UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

"DISEÑO Y ANÁLISIS DE FUNCIONAMIENTO DE LA BOCATOMA SAN JUAN, VIRÚ MEDIANTE UN MODELAMIENTO HIDRÁULICO BIDIMENSIONAL, LA LIBERTAD 2020"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL LÍNEA DE INVESTIGACIÓN: HIDRÁULICA

AUTORES:

BR. CHAVEZ CORREA, KHEYNER ANTONY

ASESOR:

ING. NARVAEZ ARANDA RICARDO ANDRÉS

TRUJILLO - PERÚ

2021

UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

"DISEÑO Y ANÁLISIS DE FUNCIONAMIENTO DE LA BOCATOMA SAN JUAN, VIRÚ MEDIANTE UN MODELAMIENTO HIDRÁULICO BIDIMENSIONAL, LA LIBERTAD 2020"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL LÍNEA DE INVESTIGACIÓN: HIDRÁULICA

AUTORES:

BR. CHAVEZ CORREA, KHEYNER ANTONY

ASESOR:

ING. NARVAEZ ARANDA RICARDO ANDRÉS

TRUJILLO - PERÚ

2021

Dedicatoria

El presente trabajo de investigación lo dedico con profundo Amor, Gratitud y Fe:

A Dios por guiar mi camino y mantenerme firme en mi propósito.

A mis amados padres Kyle y Guilma por haberme apoyado con optimismo anímico y moral en mi larga trayectoria estudiantil.

A mis abuelos Juan y Carmela que siempre me acompañan y cuidan desde el cielo.

A mis familiares por abnegado apoyo moral en todo momento

Br. CHAVEZ CORREA KHEYNER ANTONY

Agradecimiento

A:

DIOS

Por guiar mis pasos con mucha Fe y Esperanza para ver cristalizado mi tan anhelado sueño de ser un profesional.

PADRES

Por ser íntegros en su apoyo y ser parte fundamental en cada momento de mi vida, garantizando en todo momento el apoyo socio emocional y económico las mismas que marcaron y trazaron el camino al logro de mis sueños y metas.

MS. ING. RICARDO ANDRES NARVAEZ ARANDA

Por su valioso tiempo y haberme acompañado como asesor de la presente investigación.

Resumen

La presente investigación se desarrolla con la finalidad implementar una estructura de captación de agua para el aprovechamiento y administración del recurso hídrico en el centro poblado de Tomaval. Para lo cual se tomó en cuenta, el dimensionamiento hidráulico que consiste en el cálculo de las diferentes dimensiones de cada sub estructura que conforman en conjunto la bocatoma y el modelamiento hidráulico computacional CDF que corroborará dicho dimensionamiento, poniéndolo a prueba. En el cumplimiento de las metas, se realizaron estudios básicos de ingeniería, la topografía obteniendo una A=2.23km2 y una pendiente de 1.5%; estudio de Mecánica de Suelos EMS para conocer la naturaleza del material obteniendo un suelo SP arena pobremente gradada con baja cantidad de limos según SUCS y un estudio hidrológico para realizar la proyección del caudal en un periodo de retorno de 100 años dando como resultado de 185.51m3/s. Los resultados obtenidos para el diseño, se determinó que el Caudal de diseño de la bocatoma es de 0.70m3/s, las dimensiones de la ventana de captación es de 1.50m de ancho por 0.50m de alto, barraje móvil con una longitud de 5.80m y 80 metros de longitud de barraje fijo, los muros de encauzamiento con una altura de 4.00m y un espesor 0.50m. Dentro del modelamiento hidráulico se implementó además un modelo en 3 dimensiones para el reforzar el análisis de desempeño y garantizar así el desempeño de la estructura bajo las cargas de agua proyectadas, ya que el modelo 3D equivale a una prueba de laboratorio.

Palabras claves: Diseño y Análisis Hidráulico, bocatoma, modelamiento hidráulico bidimensional.

Abstract

This research is developed with the purpose of implementing a water catchment structure for the use and administration of water resources in the town of Tomaval. For which it was taken into account, the hydraulic dimensioning that consists of the calculation of the different dimensions of each sub-structure that together make up the intake and the computational hydraulic modeling CDF that will corroborate said dimensioning, putting it to the test. In compliance with the goals, basic engineering studies were carried out, the topography obtaining an A = 2.23km2 and a slope of 1.5%; EMS Soil Mechanics study to know the nature of the material obtaining a soil SP sand poorly graded with a low amount of silt according to SUCS and a hydrological study to carry out the projection of the flow in a return period of 100 years, resulting in 185.51m3 / s. The results obtained for the design, it was determined that the design flow of the intake is 0.70m3 / s, the dimensions of the intake window is 1.50m wide by 0.50m high, mobile bar with a length of 5.80 m and 80 meters in length of fixed bar, channeling walls with a height of 4.00m and a thickness of 0.50m. Within the hydraulic modeling, a 3dimensional model was also implemented to reinforce the performance analysis and thus guarantee the performance of the structure under the projected water loads, since the 3D model is equivalent to a laboratory test.

Keywords: Hydraulic Design and Analysis, intake, two-dimensional hydraulic modeling.

Presentación

Señores Miembros del Jurado:

Dando cumplimiento y conformidad a los requisitos establecidos en el Reglamento de Grados y Títulos de la Universidad Privada Antenor Orrego y el Reglamento Interno de la Escuela Profesional de Ingeniería Civil para obtener el Título Profesional de Ingeniero Civil, pongo a vuestra disposición el presente Trabajo de Suficiencia Profesional titulado:

"DISEÑO Y ANÁLISIS DE FUNCIONAMIENTO DE LA BOCATOMA SAN JUAN, VIRÚ MEDIANTE UN MODELAMIENTO HIDRÁULICO BIDIMENSIONAL, LA LIBERTAD 2020"

El mismo que dejo a su criterio para su dictamen, esperando reunir los requisitos para vuestra aprobación.

Atentamente,

Br. Chávez Correa, Kheyner Antony

Índice de contenidos

Dedicat	toria	v
Agrade	cimiento	vi
Resum	en	vii
Abstrac	ct	viii
Presen	tación	ix
Índice d	de contenidos	x
Índice d	de tablas	xii
Índice d	de figuras e imágenes	xiii
I. IN	TRODUCCIÓN	1
1.1.	Problema de investigación	1
1.2.	Objetivos de la investigación	5
1.3.	Justificación del estudio	6
II. M <i>A</i>	ARCO DE REFERENCIA	7
2.1.	Antecedentes del estudio	7
2.2.	Marco teórico.	9
2.3.	Marco Conceptual	20
2.4.	Sistema de Hipótesis	22
III. I	METODOLOGÍA	24
3.1.	Tipo y nivel de investigación	24
3.2.	Población y muestra	24
3.3.	Técnicas e instrumentos de investigación	24
3.4.	Diseño de Investigación	26
3.5.	Procesamiento y análisis de datos	26
IV. I	PRESENTACION DE RESULTADOS	28
4.1.	Análisis e interpretación de resultados	28
<i>4</i> 1	1.1 Levantamiento tonográfico	28

4	4.1.2.	Estudio de mecánica de suelos	34
4	4.1.3.	Estudio hidrológico	38
4	4.1.4.	Determinación del periodo de retorno	55
4	4.1.5.	Determinación del caudal de diseño	56
4	4.1.6.	Encauzamiento del rio en el sector de ubicación de la toma	56
4	4.1.7.	Coeficiente de rugosidad de cauces naturales (n de Manning)	58
4	4.1.8.	Creación del modelo hidráulico en 2D	61
4	4.1.9.	Resultados de la simulación	64
4	4.1.10.	Alineamiento del recorrido del cauce	65
4	4.1.11.	Cálculo de la sección de ancho estable	66
4	4.1.12.	Emplazamiento de la estructura de captación	74
4	4.1.13.	Planteamiento de la estructura de bocatoma	76
4	4.1.14.	Creación del modelo hidráulico de la bocatoma	90
4.2	. Doo	imasia de hipótesis	96
V. [DISCUS	IÓN DE RESULTADOS	97
CON	CLUSIC	DNES	99
REC	OMEND	ACIONES	101
REFE	ERENCI	AS BIBLIOGRAFICAS	102
ANE	xos		104

