILLO - PERÚ

2020

UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

EFECTOS DE RESIDUOS DE BRONCE, COMO SUSTITUCIÓN DEL AGREGADO FINO, EN LAS PROPIEDADES DEL CONCRETO

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL LÍNEA DE INVESTIGACIÓN: CONSTRUCCIÓN Y MATERIALES

AUTORES : Br. Alva Cabellos, Estuardo Abrahan

Br. Varela Bolaños, Brayan Randy

ASESOR: Ing. Durand Orellana, Rocío del Pilar

TRUJILLO - PERÚ

2020

DEDICATORIA

Dedico esta tesis a mi esposa y familia porque han fomentado en mí el deseo de superación y triunfo en la vida. Lo que ha contribuido a lograr esta meta, espero contar siempre con su valioso apoyo incondicional.

Alva Cabellos, Estuardo Abrahan

Dedico esta tesis a mi amado hijo Danilo Varela, tal vez aún estas pequeño para que entiendas la magnitud de mis palabras, pero cuando tengas la capacidad de hacerlo, quiero que veas todo lo que significas para mí, Eres la llave que abre la puerta de mi inspiración y la motivación que alimenta mi ser, para ser mejor cada día. Tú Siempre has estado y estarás presente en todos mis logros.

Muchas gracias hijo.

Varela Bolaños, Brayan Randy

AGRADECIMIENTOS

Quiero agradecer a dios por el don de la perseverancia para lograr esta meta. A mi esposa y familia por acompañarme en este camino y siempre haber confiado en mí.

Alva Cabellos, Estuardo Abrahan

En primer lugar, agradezco a esta prestigiosa universidad por haberme abierto sus puertas, a los docentes por haberme impartido los conocimientos a lo largo de estos años, a mis compañeros por su entusiasmo y apoyo. A mis padres por ser constantes en mi desarrollo profesional, Gracias.

Varela Bolaños, Brayan Randy

RESUMEN

El presente trabajo de investigación tuvo como objetivo principal determinar los efectos de residuos de bronce, como sustitución del agregado fino, en las propiedades del concreto fresco y endurecido. El residuo de bronce utilizado fue aquel producido en la fabricación de llaves que se obtuvo de algunas personas que realizan el oficio en el distrito de Trujillo; en la búsqueda de poder utilizar este material dentro del concreto, como parte del sector construcción que viene creciendo este año, y encontrarle algún beneficio técnico que pueda contribuir a proponer otros usos de este residuo y así contribuir al cuidado del medio ambiente.

Para cumplir con nuestro objetivo, se realizaron diseños de mezclas de concreto en base a un concreto patrón siguiendo la metodología del ACI 211.1 para concretos de resistencias f´c= 210 y 280 kg/cm². Se elaboraron probetas de 100 x 200 mm, unas para concreto patrón (diseño normal) y otras probetas donde se sustituyó el agregado fino por porcentajes de residuos de bronce (5, 10 y 15% respectivamente), considerando una consistencia plástica de 3"- 4".

Los datos obtenidos en el ensayo de la resistencia a la compresión con las probetas, se analizaron estadísticamente y se determinó que la sustitución por residuos de bronce en reemplazo del agregado fino en la conformación del concreto, hace que este disminuya su resistencia en un rango de porcentaje de 7 al 10% de su resistencia a la compresión conforme se incremente esta adicción. Este residuo de bronce (adición mineral) al hacer contacto químicamente con el hidróxido de calcio del cemento, contribuye al disminuir la resistencia a la compresión; sin embargo, se han comprobado que mantiene la trabajabilidad.

Palabras claves: Residuos de bronce, agregado fino, concreto, resistencia a la compresión.

ABSTRACT

The main objective of this research work was to determine the effects of bronze residues, as a substitute for fine aggregate, on the properties of fresh and hardened concrete. The bronze residue used was that produced in the manufacture of keys that was obtained from some people who perform the trade in the Trujillo district; in the search to be able to use this material within concrete, as part of the construction sector that has been growing this year, and to find some technical benefit that may contribute to proposing other uses of this waste and thus contribute to the care of the environment.

To meet our objective, concrete mix designs were made based on a standard concrete following the ACI 211 methodology for concrete with resistance f'c = 210 and 280 kg / cm2. Specimens of 100 x 200 mm were made, some for standard concrete (normal design) and other specimens where the fine aggregate was replaced by percentages of bronze residues (5, 10 and 15% respectively), considering a plastic consistency of 3 "- 4".

The data obtained in the compression resistance test with the specimens, were statistically analyzed and it was determined that the substitution by bronze residues in replacement of the fine aggregate in the formation of the concrete, causes it to decrease its resistance in a range of percentage of 5 to 10% of its compressive strength as this addition increases. This bronze residue (mineral addition) when chemically contacting the calcium hydroxide of the cement, contributes by reducing the compressive strength; however, they have been found to maintain workability.

Key words: Bronze residue, fine aggregate, concrete, compressive strength.

INDICE

PRESENTA	CION
DEDICATOR	RIA
AGRADECII	MIENTO
RESUMEN	
ABSTRAC	
ÍNDICE	
ÍNDICE DE	TABLAS
ÍNDICE DE I	FOTOGRAFÍAS
ÍNDICE DE (GRAFICO
I. INTRO	DUCCION
1.1. PR	OBLEMA DE INVESTIGACION:2
1.1.1.	Descripción de la realidad problemática2
1.1.2.	Formulación del Problema3
1.2. OB	JETIVOS
1.2.1.	Objetivo General 3
1.2.2.	Objetivos Específicos
1.3. JU	STIFICACION DEL ESTUDIO4
II. MARC	O TEÓRICO 6
2.1. AN	TECEDENTE DE LA INVESTIGACION6
2.1.1.	Investigaciones Internacionales
2.2. BA	SE TEÓRICA 8
2.2.1.	Diseño de Mezcla 8
2.2.2.	Recomendaciones
2.3. BA	SE CONCEPTUAL 10
2.3.1.	Variables11
III. MET	ODOLOGIA EMPLEADA:133
3.1. TIP	O Y NIVEL DE INVESTIGACIÓN133
3.2. PO	BLACIÓN Y MUESTRA DE ESTUDIO133
3.3. DIS	SEÑO DE INVESTIGACIÓN133
3.4. TÉ	CNICAS E INSTRUMENTOS DE INVESTIGACIÓN133
3.5. PR	OCESAMIENTO Y ANÁLISIS DE DATOS144
3.5.1.	Analisis Granulometricos
3.5.2.	Peso específico y absorción
3.5.3.	Ensayo de resistencia al desgaste de los agregados por medio de la

máquina de los Ángeles......21

	3.5.4. Método de ensayo para la medición del asentamiento del horrel cono de Abrams	-
	3.5.5. Ensayo de resistencia a la compresión del concreto en cilíndricas	
3.6	6. DISEÑO DE MEZCLAS	28
	3.6.1. Diseño de mezcla (Método ACI/Módulo de fineza combinaciagregados)	
;	3.6.2. Cantidad de probetas a ensayar	28
;	3.6.3. Ensayo a la compresión	30
IV.	PRESENTACIÒN DE RESULTADOS	314
4.1	1. Análisis Granulométrico De Agregados Finos Y Gruesos	34
4.2	2. Ensayos a los agregados	37
4.3	3. Ensayo de abrasión	37
4.4	4. Diseño de Mezclas	38
4.5	5. Propiedades en Estado de Concreto Fresco	49
4.6	6. Propiedades en Estado de Concreto Endurecido	49
	4.6.1. Resultados a la resistencia a la compresión del concreto en cilíndricas (NTP 339.034)	
/ . I	DISCUSION DE LOS RESULTADOS	91
/ I.	CONCLUSIONES	94
/II.	RECOMENDACIONES	96
REF	ERENCIAS BIBLIOGRAFICAS	97
ANE.	XOS	97
Pland	o de Ubicación	98
Certi	ficado de calibración	99
	<u>ÍNDICE DE TABLAS</u>	
Tab	ola 01: Operacionalización de las variables	11
Tab	ola 02: Cantidad Mínima del Agregado Grueso	17
Tab	ola 03: Limites de granulometría según el ASTM	17
Tab	ola 04: Resistencia de rotura	28
Tab	ola 05: Granulometría para agregado fino	34
Tal	ola 06: Granulometría para agregado grueso	35
ıac	ola 07: Resumen de resultados	37
Tab	ola 08: Ensayo de abrasión	37

Tabla 10: Asentamientos recomendados para diversos tipos de estructuras3
Tabla 11: Peso del agregado grueso por unidad de volumen del concreto3
Tabla 12: Volumen unitario de agua por [lt/m3]3
Tabla 13: Contenido del aire atrapado4
Tabla 14: Relación A/C por resistencia4
Tabla 15: Ensayo de concreto en estado fresco4
Tabla 16: Registro de ensayo de resistencia de compresión (280kg/cm2): 24h .5
Tabla 17: Registro de ensayo de resistencia de compresión (280kg/cm2+RB5%)
24 h5
Tabla 18: Registro de ensayo de resistencia de compresión (280kg/cm² +
RB10%) 24 h5
Tabla 19: Registro de ensayo de resistencia de compresión (280kg/cm2 +
RB15%) 24 h5
Tabla 20: Registro de ensayo de resistencia de compresión (280kg/cm2): 3d5
Tabla 21: Registro de ensayo de resistencia de compresión (280kg/cm2 +
RB5%) 3d5
Tabla 22: Registro de ensayo de resistencia de compresión (280kg/cm2 +
RB10%): 3d5
Tabla 23: Registro de ensayo de resistencia de compresión (280kg/cm2 +
RB15%): 3d5
Tabla 24: Registro de ensayo de resistencia de compresión (280kg/cm2): 7d5
Tabla 25: Registro de ensayo de resistencia de compresión (280kg/cm2 +
RB5%): 7d5
Tabla 26: Registro de ensayo de resistencia de compresión (280kg/cm2 +
RB10%): 7d6
Tabla 27: Registro de ensayo de resistencia de compresión (280kg/cm2 +
RB15%): 7d6
Tabla 28: Registro de ensayo de resistencia de compresión (280kg/cm2): 28d .6
Tabla 29: Registro de ensayo de resistencia de compresión (280kg/cm2 +
RB5%): 28d6
Tabla 30: Registro de ensayo de resistencia de compresión (280kg/cm2 +
RB10%): 28d6
Tabla 31: Registro de ensayo de resistencia de compresión (280kg/cm2 +
RB15%): 28d6
Tabla 32: Registro de ensayo de resistencia de compresión (210kg/cm2) 24h6

Tabla 33: Registro de ensayo de resistencia de compresión (210kg/cm2 +
RB5%) 24h67
Tabla 34: Registro de ensayo de resistencia de compresión (210kg/cm² +
RB10%): 24h68
Tabla 35: Registro de ensayo de resistencia de compresión (210kg/cm² +
RB15%): 24h69
Tabla 36: Registro de ensayo de resistencia de compresión (210kg/cm2) 3d70
Tabla 37: Registro de ensayo de resistencia de compresión (210kg/cm2 +
RB5%): 3d71
Tabla 38: Registro de ensayo de resistencia de compresión (210kg/cm2 +
RB10%): 3d72
Tabla 39: Registro de ensayo de resistencia de compresión (210kg/cm² +
RB15%) 3d73
Tabla 40: Registro de ensayo de resistencia de compresión (210kg/cm2): 7d74
Tabla 41: Registro de ensayo de resistencia de compresión (210kg/cm2 +
RB5%): 7d75
Tabla 42: Registro de ensayo de resistencia de compresión (210kg/cm2 +
RB10%): 7d76
Tabla 43: Registro de ensayo de resistencia de compresión (210kg/cm2 +
RB15%): 7d77
Tabla 44: Registro de ensayo de resistencia de compresión (210kg/cm2) 28d78
Tabla 45: Registro de ensayo de resistencia de compresión (210kg/cm2 +
RB5%) 28d79
Tabla 46: Registro de ensayo de resistencia de compresión (210kg/cm2 +
RB10%) 28d80
Tabla 47: Registro de ensayo de resistencia de compresión (210kg/cm2 +
RB15%) 28d81
Tabla 48: Resumen de resultados89

ÍNDICE DE FOTOGRAFÍAS

Foto N° 1: Selección del Agregado	155
Foto N° 2: Pesado del agregado	155
Foto N° 3: Peso del agregado fino	188
Foto N° 4: Tamizado del agregado	188
Foto N° 5: Colocación del agregado al horno	20
Foto N° 6: Peso de residuos de bronce	21
Foto N° 7: Obteniendo el peso de agregado después de retirarlo del horno	233
Foto N° 8: Vaciado del agregado a la Máquina de Los Ángeles	233
Foto N° 9: Sellado de la Máquina de Los Ángeles	24
Foto N° 10: Mezclado del concreto	255
Foto N° 11: Medición del asentamiento de la muestra del concreto	26
Foto N° 12: Moldes cilíndricos de 10 cm x 20 cm	299
Foto N° 13: Llenado de muestras concreto en probetas	29
Foto N° 14:Curado de probetas de concreto	31
Foto N° 15: Ensayo de probetas de concreto	31
Foto N° 16: Ensayo de probetas de concreto	32
<u>ÍNDICE DE GRAFICOS</u>	
Gráfico N° 1: Curva granulométrica del agregado fino	355
Gráfico N° 2: Curva granulométrica del agregado grueso	366
Gráfico N°3: Gráfica de los resultados CP280	877
Gráfico N°4: Gráfica de los resultados C280RB5	87
Gráfico N° 5: Gráfica de los resultados C280RB10	888
Gráfico N° 6: Gráfica de los resultados C280RB15	888
Gráfico N° 7: Gráfica de los resultados del desarrollo de la resistencia	899
Gráfico N° 8: Gráfica de los resultados del desarrollo de la resistencia	899

CAPÍTULO I

I. <u>INTRODUCCIÓN</u>

1.1. PROBLEMA DE INVESTIGACIÓN:

1.1.1. Descripción de la realidad problemática

En los últimos 30 años se viene incrementando el crecimiento de la industria de la construcción, llevado de la mano con el estudio y análisis de aditivos o agregados que mejoren las características de un concreto. En el mercado peruano se puede encontrar un sin fin de aditivos (plastificantes, acelerantes, retardantes, incorporadores de aire, microfibras, macrofibras, etc.) Y además otros aditivos orgánicos e inorgánicos entre ellos (caucho, plásticos, residuos de bronce, de cobre, viruta, etc.). Sin embargo, se han hecho algunas investigaciones sobre la incidencia en las propiedades mecánicas del concreto cuando se adiciona o sustituye algunos de estos aditivos; en esta investigación se pretende obtener algunas de las otras propiedades en el concreto.

Actualmente, el uso de diferentes tecnologías del concreto en cuanto a producción, se encuentra las adiciones de escorias, cenizas, humos de sílice, y distintos tipos y tecnologías de aditivos que se suma a la variabilidad determinada respecto al agregado cementicio. Esto quiere decir que, con una mayor calidad del matriz cementante usada en la mezcla, por el uso de la baja relación agua/cemento, se genera una pasta con menor porosidad, menor permeabilidad, dependiendo del tipo de cemento y resistencia a obtener. Los concretos de hoy requieren en su composición la incorporación de aditivos y adiciones con la finalidad de mejorar sus propiedades mecánicas y de durabilidad. (Quimbay, 2009, p.8).

Las demandas de concreto han escalado cerca de 15 mil millones de toneladas anuales, que necesita consumir aproximadamente 20 mil millones de toneladas de agregado cada año (Wang et al., 2017), y siendo el agregado (fino o grueso) un recurso que tiene que ser extraído del suelo y que es un componente básico para la elaboración del concreto, la falta de este recurso también es un problema que lo afrontan muchos países que no cuentan con suficiente fuente de agregados. La búsqueda de nuevos materiales que reemplacen en

diferentes porcentajes tanto al agregado como al cemento, es una larga tarea que tiene como pilar las investigaciones y pruebas.

Delimitación:

Por la problemática antes mencionada, el estudio de la tesis busca encontrar los efectos de residuos de bronce, como sustitución del agregado fino, en las propiedades físicas y mecánicas del concreto de diferentes resistencias f´c= 210 kg/cm² y 280 kg/cm², comparando con una mezcla patrón sin esta adición y además considerando materiales y las condiciones climáticas de la ciudad de Trujillo en el 2019.

1.1.2. Formulación del Problema

¿Cuáles son los efectos en las propiedades mecánicas de un concreto con resistencias f´c= 210 y 280 kg/cm² sustituyendo residuos de bronce por agregado fino?

1.2. OBJETIVOS

1.2.1. Objetivo General

Determinar los efectos de residuos de bronce, como sustitución del agregado fino, en las propiedades del concreto.

1.2.2. Objetivos Específicos

- Determinar y evaluar las características de los agregados (Agregado grueso y Agregado Fino) para el diseño de mezcla.
- Elaborar las características del diseño de mezcla del concreto con diferentes resistencias 210 y 280 kg/cm² con/sin residuos de bronce.
- Verificar el asentamiento (slump), temperatura y peso unitario de la mezcla patrón y la mezcla con residuos de bronce.
- Preparar especímenes de 10x20 cm. de concreto de acuerdo a la norma ASTM C31.
- Realizar los ensayos de resistencia a la compresión a edades 24 horas, 3 días, 7 días y 28 días en estado endurecido de la muestra.

 Análisis y comparación de los resultados obtenidos de los ensayos realizados comparando con la muestra patrón.

1.3. JUSTIFICACIÓN DEL ESTUDIO

El manejo y uso de residuos metálicos se ha convertido en un punto muy importante en la elaboración del concreto. Así mismo esta investigación es importante debido a que presenta un análisis completo de los efectos de los residuos de bronce, como producto del tallado de llaves, con y sin sustitución de agregado fino, en concretos de resistencia f´c= 210 y 280 kg/cm², en la cual también se encontrara la dosis ideal para estos tipos de concreto con el material y las condiciones climáticas de la ciudad de Trujillo, basándonos en los parámetros establecidos en las normas RNE, NTP, ASTM y ACI. Esta información que se pretende recopilar promueve nuevas técnicas, uso adecuado y sobre todo el porcentaje correcto del aditivo a usar en la mezcla de un concreto de resistencias promedios en la industria de la construcción de nuestra región y país.