Índice de tablas

Tabla 1 Operacionalización de variables	22
Tabla 2 Cámaras	29
Tabla 3 Coeficientes de calibración y matriz de correlación	30
Tabla 4 Errores medios de las posiciones de cámaras. X – Este, Y – Norte, Z- Altitud	31
Tabla 5 Puntos de apoyo. X – Este, Y – Norte, Z – Altitud	33
Tabla 6 Peso parcial que pasa a través de los tamices	34
Tabla 7 Análisis granulométrico	35
Tabla 8 Resumen del registro de aforos de la estación Huacapongo	39
Tabla 9 Distribución Normal - Momentos lineales	41
Tabla 10 Distribución GUMBEL - Momentos lineales	43
Tabla 11 Distribución Log Normal III- Momentos Lineales	45
Tabla 12 Distribución Gamma III- Momentos Lineales	46
Tabla 13 Distribución Log Normal 2 Parámetros - Momentos lineales	
Tabla 14 Distribución Log Gumbel - Momentos lineales	50
Tabla 15 E.2.1.3 Distribución Gamma 2 Parámetros - Momentos lineales	52
Tabla 16 Método de Simons y Henderson	66
Tabla 17 Método de pettis	67
Tabla 18 Método de Altunin - Manning	67
Tabla 19 Método De Blench	68
Tabla 20 Recomendación Practica	68
Tabla 21 Resumen	69

Índice de figuras e imágenes

Figura 1 Estado actual de la bocatoma San Juan	1
Figura 2 Ubicación del proyecto – Departamento La Libertad-Provincia de Virú	2
Figura 3 Ubicación – Provincia de Virú-Distrito de Virú	3
Figura 4 Esquema de Ubicación del pueblo de Tomaval y las coordenadas del punto de	
trabajo	3
Figura 5 Bifurcación – Rio Virú – Bocatoma san Juan	4
Figura 6 Teodolito	10
Figura 7 Mira topográfica	11
Figura 8 Riesgo de por lo menos una excedencia del evento de diseño durante la vida útil.	12
Figura 9 Ejemplo de Bocatoma	13
Figura 10 Disposición típica de los elementos de una bocatoma de captación lateral	14
Figura 11 Vertedero	17
Figura 12 Ejemplo de malla no estructurada formada por elementos triangulares	20
Imagen 1 Ortofotografia de Tomaval con A= 2.23 Km2	28
Imagen 2 Mapa de posicionamiento y solapamiento de imagen	29
Imagen 3 Gráfico de residuales para FC2204 (4.68 mm)	30
Imagen 4 Posiciones de las cámaras y estimación de error	31
Imagen 5 Posiciones de puntos de apoyo y estimaciones de errores	32
Imagen 6 Modelo digital de elevaciones	33
Imagen 7 Esquema de ubicación y descripción de la Estación Huacapongo	38
Imagen 8 Distribución normal	42
Imagen 9 Distribución Gumbel	43
Imagen 10 Distribución Gamma 3 parámetros	47
Imagen 11 Distribución Log Normal 2 parámetros	49
Imagen 12 Distribución Gumbel	51
Imagen 13 Distribución Gamma 2 Parámetros	53
Imagen 14 Determinación del periodo de retorno	55
Imagen 15 Determinación del caudal de diseño de distribución normal	
Imagen 16 Delimitación de uso de suelos	57
Imagen 17 Asignación de uso de suelo por sectores	57
Imagen 18 Tipo de uso de suelo según rugosidad de Manning	
Imagen 19 Tabla de Cowan para determinar la influencia de diversos factores sobre el	
coeficiente n	59
Imagen 20 Tabla de valores para el cálculo del coeficiente de rugosidad	60
Imagen 21 Superficie topográfica en Iber 2D	
Imagen 22 Asignación de parámetros de tiempo de simulación	
Imagen 23 Cálculo del Número de Courant	
Imagen 24 Asignación del número de Courant al modelo 2D	
Imagen 25 Asignación de las condiciones de contorno	
Imagen 26 Tirante en el cauce del rio	

Imagen 27 Alineamiento del recorrido del cauce	
Imagen 28 Perfil Longitudinal	
Imagen 29 Inserción del ancho estable en la topografía	69
Imagen 30 Modelamiento de la nueva superficie con el ancho estable	70
Imagen 31 Nueva superficie con ancho estable	70
Imagen 32 Ribera y fondo del cauce	
Imagen 33 Desbordamiento del cauce descolmatado	
Imagen 34 Desbordamiento del cauce descolmatado	
Imagen 35 Sección que contempla diques para encauzamiento	73
Imagen 36 Colocación de los diques en el modelo 2D	73
Imagen 37 Tránsito de máxima avenida en el rio encauzado	
Imagen 38 Recorrido del canal y ubicación del puquio	75
Imagen 39 Esquema de ubicación de la toma	75
Imagen 40 Rutas de Acceso a las Comisiones de Regantes	76
Imagen 41 Bloques de asignación de agua - Valle Viru	77
Imagen 42 Comisión de Regantes Choloque	77
Imagen 43 Canal de derivación Choloque	78
Imagen 33 Dimensionamiento de la Ventana de captación	79
Imagen 45 Dimensionamiento del canal de derivación	
Imagen 46 Dimensionamiento del barraje tipo indio	80
Imagen 47 Diseño del Barraje tipo indio	81
Imagen 48 Emplazamiento de la bocatoma	
Imagen 49 Diseño del desarenador	
Imagen 50 Modelamiento del desarenador	91
Imagen 51 Ingreso de las propiedades físicas del sedimento	
Imagen 52 Ingreso del caudal de la bocatoma	92
Imagen 53 Cálculo del modelamiento completo	93
Imagen 54 Resultados – modelo del desarenador - resalto	93
Imagen 55 Resultados – Modelo con agua en el estanque	94
Imagen 56 Resultados – Modelo con agua en el estanque t= 9.8s	95
Imagen 57 Resultados – Modelo con agua en el estanque t= 30.2s	95
Imagen 58 Resultados – Desarenador eficiente t= 50 s	96

I. INTRODUCCIÓN

1.1. Problema de investigación

1.1.1. Realidad Problemática

La red de canales que componen al sistema existente para el riego agrícola en el Valle del rio Virú son básicamente elementos no revestidos, lo que provoca en si pérdidas importantes en el caudal de derivación, finalmente a esto se suma el hecho de que los caudales no son regulados desde el inicio de la captación lo cual nos lleva a un deficiente nivel de servicio por no contar la infraestructura adecuada para el aprovechamiento y administración del recurso hídrico.

Figura 1

Estado actual de la bocatoma San Juan

Nota: En la figura representa la bifurcación de la toma San Juan.

La toma San Juan existente en la actualidad, carece de una estructura y es más una bifurcación básica y bastante rústica que además no posee elementos de control y regulación para los caudales y además se encuentra colmatada, llena de vegetación frondosa. Esta situación genera una muy deficiente captación y posterior distribución del agua que además se encuentra expuesta a un peligro

potencial ante las crecientes del río Virú, lo cual incrementa su peligrosidad con la presencia del Fenómeno del Niño. Además, el ingreso incontrolado de sedimentos y ripio lo cual ocasiona colmatación en época de avenidas (enero a abril), todo esto según los agricultores locales, disminuyendo la capacidad de conducción del canal y como finalmente disminuye enormemente la capacidad de riego en el sector.