CAPÍTULO II

II. MARCO TEÓRICO

2.1. ANTECEDENTE DE LA INVESTIGACIÓN

2.1.1. <u>Investigaciones Internacionales</u>

Boza M (2011): Realizaron la tesis que tiene como título "Utilización de las escorias de acería como material de construcción", donde se estudió la posibilidad de utilizar la escoria de la planta de Aceros Inoxidables en la provincia Las Tunas, como material aglomerante y árido. Esta investigación contiene los resultados de investigaciones realizadas en la Universidad de Holguín en la búsqueda de nuevos materiales que puedan ser empleados en la construcción. En este caso, se estudió la posibilidad de emplear la escoria de la planta de Aceros Inoxidables de la provincia Las Tunas ACINOX, como material aglomerante y como árido; además, se realizó una valoración económica del impacto que generaría su utilización. La aportación en mi investigación fue los resultados de otras investigaciones internacionales referenciadas se pudo comprobar el empleo de estos residuos dentro del concreto como aporte al medio ambiente.

Gutiérrez O. y Pineda Y. (2015), realizaron un estudio titulado "Efecto de la incorporación de ceniza volante y escoria de horno alto en el comportamiento electroquímico de concretos de cemento comercial", tuvo como objetivo evaluar el comportamiento frente a la corrosión se estudiaron aspectos termodinámicos y cinéticos. Los resultados mostraron que cementos comerciales mezclados con ceniza volante y escoria de alto horno, como los usados en esta. Esta investigación tuvo como resultado que los cementos comerciales mezclados con ceniza volante y escoria de alto horno, como los usados en esta investigación, presentan menor resistencia mecánica y a la corrosión que un cemento comercial. Entre sus conclusiones, se evidenciaron altos contenidos de adiciones en el CPC, incorporados en fábrica, los cuales sumados a los SCMs usados

en esta investigación, establecieron una demanda excesiva de alcalinidad. Esta circunstancia limitó el aprovechamiento pleno de la reactividad de las adiciones, derivada de aspectos como la composición química y mineralógica, distribución de tamaño de partículas, área superficial y cantidad de fase amorfa. Para este estudio resultó desfavorable la adición de SCMs al cemento base en términos de protección del acero a la corrosión, detectándose claramente su efecto perjudicial en el comportamiento electroquímico de las probetas de concreto. La influencia negativa de la sustitución parcial de cemento comercial (CPC) por adición consistió en la reducción del pH de la pasta de cementante de los concretos debido a la mayor penetrabilidad del dióxido de carbono. Esta carbonatación fue acentuada por la reacción puzolánica disminuida originada en el exceso de adición. El principal aporte a mi investigación fue las conclusiones que se tienen de estas reacciones químicas producidas en el concreto.

Cabrera J., Escalante J. y Castro P. (2016), realizaron la tesis "Resistencia a la compresión de concretos con escoria de alto horno", que tuvo como objetivo realizar una revisión del estado del arte del sistema cementante CP-EAH, enfatizando su efecto en la resistencia mecánica de compresión del concreto. La investigación tuvo como resultado que se confirmaron como benéficos los reemplazos de EAH hasta de un 70% en microclimas húmedos o ambientes marinos, y hasta 50% en ambientes propensos a carbonatación. En estos rangos se puede lograr una eficiencia del reemplazo mayor con respecto a la resistencia a la compresión. Después de re-visitar el estado del arte sobre la f'c en concretos con escoria de alto horno se pudo confirmar, a través de la experiencia de diversos autores que evaluaron diversas condiciones y tipos de escoria, que el nivel de reemplazo puede ser significativamente alto, pero al rebasar el 50% será necesario un esquema estricto de control de calidad en la preparación y la combinación de otros aditivos que coadyuven al mejoramiento de

la resistencia mecánica, ya que de lo contrario se provocarán efectos adversos a los deseados. El nivel de reemplazo máximo recomendado por varios autores y de acuerdo a los resultados obtenidos por otros es de 70 % para escoria en ambientes de poca agresividad de carbonatación, de lo contrario se debe limitar hasta 50%. El concreto donde se sustituya parcialmente el cemento por EAH requerirá de un mayor tiempo de hidratación para garantizar la f´c deseada, siendo de crucial importancia el curado del concreto. El principal aporte a mi investigación fue los datos de las investigaciones y los niveles de reemplazo del cemento portland por escoria de horno alto y el efecto de la resistencia a compresión real (f´c) del concreto endurecido de 28 y 90 días.

2.2. BASE TEÓRICA

El uso de adiciones minerales en el concreto tiene ya varios estudios dentro de las recomendaciones dadas por el ACI 212. Los efectos del residuo de cobre sobre la modificación en las propiedades del concreto en estado fresco y endurecido van a depender de sus características físicas y de la capacidad de reacción con el hidróxido de calcio que se produce cuando el cemento reacciona con el agua.

2.2.1. Diseño de mezcla

Secuencia del diseño:

Se tomaron en cuenta los siguientes pasos para la selección de las proporciones en la mezcla en el concreto, independientemente del diseño que se seleccione. (Instituto de la Construcción y Gerencia)

- a) Analizar los requisitos que se indican en las especificaciones y planos de obra.
- b) Seleccionar la resistencia promedio para obtener la resistencia del diseño. Aquí se debe tener en cuenta el

- grado de control, la desviación estándar y el coeficiente de variación.
- c) Seleccionar el tamaño máximo nominal en función a las características del sistema de colocación del concreto y las características del elemento estructural.
- d) Expresar la consistencia de la mezcla en función al asentamiento, mediante los factores de trabajabilidad, características de los elementos estructurales y la compactación del concreto.
- e) Se deberá determinar el volumen del agua por la unidad del volumen en el concreto, considerando el tamaño máximo nominal del agregado grueso, la consistencia y el aire.
- f) Determinar el porcentaje de aire, atrapado y total.
- g) Escoger la relación de agua-cemento para obtener la resistencia y el aire incorporado que se requiere.
- h) Escoger la relación de agua- cemento por la condición de la durabilidad
- i) Escoger la menor relación de agua-cemento, elegida en base a la resistencia y durabilidad que se requiere.
- j) Establecer el factor del cemento en metro cubico, en base al volumen unitario de agua
- k) Establecer la proporción relativa de los agregados finos y gruesos, en condición al procedimiento del diseño.
- Establecer las proporciones de la mezcla por medio del diseño, teniendo en cuenta el agregado seco y el volumen unitario de agua no haya sido corregido por humedad del agregado
- m)Subsanar las proporciones en base al porcentaje de absorción y contenido de humedad de los agregados
- n) Adaptar la proporción seleccionada mediante los resultados de los ensayos de mezcla.
- o) Adaptar la proporción final mediante los resultados de los ensayos realizados.

2.2.2. Recomendación:

Las variaciones en las propiedades físicas del concreto con la adición del mineral fueron tomadas en cuenta en la investigación, para este caso en particular (residuos de cobre) no se ha requerido ningún tipo de aditivo para mejorar propiedades como trabajabilidad y segregación.

Para la preparación de las probetas para el control y análisis de este concreto con adición, se hicieron de acuerdo la ASTM C-31 y la ASTM C-39.

2.3. BASE CONCEPTUAL

Agregado Fino

Son aquellos cuyo material pasa en un 100% el tamiz 3/8, es decir se encuentran dispersos entre el tamiz N° 4 y tamiz N°200, según el tamaño de sus partículas pueden ser:

- Arenas gruesas: Con tamaños de partícula entre el tamiz n°4 y n°10 y el módulo de finura > 3.0
- Arenas medias: Con tamaños de partícula entre el tamiz n°10 y n°40 y el módulo de finura =2.5
- Arenas finas: Con tamaños de partícula entre el tamiz n°40 y n°200 y el módulo de finura < 2.0

Según su procedencia pueden ser:

- Arenas de río: redondas, uniformes y limpias.
- Arena de mina: generalmente heterogéneas y sucias.
- Arena de playa: con alto contenido de cloruros.
- Contenido de agregado fino normalmente del 35% al 45% por masa o volumen total del agregado.

Residuos del bronce

Son los derivados de la manufactura del bronce y/o aleaciones.

SISTEMA DE HIPÓTESIS

Si se usa residuos de bronce, en un 5, 10 y 15% sustituyendo al agregado fino, entonces los resultados de las muestras ensayadas del concreto de resistencias f´c= 210 y 280 kg/cm² no serán menores en un 35 kg/cm² de la resistencia especificada.

2.3.1. Variables

- Independiente: Sustitución residuos de bronce en el agregado fino (5%, 10% y 15%)
- Dependiente: Asentamiento, temperatura y peso unitario del concreto fresco; y resistencia a la compresión del concreto endurecido (kg/cm²).

Tabla N°01 Operacionalización de las variables

VARIABLE	TIPO	INDICADORES	UNIDAD DE MEDIDA	INSTRUMENTO DE MEDICIÓN
Asentamiento	Dependiente	Variación de medidas	plg	Wincha, regla graduada
Temperatura	Dependiente	Variación de temperatura	°C	Termómetro
Peso unitario	Dependiente	Peso/Volumen	Kg/m ³	Balanza
Resistencia a la compresión	Dependiente	Esfuerzo/área transversal	Kg/cm ²	Prensa para ensayo de compresión de concreto
Residuos de bronce	Independiente	Pbronce/ Pagregado fino	%	Cálculos aritméticos

Fuente: Propia.

CAPÍTULO III

III. METODOLOGÍA EMPLEADA:

3.1. TIPO Y NIVEL DE INVESTIGACIÓN

Tipo: Esta tesis se realizó mediante el tipo de investigación **EXPERIMENTAL** ya que busca determinar mediante normativa vigente los efectos de residuos de bronce en las propiedades del concreto sustituyéndolo como parte del agregado fino.

Nivel: La presente tesis mediante el nivel **EXPLICATIVO** trata de explicar la variación de las propiedades de concreto con adición mineral (residuos de bronce) y el concreto patrón.

3.2. POBLACIÓN Y MUESTRA DE ESTUDIO

Para la presente investigación se tomará como población los concretos producidos con los mismos materiales, es decir el mismo cemento, los agregados gruesos y finos de la misma cantera y agua potable; con un diseño de 210 y 280 kg/cm².

La muestra el concreto de resistencias f´c= 210 y 280 kg/cm², con y sin residuos de bronce en su sustitución por agregado fino en un 5%, 10% y 15%.

3.3. DISEÑO DE INVESTIGACIÓN

En la presente tesis se tomó en cuenta Las Normas Técnicas como el ACI en el diseño de las mezclas y ASTM, NTP en los procedimientos de ensayos.

3.4. TÉCNICAS E INSTRUMENTOS DE INVESTIGACIÓN

Se tomaron en consideración las siguientes normas:

Para esta investigación se recolectaron datos mediante los resultados de:

 Ensayos para para determinar el diseño de mezclas de acuerdo a las normas técnicas vigentes: Granulometría

Pesos unitarios y específicos.

Contenido de humedad.

Absorción.

- Ensayo para determinar la resistencia al desgaste de los agregados por medio de la máquina de los ángeles.
- Ensayo de asentamiento de la mezcla (Slump).
- Ensayo de resistencia a la compresión, ruptura de los especímenes de concreto de resistencias f'c = 210 y 280 Kg/cm² con y sin adición de residuos de bronce en sustitución del agregado fino y ensayados en las edades de 24 horas, 3 días, 7 días y 28 días.
- Estadísticas y cuadros de los resultados obtenidos.

3.5. PROCESAMIENTO Y ANÁLISIS DE DATOS

3.5.1. Análisis Granulométrico

A. Objetivos:

- Determinar por tamaño del agregado fino y grueso la distribución de partículas.
- Obtener el módulo de finura.
- Determinar el TMN tamaño máximo nominal.
- Verificar si cumple con la NTP 400.037 o ASTM C33 con el agregado

B. Materiales:

- Agregados gruesos (piedra de 1").
- Agregado fino.
- Tamices.
- Brocha.
- Cucharones.
- Balanza electrónica de precisión.
- Bandeja
- Depósitos de aluminio
- Horno

Foto N° 1: Selección del Agregado

Fuente: Cantera Loma Linda, Distrito de Huanchaco.

Foto N° 2: Pesado del agregado

Fuente: Procedimiento conforme la ASTM 400.037.

C. Procedimiento:

Para El Agregado Fino:

- a) Recolectamos la muestra de arena gruesa con un aproximado de 5 kg
- b) Se realizó el cuarteo respectivo, 2 veces como mínimo, hasta obtener la muestra requerida.
- c) Secamos la muestra por 24 horas en una temperatura constante de 110° ± 5°C
- d) El agregado fino se retiró del horno y se pesó
- e) Se introdujeron las muestras con las mallas armadas.
- f) Para obtener el material retenido, se agitaron los tamices
- g) Luego se pesaron los pesos retenidos en todas las mallas y el fondo también.

Para el agregado Grueso:

- a) De acuerdo a la norma, se realizó el cuarteo
- b) Con una temperatura de 110 ± 5 °C. secamos la muestra por 24 h \pm 4h a
- c) Para realizar el ensayo se seleccionó los tamices: 1 ½"; 1"; 3/4"; 1/2"; ½"; 3/8", y N°4.
- d) En varias partes colocamos la muestra de agregado para tamizarlo.
- e) Colocamos la muestra en forma manual y agitamos por 2 minutos aproximadamente, hasta que no más del 1% en peso del retenido en el tamiz pase.
- f) Sacamos los residuos en cada tamiz y lo pusimos en los recipientes.
- g) Pesamos la retención de cada tamiz, y anotamos las

D. Tablas para muestras:

Para el Agregado Grueso el tamaño de la muestra, será conforme su tamaño nominal, indicado en la siguiente tabla.

Tabla N°02 Cantidad Mínima del Agregado Grueso

Tamaño Máximo Nominal Aberturas Cuadradas	Cantidad de la Muestra de Ensayo, Mínimo
mm (pulg)	Kg (lb)
9.5 (3/8)	1 (2)
12.5 (1/2)	2 (4)
19.0 (3/4)	5 (11)
25.0 (1)	10 (22)
37.5 (1 ½)	15 (33)
50 (2)	20 (44)
63 (2 ½)	35 (77)
75 (3)	60 (130)
90 (3 ½)	100 (220)
100 (4)	150 (330)

Fuente: Análisis Granulométrico del Agregado Fino y Grueso. (NTP 400.012: 2013).

Para la granulometría con la siguiente tabla:

Tabla N°03 Límites de Granulométricos Según el ASTM

AG	REGADO FINO	
NTP 400.0	LIMITES ASTM	
ABERTURA	DESIGNACION PREVIA	C 33-84
9,5mm 4,75mm 2,36mm 1,18mm 600µm 300µm	3/8" N°4 N°8 N°16 N°30 N°50	100 95-100 80-100 50-85 25-60 5-30
150μm	N°100	0-10

Fuente: Análisis Granulométrico del Agregado Fino, Grueso y Global. (NTP 400.012: 2013).

Módulo De Fineza del Agregado

Se obtiene la fineza promedio del material utilizando la siguiente formula:

 $MF = \Sigma\% \ Acumulados \ retenidos \ (112'', 3/4'', 3/8'', N^4, N^8, N^16, N^30, N^50 \ Y \ N^100)$

Foto N° 3: Peso del agregado fino

Fuente: Ensayo realizado en el Laboratorio de suelos de la ÚPAO.

Foto N° 4: Tamizado del agregado

Fuente: Ensayo realizado en el Laboratorio de suelos de la UPAO.

3.5.2. Peso específico y absorción:

A. Descripción:

<u>Peso Específico:</u> Es una relación entre la fuerza de gravedad (peso) sujeta a una unidad de volumen en un cuerpo establecido a una temperatura estable. La unidad del peso específico es N/m³ (Newton /m³).

<u>Peso Específico Aparente:</u> Es el peso reducido debido al empuje hidrostático por el cuerpo en un líquido presentará un peso aparente necesariamente el cuerpo debe tener más densidad que el líquido.

<u>Peso Específico de Masa Saturada en Superficie Seca:</u> Esta masa incluye el agua en los poros permeables.

<u>Absorción:</u> Es la cantidad de absorción de agua por el agregado después de estar sumergido 24 horas, y se expresa como porcentaje del peso.

B. Procedimiento

Agregado Grueso

- a) Se seleccionó en dos partes del cuarteo, para el ensayo.
- b) Se tamizó el agregado grueso en el tamiz Nª 4.
- c) Se colocó al horno por 24 horas, y dejamos enfriar por 2 horas.
- d) Sumergimos la muestra en agua por 24 ± 4 horas.
- e) Luego secamos la muestra superficialmente con una franela.
- f) En una canastilla metálica colocamos la muestra para pesarlo en la balanza hidrostática.

C. Materiales

Agregado Grueso

- Canastilla
- Balanza
- Hidrostática
- Franela
- Recipientes
- Brocha

Agregado Fino

- Horno
- Pipeta
- Fiola
- Secadora
- Recipiente
- Estufa
- > Embudo

Foto N° 5: Colocación del agregado al horno

Fuente: Ensayo realizado en el laboratorio de la UPAO.

Foto N° 6: Peso de residuos de bronce

Fuente: Residuo de bronce.

3.5.3. Ensayo de resistencia al desgaste de los agregados por medio de la máquina de los Ángeles (ASTM C131-01, AASHTO T 96-02)

Para la mayoría de los agregados gruesos una de las propiedades físicas de gran importancia es la resistencia a la abrasión o desgaste de los agregados y con este obtuvimos una referencia para el diseño de mezclas. Esta es importante porque con ella conocimos la durabilidad y la resistencia que tendrá el concreto para la fabricación de losas, estructuras simples o estructuras que requieran que la resistencia del concreto sea la adecuada para ellas. En el siguiente ensayo obtuvimos el porcentaje de desgaste que el agregado sufrirá en condiciones de roce continuo de las partículas y las esferas de

acero, todo esto utilizando la máquina de los ángeles. Esto nos indica si el agregado grueso a utilizar es el adecuado para el diseño de mezcla y la fabricación de concreto.

A. Procedimiento:

Lo primero fue escoger los tamices de 3/8", 1", 3/4" y 1/2".

Luego se empiezo a elegir el tipo de suelo por medio del proceso de tamizado basándonos en la tabla que se encuentra en la norma.

Después clasificamos el suelo que se había adquirido en cada tamiz, luego pesamos el material retenido en cada tamiz.

Una vez obtenido los datos procedimos a introducir el material en conjunto con las esferas de acero a la máquina de los ángeles y se hace girar el cilindro a una velocidad comprendida entre 30 y 33 rpm, por aproximadamente 30 min.

Una vez cumplida el número de vueltas según la norma, se descargó el material del cilindro y se procedió a la separación preliminar de la muestra empleando el tamiz N°12 y pesaje posterior de la misma.

Fórmula:

$$\%DESGASTES = \frac{P1 - P2}{P1} * 100$$

Donde:

P1 = Masa de la muestra seca antes del ensayo

P2 = masa de la muestra seca después del ensayo (n°12)

B. Materiales y Equipos:

- Balanza
- Horno
- Tamices
- Máquina de los ángeles
- Carga abrasiva (esferas)

Foto N° 7: Obteniendo el peso de agregado después de retirarlo del horno.

Fuente: La balanza es la recomendada de acuerdo al agregado

Foto N° 8: Vaciado del agregado a la Máquina de Los Ángeles

Fuente: Ensayo realizado en el laboratorio de la UPAO.

Foto N° 9: Sellado de la Máquina de Los Ángeles

Fuente: Ensayo realizado en el laboratorio de la UPAO.

3.5.4. Método de ensayo para la medición del asentamiento del concreto con el cono de Abrams (NTP 339.045)

El ensayo del "Cono de Abrams" ó "Slump" que define a la consistencia de la mezcla por el asentamiento, de una masa de concreto medido en centímetros o pulgadas, que ha sido colocada y compactada en un molde metálico con sección de tronco cónica.

Al asentamiento se puede definir como la medida de la diferencia de altura entre el molde metálico estándar y la masa de concreto después que ha sido retirado el molde que la recubría. Es una prueba que se usa en el laboratorio como también en el campo y se puede clasificar de acuerdo a su consistencia del concreto en tres grupos:

- Concretos secos o consistentes, con asentamiento de 0" a 2" (0 a 5 cm).
- Concretos plásticos, con asentamiento de 3" a 4" (7,5 a 10 cm).
- Concretos fluidos, con asentamientos con más de 5" (12,5 cm)

A. Procedimiento

- a) Se tiene el cono limpio y húmedo.
- b) El concreto es vaceado en el cono de Abrams previamente presionando por los pies para evitar desborde.
- c) Se midió el asentamiento de la masa de hormigón previamente retirando del molde mediante golpes laterales con la varilla – pisón.
 - d) Para obtener la medida precisa del derrumbamiento se coloca el cono de Abrams girado en el otro sentido contrario al ensayo elaborado, colocando la barra compactadora de 5/8 "al nivel del cono y procedimos a medir el asentamiento del concreto.

B. Materiales

- Molde / Cono de Abrams.
- > Diámetro de la base inferior: 20 cm.
- > Diámetro de la base superior: 10 cm.
- Varilla Compacto.

Foto N° 10: Mezclado del concreto

Fuente: Ensayo realizado en el laboratorio de la UPAO.

Foto N° 11: Medición del asentamiento de la muestra del concreto

Fuente: Ensayo realizado en el laboratorio de la UPAO.

3.5.5. Ensayo de resistencia a la compresión del concreto en muestras cilíndricas (norma técnica peruana 339.034)

Ensayo para determinar la resistencia a la tracción por compresión diametral (NTP 339.084)

A. Materiales

- ➤ Molde cilíndrico (4"*8" o 10cm*20cm)
- Mazo de goma de 600 gr. +- 200 gr.
- Varilla metálica de 16 mm (5/8") de diámetro y una longitud de 500 mm. +/- 100 mm. punta semiesférica.
- > Carretilla para Muestreo y Remezclado.
- ➤ Cucharon pequeño de ½ litro.
- > Equipo de compresión.

B. Procedimiento

Para la preparación de los testigos para ambos ensayos colocamos los moldes en una superficie plana, nivelada, libre de vibraciones y tránsito vehicular. Utilizando un cucharón de ½ litro remezclados el concreto en el recipiente de mezclado para impedir la segregación durante el moldeo de las muestras mueva el cucharón alrededor de la parte superior del molde cuando el concreto es descargado con el fin de asegurar una distribución simétrica del concreto y minimizar la segregación del agregado grueso dentro del molde, el molde se llenó en 3 capas de manera uniforme, procurando que al colocar la última capa de concreto que llenará exactamente el molde después de la compactación.

Todos los moldes se llenaron de manera uniforme, es decir colocación y compactación de la primera capa, segunda capa y posteriormente la tercera capa. Cada capa ser apisonó uniformemente con una varilla metálica de 16 mm de diámetro y una longitud de 60 cm las apisonadas son 25 por capa y además se le dieron 10 a 15 golpes con un martillo de caucho que tenga una masa entre 600 a 800 g.

Después de la compactación se procedió a retirar el concreto sobrante, alisándose su superficie y manipulando lo menos posible para dejar la cara lisa de tal forma que cumpla con las tolerancias de acabado.

Después del acabado se evitó la evaporación de agua del concreto sin endurecer, cubriendo los especímenes inmediatamente después del acabado, preferiblemente con una lámina no absorbente y no reactiva, o con una lámina de plástico duro, durable e impermeable. Se permite el uso de lona húmeda para la protección, pero teniendo el cuidado para mantener la lona húmeda hasta que los especímenes sean removidos de los moldes. La colocación de una sábana de plástico sobre la lona facilitará mantenerla húmeda.

Removimos las muestras de los moldes 24 h ± 8 h después de haber conformado el testigo, teniendo mucho cuidado en el manejo de las probetas, ya que las probetas que se dejen mover en una caja o ir bailando en una camioneta pueden sufrir daños considerables y afectar la resistencia del concreto.

3.6. DISENO DE MEZCLAS

3.6.1. <u>Diseño de mezcla (Método ACI/Módulo de fineza combinación</u> de los agregados)

Mediante un conjunto de tablas establecidas por el ACI 211.1 se determinó el diseño de mezclas para el concreto patrón y las mezclas con residuo de bronce.

3.6.2. Cantidad de probetas a ensayar:

El ACI 318.08, nos indica que un ensayo de resistencia corresponde al promedio de la resistencia de tres probetas de 100 mm de diámetro y 200 mm de altura, y además para investigación se tiene que consideran por lo menos el promedio de 10 resultados, para tener una mejor confiabilidad en nuestros análisis estadísticos, se realizarán 12 probetas por cada ensayo para cada edad evaluada que hay que realizar la rotura, con el siguiente detalle:

Tabla N°04 Resistencia de rotura

Nº probetas cilíndricas	días de prueba	F'c (kg/cm²)	incorp. 5% bronce	incorp. 10% bronce	incorp. 15% bronce
12	24 h	210	✓	✓	✓
12	3	210	✓	✓	✓
12	7	210	√	✓	✓
12	28	210	✓	✓	✓
12	24 h	280	✓	✓	✓
12	3	280	√	✓	✓
12	7	280	✓	✓	✓
12	28	280	✓	✓	✓

En total se realizarán 48 probetas cilíndricas para el diseño de concreto patrón F'c = 210 Kg/cm², 48 sustituyendo el 5% del agregado fino por residuo

de bronce, 48 sustituyendo el 10 % del agregado fino por residuo de bronce y 48 sustituyendo el 15 % del agregado fino por residuo de bronce; parcialmente 192 especímenes (F'c= 210 kg/cm²) así mismo para los ensayos cuya F'c de diseño es 280 Kg/cm², una totalidad de 384 probetas para analizar su efecto de sustitución en el agregado fino.

Foto N° 12: Moldes cilíndricos de 10 cm x 20 cm

Fuente: Propia.

Foto N° 13: Llenado de muestras concreto en probetas

Fuente: Propia.

3.6.3. Ensayo a la Compresión

Este ensayo es un ensayo técnico, que determina la resistencia del material o la deformación de él, mediante un esfuerzo de compresión, se realiza comúnmente con concreto y metales. (ASTM C39 Método estándar de pruebas de resistencia a la compresión de probetas cilíndricas de concreto)

A. Procedimiento

- a) Calibrar la maquina universal.
- b) Encender la computadora y cargar el sistema operativo.
- c) Elegir el tipo del programa y el parámetro de operación para las pruebas.
- d) Colocar la probeta en el plato.
- e) Proporcionar al programa la dimensión de la probeta y el parámetro de operación restante.
- f) Iniciada la prueba, comenzará la curva del material a deformarse en la pantalla.
- g) Registrar los resultados culminando el experimento.

B. Materiales

- Máquina universal de pruebas
- Calibrador vernier
- Plato de compresión para aplicación de carga
- Computadora interconectada a la maquina universal

Foto N° 14:Curado de probetas de concreto.

Fuente: Propia.

Foto N° 15: Ensayo de probetas de concreto

Fuente: Propia.

Foto N° 16: Ensayo de probetas de concreto

Fuente: Propia.

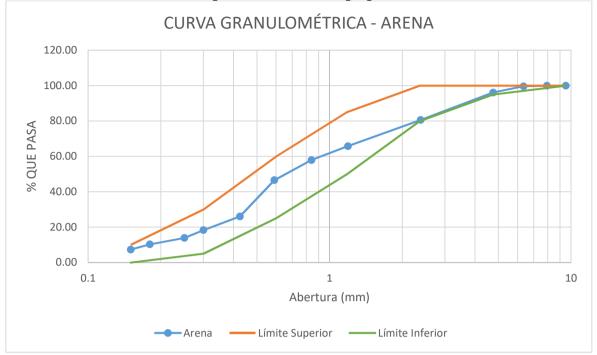
CAPÍTULO IV

IV. PRESENTACIÓN DE RESULTADOS.

4.1. Análisis Granulométrico de Agregados Finos y Gruesos *A)* Agregado Fino

Tabla N°05 Granulometría para agregado fino

ANÁLISIS GRANULOMETRICO POR TAMIZADO DE ARENA						
TAMIZ N°	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO COMPENSADO (g)	% RETENIDO	%RETENIDO ACUMULADO	% PASA
3/8"	9.5	0.00	0.00	0.00	0.00	100.00
1/4"	6.35	6.3	6.33	0.32	0.32	99.68
Nº4	4.75	70.8	70.83	3.53	3.85	96.15
Nº8	2.38	311.9	311.93	15.55	19.40	80.60
Nº16	1.19	296.2	296.23	14.77	34.17	65.83
Nº20	0.84	157.7	157.73	7.87	42.04	57.96
Nº30	0.59	228.3	228.33	11.39	53.42	46.58
Nº40	0.425	411	411.03	20.50	73.92	26.08
Nº50	0.3	154.6	154.63	7.71	81.63	18.37
Nº60	0.25	89	89.03	4.44	86.07	13.93
Nº80	0.18	72.4	72.43	3.61	89.68	10.32
Nº100	0.15	58.9	58.93	2.94	92.62	7.38
FO	NDO	148	148.03	7.38	100.00	0.00
	Σ	2005.1	2005.46			
Compe	ensación	0.03				


TAMICES	PESO RETENIDO (g)	PESO RETENIDO COMPENSADO (g)
3/8"	0	0.00
1/4''	6.3	6.33
Nº4	70.8	70.83
Nº8	311.9	311.93
Nº16	296.2	296.23
Nº20	157.7	157.73
Nº30	228.3	228.33
Nº40	411	411.03
Nº50	154.6	154.63
Nº60	89	89.03
Nº80	72.4	72.43
Nº100	58.9	58.93
FONDO	148	148.03
Σ	2005.1	2005.46
Compensación	0.03	

$$e(\%) = \frac{2005.46 - 2005.1}{2005.46} X100 = 0.018\%$$

$$w(\%) = \frac{3128.6 - 3118.16}{2005.46} X100 = 0.52\%$$

$$MF = \frac{0 + 3.85 + 19.40 + 34.17 + 53.42 + 81.63 + 92.62}{100} = 2.85$$

Gráfico 1: Curva granulométrica del agregado fino

Fuente: Propia.

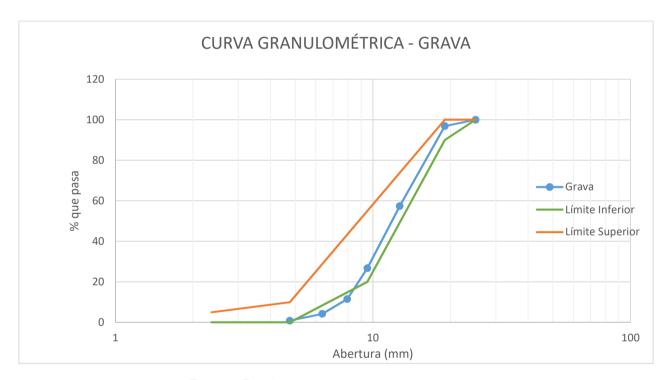
Agregado Grueso

Tabla N°06 Granulometría para agregado grueso

ANÁLISIS GRANULOMETRICO POR TAMIZADO DE GRAVA						
TAMIZ N°	ABERTURA (mm)	PESO RETENIDO (g)	PESO RETENIDO COMPENSADO (g)	% RETENIDO	%RETENIDO ACUMULADO	% PASA
1"	25	0.00	0.00	0.00	0.00	100
3/4"	19	75.2	75.43	3.10	3.10	96.90
1/2"	12.7	959.3	959.53	39.48	42.58	57.42
3/8"	9.5	745.1	745.33	30.66	73.24	26.76
5/16''	7.94	369.7	369.93	15.22	88.46	11.54
1/4"	6.35	177	177.23	7.29	95.76	4.24
Nº4	4.75	81.3	81.53	3.35	99.11	0.89
F	ONDO	21.4	21.63	0.89	100.00	0.00
	Σ	2429	2430.61			
Com	pensación	0.23				

TAMICES	PESO RETENIDO (g)	PESO RETENIDO COMPENSADO (g)
3/4"	75.2	75.43
1/2"	959.3	959.53
3/8"	745.1	745.33
5/6"	369.7	369.93
1/4"	177	177.23
Nº4	81.3	81.53
FONDO	21.4	21.63
Σ	2429	2430.61
Compensación	0.23	

$$e(\%) = \frac{2430.61 - 2429}{2430.61} X100 = 0.066\%$$


$$w(\%) = \frac{3752.2 - 3745.31}{2430.61} X100 = 0.28\%$$

TAMAÑO MÁXIMO NOMINAL (TMN) = 1/2"

TAMAÑO MÁXIMO (TM) = 1"

$$MF = \frac{3.10 + 73.24 + 99.11X6}{100} = 6.71$$

Gráfico 2: Curva granulométrica del agregado grueso

Fuente: Propia

4.2. Ensayos a los agregados

Tabla N°07 Resumen de resultados

PESO UNITARIO DEL AGREGADO	FINO	GRUESO
1. PESO UNITARIO SUELTO		
A. PESO DE LA MUESTRA + LA VASIJA	7545.6 g	5269.1 g
B. PESO DEL RECIPIENTE	2737.8 g	1636.5 g
C. PESO DE LA MUESTRA SUELTA (A-B)	4807.8 g	3632.6 g
FACTOR DE CALIBRACIÓN	359.997 kg/m ³	359.997 kg/m ³
PESO UNITARIO SUELTO (kg/m3)-(C*f)	1730.79 kg/m³	1307.73 kg/m ³
2. PESO UNITARIO COMPACTADO		
A. PESO DE LA MUESTRA + LA VASIJA	7832.5 g	5617.9 g
B. PESO DEL RECIPIENTE	2737.8 g	1636.5 g
C. PESO DE LA MUESTRA SUELTA (A-B)	5094.7 g	3981.4 g
FACTOR DE CALIBRACIÓN	359.997 kg/m ³	359.997 kg/m^3
PESO UNITARIO COMPACTADO (kg/m3)-(C*f)	1834.08 kg/m3	1433.29 kg/m3
3. CONTENIDO DE HUMEDAD		
PESO DE LA MUESTRA HUMEDA	2015.9 g	2437.5 g
PESO DE LA MUESTRA SECADA AL HORNO	2005.46 g	2430.61 g
CONTENIDO DE AGUA	10.44	6.89
		•
% DE HUMEDAD	0.52%	0.28%
ABSORCIÓN	1.19%	0.69%

Fuente: Propia.

4.3. Ensayo de abrasión

Tabla N°08 Ensayo de abrasión

DESCRIPCION	SIMBOLO	CANTIDAD	UNIDAD
Peso original de la muestra Peso de la muestra	P1	5000	gr
(500 Revoluciones)	P2	4125	gr
Material que pasa tamiz N° 12	(P1 - P2)	875	gr
Desgaste	De	0.175	gr

Desgaste 0.175 = 18%

Fuente: Propia.

4.4. Diseño de Mezclas

a) Resistencia Promedio Requerida

La resistencia requerida es mayor a la resistencia de diseño debido a que absorbe la probabilidad estadística de todos los errores en el proceso de producción del concreto.

Se tendrá en cuenta la siguiente tabla:

Tabla N°09: Resistencia a la compresión requerida de diseño sin (s)

Resistencia a la compresión de diseño (f'c) en Kg/cm²	Resistencia a la compresión requerida (f'cr) en Kg/cm²
F'c < 210	f'cr = f'c + 70
210 <u><</u> F'c <u><</u> 350	f'cr = f'c + 84
350 <u><</u> F'c	f'cr = f'c + 98

Fuente: RNE – Norma E 060

Como tenemos nuestro estudio se analiza resistencia de 210 Kg/cm² y 280 Kg/cm², obtenemos las resistencias promedias requeridas para ambos casos:

$$f'cr = 210 + 84 = 294 \text{ Kg/cm2}$$

 $f'cr = 280 + 84 = 364 \text{ Kg/cm2}$

b) Asentamiento

Tabla Nº10: Asentamientos recomendados para diversos tipos de estructuras.

TIPOS DE ESTRUCTURA	SLUMP MAX	SLUMP MIN
Zapatas y muros de cimentación reforzados	3"	1"
Cimentaciones simples y calzaduras	3"	1"
Vigas y muros armados	4"	1"
Columnas	4"	2"
Losas y pavimentos	3"	1"
Concreto ciclópeo	2"	1"
Consistencia Seca	0	2"
Consistencia Plástica	2"	4"
Consistencia Fluida	4	6"
Consistencia Superfluída	6"	8"

Fuente: Tabla preparada por el Comité 211 del ACI.