Nuestro proyecto se encuentra localizado en el departamento de La Libertad está ubicado al Norte de la ciudad de Lima y al este del Océano Pacifico


Figura 2
Ubicación del proyecto –Departamento La Libertad- Provincia de Virú

Nota: En el mapa representa la ubicación del departamento de la Libertad en el Perú. Tomado de Google Maps.

Figura 3

Ubicación – Provincia de Virú-Distrito de Virú.

Nota: En el mapa representa la ubicación Provincia de Virú-Distrito de Virú. Tomado de Google Maps.

Figura 4
Esquema de Ubicación del pueblo de Tomaval y las coordenadas del punto de trabajo

Nota: En el mapa representa la ubicación del pueblo de Tomaval y las coordenadas del punto de trabajo. Tomado de Google Maps.

Centro poblado de Tomaval se encuentra ubicado en el distrito de Virú, bajo las coordenadas:

- o 78°42′34" W
- o 8° 21′56" S

Figura 5

Bifurcación - Rio Virú - Bocatoma san Juan.

Nota: En la figura representa el estado actual de la toma San Juan.

1.1.2. Formulación del problema

El sistema de captación del Tomaval carece de infraestructura, lo cual le caracteriza como una bifurcación con muy poca eficiencia de captación. Por otro lado, en la época de crecidas de todos los años el agua transporta en fondo y suspensión grandes cantidades de sedimentos y piedras que se depositan en el fondo en la zona de correspondiente a la ventana de ingreso, bloqueándola en algunos casos totalmente, ya que es evidente que no existe un mecanismo de control y purga de sedimentos, teniendo como consecuencia la sedimentación del canal de derivación y por ende un elevado coste debido al mantenimiento.

Es claro que el ingreso del agua hacia el sistema de captación es directo y no cuenta con un barraje de ningún tipo, esto obliga a los usuarios a realizar

trabajos de para encauzar el rio utilizando mano de obra en forma recurrente, ocasionando también costos elevados durante el año, teniéndose la necesidad de repercutir en el coste de sus productos elevándolos.

Bajo las condiciones actuales, en el transcurso de la época de crecida del rio hay una constante inseguridad de obtener el caudal necesario, no habiendo las condiciones pertinentes que se requieren para el control de ingreso de caudales ni mucho menos control del ingreso de sedimentos de todo tipo al canal, tampoco estructuras de protección que brinden seguridad a que la bifurcación no se tapará debido a las condiciones que se darán durante un evento de avenidas extraordinarias.

1.2. Objetivos de la investigación

1.2.1. Objetivo general

Realizar el diseño y análisis de funcionamiento de la bocatoma San Juan, Virú mediante un modelamiento hidráulico bidimensional.

1.2.2. Objetivos específicos

- Realizar el estudio de topografía, 1 kilómetro aguas arriba y 1 Km aguas abajo tomando como punto central la ubicación actual de la bifurcación (Toma San Juan)
- Realizar un estudio de mecánica de suelos en el lugar de ubicación de la bocatoma.
- Realizar un estudio hidrológico para la estimación del caudal de máxima avenida en el rio Virú para un periodo de retorno adecuado.
- Estimar el caudal de captación de la bocatoma de acuerdo a la demanda agrícola de la junta de usuarios.
- Realizar el dimensionamiento de la estructura de bocatoma

- Realizar el dimensionamiento del barraje y muros de encauzamiento de la bocatoma.
- Realizar el modelamiento y simulación hidráulica de la bocatoma mediante modelo matemático.

1.3. Justificación del estudio

La necesidad del proyecto surge tras la habilitación de cientos de hectáreas para cultivo, que ha venido siendo el motor de la economía en la zona perteneciente al centro poblado de Tomaval. Nuestro proyecto tiene como finalidad satisfacer la demanda de agua y permitir el control de los caudales para el riego de cultivos en todo el sector conformado por la junta de usuarios del choloque y que neto. Actualmente la bocatoma consta de una bifurcación, la cual carece de una infraestructura que la califique para su adecuado desempeño, además según el representante de la junta de usuarios, el señor Walter Carranza Mendoza, antes hubo una estructura rústica la cual ha sido arrasada en su totalidad por el fenómeno del niño sucedido en los meses de enero - marzo del año 2017. Para obtener buenos resultados en el diseño y proyección de la nueva estructura de bocatoma que tengo en mente, he considerado además de su dimensionamiento mediante fórmulas empíricas de la USBR, complementar la evaluación de su desempeño mediante la aplicación de modelos hidráulicos computacionales en 2 dimensiones, lo cuales me podrán ayudar a corregir errores encontrados en el diseño planteado de primera mano, adicionalmente evaluaré las estructuras de protección en la zona del emplazamiento de la bocatoma que también formarán parte del desarrollo de mi proyecto.

II. MARCO DE REFERENCIA

2.1. Antecedentes del estudio

2.1.1. Internacionales:

- Título de la investigación (Flores, 2015): (Diseño de una bocatoma de fondo para la captación de consumo humano para la parroquia "El paraiso de celen", Loja, 2015). Esta investigación permitió diseñar una Bocatoma de fondo (Presa de Hormigón), de captación para consumo humano para la parroquia El Paraíso de Celen del cantón Saraguro, provincia de Loja, lo cual que permitirá mejorar las condiciones de vida de los habitantes. Se utilizó el Método de los números de escurrimiento, o precipitación efectiva para máximos caudales, para el cual se determina el número de curva según los parámetros del suelo.
- Título de la investigación (Ponce B., 2018): (Comportamiento Hidráulico y sedimentológico de la bocatoma independiente de aguas andinas en el rio Maipo, 2018). Del estudio realizado por intermedio del Software Hec Ras, se pudo determinar que la forma de modelar del río depende del caudal, ya que para flujos bajos (hasta 500 m3 /s), el cauce se debe modelar como en un río que se bifurca en dos brazos separados por un pretil longitudinal. En lo referente a niveles de aguas en crecidas, el análisis hecho por medio de Hec Ras, concuerda plenamente con los resultados obtenidos por el INH (Cortez, Estelle y Tarodo, 1989), en el sentido que crecida máxima, que colapsaría totalmente las instalaciones de la Bocatoma Independiente, debiera ser del orden de los 1500 m3 /s.
- Título de la investigación (Diaz, 2015): (Análisis de estabilidad y diseño estructural de la bocatoma del P.H. Paso Ancho en la Facultad de Ingeniería, México. Universidad Nacional Autónoma de México, 2015).
 Como parte fundamental de garantizar la estabilidad de la estructura, es necesario apoyarse en manuales o textos que nos indiquen los factores

de seguridad para determinar si una estructura es estable o no, así como también es de suma importancia la experiencia que tenga el diseñador, ya que ésta le permitirá visualizar fuerzas o factores que intervengan para estabilizar o desestabilizar la estructura. La experiencia de diseñador es también factor para determinar el tipo de soporte que se necesite si la estructura no es estable, él debe de proponer un sistema estabilizador que sea eficiente y económicamente factible.