REVENIMIENTO: 3" – 4" (10 cm)

c) Selección de Tamaño Máximo Nominal

El TMN de agregado grueso es de 1/2" de la granulometría.

d) Selección de Volumen óptimo del Agregado Grueso

Tabla Nº11: Peso del agregado grueso por unidad de volumen del concreto.

TNM del agregado		Volumen del agregado grueso seco y compacto por unidad de olumen de concreto para diversos módulos de fineza del fino (b/bo)					
GRUESO	2.40	2.60	2.80	3.00			
3/8"	0.50	0.48	0.46	0.44			
1/2"	0.59	0.57	0.55	0.53			
3/4"	0.66	0.64	0.62	0.60			
1"	0.71	0.69	0.67	0.65			
1 1/2"	0.76	0.74	0.72	0.70			
2"	0.78	0.76	0.74	0.72			
<i>3"</i>	0.81	0.79	0.77	0.75			
6"	0.87	0.85	0.83	0.81			

Fuente: Tabla preparada por el Comité 211 del ACI.

Con Modulo de finura del agregado fino de 2.85, obtenido del análisis granulométrico, de la TABLA 05, se obtiene el Vol. Agregado grueso = 0.545 m³, entonces el peso es:

Peso agregado grueso = 0.545 x 1433 = 780.99 Kg/m³

e) Primera estimación de Agua de mezclado y Contenido de Aire

Tabla Nº 12 Volumen unitario de agua por [lt/m³]

Slump	Tamaño máximo nominal de agregado							
	3/8"	1/2"	3/4"	1"	1 1/2"	2"	3"	4"
		Conc	reto sin	aire inc	orporado)		
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	169	145	124
6" a 7"	243	228	216	202	190	178	160	
	Concreto con aire incorporado							
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119
6" a 7"	216	205	197	184	174	166	154	
%	Aire inc	orporad	o en fun	ción de	l grado d	e expos	sición	
Suave	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0
Moderada	6.0	5.5	5.0	4.5	4.5	4.0	3.5	3.0
Severa	7.5	7.0	6.0	6.0	5.5	5.0	4.5	4.0

Fuente: Tabla preparada por el Comité 211 del ACI.

Tabla Nº13 Contenido del aire atrapado

TNM (agregado grueso)	AIRE ATRAPADO %
3/8"	3.0
1/2" 3/4"	2.5
3/4"	2.0
1"	1.5
1 1/2"	1.0
2"	0.5
3"	0.3
4"	0.2

Fuente: Tabla preparada por el Comité 211 del ACI.

De las TABLAS 12 y 13, se obtiene:

% AIRE ATRAPADO = 2.5 %

 $AGUA = 216 \text{ lt/m}^3$

f) Selección de Relación Agua/Cemento

Tabla №14

F'cr kg / cm² (28 días)	Concreto sin aire incorporado	Concreto con aire incorporado
<i>150</i>	0,80	0,71
200	0,70	0,61
250	0,62	0,53
300	0,55	0,46
350	0,48	0,40
400	0,43	
450	0,38	

Relación A/C por resistencia

Fuente: Tabla preparada por el Comité 211 del ACI.

Cuando f'cr=364 kg/cm², entonces la relación a/c = 0.466

g) Cálculo de cemento

El cemento requerido es igual al contenido estimado de agua de mezclado dividido entre la relación A/C

Sí, no obstante, la especificación incluye un límite mínimo separado sobre el cemento, además de los requerimientos de resistencia y durabilidad, la mezcla debe basarse en el criterio que conduzca a una cantidad mayor de cemento.

Donde:

C = Cantidad de cemento por m³ de concreto

A = Cantidad de agua por m³ de concreto

A/C = Relación agua-cemento

Con el agua de diseño y la relación a/c, la cantidad de cemento resulta 463.52 Kg, es decir 10.9 bls.

h) Volumen y peso del Agregado Fino Por el método de Volumen absoluto

Peso agregado fino = $0.332 \times 2.48 \times 1000 = 823.36 \text{ Kg/m}^3$

i) Resumen diseño en Estado Seco

MATERIALES	PESOS (Kg/m ³)
Cemento	463.52
Arena	823.36
Grava	780.99
Agua	216

j) Corrección por Humedad de los agregados

Determinamos el incremento para los pesos secos de los agregados

Agregado fino húmedo = Agregado fino seco (Desviación por humedad)

Agregado fino húmedo = $823.36 \times 1.0052 = 827.64 \text{ Kg}$

Agregado grueso húmedo = Agregado grueso seco (Desviación por humedad)

Agregado grueso húmedo = 780.99 x 1.0028 = 783.18 Kg

Determinación del agua efectiva

Determinación del agua a añadir

Agua efectiva (lts) = Agua de diseño -(x + y)

Agua efectiva (Its) = 216 - (-5.52 - 3.20)

Agua efectiva (Its) = 224.72 lt/m³

k) Diseño final por corrección por humedad

MATERIALES	PESOS (Kg/m³)
Cemento	464
Arena	828
Grava	783
Agua	225

CEMENTO: AGREGADO FINO: AGREGADO GRUESO / AGUA

1: 1.8 : 2 / 20.6 Lt/bls.

Como se necesita incorporar bronce, con una adición del 5 % en sustitución del agregado fino, la densidad del bronce 8,9 Kg/Lt.

V bronce =
$$\frac{0.005x890.00}{7.39x1000}$$
 = 0.005 m³

V arena =
$$1 - (0.150 + 0.216 + 0.025 + 0.277 + 0.005) = 0.327 \text{ m}^3$$

P arena = $0.327 \times 2.48 \times 1000 = 810.96 \text{ kg/m}^3$ P del bronce = 36.95 kg/m^3

Resumen diseño en Estado Seco

MATERIALES	PESOS (Kg/m³)
Cemento	463.52
Arena	810.96
Grava	780.99
Agua	216
Bronce	36.95

Corrección por Humedad de los agregados

Determinamos el incremento para los pesos secos de los agregados

Agregado fino húmedo = Agregado fino seco (Desviación por humedad)

Agregado fino húmedo = 815.18 Kg

Agregado grueso húmedo = Agregado grueso seco (Desviación por humedad)

Agregado grueso húmedo = 780.99 x 1.0028 = 783.18 Kg

Determinación del agua efectiva

Determinación del agua a añadir

$$= -5.43$$

Agua efectiva (Its) = Agua de diseño -(x + y)

Agua efectiva (lts) = 216 - (-5.43 - 3.20)

I) Diseño final por corrección por humedad

MATERIALES	PESOS (Kg/m³)
Cemento	464
Arena	815
Grava	783
Agua	225
Bronce	36.95

CEMENTO: AGREGADO FINO: AGREGADO GRUESO / AGUA + ADICIÓN

1:1.8:2/20.6 lt/bls + 3.39 kg/bls

Con el mismo procedimiento, con una adición del 10 % de residuo de bronce en sustitución del agregado fino, se tiene:

MATERIALES	PESOS (Kg/m ³)
Cemento	464
Arena	805
Grava	783
Agua	225
Bronce	66.51

CEMENTO: AGREGADO FINO: AGREGADO GRUESO / AGUA + ADICIÓN

1:1.7:2/20.6 lt/bls + 6.10 kg/bls

Con el mismo procedimiento, con una adición del 15 % de residuo de bronce en sustitución del agregado fino, se tiene:

MATERIALES	DECOC (1/ / 3)
MATERIALES	PESOS (Kg/m³)
Cemento	464
Arena	793
Grava	783
Agua	225
Bronce	103.46

CEMENTO: AGREGADO FINO: AGREGADO GRUESO / AGUA + ADICIÓN

1:1.7:2/20.6 lt/bls + 9.49 kg/bls

Cuando f´cr=294 kg/cm², entonces la relación a/c = 0.558

m) Cálculo de cemento

El cemento requerido es igual al contenido estimado de agua de mezclado dividido entre la relación A/C

Si, no obstante, la especificación incluye un límite mínimo separado sobre el cemento, además de los requerimientos de resistencia y durabilidad, la mezcla debe basarse en el criterio que conduzca a una cantidad mayor de cemento.

Donde:

C = Cantidad de cemento por m³ de concreto A = Cantidad de agua por m³ de concreto

A/C = Relación agua-cemento

Con el agua de diseño y la relación a/c, la cantidad de cemento resulta 387.10 Kg, es decir 9.1 bls.

n) Volumen y peso del Agregado Fino Por el método de Volumen absoluto

Peso agregado fino = 0.357 x 2.48 x 1000 = **885.36 Kg/m**³

o) Resumen diseño en Estado Seco

MATERIALES	PESOS (Kg/m ³)
Cemento	387.10
Arena	885.36
Grava	780.99
Agua	216

p) Corrección por Humedad de los agregados

Determinamos el incremento para los pesos secos de los agregados

Agregado fino húmedo = Agregado fino seco (Desviación por humedad)

Agregado fino húmedo = $885.36 \times 1.0052 = 889.96 \text{ Kg}$

Agregado grueso húmedo = Agregado grueso seco (Desviación por humedad)

Agregado grueso húmedo = 780.99 x 1.0028 = 783.18 Kg

Determinación del agua efectiva

Determinación del agua a añadir

Agua para agregado grueso = Wgrava seca (‰grava - %absgrava) (y)
100

=
$$780.99 \left(\frac{0.28 - 0.69}{100} \right)$$

= -3.20

Agua efectiva (Its) = Agua de diseño -(x + y)

Agua efectiva (lts) = 216 - (-5.93 - 3.20)

Agua efectiva (Its) = 225.13 lt/m³

q) Diseño final por corrección por humedad

MATERIALES	PESOS (Kg/m ³)
Cemento	387
Arena	890
Grava	783
Agua	225

CEMENTO: AGREGADO FINO: AGREGADO GRUESO / AGUA

1: 2.3 : 2 / 24.7 Lt/bls.

Como se necesita incorporar bronce, con una adición del 5 % en sustitución del agregado fino, la densidad del bronce 8,9 Kg/Lt.

V bronce =
$$\frac{0.005x890.00}{7.39x1000}$$
 = 0.005 m³

V arena =
$$1 - (0.125 + 0.216 + 0.025 + 0.277 + 0.0005) = 0.352 \text{ m}^3$$

P arena = $0.352 \times 2.48 \times 1000 = 872.96 \text{ kg/m}^3$ P del bronce = 36.95 kg/m^3

Resumen diseño en Estado Seco

MATERIALES	PESOS (Kg/m³)
Cemento	387.10
Arena	872.96
Grava	780.99
Agua	216
Bronce	36.95

Corrección por Humedad de los agregados

Determinamos el incremento para los pesos secos de los agregados

Agregado fino húmedo = Agregado fino seco (Desviación por humedad)

Agregado fino húmedo = 877.50 Kg

Agregado grueso húmedo = Agregado grueso seco (Desviación por humedad)

Agregado grueso húmedo = 780.99 x 1.0028 = 783.18 Kg

Determinación del agua efectiva

Determinación del agua a añadir

Agua efectiva (Its) = Agua de diseño -(x + y)

Agua efectiva (lts) = 216 - (-5.85 - 3.20)

Agua efectiva (Its) = 225.05 lt/m³

r) Diseño final por corrección por humedad

MATERIALES	PESOS (Kg/m³)
Cemento	387
Arena	878
Grava	783
Agua	225
Bronce	36.95

CEMENTO: AGREGADO FINO: AGREGADO GRUESO / AGUA + ADICIÓN

1:2.3:2/24.70 lt/bls + 4.06 kg/bls

Con el mismo procedimiento, con una adición del 10 % de residuo de bronce en sustitución del agregado fino, se tiene:

MATERIALES	PESOS (Kg/m ³)
Cemento	387
Arena	865
Grava	783
Agua	225
Bronce	73.9

CEMENTO: AGREGADO FINO: AGREGADO GRUESO / AGUA + ADICIÓN

1:2.2:2/24.70 lt/bls + 8.11 kg/bls

Con el mismo procedimiento, con una adición del 15 % de residuo de bronce en sustitución del agregado fino, se tiene:

MATERIALES	PESOS (Kg/m ³)
Cemento	387
Arena	853
Grava	783
Agua	225
Bronce	110.85

CEMENTO: AGREGADO FINO: AGREGADO GRUESO / AGUA + ADICIÓN

1 : 2.2 : 2 / 24.70 lt/bls + 12.17 kg/bls

4.5. Propiedades en Estado de Concreto Fresco

Para las diferentes mezclas se ensayaron propiedades como la temperatura, asentamiento y peso unitario; según la normatividad vigente.

En el asentamiento debe considerarse que el concreto pueda haberse deformado plásticamente en forma rápida, se observó, además, que no existiera segregación y/o acumulación de agua libre o lechada sobre la superficie, por lo que no fue necesario el empleo de algún tipo de aditivo. Los resultados se indican en la siguiente tabla:

Tabla N°15 Ensayo de concreto en estado fresco

Código Muestra	Descripción Muestra	f'c (kg/cm²)	Fecha Muestreo	Hora Muestreo	Temp (°C)	Slump (plg)	P. Unit (kg/m³)
CP210	CONCRETO PATRON 210 Kg/cm ²	210	17-11-19	09:45	23.0	5	2,353
C210RB5	CONCRETO 210 Kg/cm ² CON RESIDUO DE BRONCE (5%)	210	17-11-19	10:58	24.5	5 1/4	2,338
C210RB10	CONCRETO 210 Kg/cm ² CON RESIDUO DE BRONCE (10%)	210	17-11-19	11:35	24.5	5 1/2	2,305
C210RB15	CONCRETO 210 Kg/cm ² CON RESIDUO DE BRONCE (15%)	210	17-11-19	12:08	24.0	5 1/2	2,281
CP280	CONCRETO PATRON 280 Kg/cm ²	280	18-11-19	15:35	23.0	4 1/2	2,352
C280RB5	CONCRETO 280 Kg/cm ² CON RESIDUO DE BRONCE (5%)	280	18-11-19	16:40	23.0	5 1/4	2,346
C280RB10	CONCRETO 280 Kg/cm ² CON RESIDUO DE BRONCE (10%)	280	18-11-19	17:10	23.5	5 ½	2,330
C280RB15	CONCRETO 280 Kg/cm ² CON RESIDUO DE BRONCE (15%)	280	18-11-19	17:35	24.0	5	2,319

Fuente: Propia.

4.6. Propiedades en Estado de Concreto Endurecido

Se realizaron los ensayos a la compresión a las 24h, 3 días, 7 días y 28 días. Se obtuvieron los siguientes resultados:

4.6.1. Resultados a la resistencia a la compresión del concreto en muestras cilíndricas (NTP 339.034)

Tabla N°16 Registro de ensayo de resistencia de compresión (280kg/cm²): 24h

Código:	CP280				
Descripción:	Concreto Patrón 280 Kg/cm2				
f'c=	280 Kg/cm2				
Fecha muestreo:	´18/11/2019				
Fecha ensayo:	´19/11/2019				
Tiempo:	24 horas				
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)	
1	10.1	80.12	11994	149.70	
2	10.1	80.12	11955	149.20	
3	10.1	80.12	12859	160.50	
4	10.1	80.12	12568	156.90	
5	10.1	80.12	12467	155.60	
6	10.1	80.12	11890	148.40	
7	10.1	80.12	11946	149.10	
8	10.1	80.12	12144	151.60	
9	10.1	80.12	12080	150.80	
10	10.1	80.12	12981	162.00	
11	10.1	80.12	12600	157.30	
12	10.1	80.12	12118	151.20	
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2	
1	149.7				
2	149.2				
3	160.5	153.13	-0.82	0.67	
4	156.9	155.53	1.58	2.50	
5	155.6	157.67	3.71	13.79	
6	148.4	153.63	-0.32	0.10	
7	149.1	151.03	-2.92	8.53	
8	151.6	149.70	-4.25	18.09	
9	150.8	150.50	-3.45	11.93	
10	162.0	154.80	0.85	0.72	
11	157.3	156.70	2.75	7.54	
12	151.2	156.83	2.88	8.29	
	Sumatoria	1539.53	kg/cm2		
	R Prom.	153.95	kg/cm2		
	Desv. Estándar	2.83	kg/cm2		

Tabla N°17 Registro de ensayo de resistencia de compresión (280kg/cm²+RB5%): 24 h

Código:	C280RB5			
Descripción:	CONCRETO 280 KG	/CM2 CON RES	SIDUO DE BRO	NCE (5%)
f'c=	280 Kg/cm2			
Fecha muestreo:	´18/11/2019			
Fecha ensayo:	´19/11/2019			
Tiempo:	24 horas			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	12080	150.80
2	10.1	80.12	11748	146.60
3	10.1	80.12	11636	145.20
4	10.1	80.12	11456	143.00
5	10.1	80.12	11210	139.90
6	10.1	80.12	11361	141.80
7	10.1	80.12	12140	151.50
8	10.1	80.12	12009	149.90
9	10.1	80.12	11990	149.90
10	10.1	80.12	11446	142.90
11	10.1	80.12	11201	139.80
12	10.1	80.12	11364	141.80
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	150.80			
2	146.60			
3	145.20	147.53	2.28	5.18
4	143.00	144.93	-0.32	0.10
5	139.90	142.70	-2.56	6.54
6	141.80	141.57	-3.69	13.62
7	151.50	144.40	-0.86	0.73
8	149.90	147.73	2.48	6.13
9	149.90	150.43	5.18	26.80
10	142.90	147.57	2.31	5.34
11	139.80	144.20	-1.06	1.12
12	141.80	141.50	-3.76	14.11
	Sumatoria	1452.57	kg/cm2	
	R Prom.	145.26	kg/cm2	_
	Desv. Estándar	2.98	kg/cm2	_

Tabla N°18 Registro de ensayo de resistencia de compresión (280kg/cm²+RB10%): 24 h