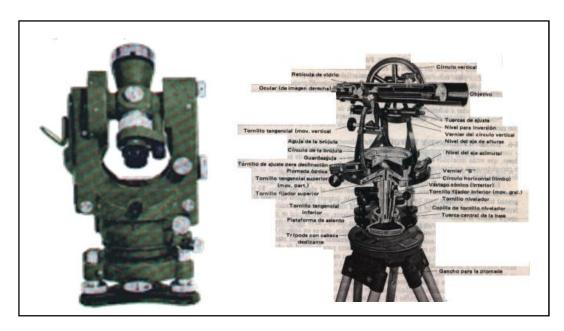
2.1.2. Nacionales:

- Título de la investigación (Ponce R., 2015): (Diseño Hidráulico de la Bocatoma en el rio Chicama, en la zona de Facalá, 2015). El diseño hidráulico del proyecto va a beneficiar el riego de 8025.25 Has, ubicadas en el sector de riego Facalá, para lo cual se ha obtenido que en el periodo de análisis de 50 años, se infiere una máxima descarga de 69.80 m3/s y teniendo una mínima de 6.98 m3/s, con estos valores y de acuerdo a la demanda de los cultivos más representativos, se obtiene que el caudal de captación de 13.70m3/s y el caudal de diseño para un periodo de retorno de 75 años es de 469 m3/s.
- Título de la investigación (Nassi, 2018): (Diseño y modelamiento hidráulico de la bocatoma el pueblo del distrito de Chóchope, provincia de Lambayeque, departamento de Lambayeque, utilizando el modelo numérico telemac 2d., 2018). Esta investigación permitió demostrar la bondad de los modelos numéricos, los cuales son una herramienta potente ya que a través de ellos podemos obtener una excelente cantidad de información debido a la gran cantidad de iteraciones que realiza lo cual para nosotros implicaría mucho esfuerzo y tiempo para realizarlo, del mismo modo el modelo numérico presenta varios campos de aplicación y puedes ser muy utilizados dentro de la ingeniería hidráulica, siempre y cuando se tenga datos para la calibración del mismo modelo y

así poder reproducir la modelación con gran aproximación a la realidad. mostró y representó el flujo sobre la superficie de manera aceptable, brindando los distintos valores y magnitudes de velocidad, caudal, líneas de corriente, tirantes, etc. Se logró comprobar la gran similitud en los valores obtenidos en el modelo numérico y los valores calculados con fórmulas empíricas.

Título de la investigación (Jauregui, 2019): (Diseño hidráulico de una bocatoma en el rio Moyobamba para el mejoramiento del sistema de irrigación CCECCA, ISHUSA Y HUAYCAHUACHO). Los criterios considerados para el desarrollo del diseño hidráulico de la bocatoma en el rio Moyobamba fueron: la demanda hídrica de 0.5m3/s para un área de riego de 750 has, para lo cual se ha obtenido un periodo de análisis de 50 años en tiempo de retorno, por el cual se infiere que el caudal máximo en dicho periodo es de 875m3/s y un caudal mínimo de 2.5m3/s. Así mismo los criterios considerados para la elección del tipo de bocatoma fueron: la pendiente promedio del rio en 5 km el cual es 10 %, la presencia mínima de sedimentos en época de estiaje y la gran cantidad de piedras que transporta en épocas de avenidas, además debido al bajo caudal de captación el cual es menor a 1m3/s, se determinó que la bocatoma sea de tipo Tirolesa.

2.2. Marco teórico.

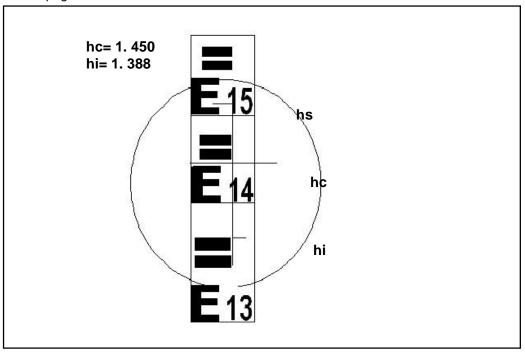

2.2.1 Topografía

"Cualquier tipo de proyecto que se ejecute necesita de la aplicación de la misma, la topografía trata de establecer un control en la configuración de un terreno y de elementos artificiales, naturales se pueden encontrar a través de medidas que se representan en mapas o planos con técnicas apropiadas, el ingeniero civil debe ser el que domina y maneja la situación y el aspecto topográfico de todo proyecto." (Navarro, 2008)

2.2.1.1. El Teodolito

"Es el aparato universal para la Topografía, debido a la gran variedad de usos que se le dan, puede usarse para medir y trazar ángulos horizontales y direcciones, ángulos verticales, y diferencias en elevación; para la prolongación de líneas; y para determinación de distancias. Aunque debido a la variedad de fabricantes de tránsitos éstos difieren algo en cuanto a sus detalles de construcción, en lo que respecta a sus características esenciales son sumamente parecidos." (Navarro, 2008)

Figura 6
Teodolito


Nota: Equipo universal para la topografía, Tomado de (Navarro, 2008).

2.2.1.2. La mira

"No es más que una regla de campo, su característica principal es que está marcada de manera ascendente, tienen una forma de E que equivale a 5 cm." (Navarro, 2008) Aunque existen muchas las más comunes están divididas cada 10 cm es decir llevan dos E.

Figura 7

Mira topográfica

Nota: Regla de campo, Tomado de (Navarro, 2008)

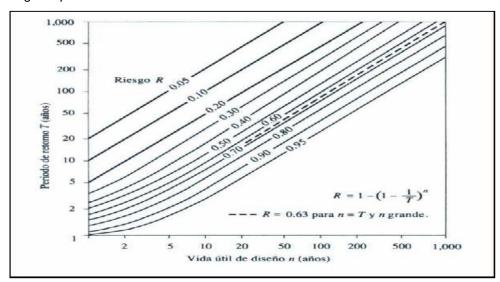
Para leerlas siempre se lee el valor del número entero y luego en el intervalo de 0-100 mm se aproxima. Cada E que se aprecia equivale a 50mm.

2.2.2. Hidrología

"Se debe tener en cuenta que, las avenidas son fenómenos originados por el carácter aleatorio de las descargas de los ríos. La ocurrencia de crecidas de los ríos se describe en términos probabilísticas." (Ministerio de Transportes y comunicaciones, 2012), Es decir, que cada avenida va asociada una probabilidad de ocurrencia.

Evaluación de la Información Hidrológica

"Dado que el país tiene limitaciones en la disponibilidad de datos ya sea hidrométricos como pluviométricos y la mayor parte de las cuencas hidrográficas no se encuentran instrumentadas, generalmente se utilizan métodos indirectos para la estimación del caudal de diseño." (Ministerio de Transportes y comunicaciones, 2012)


Modelos de distribución

- a) Distribución Normal
- b) Distribución Log Normal 2 parámetros
- c) Distribución Log Normal 3 parámetros
- d) Distribución Gamma 2 parámetros
- e) Distribución Gamma 3 parámetros
- f) Distribución Log Pearson tipo III
- g) Distribución Gumbel
- h) Distribución Log Gumbe

Periodos de retorno:

Figura 8

Riesgo de por lo menos una excedencia del evento de diseño durante la vida útil

Nota: Grafica que sirve para hallar el riesgo Ven te Chow, 1998.

2.2.3. Bocatomas

"Es un conjunto de obras hidráulica destinadas a derivar desde unos cursos de agua, río, arroyo, canal, con la finalidad de captar y derivar un determinando volumen de agua, para ser utilizadas en un fin específico, como pueden ser generación de energía, irrigación, abastecimiento de agua potable, agricultura, etc. Aprovechando la fuerza de gravedad, la bocatoma constituye generalmente la obra básica para un aprovechamiento hídrico". (Alfaro, 1981).

Figura 9

Ejemplo de Bocatoma

Nota: bocatoma del proyecto chavimochic Tomado de PE CHAVIMOCHIC.