Código:	C280RB10				
Descripción:	CONCRETO 280 KG/CM2 CON RESIDUO DE BRONCE (10%)				
f'c=	280 Kg/cm2				
Fecha muestreo:	´18/11/2019				
Fecha ensayo:	´19/11/2019				
Tiempo:	24 horas				
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)	
1	10.1	80.12	9860	123.10	
2	10.1	80.12	9057	113.00	
3	10.1	80.12	9257	115.50	
4	10.1	80.12	9687	120.90	
5	10.1	80.12	9483	118.40	
6	10.1	80.12	9471	118.20	
7	10.1 80.12 9638 120.30				
8	10.1 80.12 9478 118.30				
9	10.1 80.12 9200 114.80				
10	10.1 80.12 9146 114.20				
11	10.1	80.12	9684	120.90	
12	10.1	80.12	9034	112.80	
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2	
1	123.10				
2	113.00				
3	115.50	117.20	-0.32	0.10	
4	120.90	116.47	-1.05	1.10	
5	118.40	118.27	0.75	0.56	
6	118.20	119.17	1.65	2.72	
7	120.30	118.97	1.45	2.10	
8	118.30	118.93	1.42	2.01	
9	114.80	117.80	0.28	0.08	
10	114.20	115.77	-1.75	3.06	
11	120.90	116.63	-0.88	0.78	
12	112.80	115.97	-1.55	2.40	
	Sumatoria	1175.17	kg/cm2		
	R Prom.	117.52	kg/cm2	-	
	Desv. Estándar	1.29	kg/cm2	_	

Tabla N°19 Registro de ensayo de resistencia de compresión (280kg/cm²+RB15%): 24 h

Código:	C280RB15			
Descripción:	CONCRETO 280 KG/C	M2 CON RESID	UO DE BRON	NCE (15%)
f'c=	280 Kg/cm2			
Fecha muestreo:	´18/11/2019			
Fecha ensayo:	´19/11/2019			
Tiempo:	24 horas			
		•		
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	9025	112.60
2	10.1	80.12	8645	107.90
3	10.1	80.12	8045	100.40
4	10.1	80.12	8618	107.60
5	10.1	80.12	8595	107.30
6	10.1	80.12	8470	105.70
7	10.1	80.12	8364	104.40
8	10.1	80.12	8239	102.80
9	10.1	80.12	8333	104.00
10	10.1	80.12	8449	105.50
11	10.1	80.12	8904	111.10
12	10.1	80.12	8844	110.40
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	112.60			
2	107.90			
3	100.40	106.97	1.16	1.35
4	107.60	105.30	-0.50	0.25
5	107.30	105.10	-0.70	0.49
6	105.70	106.87	1.06	1.13
7	104.40	105.80	0.00	0.00
8	102.80	104.30	-1.50	2.26
9	104.00	103.73	-2.07	4.28
10	105.50	104.10	-1.70	2.90
11	111.10	106.87	1.06	1.13
12	110.40	109.00	3.20	10.22
	Sumatoria	1058.03	kg/cm2	
	R Prom.	105.80	kg/cm2	-
	Desv. Estándar	1.63	kg/cm2	_

Tabla N°20 Registro de ensayo de resistencia de compresión (280kg/cm²): 3d

Código:	CP280			
Descripción:	CONCRETO PATR	ON 280 KG/CM2	2	
f'c=	280 Kg/cm2			
Fecha muestreo:	´18/11/2019			
Fecha ensayo:	′21/11/2019			
Tiempo:	3 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	24122	301.10
2	10.1	80.12	23278	290.50
3	10.1	80.12	24501	305.80
4	10.1	80.12	24221	302.30

2	10.1	80.12	23278	290.50
3	10.1	80.12	24501	305.80
4	10.1	80.12	24221	302.30
5	10.1	80.12	24012	299.70
6	10.1	80.12	23983	299.30
7	10.1	80.12	23997	299.50
8	10.1	80.12	23884	298.10
9	10.1	80.12	23784	296.90
10	10.1	80.12	23698	295.80
11	10.1	80.12	23641	295.10
12	10.1	80.12	24015	299.70

PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	301.10			
2	290.50			
3	305.80	299.13	0.33	0.11
4	302.30	299.53	0.73	0.53
5	299.70	302.60	3.79	14.39
6	299.30	300.43	1.63	2.65
7	299.50	299.50	0.69	0.48
8	298.10	298.97	0.16	0.03
9	296.90	298.17	-0.64	0.41
10	295.80	296.93	-1.87	3.51
11	295.10	295.93	-2.87	8.26
12	299.70	296.87	-1.94	3.76
	Sumatoria	2988 07	kg/cm2	

 Sumatoria
 2988.07 kg/cm2

 R Prom.
 298.81 kg/cm2

 Desv. Estándar
 1.95 kg/cm2

Tabla N°21 Registro de ensayo de resistencia de compresión (280kg/cm²+RB5%): 3d

Código:	C280RB5
Descripción:	CONCRETO 280 KG/CM2 CON RESIDUO DE BRONCE (5%)
f'c=	280 Kg/cm2
Fecha muestreo:	´18/11/2019
Fecha ensayo:	′21/11/2019
Tiempo:	3 días

PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	20296	253.30
2	10.1	80.12	21105	263.40
3	10.1	80.12	20469	255.50
4	10.1	80.12	20658	257.80
5	10.1	80.12	20547	256.50
6	10.1	80.12	20148	251.50
7	10.1	80.12	20985	261.90
8	10.1	80.12	20159	251.60
9	10.1	80.12	20753	259.00
10	10.1	80.12	20948	261.50
11	10.1	80.12	20486	255.70
12	10.1	80.12	20781	259.40

PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2	
1	253.30				
2	263.40				
3	255.50	257.40	0.17	0.03	
4	257.80	258.90	1.67	2.80	
5	256.50	256.60	-0.63	0.39	
6	251.50	255.27	-1.96	3.84	
7	261.90	256.63	-0.59	0.35	
8	251.60	255.00	-2.23	4.96	
9	259.00	257.50	0.27	0.07	
10	261.50	257.37	0.14	0.02	
11	255.70	258.73	1.51	2.27	
12	259.40	258.87	1.64	2.69	
	Supertonia 2572.27 km/sm2				

 Sumatoria
 2572.27 kg/cm2

 R Prom.
 257.23 kg/cm2

 Desv. Estándar
 1.39 kg/cm2

Tabla N°22 Registro de ensayo de resistencia de compresión (280kg/cm²+RB10%): 3d

Código:	C280RB10			
Descripción:	CONCRETO 280 k	G/CM2 CON RE	SIDUO DE BRON	ICE (10%)
f'c=	280 Kg/cm2			
Fecha muestreo:	′18/11/2019			
Fecha ensayo:	′21/11/2019			
Tiempo:	3 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	18540	231.40
2	10.1	80.12	19008	237.20
3	10.1	80.12	18475	230.60
4	10.1	80.12	18984	236.90
5	10.1	80.12	18874	235.60
6	10.1	80.12	18960	236.60
7	10.1	80.12	18847	235.20
8	10.1	80.12	18896	235.80
9	10.1	80.12	19120	238.60
10	10.1	80.12	19047	237.70
11	10.1	80.12	18968	236.70
12	10.1	80.12	18865	235.50

PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2	
1	231.40				
2	237.20				
3	230.60	233.07	-2.79	7.78	
4	236.90	234.90	-0.96	0.92	
5	235.60	234.37	-1.49	2.22	
6	236.60	236.37	0.51	0.26	
7	235.20	235.80	-0.06	0.00	
8	235.80	235.87	0.01	0.00	
9	238.60	236.53	0.68	0.46	
10	237.70	237.37	1.51	2.28	
11	236.70	237.67	1.81	3.28	
12	235.50	236.63	0.78	0.60	

 Sumatoria
 2358.57 kg/cm2

 R Prom.
 235.86 kg/cm2

 Desv. Estándar
 1.41 kg/cm2

Tabla N°23 Registro de ensayo de resistencia de compresión (280kg/cm²+RB15%): 3d

Código:	C280RB15
Descripción:	CONCRETO 280 KG/CM2 CON RESIDUO DE BRONCE (15%)
f'c=	280 Kg/cm2
Fecha muestreo:	´18/11/2019
	-, ,
Fecha ensayo:	´21/11/2019

PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	15896	198.40
2	10.1	80.12	15746	196.50
3	10.1	80.12	15890	198.30
4	10.1	80.12	15540	194.00
5	10.1	80.12	15237	190.20
6	10.1	80.12	15983	199.50
7	10.1	80.12	15179	189.50
8	10.1	80.12	16980	211.90
9	10.1	80.12	15707	196.00
10	10.1	80.12	15685	195.80
11	10.1	80.12	14987	187.10
12	10.1	80.12	14905	186.00

PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	198.40			
2	196.50			
3	198.30	197.73	1.83	3.34
4	194.00	196.27	0.36	0.13
5	190.20	194.17	-1.74	3.03
6	199.50	194.57	-1.34	1.80
7	189.50	193.07	-2.84	8.07
8	211.90	200.30	4.39	19.30
9	196.00	199.13	3.23	10.41
10	195.80	201.23	5.33	28.37
11	187.10	192.97	-2.94	8.64
12	186.00	189.63	-6.27	39.35
			. , -	

 Sumatoria
 1959.07
 kg/cm2

 R Prom.
 195.91
 kg/cm2

 Desv. Estándar
 3.69
 kg/cm2

Tabla N°24 Registro de ensayo de resistencia de compresión (280kg/cm²): 7d

Código:	CP280					
Descripción:	CONCRETO PATRON 280 KG/CM2					
f'c=	280 Kg/cm2					
Fecha muestreo:	´18/11/2019					
Fecha ensayo:	´25/11/2019					
Tiempo:	7 días					
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)		
1	10.1	80.12	32343	403.70		
2	10.1	80.12	32782	409.20		
3	10.1	80.12	32285	403.00		
4	10.1	80.12	32540	406.10		
5	10.1	80.12	32694	408.10		
6	10.1	80.12	32140	401.10		
7	10.1	80.12	32019	399.60		
8	10.1	80.12	32004	399.50		
9	10.1	80.12	32747	408.70		
10	10.1	80.12	32746	408.70		
11	10.1	80.12	32685	408.00		
12	10.1	80.12	32986	411.70		
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2		
1	403.70					
2	409.20					
3	403.00	405.30	0.16	0.03		
4	406.10	406.10	0.96	0.92		
5	408.10	405.73	0.59	0.35		
6	401.10	405.10	-0.04	0.00		
7	399.60	402.93	-2.21	4.87		
8	399.50	400.07	-5.07	25.74		
9	408.70	402.60	-2.54	6.45		
10	408.70	405.63	0.49	0.24		
11	408.00	408.47	3.33	11.07		
12	411.70	409.47	4.33	18.72		
	Sumatoria	4051.4	kg/cm2			
		R Prom. 405.14 kg/cm2				
	R Prom.	405.14	kg/cm2	-		

Tabla N°25 Registro de ensayo de resistencia de compresión (280kg/cm²+RB5%): 7d

Código:	C280RB5				
Descripción:	CONCRETO 280 KG/CM2 CON RESIDUO DE BRONCE (5%)				
f´c=	280 Kg/cm2				
Fecha muestreo:	´18/11/2019				
Fecha ensayo:	´25/11/2019				
Tiempo:	7 días				
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)	
1	10.1	80.12	29421	367.20	
2	10.1	80.12	28783	359.20	
3	10.1	80.12	29895	373.10	
4	10.1	80.12	29653	370.10	
5	10.1	80.12	29010	362.10	
6	10.1	80.12	29876	372.90	
7	10.1	80.12	29145	363.80	
8	10.1	80.12	29540	368.70	
9	10.1	80.12	29651	370.10	
10	10.1	80.12	29341	366.20	
11	10.1	80.12	29005	362.00	
12	10.1	80.12	29478	367.90	
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2	
1	367.20				
2	359.20				
3	373.10	366.50	-0.78	0.61	
4	370.10	367.47	0.18	0.03	
5	362.10	368.43	1.15	1.32	
6	372.90	368.37	1.08	1.17	
7	363.80	366.27	-1.02	1.03	
8	368.70	368.47	1.18	1.40	
9	370.10	367.53	0.25	0.06	
10	366.20	368.33	1.05	1.10	
11	362.00	366.10	-1.18	1.40	
12	367.90	365.37	-1.92	3.67	
	Sumatoria	3672.83	kg/cm2		
	R Prom. 367.28 kg/cm2				
	Desv. Estándar	1.15	kg/cm2	_	

Tabla N°26 Registro de ensayo de resistencia de compresión (280kg/cm²+RB10%): 7d

Código:	C280RB10					
Descripción:	CONCRETO 280 KG	G/CM2 CON RESID	OUO DE BRONO	CE (10%)		
f'c=	280 Kg/cm2					
Fecha muestreo:	´18/11/2019					
Fecha ensayo:	′25/11/2019					
Tiempo:	7 días					
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)		
1	10.1	80.12	26541	331.30		
2	10.1	80.12	25984	324.30		
3	10.1	80.12	25876	323.00		
4	10.1	80.12	24890	310.70		
5	10.1	80.12	24246	302.60		
6	10.1	80.12	24968	311.60		
7	10.1	80.12	25980	324.30		
8	10.1	80.12	25002	312.10		
9	10.1 80.12 25640 320.0					
10	10.1 80.12 25148 313.					
11	10.1	80.12	26048	325.10		
12	10.1	80.12	25198	314.50		
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2		
1	331.30					
2	324.30					
3	323.00	326.20	9.56	91.39		
4	310.70	319.33	2.69	7.25		
5	302.60	312.10	-4.54	20.61		
6	311.60	308.30	-8.34	69.56		
7	324.30	312.83	-3.81	14.49		
8	312.10	316.00	-0.64	0.41		
9			2.10	4.67		
	320.00	318.80	2.16	4.67		
10	320.00 313.90	318.80 315.33	-1.31	1.71		
10 11						
	313.90	315.33	-1.31	1.71		
11	313.90 325.10	315.33 319.67	-1.31 3.03 1.19	1.71 9.16		
11	313.90 325.10 314.50	315.33 319.67 317.83	-1.31 3.03 1.19 kg/cm2	1.71 9.16		

Tabla N°27 Registro de ensayo de resistencia de compresión (280kg/cm²+RB15%): 7d

Código:	C280RB15			
Descripción:	CONCRETO 280 KG/	CM2 CON RESID	OUO DE BRONCE (15%)
f'c=	280 Kg/cm2			
Fecha muestreo:	′18/11/2019			
Fecha ensayo:	′25/11/2019			
Tiempo:	7 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	22541	281.30
2	10.1	80.12	23985	299.40
3	10.1	80.12	22987	286.90
4	10.1	80.12	22548	281.40
5	10.1	80.12	22650	282.70
6	10.1	80.12	22522	281.10
7	10.1	80.12	22471	280.50
8	10.1	80.12	22630	282.50
9	10.1	80.12	22980	286.80
10	10.1	80.12	22510	281.00
11	10.1	80.12	22698	283.30
12	10.1	80.12	22420	279.80
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	281.30			
2	299.40			
3	286.90	289.20	5.36	28.73
4	281.40	289.23	5.39	29.09
5	282.70	283.67	-0.17	0.03
6	281.10	281.73	-2.11	4.44
7	280.50	281.43	-2.41	5.79
8	282.50	281.37	-2.47	6.12
9	286.80	283.27	-0.57	0.33
10	281.00	283.43	-0.41	0.17
11	283.30	283.70	-0.14	0.02
12	279.80	281.37	-2.47	6.12
	Sumatoria	2838.4	kg/cm2	
	R Prom.	283.84	kg/cm2	-
	Desv. Estándar	3.00	kg/cm2	•

Tabla N°28 Registro de ensayo de resistencia de compresión (280kg/cm²): 28d

Código:	CP280					
Descripción:	CONCRETO PATR	ON 280 KG/CM	2			
f'c=	280 Kg/cm2	280 Kg/cm2				
Fecha muestreo:	´18/11/2019					
Fecha ensayo:	′16/12/2019					
Tiempo:	28 días					
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)		
1	10.1	80.12	34827	434.70		
2	10.1	80.12	36385	454.10		
3	10.1	80.12	35952	448.70		
4	10.1	80.12	35647	444.90		
5	10.1	80.12	34982	436.60		
6	10.1	80.12	34741	433.60		
7	10.1	80.12	34568	431.50		
8	10.1	80.12	34014	424.50		
9	10.1	80.12	34584	431.70		
10	10.1	80.12	34980	436.60		
11	10.1	80.12	34580	431.60		
12	10.1	80.12	35100	438.10		
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2		
1	434.70					
2	454.10					
3	448.70	445.83	8.88	78.91		
4	444.90	449.23	12.28	150.88		
5	436.60	443.40	6.45	41.60		
6	433.60	438.37	1.42	2.01		
7	431.50	433.90	-3.05	9.30		
8	424.50	429.87	-7.08	50.17		
9	431.70	429.23	-7.72	59.55		
10	436.60	430.93	-6.02	36.20		
11	431.60	433.30	-3.65	13.32		
12	438.10	435.43	-1.52	2.30		
	Sumatoria	4369.5	kg/cm2			
	R Prom.	436.95	kg/cm2			
	Desv. Estándar	7.03	kg/cm2			

Tabla N°29 Registro de ensayo de resistencia de compresión (280kg/cm²+RB5%): 28d

Código:	C280RB5					
Descripción:	CONCRETO 280 KG	CONCRETO 280 KG/CM2 CON RESIDUO DE BRONCE (5%)				
f'c=	280 Kg/cm2					
Fecha muestreo:	′18/11/2019					
Fecha ensayo:	′16/12/2019					
Tiempo:	28 días					
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)		
1	10.1	80.12	32486	405.50		
2	10.1	80.12	32391	404.30		
3	10.1	80.12	31676	395.40		
4	10.1	80.12	31008	387.00		
5	10.1	80.12	31987	399.20		
6	10.1	80.12	31471	392.80		
7	10.1	80.12	31008	387.00		
8	10.1	80.12	31162	388.90		
9	10.1	80.12	31803	396.90		
10	10.1	80.12	31620	394.70		
11	10.1	80.12	31625	394.70		
12	10.1	80.12	31808	397.00		
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2		
1	405.50					
2	404.30					
3	395.40	401.73	7.53	56.65		
4	387.00	395.57	1.36	1.85		
5	399.20	393.87	-0.34	0.12		
6	392.80	393.00	-1.21	1.46		
7	387.00	393.00	-1.21	1.46		
8	388.90	389.57	-4.64	21.53		
9	396.90	390.93	-3.27	10.71		
10	394.70	393.50	-0.71	0.50		
11	394.70	395.43	1.23	1.50		
12	397.00	395.47	1.26	1.59		
	Sumatoria	3942.07	kg/cm2	_		
	R Prom.	394.21	kg/cm2	-		