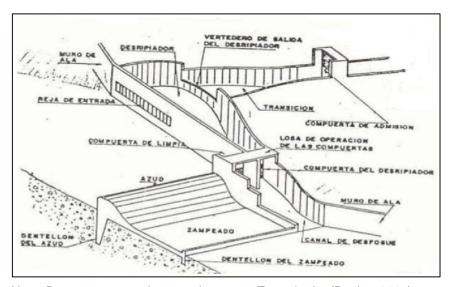
2.2.3.1. Tipos de bocatomas

Toma directa.

Se define así cuando capta directamente mediante un canal lateral, por lo general es un brazo fijo del río, que permite discurrir un caudal. La mayor ventaja de este tipo de tomas es que no es necesario la construcción de

un barraje, y en su mayoría este proceso constructivo genera mayores costos.

Toma mixta o convencional.


Este tipo de toma realiza la captación mediante el cierre del río con una estructura llamada barraje o presa de derivación, el cual puede ser fija o móvil. Será fija cuando se utiliza un elemento rígido, por lo general de concreto, y será móvil cuando se utilizan compuertas de acero.

Partes de una bocatoma convencional:

Las obras o estructuras básicas que forman un sistema de captación o toma, dependen fundamentalmente de las condiciones hidrológicas, hidráulicas y topográficas de la zona de captación, además de la importancia que se dará a las aguas derivadas, sin embargo, en el gráfico adjunto, podemos apreciar el esquema típico de la bocatoma, allí podemos apreciar los elementos siguientes

Figura 10

Disposición típica de los elementos de una bocatoma de captación lateral.

Nota: Bocatoma con todos sus elementos, Tomado de (Rocha, 2005)

2.2.4. Barraje

Es una estructura de derivación que se construye transversalmente al río, dicha estructura tiene como función elevar el nivel del agua del río para así obtener el caudal necesario requerido en la demanda de agua.

La forma de esta estructura varía según tipo, geometría, disposición dentro del cauce, materiales de construcción y economía del proyecto.

2.2.4.1. Tipos de barraje

Barraje Fijo

Las bocatomas de barraje fijo son aquellas que tienen una presa sólida, para levantar el tirante frente a las compuertas de captación. Esta solución es posible cuando el régimen del río es uniforme y la capacidad de captación de la toma es menor que la descarga promedio del río, por lo que no es necesario ninguna regulación, ya que el exceso de agua pasara encima de la presa.

Barraje Móvil

En este tipo de barraje se consigue la retención del caudal y elevación del tirante mediante el cierre del curso del río por un sistema de compuertas sostenidas en un conjunto de pilares y adosadas en sus extremos a los muros de contención. Como consecuencia el transporte de sólidos es pequeño y no afecta mayormente al sistema de compuertas. Las cuales pueden ser radiales o deslizantes.

Barraje Mixto

Tienen una parte de la presa integrada por una estructura sólida (Barraje fijo) y una parte integrada por compuertas sustentadas en pilares (Barraje móvil). La parte móvil tiene en ciertos casos muros guías o separadores del barraje

fijo que forma un canal denominado de limpia y un segundo canal separado por un vertedero de rebose lateral que sirve para eliminar las gravas llamado también desempedradores.

Perfil del Barraje.

Tipo Creager.

Tipo Indio.

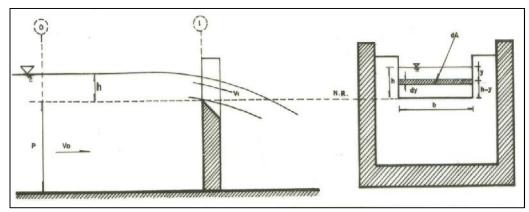
2.2.5. Colchón disipador

"Es el sistema más común de disipación de energía que convierte el flujo supercrítico a un flujo subcrítico compatible con el régimen del río aguas abajo. El método más común para lograr esta transición del flujo consiste en un simple resalto hidráulico sumergido, estos resaltos han sido estudiados por muchos investigadores". (Novak, 2001)

2.2.6. Transición de entrada al canal

Al ingresar el agua al disipador que es una estructura ancha al inicio y se va angostando hasta entregar el flujo al canal principal que generalmente tiene es de una sección más estrecha. Por ende, es necesario intercalar una transición entre las dos estructuras para evitar que existan grandes pérdidas de energía entre la ventana de captación y el canal.

2.2.7. Desarenador


"El desarenador es una estructura diseñada con la finalidad de decantar arenas de diámetro superior a 0.2 mm, que ingresan en la captación de caudales en una Toma y que provienen del arrastre en suspensión de las partículas en el río. Esta estructura está compuesta por Naves de decantación las que a su vez cuentan con una fuga de limpia al final de su longitud." (UNATSABAR, 2005, pág. 28)

2.2.8. Vertederos

Considérese una corriente líquida que fluye a través de un vertedero rectangular, como se muestra en la Figura 2.10.

Sean los puntos 0 y 1 en la superficie libre del fluido, en una sección suficientemente lejos aguas arriba del vertedero, y justo encima de la cresta, respectivamente.

Figura 11
Vertedero

Nota: Detalles de un vertedero, Tomado de ATA.PE

Aplicando la ecuación de Bernoulli entre las secciones (0) y (1), despreciando las pérdidas de carga, se tiene:

$$z_{0} + \frac{p_{0}}{\gamma} + \alpha_{0} \frac{{v_{0}}^{2}}{2g} \quad = \quad z_{1} + \frac{p_{1}}{\gamma} + \alpha_{1} \frac{{v_{1}}^{2}}{2g}$$

Fuente: (Autoridad Nacional del Agua, 2010)

Reemplazando, se tiene:

$$h + \frac{p_{atm}}{\gamma} + \alpha_0 \frac{{v_0}^2}{2g} = (h - y) + \frac{p_{atm}}{\gamma} + \alpha_1 \frac{{v_1}^2}{2g}$$

Fuente: (Autoridad Nacional del Agua, 2010)

Resultando:

$$\alpha_1 \frac{{v_1}^2}{2g} = y + \alpha_0 \frac{{v_0}^2}{2g}$$

donde:

a 0, a 1: coeficientes de corrección por energía cinética, de Coriolis.

v 0: velocidad de aproximación del flujo, medida en una sección lo suficientemente lejos, aguas arriba del vertedero.

Despejando la velocidad del flujo en la sección (1), justo encima de la cresta, de la ecuación (2.2), se tiene:

$$v_1 = \sqrt{2gy + v_0^2}$$

De otro lado, aplicando la ecuación de conservación de masa, el caudal elemental, teórico, que fluye a través del área diferencial, dA = b dy, sobre la cresta, es:

$$dQ_{_{t}} \ = \ v_{_{1}}dA \ = \ \sqrt{2gy + {v_{_{0}}}^{2}} \ bdy$$

Luego, el caudal real a través del vertedero será:

$$Q = C_d Q_t$$

$$Q = C_d b \int_0^h \left(\sqrt{2gy + v_0^2} \right) dy$$

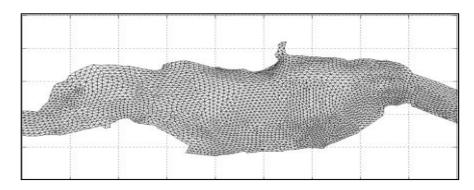
Fuente: (Autoridad Nacional del Agua, 2010)

2.2.9. Modelos numéricos bidimensionales

"El módulo hidrodinámico resuelve las ecuaciones de aguas someras promediadas en profundidad, también conocidas como 2D Shallow Water Equations (2D-SWE) o ecuaciones de St. Venant bidimensionales. Dichas ecuaciones asumen una distribución de presión hidrostática y una distribución relativamente uniforme de la velocidad en profundidad." (Flumen, 2014) La hipótesis de presión hidrostática se cumple razonablemente en el flujo en ríos, así como en las corrientes generadas por la marea en estuarios.

2.2.9.1. Ecuaciones hidrodinámicas

$$\begin{split} \frac{\partial h}{\partial t} + \frac{\partial h U_x}{\partial x} + \frac{\partial h U_y}{\partial y} &= M_S \\ \frac{\partial h U_x}{\partial t} + \frac{\partial h U_x^2}{\partial x} + \frac{\partial h U_x U_y}{\partial y} &= -gh \frac{\partial Z_s}{\partial x} + \frac{\tau_{s,x}}{\rho} - \frac{\tau_{b,x}}{\rho} - \frac{g}{\rho} \frac{h^2}{2} \frac{\partial \rho}{\partial x} + 2 \Omega \sin\lambda U_y + \frac{\partial h \tau_{xx}^e}{\partial x} + \frac{\partial h \tau_{xy}^e}{\partial y} + M_x \\ \frac{\partial h U_y}{\partial t} + \frac{\partial h U_x U_y}{\partial x} + \frac{\partial h U_y^2}{\partial y} &= -gh \frac{\partial Z_s}{\partial y} + \frac{\tau_{s,y}}{\rho} - \frac{\tau_{b,y}}{\rho} - \frac{g}{\rho} \frac{h^2}{2} \frac{\partial \rho}{\partial y} - 2 \Omega \sin\lambda U_x + \frac{\partial h \tau_{xy}^e}{\partial x} + \frac{\partial h \tau_{yy}^e}{\partial y} + M_y \end{split}$$


Ecuaciones de conservación de la masa y momento.

Fuente: (Flumen, 2014)

En el módulo hidrodinámico se resuelven las ecuaciones de conservación de la masa y de momento en las dos direcciones horizontales.

2.2.9.2.Modelo en la interfaz del software:

Figura 12
Ejemplo de malla no estructurada formada por elementos triangulares

Nota: Elementos triangulares de una malla no estructural, Tomado de (Flumen, 2014)

2.3. Marco Conceptual

Topografía

"Estudia el conjunto de procedimientos para determinar la posición de un punto sobre la superficie terrestre, por medio de medidas según los tres elementos del espacio: dos distancias y una elevación o una distancia, una elevación y una dirección. Para distancias y elevaciones se emplean unidades de longitud (en sistema métrico decimal), y para direcciones se emplean unidades de arco (grados sexagesimales)." (Navarro, 2008)

Precipitación

"Caída de un conjunto de partículas, con formas de Iluvia, Ilovizna, nieve, Nieve granulada, granizo y gránulos de hielo." (Ministerio de Transportes y comunicaciones, 2012, p. 221)

Fenómeno el niño

"Es el calentamiento anómalo de la temperatura del agua del Pacífico Oriental, que repercute en el clima mundial." (Ministerio de Transportes y comunicaciones, 2012, p. 219)

Caudal

"Cantidad de agua que pasa por un punto específico en un sistema hidráulico en un momento o período dado." (Ministerio de Transportes y comunicaciones, 2012, pág. 218)

Aliviadero

"Estas estructuras consisten en escotaduras que se hacen en la pared o talud del canal para controlar el caudal, evitándose posibles desbordes que podrían causar serios daños, por lo tanto, su ubicación se recomienda en todos aquellos lugares donde exista este peligro. Se usa para eliminar el caudal en exceso en la bocatoma y el tanque de carga regresándolo al curso natural". (Mansen, 2010, p. 14-16)

Bocatomas

Estructuras hidráulicas construidas sobre un río o canal con el objeto de captar, es decir, extraer una parte o la totalidad del caudal de la corriente principal. El éxito de una obra hidráulica depende básicamente de una buena y eficaz obra de toma o captación del agua. (Rocha, 2005, p. 2)

Canal

"Cauce artificial de agua, son conductos abiertos por donde circula el agua de un lugar a otro." (Mansen, 2010, p. 10)

Desarenador

"Es un tanque de mayor dimensión a la obra de conducción en el que las partículas en suspensión pierden velocidad y son decantadas, cayendo al fondo." (Rocha, 2005, p. 5)

Sedimentación

"Es el proceso por el cual el sedimento en movimiento se deposita.

Un tipo común de sedimentación ocurre cuando el material sólido, transportado por una corriente de agua, se deposita en el fondo de un río, embalse, canal artificial, o dispositivo construido especialmente para tal fin." (Rocha, 2005, p. 8)

2.4. Sistema de Hipótesis

El diseño y modelamiento hidráulico de la bocatoma San Juan, Tomaval será esencial para una óptima distribución y captación de agua.

2.5. Variables: Operacionalización de la variable

Tabla 1Operacionalización de variables

Variables	Concepto	Dimensiones	Indicadores		Und
			Caudal de captación	Caudal de demanda	m3/s
de las estructur hidráulicas mediante el empleo o		Diseño hidráulico de la bocatoma Tomaval	Dimensiones de las ventanas de cap.	Altura de la ventana	m
				Ancho de la ventana	m
	dimensionamiento		Dimensiones del	Ancho del desarenador	m
	mediante el			Longitud del desarenador	m
	aplicación de las fórmulas empíricas		desarenador	Profundidad del desarenador	m
			Características hidráulicas del canal de derivación	Tirante	m
				Velocidad de flujo	m/s
				Régimen de flujo	froude
			Características geométricas	Ancho del canal	m

Variables	Concepto	Dimensiones	Indicadores		Und
			del canal de derivación	Profundidad del canal	m
			Características del barraje	Pendiente del canal	m/m
				Altura del barraje	m
				Longitud del barraje	m
				Longitud del colchón disipador	m
Análisis del funcionamiento mediante un modelamiento hidráulico 2D	Consiste en la evaluación del desempeño hidráulico de una estructura con la finalidad de garantizar sus condiciones de servicio, mediante el empleo de software especializados.	Modelamiento de la bocatoma Tomaval	Características del modelo	Mallado del modelo	und
			Condiciones de contorno	Ingreso y salida de caudal	m3/s
			superficies y geometría	Modelo digital de elevaciones (DEM)	m, m2

Nota: En la tabla 1 se presentan la operacionalización de las variables en estudio.

III.METODOLOGÍA

3.1. Tipo y nivel de investigación

Por su aporte de conocimientos:

Investigación Aplicada, ya que contempla el uso de otras ciencias de la ingeniería para generar nuevos conocimientos que presten soluciones a los problemas planteados.

Por la naturaleza de sus variables:

Investigación correlacional, ya que relaciona ambas variables dejando entrever su dependencia y estrecha relación.

Por su manera de recolectar datos:

Investigación de campo, debido a que los datos a emplear para la resolución de los problemas planteados se extraerán directamente del lugar donde se desarrollan.

3.2. Población y muestra

3.2.1. Población

Todas las bocatomas contempladas por la comisión de riego del valle del Rio Virú.

3.2.2. Muestra

Bocatoma San Juan, perteneciente a la junta de usuarios del Choloque y Queneto.

3.3. Técnicas e instrumentos de investigación

Topografía

Es una técnica de recolección de datos referentes al relieve del terreno en el cual está involucrado nuestro problema planteado, es decir, nos mostrará de manera

digital o física una representación de sector en estudio a través de simbologías como las curvas de nivel o redes de triangulación, las cuales finalmente nos darán a conocer que tan accidentado es el terreno y a la vez nos darán información de las alturas o cotas que lo conforman, a todo esto se le conoce como planimetría y altimetría.