3.29 kg/cm2

Desv. Estándar

Tabla N°30 Registro de ensayo de resistencia de compresión (280kg/cm²+RB10%): 28d

Código:	C280RB10			
Descripción:	CONCRETO 280 KG/	CM2 CON RESIDU	O DE BRONO	CE (10%)
f'c=	280 Kg/cm2			
Fecha muestreo:	´18/11/2019			
Fecha ensayo:	´16/12/2019			
Tiempo:	28 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	28950	361.30
2	10.1	80.12	28968	361.60
3	10.1	80.12	28654	357.60
4	10.1	80.12	28975	361.60
5	10.1	80.12	27988	349.30
6	10.1	80.12	27101	338.30
7	10.1	80.12	27460	342.70
8	10.1	80.12	26985	336.80
9	10.1	80.12	27086	338.10
10	10.1	80.12	27542	343.80
11	10.1	80.12	27680	345.50
12	10.1	80.12	27090	338.10
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	361.30	•		
2	361.60			
3	357.60	360.17	12.89	166.24
4	361.60	360.27	12.99	168.83
5	349.30	356.17	8.89	79.09
6	338.30	349.73	2.46	6.05
7	342.70	343.43	-3.84	14.75
8	336.80	339.27	-8.01	64.11
9	338.10	339.20	-8.07	65.18
10	343.80	339.57	-7.71	59.39
11	345.50	342.47	-4.81	23.10
12	338.10	342.47	-4.81	23.10
	Sumatoria	3472.73	kg/cm2	
	5.5	247.27	1 . / 2	

 Sumatoria
 3472.73 kg/cm2

 R Prom.
 347.27 kg/cm2

 Desv. Estándar
 8.63 kg/cm2

Tabla N°31 Registro de ensayo de resistencia de compresión (280kg/cm²+RB15%): 28d

Código:	C280RB15			
Descripción:	CONCRETO 280 KG	G/CM2 CON RES	IDUO DE BRON	NCE (15%)
f'c=	280 Kg/cm2			
Fecha muestreo:	´18/11/2019			
Fecha ensayo:	′16/12/2019			
Tiempo:	28 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	24186	301.90
2	10.1	80.12	24015	299.70
3	10.1	80.12	24896	310.70
4	10.1	80.12	24114	301.00
5	10.1	80.12	24551	306.40
6	10.1	80.12	24019	299.80
7	10.1	80.12	24891	310.70
8	10.1	80.12	24657	307.80
9	10.1	80.12	24987	311.90
10	10.1	80.12	24150	301.40
11	10.1	80.12	24542	306.30
12	10.1	80.12	24691	308.20
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	301.90			
2	299.70			
3	310.70	304.10	-1.61	2.58
4	301.00	303.80	-1.91	3.64
5	306.40	306.03	0.33	0.11
6	299.80	302.40	-3.31	10.93
7	310.70	305.63	-0.07	0.01
8	307.80	306.10	0.39	0.15
9	311.90	310.13	4.43	19.60
10	301.40	307.03	1.33	1.76
11	306.30	306.53	0.83	0.68
12	308.20	305.30	-0.41	0.17
	Sumatoria	3057.07	kg/cm2	
	R Prom.	305.71	kg/cm2	_
	Desv. Estándar	2.10	kg/cm2	_

Tabla N°32 Registro de ensayo de resistencia de compresión (210kg/cm²): 24h

Código:	CP210			
Descripción:	Concreto Patrón 210) Kg/cm2		
f'c=	210 Kg/cm2			
Fecha muestreo:	′17/11/2019			
Fecha ensayo:	′18/11/2019			
Tiempo:	24 horas			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	11346	141.60
2	10.1	80.12	10624	132.60
3	10.1	80.12	11840	147.80
4	10.1	80.12	10980	137.00
5	10.1	80.12	10890	135.90
6	10.1	80.12	10965	136.90
7	10.1	80.12	10892	135.90
8	10.1	80.12	10554	133.00
9	10.1	80.12	10915	136.20
10	10.1	80.12	10965	136.90
11	10.1	80.12	10922	136.30
12	10.1	80.12	10896	136.00
				_
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	141.60	•		
2	132.60			
3	147.80	140.67	3.53	12.44
4	137.00	139.13	1.99	3.97
5	135.90	140.23	3.09	9.57
6	136.90	136.60	-0.54	0.29
7	135.90	136.23	-0.91	0.82
8	133.00	135.27	-1.87	3.51
9	136.20	135.03	-2.11	4.44
10	136.90	135.37	-1.77	3.14
11	136.30	136.47	-0.67	0.45
12	136.00	136.40	-0.74	0.55
	Sumatoria	1371.4	kg/cm2	
	R Prom.	137.14	kg/cm2	_
	Desv. Estándar	2.09	kg/cm2	

Tabla N°33 Registro de ensayo de resistencia de compresión (210kg/cm²+RB5%): 24h

Código:	C210RB5			
Descripción:	CONCRETO 210 H	KG/CM2 CON RE	SIDUO DE BRON	NCE (5%)
f'c=	210 Kg/cm2			_
Fecha muestreo:	′17/11/2019			
Fecha ensayo:	′18/11/2019			
Tiempo:	24 horas			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	11201	139.80
2	10.1	80.12	10389	129.70
3	10.1	80.12	10742	134.10
4	10.1	80.12	10815	135.00
5	10.1	80.12	10829	135.20
6	10.1	80.12	10857	135.50
7	10.1	80.12	10611	132.40
8	10.1	80.12	10748	134.10
9	10.1	80.12	11105	138.60
10	10.1	80.12	11097	138.50
11	10.1	80.12	11021	137.60
12	10.1	80.12	10852	135.40
			•	
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	139.80			
2	129.70			
3	134.10	134.53	-0.80	0.64
4	135.00	132.93	-2.40	5.76
5	135.20	134.77	-0.57	0.32
6	135.50	135.23	-0.10	0.01
7	132.40	134.37	-0.97	0.93
8	134.10	134.00	-1.33	1.78
9	138.60	135.03	-0.30	0.09
10	138.50	137.07	1.73	3.00
11	137.60	138.23	2.90	8.41
12	135.40	137.17	1.83	3.36
	Sumatoria	1353.33	kg/cm2	
	R Prom.	135.33	kg/cm2	_
	Desv. Estándar	1.64	kg/cm2	_

Tabla N°34 Registro de ensayo de resistencia de compresión (210kg/cm²+RB10%): 24h

Código:	C210RB10			
Descripción:	CONCRETO 210 KG	G/CM2 CON RESID	OUO DE BRONCE	(10%)
f'c=	210 Kg/cm2			
Fecha muestreo:	´17/11/2019			
Fecha ensayo:	′18/11/2019			
Tiempo:	24 horas			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	9570	119.40
2	10.1	80.12	8210	102.50
3	10.1	80.12	9687	120.90
4	10.1	80.12	9630	120.20
5	10.1	80.12	9874	123.20
6	10.1	80.12	9512	118.70
7	10.1	80.12	9650	120.40
8	10.1	80.12	9834	122.70
9	10.1	80.12	9018	112.60
10	10.1	80.12	8961	111.80
11	10.1	80.12	8273	103.30
12	10.1	80.12	8024	100.10
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	119.40			
2	102.50			
3	120.90	114.27	-1.82	3.31
4	120.20	114.53	-1.55	2.41
5	123.20	121.43	5.35	28.59
6	118.70	120.70	4.61	21.28
7	120.40	120.77	4.68	21.90
8	122.70	120.60	4.51	20.37
9	112.60	118.57	2.48	6.15
10	111.80	115.70	-0.39	0.15
11	103.30	109.23	-6.85	46.97
12	100.10	105.07	-11.02	121.44
	Sumatoria	1160.87	kg/cm2	_
	R Prom.	116.09	kg/cm2	_
	Desv. Estándar	5.50	kg/cm2	

Tabla N°35 Registro de ensayo de resistencia de compresión (210kg/cm²+RB15%): 24h

Código:	C210RB15			
Descripción:	CONCRETO 210 KG/	CM2 CON RESIDU	O DE BRONCE	(15%)
f'c=	210 Kg/cm2			
Fecha muestreo:	´17/11/2019			
Fecha ensayo:	′18/11/2019			
Tiempo:	24 horas			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	7863	98.10
2	10.1	80.12	6775	84.60
3	10.1	80.12	7110	88.70
4	10.1	80.12	6985	87.20
5	10.1	80.12	6998	87.30
6	10.1	80.12	7052	88.00
7	10.1	80.12	7014	87.50
8	10.1	80.12	7036	87.80
9	10.1	80.12	6849	85.50
10	10.1	80.12	6910	86.20
11	10.1	80.12	6892	86.00
12	10.1	80.12	6876	85.80
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	98.10			
2	84.60			
3	88.70	90.47	3.14	9.88
4	87.20	86.83	-0.49	0.24
5	87.30	87.73	0.41	0.17
6	88.00	87.50	0.18	0.03
7	87.50	87.60	0.28	0.08
8	87.80	87.77	0.44	0.20
9	85.50	86.93	-0.39	0.15
10	86.20	86.50	-0.82	0.68
11	86.00	85.90	-1.42	2.03
12	85.80	86.00	-1.32	1.75
	Sumatoria	873.23	kg/cm2	
	R Prom.	87.32	kg/cm2	_
	Desv. Estándar	1.30	kg/cm2	_

Tabla N°36 Registro de ensayo de resistencia de compresión (210kg/cm²): 3d

Código:	CP210
Descripción:	CONCRETO PATRON 210 KG/CM2
f'c=	210 Kg/cm2
Fecha muestreo:	´17/11/2019
Fecha ensayo:	′20/11/2019
Tiempo:	3 días

PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	20871	260.50
2	10.1	80.12	20232	252.50
3	10.1	80.12	22344	278.90
4	10.1	80.12	22214	277.30
5	10.1	80.12	22180	276.80
6	10.1	80.12	22009	274.70
7	10.1	80.12	22194	277.00
8	10.1	80.12	21854	272.80
9	10.1	80.12	21632	270.00
10	10.1	80.12	21879	273.10
11	10.1	80.12	21745	271.40
12	10.1	80.12	21643	270.10

PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	260.50			
2	252.50			
3	278.90	263.97	-8.71	75.81
4	277.30	269.57	-3.11	9.65
5	276.80	277.67	4.99	24.93
6	274.70	276.27	3.59	12.91
7	277.00	276.17	3.49	12.20
8	272.80	274.83	2.16	4.67
9	270.00	273.27	0.59	0.35
10	273.10	271.97	-0.71	0.50
11	271.40	271.50	-1.17	1.38
12	270.10	271.53	-1.14	1.30

Sumatoria	2726.73	kg/cm2
R Prom.	272.67	kg/cm2
Desv. Estándar	4.00	kg/cm2

Tabla N°37 Registro de ensayo de resistencia de compresión (210kg/cm²+RB5%): 3d

Código:	C210RB5
Descripción:	CONCRETO 210 KG/CM2 CON RESIDUO DE BRONCE (5%)
f'c=	210 Kg/cm2
Fecha muestreo:	´17/11/2019
Fecha ensayo:	′20/11/2019
Tiempo:	3 días

PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	20582	256.90
2	10.1	80.12	21745	271.40
3	10.1	80.12	19916	248.60
4	10.1	80.12	20158	251.60
5	10.1	80.12	20694	258.30
6	10.1	80.12	20140	251.40
7	10.1	80.12	20010	249.80
8	10.1	80.12	20876	260.60
9	10.1	80.12	20509	256.00
10	10.1	80.12	20114	251.00
11	10.1	80.12	19987	249.50
12	10.1	80.12	22004	274.60

PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	256.90			
2	271.40			
3	248.60	258.97	3.79	14.39
4	251.60	257.20	2.03	4.11
5	258.30	252.83	-2.34	5.48
6	251.40	253.77	-1.41	1.98
7	249.80	253.17	-2.01	4.03
8	260.60	253.93	-1.24	1.54
9	256.00	255.47	0.29	0.09
10	251.00	255.87	0.69	0.48
11	249.50	252.17	-3.01	9.04
12	274.60	258.37	3.19	10.20
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·

 Sumatoria
 2551.73 kg/cm2

 R Prom.
 255.17 kg/cm2

 Desv. Estándar
 2.39 kg/cm2

Tabla N°38 Registro de ensayo de resistencia de compresión (210kg/cm²+RB10%): 3d

Código:	C210RB10			
Descripción:	CONCRETO 210 k	KG/CM2 CON RE	SIDUO DE BRON	NCE (10%)
f'c=	210 Kg/cm2			
Fecha muestreo:	´17/11/2019			
Fecha ensayo:	′20/11/2019			
Tiempo:	3 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	18054	225.30
2	10.1	80.12	17985	224.50
3	10.1	80.12	17896	223.40
4	10.1	80.12	16983	212.00

1	10.1	80.12	18054	225.30
2	10.1	80.12	17985	224.50
3	10.1	80.12	17896	223.40
4	10.1	80.12	16983	212.00
5	10.1	80.12	17458	217.90
6	10.1	80.12	17690	220.80
7	10.1	80.12	17026	212.50
8	10.1	80.12	17489	218.30
9	10.1	80.12	18003	224.70
10	10.1	80.12	18476	230.60
11	10.1	80.12	17983	224.50
12	10.1	80.12	17420	217.40

PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	225.30			
2	224.50			
3	223.40	224.40	3.69	13.62
4	212.00	219.97	-0.74	0.55
5	217.90	217.77	-2.94	8.66
6	220.80	216.90	-3.81	14.52
7	212.50	217.07	-3.64	13.27
8	218.30	217.20	-3.51	12.32
9	224.70	218.50	-2.21	4.88
10	230.60	224.53	3.82	14.62
11	224.50	226.60	5.89	34.69
12	217.40	224.17	3.46	11.95

 Sumatoria
 2207.1 kg/cm2

 R Prom.
 220.71 kg/cm2

 Desv. Estándar
 3.79 kg/cm2

Tabla N°39 Registro de ensayo de resistencia de compresión (210kg/cm²+RB15%): 3d

Código:	C210RB15
Descripción:	CONCRETO 210 KG/CM2 CON RESIDUO DE BRONCE (15%)
f´c=	210 Kg/cm2
Fecha muestreo:	´17/11/2019
Fecha ensayo:	′20/11/2019
Tiempo:	3 días

PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	14073	175.60
2	10.1	80.12	12307	153.60
3	10.1	80.12	12881	160.80
4	10.1	80.12	12658	158.00
5	10.1	80.12	12982	162.00
6	10.1	80.12	12924	161.30
7	10.1	80.12	13054	162.90
8	10.1	80.12	13154	164.20
9	10.1	80.12	13589	169.60
10	10.1	80.12	13654	170.40
11	10.1	80.12	13247	165.30
12	10.1	80.12	13654	170.40

PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	175.60			
2	153.60			
3	160.80	163.33	-0.38	0.14
4	158.00	157.47	-6.25	39.02
5	162.00	160.27	-3.45	11.88
6	161.30	160.43	-3.28	10.76
7	162.90	162.07	-1.65	2.71
8	164.20	162.80	-0.91	0.83
9	169.60	165.57	1.85	3.43
10	170.40	168.07	4.35	18.95
11	165.30	168.43	4.72	22.28
12	170.40	168.70	4.99	24.87

 Sumatoria
 1637.13
 kg/cm2

 R Prom.
 163.71
 kg/cm2

 Desv. Estándar
 3.87
 kg/cm2

Tabla N°40 Registro de ensayo de resistencia de compresión (210kg/cm²): 7d

Código:	CP210			
Descripción:	CONCRETO PATRO	N 210 KG/CM2		
f'c=	210 Kg/cm2			
Fecha				
muestreo:	´17/11/2019			
Fecha ensayo:	′24/11/2019			
Tiempo:	7 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	27588	344.30
2	10.1	80.12	27344	341.30
3	10.1	80.12	25251	315.20
4	10.1	80.12	25810	322.10
5	10.1	80.12	25037	312.50
6	10.1	80.12	26450	330.10
7	10.1	80.12	26108	325.90
8	10.1	80.12	26247	327.60
9	10.1	80.12	26149	326.40
10	10.1	80.12	26189	326.90
11	10.1	80.12	26247	327.60
12	10.1	80.12	27270	340.40
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	344.30			
2	341.30			
3	315.20	333.60	7.51	56.45
4	322.10	326.20	0.11	0.01
5	312.50	316.60	-9.49	90.00
6	330.10	321.57	-4.52	20.43
7	325.90	322.83	-3.25	10.58
8	327.60	327.87	1.78	3.17
9	326.40	326.63	0.55	0.30
10	326.90	326.97	0.88	0.77
11	327.60	326.97	0.88	0.77
12	340.40	331.63	5.55	30.77
	Sumatoria	3260.87	kg/cm2	_
	R Prom.	326.09	kg/cm2	-
	Desv. Estándar	4.87	kg/cm2	_

Tabla N°41 Registro de ensayo de resistencia de compresión (210kg/cm²+RB5%): 7d

Código:	C210RB5			
Descripción:	CONCRETO 210 K	G/CM2 CON RESID	UO DE BRONCE (5%)
f'c=	210 Kg/cm2			
Fecha				
muestreo:	´17/11/2019			
Fecha ensayo:	´24/11/2019			
Tiempo:	7 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	25933	323.70
2	10.1	80.12	24230	302.40
3	10.1	80.12	26269	327.90
4	10.1	80.12	26148	326.40
5	10.1	80.12	26047	325.10
6	10.1	80.12	25980	324.30
7	10.1	80.12	25870	322.90
8	10.1	80.12	25863	322.80
9	10.1	80.12	25859	322.80
10	10.1	80.12	25890	323.10
11	10.1	80.12	26074	325.40
12	10.1	80.12	26149	326.40
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	323.70			
2	302.40			
3	327.90	318.00	-5.05	25.54
4	326.40	318.90	-4.15	17.25
5	325.10	326.47	3.41	11.65
6	324.30	325.27	2.21	4.90
7	322.90	324.10	1.05	1.10
8	322.80	323.33	0.28	0.08
9	322.80	322.83	-0.22	0.05
10	323.10	322.90	-0.15	0.02
11	325.40	323.77	0.71	0.51
12	326.40	324.97	1.91	3.66
_	Sumatoria	3230.53	kg/cm2	
	R Prom.	323.05	kg/cm2	
	Desv. Estándar	2.68	kg/cm2	
			•	