Instrumentos:

- Drone de exploración topográfica
- Gps de mano
- Wincha de 50 metros (Topográfica)
- Nivel de ingeniero
- Mira
- Nivel esférico
- Registro de apuntes

Estudio de mecánica de suelos: Mediante esta técnica recolectaremos información acerca de las características físicas y mecánicas del terreno en el cual serán ubicadas las estructuras hidráulicas a proyectar, dichas características podrían ser por ejemplo la granulometría del material, el peso específico, el contenido de humedad, el ángulo de fricción interna, entre otros. Esta información nos permitirá conocer más algunos detalles sobre la interacción del suelo del cauce con el caudal de entrega de la cuenca.

Instrumentos:

- Estudio de granulometría: Mallas o tamices enumerados desde el ¾ hasta el N°200, balanzas y gráficas.
- Estudio de contenido de humedad: Horno, balanzas y recipientes contenedores.

Estudio de hidrología: Mediante esta técnica podremos estimar la concentración de caudales de entrega de la cuenca del rio en estudio, bajo las

condiciones más desastrosas posibles, la cuales son logradas al proyectar una máxima avenida con periodos de retorno por encima de los 100 años, estas recomendaciones son hechas por el Manual de hidrología del MTC, sin embargo existen limitaciones como por ejemplo la vida útil proyectada para cada una de las estructuras planteadas que podrían cambiar el periodo de retorno para el cual se está proyectando una avenida extraordinaria.

Instrumentos:

- Registros históricos de caudales del rio Virú
- Registro de precipitaciones de las estaciones climáticas cercanas.
- Cartas nacionales para la identificación de cuencas.

3.4. Diseño de Investigación

Esta investigación está cumpliendo con las condiciones metodológicas necesarias para ser clasificada como una investigación cuasi experimental, la cual consiste en la representación de la realidad que contiene al problema a través de modelos matemáticos o informáticos, de tal manera que se pueda estudiar, modificar y manipular sin alterar su naturaleza o tener contacto directo en la realidad.

3.5. Procesamiento y análisis de datos

Procesamiento de la topografía: En esta etapa del desarrollo del proyecto creo conveniente el uso de AutoCAD civil 3D, por ser una poderosa herramienta para proceso de información topográfica tanto en la creación como edición de superficies de grandes magnitudes con resultados muy satisfactorios, la intención es obtener dibujos que puedan representar de manera adecuada el relieve del terreno de la zona en estudio.

 En la etapa de análisis, se buscará equilibrar los movimientos de tierra, para aprovechar los cortes en las zonas donde se requiera o haga falta material de relleno. Procesamiento de la data hidrológica: En el desarrollo de esta etapa, emplearé un software muy eficiente denominado HEC -HMS en el caso necesite procesar hietogramas sintéticos para la transformación de lluvia en caudales, sin embargo si requiero del procesamiento de los registros de caudales, emplearé el software HIDROESTA que es muy adecuado para la obtención de caudales de máxima avenida en base a registros de caudales históricos, además como parte de la hidrología también tengo el estudio de cuencas, que requerirá de ArcGIS el cual es una poderosa herramienta para el procesamiento de información geográfica a grandes escalas.

 En la etapa de análisis seré cauteloso en cuanto a la selección de los caudales máximos obtenidos del estudio hidrológico, ya que esto último me permitirá conocer las dimensiones de las estructuras que finalmente se propondrán dentro de los lineamientos del presente proyecto.

Procesamiento de los modelos hidráulicos: Durante el desarrollo de esta etapa del proyecto, se pondrá a prueba el dimensionamiento previo de la estructura que compone a la bocatoma, esencialmente las partes más importantes de esta, como podrían ser el desarenador, el barraje y las ventanas de captación, además se puede evaluar también las dimensiones de las estructuras de protección, todo esto empleando lber 2.4.3, que es un poderoso software al cual se accede de manera gratuita que la capacidad de procesar la información que nos permita evaluar las estructuras propuestas.

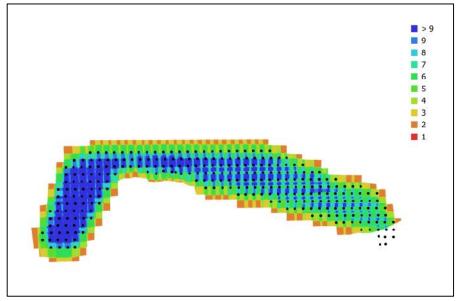
 Durante la etapa de análisis haremos una observación directa de los resultados a través del software con la intención de verificar que se estén cumpliendo con las dimensiones mínimas para el adecuado desempeño del conjunto de estructuras sin presentar complicaciones que lo perjudiquen.

IV. PRESENTACION DE RESULTADOS

4.1. Análisis e interpretación de resultados

4.1.1. Levantamiento topográfico

Imagen 1 Ortofotografia de Tomaval con A= 2.23 Km2



Debido a la complejidad del terreno y extensión del área a intervenir, se decidió procesar la información topográfica con la ayuda de un Drone de mapeo que levantó un mapa 2.23 Km2, con una resolución de 6.97cm/pixel.

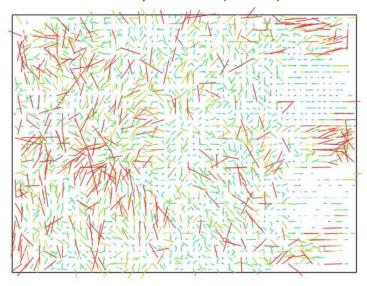
Datos del levantamiento:

Para el proceso adecuado de la información topográfica se procedió a crear en principio un mapa de posicionamiento (GPS) para verificar y contrastar el solapamiento de imágenes referenciales hechas por el Drone.

Imagen 2Mapa de posicionamiento y solapamiento de imagen

Esta información permitirá evaluar la densidad o concentración de puntos y por ende determinar la calidad del levantamiento realizado.

Número de imágenes: 281 Imágenes alineadas: 281
Altitud media de vuelo:204 m Puntos de paso: 267,399
Resolución en terreno: 6.97 cm/pix Proyecciones: 1,057,902
Área cubierta: 2.23 km^2 Error de reproyección: 1.19 pix


Tabla 2
Cámaras

Modelo de cámara	Resolución	Distancia focal	Tamaño de pixel	Precalibrada
FC2204 (4.68 mm)	4000 x 3000	4.68 mm	1.56 x 1.56 micras	Si
FC2204 (4.58 mm)	4001 x 3000	4.58 mm	1.52 x 1.52 micras	Si
FC2204 (4.48 mm)	4002 x 3000	4.48 mm	1.55 x 1.55 micras	Si
FC2204 (4.38 mm)			1.58 x 1.58 micras	Si

Nota: Características de la cámara del Drone

Calibración de cámara:

Imagen 3
Gráfico de residuales para FC2204 (4.68 mm)

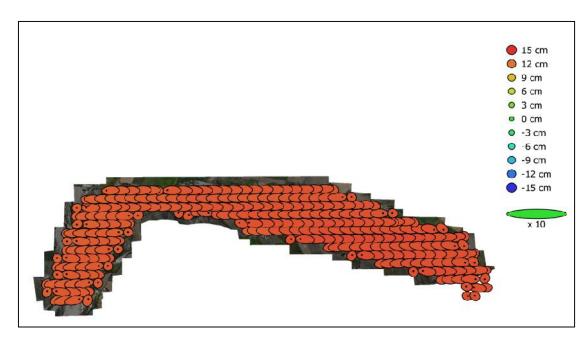
La calibración de la cámara consiste en verificar o en su defecto reducir los entes residuales provocados por la distorsión angular, enfoque, cierre de obturación, etc., cabe resaltar que el obturador de la cámara es mecánico, lo que garantiza la estabilidad tal como se aprecia en la imagen 3.