Tabla N°42 Registro de ensayo de resistencia de compresión (210kg/cm²+RB10%): 7d

Código:	C210RB10			
Descripción:	CONCRETO 210 k	(G/CM2 CON RESID	UO DE BRONCI	E (10%)
f'c=	210 Kg/cm2			
Fecha				
muestreo:	′17/11/2019			
Fecha ensayo:	′24/11/2019			
Tiempo:	7 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	22586	281.90
2	10.1	80.12	23148	288.90
3	10.1	80.12	22890	285.70
4	10.1	80.12	22967	286.70
5	10.1	80.12	22896	285.80
6	10.1	80.12	23248	290.20
7	10.1	80.12	23100	288.30
8	10.1	80.12	23560	294.10
9	10.1	80.12	22987	286.90
10	10.1	80.12	22804	284.60
11	10.1	80.12	22854	285.20
12	10.1	80.12	22956	286.50
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	281.90			
2	288.90			
3	285.70	285.50	-1.95	3.80
4	286.70	287.10	-0.35	0.12
5	285.80	286.07	-1.38	1.91
6	290.20	287.57	0.12	0.01
7	288.30	288.10	0.65	0.42
8	294.10	290.87	3.42	11.67
9	286.90	289.77	2.32	5.37
10	284.60	288.53	1.08	1.17
11	285.20	285.57	-1.88	3.55
12	286.50	285.43	-2.02	4.07
	Sumatoria	2874.5	kg/cm2	
	R Prom.	287.45	kg/cm2	_
	Desv. Estándar	1.89	kg/cm2	_
			•	_

Tabla N°43 Registro de ensayo de resistencia de compresión (210kg/cm²+RB15%): 7d

Código:	C210RB15			
Descripción:	CONCRETO 210 KG	G/CM2 CON RESIDU	O DE BRONCE (15%)
f'c=	210 Kg/cm2			
Fecha				
muestreo:	′17/11/2019			
Fecha ensayo:	′24/11/2019			
Tiempo:	7 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	20944	261.40
2	10.1	80.12	18681	233.20
3	10.1	80.12	17676	220.60
4	10.1	80.12	18143	226.40
5	10.1	80.12	18147	226.50
6	10.1	80.12	18362	229.20
7	10.1	80.12	18956	236.60
8	10.1	80.12	18502	230.90
9	10.1	80.12	18641	232.70
10	10.1	80.12	17962	224.20
11	10.1	80.12	17990	224.50
12	10.1	80.12	18146	226.50
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	261.40	•		
2	233.20	247.30	17.41	303.23
3	220.60	226.90	-2.99	8.92
4	226.40	223.50	-6.39	40.79
5	226.50	226.45	-3.44	11.81
6	229.20	227.85	-2.04	4.15
7	236.60	232.90	3.01	9.08
8	230.90	233.75	3.86	14.93
9	232.70	231.80	1.91	3.66
10	224.20	228.45	-1.44	2.06
11	224.50	224.35	-5.54	30.65
12	226.50	225.50	-4.39	19.24
	Sumatoria	2528.75	kg/cm2	
	R Prom.	229.89		-

6.70 kg/cm2

Desv. Estándar

Tabla N°44 Registro de ensayo de resistencia de compresión (210kg/cm²): 28d

Código:	CP210			
Descripción:	CONCRETO PATR	ON 210 KG/CM	2	
f'c=	210 Kg/cm2			
Fecha				
muestreo:	′17/11/2019			
Fecha ensayo:	´15/12/2019			
Tiempo:	28 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	29727	371.00
2	10.1	80.12	30501	380.70
3	10.1	80.12	32242	402.40
4	10.1	80.12	32180	401.60
5	10.1	80.12	32184	401.70
6	10.1	80.12	31985	399.20
7	10.1	80.12	31876	397.90
8	10.1	80.12	31800	396.90
9	10.1	80.12	31954	398.80
10	10.1	80.12	31908	398.30
11	10.1	80.12	31864	397.70
12	10.1	80.12	32008	399.50
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	371.00	·		
2	380.70			
3	402.40	384.70	-12.56	157.67
4	401.60	394.90	-2.36	5.55
5	401.70	401.90	4.64	21.56
6	399.20	400.83	3.58	12.79
7	397.90	399.60	2.34	5.49
8	396.90	398.00	0.74	0.55
9	398.80	397.87	0.61	0.37
10	398.30	398.00	0.74	0.55
11	397.70	398.27	1.01	1.02
12	399.50	398.50	1.24	1.55
-				

3972.57 kg/cm2 397.26 kg/cm2

4.80 kg/cm2

Desv. Estándar

Sumatoria

R Prom.

Tabla N°45 Registro de ensayo de resistencia de compresión (210kg/cm²+RB5%): 28d

Código:	C210RB5			
Descripción:	CONCRETO 210 KG	G/CM2 CON RESI	IDUO DE BRON	CE (5%)
f´c=	210 Kg/cm2			
Fecha muestreo:	´17/11/2019			
Fecha ensayo:	´15/12/2019			
Tiempo:	28 días			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	29808	372.00
2	10.1	80.12	28695	358.20
3	10.1	80.12	29325	366.00
4	10.1	80.12	29560	368.90
5	10.1	80.12	29874	372.90
6	10.1	80.12	29864	372.70
7	10.1	80.12	28963	361.50
8	10.1	80.12	29561	369.00
9	10.1	80.12	29786	371.80
10	10.1	80.12	29954	373.90
11	10.1	80.12	29853	372.60
12	10.1	80.12	29748	371.30
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	372.00			
2	358.20			
3	366.00	365.40	-3.77	14.19
4	368.90	364.37	-4.80	23.04
5	372.90	369.27	0.10	0.01
6	372.70	371.50	2.33	5.44
7	361.50	369.03	-0.13	0.02
8	369.00	367.73	-1.43	2.05
9	371.80	367.43	-1.73	3.00
10	373.90	371.57	2.40	5.76
11	372.60	372.77	3.60	12.96
12	371.30	372.60	3.43	11.79

 Sumatoria
 3691.67 kg/cm2

 R Prom.
 369.17 kg/cm2

 Desv. Estándar
 2.95 kg/cm2

Tabla N°46 Registro de ensayo de resistencia de compresión (210kg/cm²+RB10%): 28d

Código:	C210RB10			
Descripción:	CONCRETO 210 KG/C	M2 CON RESIDU	O DE BRONCE	(10%)
f´c=	210 Kg/cm2			
Fecha muestreo:	´17/11/2019			
Fecha ensayo:	´15/12/2019			
Tiempo:	28 días			
	•			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	26128	326.10
2	10.1	80.12	25965	324.10
3	10.1	80.12	26280	328.00
4	10.1	80.12	25892	323.20
5	10.1	80.12	25790	321.90
6	10.1	80.12	25260	315.30
7	10.1	80.12	26008	324.60
8	10.1	80.12	26108	325.90
9	10.1	80.12	26280	328.00
10	10.1	80.12	25890	323.10
11	10.1	80.12	25960	324.00
12	10.1	80.12	26048	325.10
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	326.10			
2	324.10			
3	328.00	326.07	2.15	4.64
4	323.20	325.10	1.19	1.41
5	321.90	324.37	0.45	0.21
6	315.30	320.13	-3.78	14.29
7	324.60	320.60	-3.31	10.98
8	325.90	321.93	-1.98	3.92
9	328.00	326.17	2.25	5.08
10	323.10	325.67	1.75	3.07
11	324.00	325.03	1.12	1.25
12	325.10	324.07	0.15	0.02
	Sumatoria	3239.13	kg/cm2	
	R Prom.	323.91	kg/cm2	
	Desv. Estándar	2.23	kg/cm2	

Tabla N°47 Registro de ensayo de resistencia de compresión (210kg/cm²+RB15%): 28d

Código:	C210RB15			
Descripción:	CONCRETO 210 KG/	CM2 CON RESIDUC	DE BRONCE	(15%)
f'c=	210 Kg/cm2			
Fecha muestreo:	′17/11/2019			
Fecha ensayo:	′15/12/2019			
Tiempo:	28 días			
	•			
PROBETA	Diámetro (cm)	Área (cm2)	C (kg)	R (kg/cm2)
1	10.1	80.12	21240	265.10
2	10.1	80.12	19022	237.40
3	10.1	80.12	20268	253.00
4	10.1	80.12	20567	256.70
5	10.1	80.12	20149	251.50
6	10.1	80.12	20057	250.30
7	10.1	80.12	20783	259.40
8	10.1	80.12	19980	249.40
9	10.1	80.12	19864	247.90
10	10.1	80.12	19764	246.70
11	10.1	80.12	19985	249.40
12	10.1	80.12	20046	250.20
PROBETA	R (kg/cm2)	R prom.	xi-x	(xi-x)2
1	265.10			_
2	237.40			
3	253.00	251.83	0.71	0.51
4	256.70	249.03	-2.09	4.35
5	251.50	253.73	2.61	6.83
6	250.30	252.83	1.71	2.94
7	259.40	253.73	2.61	6.83
8	249.40	253.03	1.91	3.66
9	247.90	252.23	1.11	1.24
10	246.70	248.00	-3.12	9.73
11	249.40	248.00	-3.12	9.73
12	250.20	248.77	-2.35	5.54
	Sumatoria	2511.2	kg/cm2	
	R Prom.	251.12	kg/cm2	
	Desv. Estándar	2.39	kg/cm2	

Calculo del f'cr

En base a los criterios que nos da el comité 214 del ACI (Instituto Americano del Concreto), Calculamos los diferentes f´cr para cada criterio según las formulas especificadas. El ACI 318 recomienda que se tome el mayor valor entre A y B. Entonces, a los 28 días se tiene:

CP280

```
Criterio A: 1% del promedio móvil de 3 muestras este por debajo de f'c f'cr = f'c + 1.34 s f'cr = 364 + 1.34 (7.03) f'cr = 373.42 kg/cm<sup>2</sup>

Criterio B: 1% de las muestras este por debajo de (f'c-500 psi) f'cr = f'c + 2.33 s - 35 f'cr = 364 + 2.33(7.03) - 35 f'cr = 345.38 kg/cm<sup>2</sup>
```

C280RB5

```
Criterio A: 1% del promedio móvil de 3 muestras este por debajo de f'c f'cr = f'c + 1.34 s f'cr = 364+ 1.34 (3.29) f'cr = 368.40 kg/cm<sup>2</sup>

Criterio B: 1% de las muestras este por debajo de (f'c-500 psi) f'cr = f'c + 2.33 s - 35 f'cr = 364 + 2.33(3.29) - 35 f'cr = 236.67 kg/cm<sup>2</sup>
```

C280RB10

```
Criterio A: 1% del promedio móvil de 3 muestras este por debajo de f'c f'cr = f'c + 1.34 s f'cr = 364 + 1.34 (8.63) f'cr = 375.56 kg/cm<sup>2</sup>

Criterio B: 1% de las muestras este por debajo de (f'c-500 psi) f'cr = f'c + 2.33 s - 35 f'cr = 364 + 2.33(8.63) - 35 f'cr = 349.11 kg/cm<sup>2</sup>
```

C280RB15

```
Criterio A: 1% del promedio móvil de 3 muestras este por debajo de f'c f'cr = f'c + 1.34 s f'cr = 364 + 1.34 (2.10) f'cr = 366.81 kg/cm<sup>2</sup>
```

```
Criterio B: 1% de las muestras este por debajo de (f'c-500 psi)
```

f'cr = f'c + 2.33 s - 35f'cr = 364 + 2.33(2.10) - 35

 $f'cr = 333.89 \text{ kg/cm}^2$

CP210

Criterio A: 1% del promedio móvil de 3 muestras este por debajo de f'c

f'cr = f'c + 1.34 s

f'cr = 294 + 1.34 (4.80)

 $f'cr = 300.43 \text{ kg/cm}^2$

Criterio B: 1% de las muestras este por debajo de (f'c-500 psi)

f'cr = f'c + 2.33 s - 35

f'cr = 294 + 2.33(4.80) - 35

 $f'cr = 270.18 \text{ kg/cm}^2$

C210RB5

Criterio A: 1% del promedio móvil de 3 muestras este por debajo de f'c

f'cr = f'c + 1.34 s

f'cr = 294 + 1.34(2.95)

 $f'cr = 297.95 \text{ kg/cm}^2$

Criterio B: 1% de las muestras este por debajo de (f'c-500 psi)

f'cr = f'c + 2.33 s - 35

f'cr = 294 + 2.33(2.95) - 35

 $f'cr = 265.87 \text{ kg/cm}^2$

C280RB10

Criterio A: 1% del promedio móvil de 3 muestras este por debajo de f'c

f'cr = f'c + 1.34 s

f'cr = 294 + 1.34(2.23)

 $f'cr = 296.99 \text{ kg/cm}^2$

Criterio B: 1% de las muestras este por debajo de (f'c-500 psi)

f'cr = f'c + 2.33 s - 35

f'cr = 294 + 2.33(2.23) - 35

 $f'cr = 264.20 \text{ kg/cm}^2$

C280RB15

Criterio A: 1% del promedio móvil de 3 muestras este por debajo de f'c

f'cr = f'c + 1.34 s

f'cr = 294 + 1.34(2.39)

 $f'cr = 297.20 \text{ kg/cm}^2$

Criterio B: 1% de las muestras este por debajo de (f'c-500 psi)

f'cr = f'c + 2.33 s - 35

f'cr = 294 + 2.33(2.39) - 35

 $f'cr = 264.57 \text{ kg/cm}^2$

Cartas de Control

Posteriormente se hace uso de esta herramienta para entender la variación del proceso y lograr el control estadístico y así comunicar la información sobre el desempeño del concreto.

Cálculo de Límites de Especificaciones

Los límites de especificación se usan para verificar si estamos cumpliendo con las especificaciones del cliente, está dado por f´cr ± 1.34 s.

CP280

Límite de Especificación Superior

LES = f'cr + 1.34 sLES = 373.42 + 1.34 (7.03)LES = 382.84 kg/cm^2

Límite de Especificación Central

LCC = f'cr $LCC = 373.42 \text{ kg/cm}^2$

Límite de Especificación Inferior

LEI = f'cr - 1.34 sLEI = 373.42 - 1.34 (7.03)LEI = 364.00 kg/cm^2

C280RB5

Límite de Especificación Superior

LES = f'cr + 1.34 sLES = 368.40 + 1.34 (3.29)LES = 372.81 kg/cm^2

Límite de Especificación Central

LCC = f'cr $LCC = 368.40 \text{ kg/cm}^2$

Límite de Especificación Inferior

LEI = f'cr - 1.34 sLEI = 368.40 - 1.34 (3.29)LEI = 364.00 kg/cm^2

C280RB10

Límite de Especificación Superior

LES = f'cr + 1.34 s LES =375.56 + 1.34 (8.63)

LES =
$$387.12 \text{ kg/cm}^2$$

Límite de Especificación Central

LCC = f'cr $LCC = 375.56 \text{ kg/cm}^2$

Límite de Especificación Inferior

LEI = f'cr - 1.34 s LEI = 375.56 - 1.34 (8.63) LEI = 364.00 kg/cm²

C280RB15

Límite de Especificación Superior

LES = f'cr + 1.34 sLES = 366.81 + 1.34 (2.10)LES = 369.62 kg/cm^2

Límite de Especificación Central

LCC = f'cr $LCC = 366.81 \text{ kg/cm}^2$

Límite de Especificación Inferior

LEI = f'cr - 1.34 s LEI = 366.81 - 1.34 (2.10) LEI = 364.00 kg/cm²

CP210

Límite de Especificación Superior

LES = f'cr + 1.34 sLES = 300.43 + 1.34 (4.80)LES = 306.82 kg/cm^2

Límite de Especificación Central

LCC = f'cr $LCC = 300.43 \text{ kg/cm}^2$

Límite de Especificación Inferior

LEI = f'cr - 1.34 s LEI = 300.43 - 1.34 (4.80) LEI = 294.00 kg/cm²

C210RB5

Límite de Especificación Superior

LES = f'cr + 1.34 sLES = 297.95 + 1.34 (2.95) LES = 301.90 kg/cm²

Límite de Especificación Central

$$LCC = f'cr$$

 $LCC = 297.95 \text{ kg/cm}^2$

Límite de Especificación Inferior

LEI =
$$f'cr - 1.34 s$$

LEI = 297.95 - 1.34 (2.95)
LEI = 294.00 kg/cm^2

C210RB10

Límite de Especificación Superior

LES =
$$f'cr + 1.34 s$$

LES = $296.99 + 1.34 (2.23)$
LES = 299.98 kg/cm^2

Límite de Especificación Central

$$LCC = f'cr$$

 $LCC = 296.99 \text{ kg/cm}^2$

Límite de Especificación Inferior

LEI =
$$f'$$
cr - 1.34 s
LEI = 296.99 - 1.34 (2.23)
LEI = 294.00 kg/cm²

C210RB15

Límite de Especificación Superior

LES =
$$f'cr + 1.34 \text{ s}$$

LES = 297.20+ 1.34 (2.39)
LES = 300.40 kg/cm²

Límite de Especificación Central

$$LCC = f'cr$$

 $LCC = 297.20 \text{ kg/cm}^2$

Límite de Especificación Inferior

LEI =
$$f'$$
cr - 1.34 s
LEI = 297.20 - 1.34 (2.39)
LEI = 294.00 kg/cm²

Gráfico de los Límites de Especificaciones

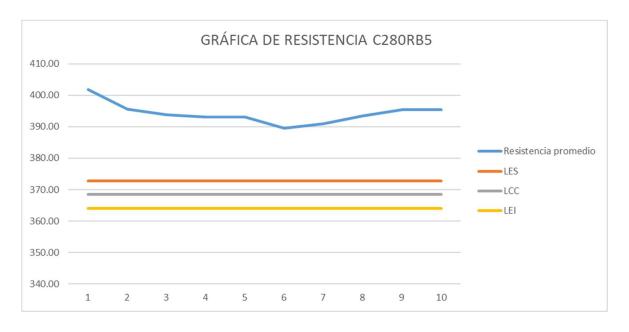
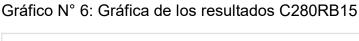

Con los resultados obtenidos, se grafica los resultados de las resistencias considerando los límites de especificaciones los LES y LEI.

Gráfico N° 3: Gráfica de los resultados CP280

Fuente: Propia

Gráfico N° 4: Gráfica de los resultados C280RB5



Fuente: Propia

Gráfico N° 5: Gráfica de los resultados C280RB10

Fuente: Propia

Fuente: Propia

De los gráficos 3, 4, 5 y 6; se puede concluir que conforme se aumente la adición de residuo de bronce la resistencia estará por debajo del límite de especificación inferior.

Además, en función del aumento de la resistencia en las diferentes mezclas fabricadas, se tienen los siguientes resultados comparando con los concretos patrones.

Tabla Nº48 Resumen de resultados

DÍAS	CP280	C280RB5	C280RB10	C280RB15	CP210	C210RB5	C210RB10	C210RB15
DIAS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2
24h	153.95	145.26	117.52	105.80	137.14	135.33	116.09	87.32
3d	298.81	257.23	235.86	195.91	272.67	255.17	220.71	163.71
7d	405.14	367.28	316.64	283.84	326.09	323.05	287.45	229.89
28d	436.95	394.21	347.27	305.71	397.26	369.17	323.91	251.12

Gráfico N° 7: Gráfica de los resultados del desarrollo de la resistencia

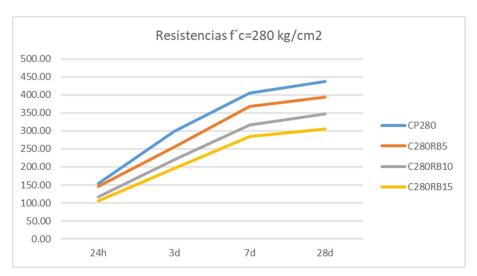
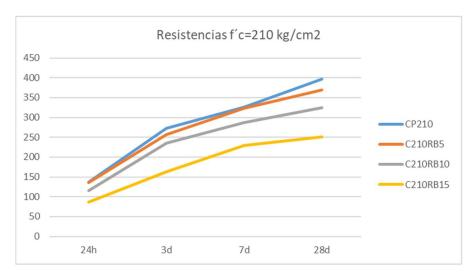



Gráfico N° 8: Gráfica de los resultados del desarrollo de la resistencia

CAPÍTULO V

V. <u>DISCUSION DE LOS RESULTADOS</u>

AGREGADOS

Análisis Granulométrico:

En las tablas 05 y 06 se muestran los resultados del análisis granulométrico realizado al agregado grueso y agregado fino, obteniéndose como Tamaño Máximo Nominal 1/2" y Módulo de Finura 2.85, respectivamente; además, estos cumplen con los husos granulométricos establecidos en la NTP 400.037, por lo que se deduce que el agregado extraído de la cantera Loma Linda, Sector El Milagro, Distrito de Huanchaco, cumple con los requisitos granulométricos para poder utilizarlo en la preparación del concreto.

Con respecto al ensayo del desgaste, en la tabla 08 se muestra el resultado de desgaste del agregado grueso que es de 18%, donde se deduce que dicho material es óptimo según la NTP 400.019 ya que se está por debajo del límite máximo admisible del 50%.

Con respecto al contenido de humedad, en la tabla 07, se observa el resultado de contenido de humedad del agregado fino y grueso respectivamente, donde se obtuvo el 0.52% y el 0.28% de humedad, esto quiere decir que el material se encuentra óptimo, según la NTP 339.185.

CONCRETO FRESCO

Asentamiento

En la tabla 15, el asentamiento del concreto conforme se va aumentando el incremento de la adición, este aumenta en comparación del concreto patrón, variando en un promedio de media pulgada por 5% de incremento.

Peso Unitario

En la tabla 15 se aprecia los resultados del peso unitario del concreto en estado fresco, con respecto al concreto patrón (diseño normal) se puede deducir que conforme se aumenta la adición de residuo de bronce en reemplazo del agregado fino, el valor del peso unitario disminuye en las mezclas de diseño.

Temperatura

En la tabla 15, se observan que los resultados de la temperatura del concreto en estado fresco, en comparación entre del asentamiento se encuentran directamente relacionados, ya que esto se debe a que la temperatura del concreto en su etapa inicial es perjudicada por diversos factores como la temperatura ambiental, la absorción del calor solar y la temperatura inicial de los materiales.

CONCRETO ENDURECIDO

Resistencia a la Compresión

Del análisis de la tabla 48 se mostró cuanto varía la resistencia de mezclas de concreto patrón (diseño normal) en relación a la mezcla de concreto donde se sustituye agregado fino por residuo de bronce. Por lo tanto, se puede decir que conforme se incremente el porcentaje de sustitución en un 5%, la resistencia a la compresión disminuirá entre un 7 y 10%.

ANÁLISIS DE LOS RESULTADOS

El criterio de Aceptación del ACI, acepta 1 de 100 un 1% de datos por debajo de las especificaciones del proceso para los criterios considerados.

Para este trabajo utilizamos 4 diseños de mezclas con porcentajes diferentes de residuos de bronce para cada resistencia específica donde en ambas graficas de los criterios, se puede ver que tenemos 1 dato fuera de especificación esto quiere decir que cumplimos con un 97%, por lo tanto, el proceso no está bajo control ya que tiene un 3% de incumplimiento, se debe de investigar las causas y corregirlas.

CAPÍTULO VI

VI. <u>CONCLUSIONES</u>

- 6.1. Los agregados grueso y fino extraídos de la cantera Loma Linda, Sector El Milagro, Distrito de Huanchaco, cumplen con los requisitos granulométricos establecidos por la NTP 400.037, lo que nos indica como referencia que estos agregados son aceptables.
- 6.2. Se realizaron los diseños de mezclas para la elaboración de las probetas para un concreto F'c = 210 Kg/cm2 y 280 Kg/cm2 con un cemento Portland Tipo I para el concreto patrón (diseño normal) y mezclas de concreto sustituyendo agregado fino por residuos de bronce en porcentajes del 5, 10 y 15% respectivamente, se utilizó el método ACI 211.1 y la combinación del módulo de fineza de los agregados; obteniendo el siguiente diseño:

F'c=210 Kg/cm2				
Materiales	Pesos (Kg/m3)	Por tanda		
Cemento	387	1		
Arena	890	2.27		
Grava	783	2		
Agua	225	24.7		

F'c=280Kg/cm2					
Materiales	Pesos (Kg/m3)	Por tanda			
Cemento	464	1			
Arena	828	1.79			
Grava	783	2			
Agua	225	20.6			

F'c=210 Kg/cm2 +5%RB				
Materiales	Pesos (Kg/m3)	Por tanda		
Cemento	387	1		
Arena	878	2.27		
Grava	783	2		
Agua	225	24.7		
Bronce	36.95	4.06		

F'c=280Kg/cm2 +5%RB				
Materiales	Pesos (Kg/m3) Por tanda			
Cemento	464	1		
Arena	815	1.76		
Grava	783	2		
Agua	225	20.6		
Bronce	36.95	3.39		

F'c=210 Kg/cm2 +10%RB				
Materiales	Pesos (Kg/m3)	Por tanda		
Cemento	387	1		
Arena	865	2.23		
Grava	783	2		
Agua	225	24.7		
Bronce	73.90	8.11		

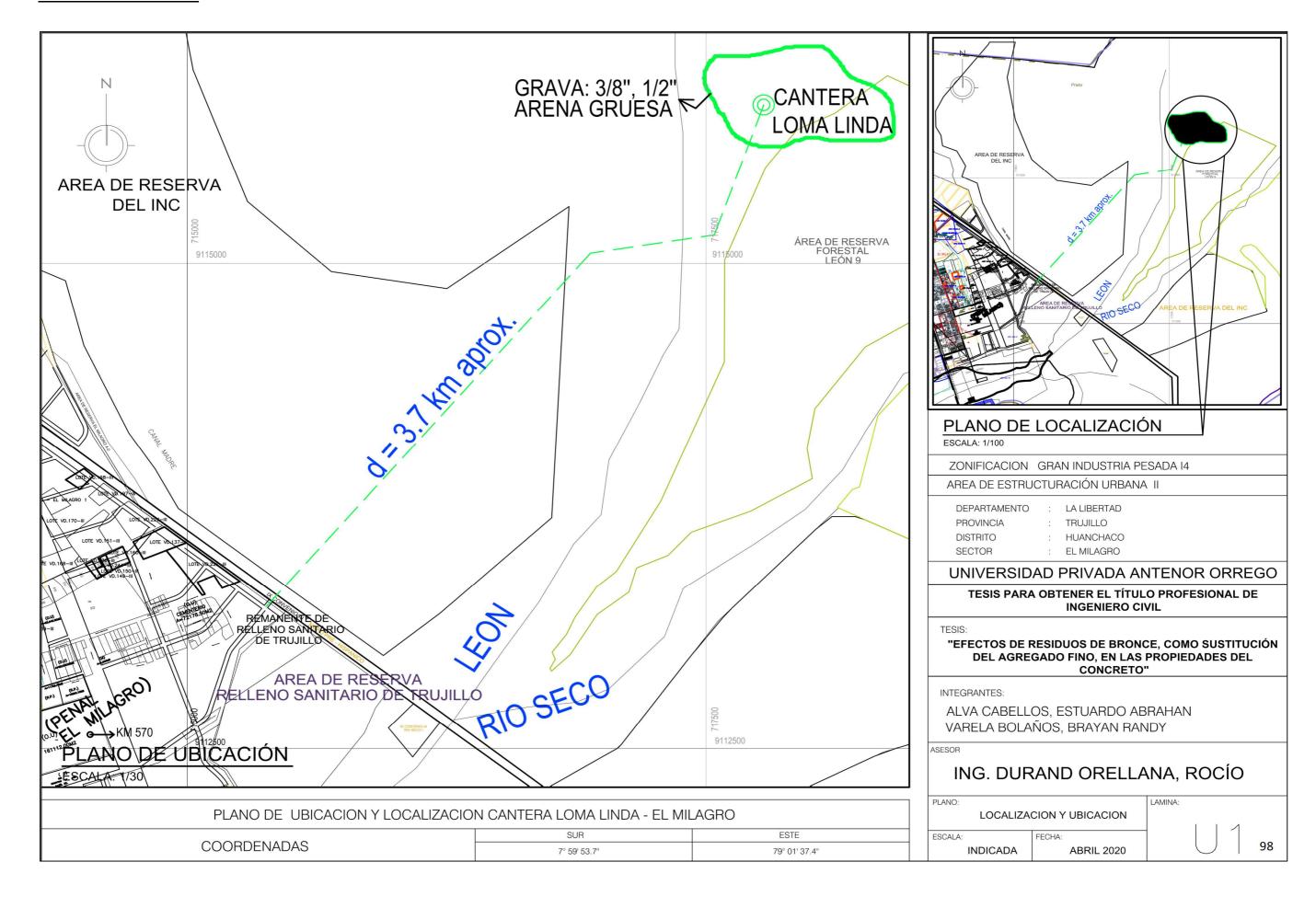
F'c=280 Kg/cm2 +10%RB				
Materiales	Pesos (Kg/m3) Por tanda			
Cemento	464	1		
Arena	805	1.74		
Grava	783	2		
Agua	225	20.6		
Bronce	66.51	6.10		

F'c=210 Kg/cm2 +15%RB						
Materiales	Pesos (Kg/m3)	Por tanda				
Cemento	387	1				
Arena	853	2.20				
Grava	783	2				
Agua	225	24.7				
Bronce	110.85	12.17				

F'c=280 Kg/cm2 +15%RB							
Materiales	Pesos (Kg/m3)	Por tanda					
Cemento	464	1					
Arena	793	1.71					
Grava	783	2					
Agua	224	20.6					
Bronce	103.46	9.49					

- 6.3. Elaborados los ensayos de las propiedades del concreto en estado fresco, se comprobó:
 - Que las mezclas realizadas presentaron un asentamiento entre 2 1/2" y 5", de las cuales se encuentran dentro del parámetro de asentamiento, no es necesario incorporar algún aditivo para lograr una consistencia plástica.
 - Que conforme aumenta el asentamiento, el peso unitario va disminuyendo en las mezclas de concreto con mayor porcentaje de residuo de bronce.
- 6.4. Elaborados los ensayos de las propiedades del concreto en estado endurecido, se apreció que ningún de los resultados de resistencia a la compresión de las probetas de mezclas de concreto sin ninguna adición obtenidos a 28 días de edad, está por debajo de la resistencia de diseño en más de 35 kg/cm2; sin embargo, en las probetas de concreto con un mínimo de sustitución del 5% de agregado fino por residuo de bronce, los resultados no cumplen esta mínima condición.
- 6.5. De las tablas 28 al 31, y de las del 44 al 47; que muestran los resultados del promedio de todas las series de tres ensayos consecutivos a los 28 días; las probetas con concreto patrón muestran resistencias mayores a la de diseño especificada; sin embargo, esto no ocurre en las probetas con sustitución del agregado fino por residuo de bronce.

VII. <u>RECOMENDACIONES</u>


- Se recomienda realizar más estudios acerca de esta sustitución de agregado fino por residuo de bronce en otras propiedades como el de reactividad álcali-agregado, porosidad de tal manera de determinar las ventajas y desventajas que puede ofrecer este agregado para usos en concreto.
- Es recomendable realizar un control de granulometría de los residuos de bronce ya que el mercado podemos encontrar distintos tamaños, por lo que en estos casos el concepto de uniformidad debe considerarse como un criterio relativo, además de otras propiedades físicas y químicas que los agregados pudieran necesitar.

REFERENCIAS BIBLIOGRAFICAS

- ACI 211.1. Guía para seleccionar proporciones de hormigón con cemento Portland y ceniza volante.
- Norma Técnica Peruana 339.045. Método de ensayo para la medición del asentamiento del hormigón con el cono de Abrams.
- Norma Técnica ASTM C31/C31M-17. Práctica Normalizada para Preparación y Curado de Especímenes de Ensayo de Concreto en la Obra.
- Norma Técnica ASTM C192/C192M-19a. Práctica Normalizada para Preparación y Curado de Especímenes de Concreto para Ensayo en Laboratorio.
- Norma Técnica Peruana 339.034. Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto en muestras cilíndricas.
- R Steven, H. Kosmatra, Beatrix Kerkhoff. Diseño y control de mezclas de concreto.
- Rivva, E. (2015). Tecnología del concreto ensayo de concreto endurecido ensayo de resistencia a la compresión.
- Sika Perú. Boletines técnicos Sika Perú (SIKA PLAST 326).

ANEXOS

PLANO DE UBICACION

CERTIFICADO DE CALIBRACIÓN CMC-022-2019

Peticionario

: QUALITY CONTROL EXPRESS S.A.C.

Atención

: QUALITY CONTROL EXPRESS S.A.C.

Lugar de calibración

: Av. América Sur N° 4138 Urb. San Andres - Trujillo.

Tipo de equipo

: Máquina de compresión axial eléctro-hidráulica digital

Capacidad del equipo

: 2,000 kN

División de escala

: 1 kgf.

Marca

: ALFA

Modelo

: B-001/LCD/2

Nº de serie del equipo

: 050220/21

Panel digital

: DIGITAL ALFA

Número serie panel digital

: 050220/21

Código

: No Indica.

Procedencia

: Turquía.

Método de calibración

: ASTM E-4 "Standard Practices for Force Verification of Testing machines"

Temp.(°C) y H.R.(%) inicial

: 27,5°C / 69%

Temp.(°C) y H.R.(%) final

: 27,5°C / 69%

Patrón de referencia

: Trazabilidad NIST (United States National Institute of Standards & Technology), patrón utilizado Morehouse, N° de serie C-8294, clase A, calibrado de acuerdo a la norma ASTM E74-18, certificado de calibración

reporte N° C-8294(ASRET)K0518

Número de páginas

: 2

Fecha de calibración : 2019-03-07

Este certificado de calibración sólo puede ser difundido sin modificaciones y en su totalidad. Las modificaciones y extractos del certificado necesitan autorización de CELDA EIRL. El presente certificado sin firmas y sellos carece de validez.

Fecha

Hecho por

Revisado por

2019-03-16

Reg. del CIP Nº 84286

CMC-022-2019

Página 1 de 2

'. Circunvalación s/n Mz. B Lt. 1 Urb. Praderas de Huachipa Lurigancho - Chosica Telf.: (01) 540 7661 e-mail: servicios@celda.com.pe

Resultados de medición

Dirección de carga

: Compresión

Indicación de fuerza de la máquina de ensayo		Indicación de fuerza en la celda patrón		Promedio	Error	Incertidumbre	
		1º ascenso	2º ascenso	3º ascenso			K=2
(%)	(kN)	(kN)	(kN) (kN) (kN) (kN)	(%)	U (%)		
0	0	0	0	0	0	0	0,1
5	100	99,16	99,92	99,75	99,61	0,4	0,1
10	200	200,51	201,48	201,98	201,33	-0,7	0,1
15	300	301,89	302,10	302,27	302,09	-0,7	0,1
20	400	400,21	400,70	402,09	401,00	-0,2	0,1
25	500	501,45	500,41	501,57	501,14	-0,2	0,1
30	600	599,38	601,01	602,47	600,95	-0,2	0,1
35	700	703,43	702,42	701,88	702,58	-0,4	0,1
40	800	799,24	799,37	799,83	799,48	0,1	0,1
45	900	899,75	899,16	898,73	899,21	0,1	0,1

Incertidumbre

La incertidumbre reportada en el presente certificado es la Incertidumbre Expandida de medición, que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2 y ha sido determinada de acuerdo a la "Guía para la expresión de la incertidumbre en la medición".

Notas

El usuario esta obligado a tener el equipo calibrado en intervalos apropiados de tiempo de acuerdo al uso, mantenimiento y conservación que este expuesto.

El equipo se encuentra calibrado y cumple con los requisitos de la norma ASTM C39

CMC-022-2019

Página 2 de 2