Tipo Resolución Distancia focal Tamaño de píxel Cuadro 4000 x 3000 4.68 mm 1.56 x 1.56 micras

Coeficientes de calibración y matriz de correlación

Tabla 3

	Cocholonico de Cambración y matriz de Contradion									
	Valor	Error	f	Сх	Су	K1	K2	K3	P1	P2
f	2693.61	12	1	-0.09	0.17	0.63	-0.8	0.86	0.2	0.04
Сх	19.5298	1.7		1	0.06	-0.12	0.14	-0.14	-0.17	0.22
Су	-20.6337	1.8			1	0.11	-0.13	0.14	-0.11	0.04
K1	0.0454685	0.00062				1	-0.96	0.91	0.11	0.04
K2	-0.10721	0.0024					1	-0.99	-0.16	-0.04
K3	-0.0794048	0.0025						1	0.17	0.04
P1	0.00153081	3.50E-04							1	-0.16
P2	4.49E-05	3.40E-05								1


Nota: Calibración con la que se desarrolló la topografía

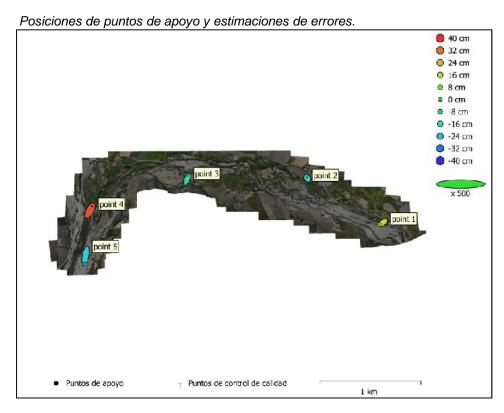
Finalmente, se obtiene como resultado una matriz de correlación en función a coeficiente de calibración precargados en la información interna del Drone.

Posiciones de cámaras

Imagen 4

Posiciones de las cámaras y estimación de error

El color indica el error en z, mientras el tamaño y forma de la elipse representa el error en las posiciones estimadas de las cámaras, se indican con los puntos negros.


Tabla 4Errores medios de las posiciones de cámaras. X – Este, Y – Norte, Z- Altitud.

Error en X (m)	Error en Y (m)	Error en Z (m)	Error en XY (m)	Error combinado (m)
0.065748	0.0742285	0.134339	0.0661657	0.134502
N	11/			

Nota: estimaciones de error de la cámara.

Puntos de control terrestre

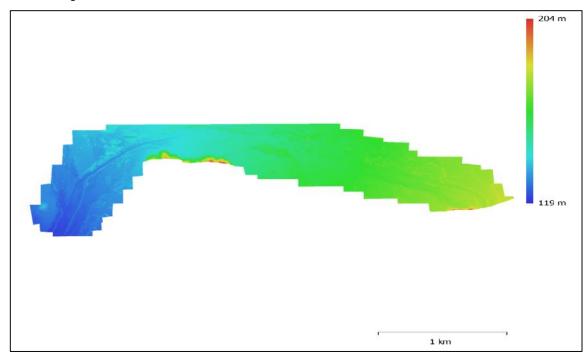
Imagen 5

Para mejorar la precisión del levantamiento topográfico mediante mapeo por Drone, se colocaron 5 puntos de apoyo para el control de alturas que se han distribuido de manera homogénea y estratégica a lo largo y ancho del cauce del rio.

El color indica el error en Z mientras el tamaño y forma de la elipse representan el error en XY.

Las posiciones estimadas de puntos de apoyo se marcan con puntos o cruces

Tabla 5Puntos de apoyo. X – Este, Y – Norte, Z – Altitud.


Nombre	Error en X (cm)	Error en Y (cm)	Error en Z (cm)	Total (cm)	Imagen (pix)
	-	= 00000	40 745	40.044=	4.040.(0)
point 1	7.72265	-5.92228	16.715	19.3417	1.219 (8)
	- 45474	0.440404	40.4000	40.0040	0.004 (0)
point 2	2.45174	3.449181	-18.1089	18.6048	2.034 (6)
point 3	5.74247	13.0445	-13.3541	19.5312	1.230 (9)
point 4	9.22874	16.6446	35.7984	40.543	2.019(13)
	-				
point 5	4.79482	-27.2602	-21.994	35.3531	4.662 (6)
Total	6.43096	15.7327	22.5872	28.2676	2.359

Nota: estimaciones de errores.

Modelo digital de elevaciones

Imagen 6

Modelo digital de elevaciones

El resultado de los cálculos y procesamiento se traduce en modelo digital de elevaciones con una resolución: 13.9 cm/pix, cuya densidad de puntos es de: 51.5 puntos/m^2

4.1.2. Estudio de mecánica de suelos

Ensayo de granulometría (Resultados).

Tabla 6Peso parcial que pasa a través de los tamices

"N° Tamiz"	Peso Parcial (Gr.)
#5/8	0
#3/8	297.34
4	187.34
8	74.83
10	23.13
20	96.43
30	97.21
40	51.23
50	83.53
60	19.42
80	46.34
100	13.43
200	6.75
FONDO	4.45
TOTAL	1001.43

Nota: Como resultado del zarandeo en los tamices, tenemos los pesos en gramos (gr.) del material que en función al diámetro de sus partículas ha quedado retenido en las diferentes mallas colocadas de forma gradual, este resultado nos será de gran utilidad para construir nuestra gráfica o curva granulométrica.

Análisis granulométrico (Resultados)

Fecha: 16/10/2020

Muestra: M-01

Tabla 7

Análisis granulométrico

N° Tamiz"	Fac Malla Mm	Peso Parcial	% Retenido	% Retenido Acumulado	% Pasante Acumulado
# 5/8	12.700	0	0	0	100.0000
# 3/8	9.520	297.34	29.6915	29.6915	70.3085
4	4.750	187.34	18.7072	48.3987	51.6013
8	2.360	74.83	7.4723	55.871	44.1290
10	2.000	23.13	2.3097	58.1807	41.8193
20	0.850	96.43	9.6292	67.8099	32.1901
30	0.500	97.21	9.7071	77.517	22.4830
40	0.425	51.23	5.1157	82.6327	17.3673
50	0.300	83.53	8.3411	90.9738	9.0262
60	0.250	19.42	1.9392	92.913	7.0870
80	0.180	46.34	4.6274	97.5404	2.4596
100	0.150	13.43	1.3411	98.8815	1.1185
200	0.075	6.75	0.674	99.5555	0.4445
Fondo	0.000	4.45	0.4444	100.0000	0.0000
Total		1001.43	100.0000		

Nota: La muestra extraída para el análisis granulométrico corresponde al lecho del río a no más de 1.5 m de profundidad, con la finalidad de identificar las características del sedimento de arrastre en el fondo, como se puede verificar en el cuadro adjunto, la composición granulométrica es muy variada teniendo hasta 13 diámetros diferentes y bajos contenidos de material fino dentro

Diámetros Característicos:

Mediante las fórmulas:

$$D = \left(\frac{D2 - D1}{L - \%2 - L - \%1}\right) x - \%x - l(-\%1) + D1$$

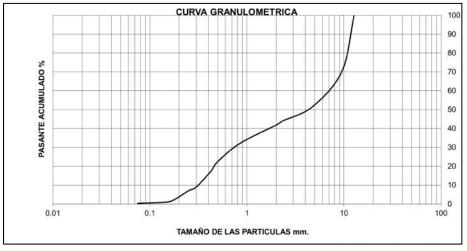
Fórmula N° 1 – Diámetros característicos Fuente: (Duque Escobar & Escobar Potes, 2002)

Procedemos a encontrar los diámetros característicos, teniendo en cuenta la fórmula citada en el párrafo anterior:

$$D10 = \left(\frac{0.3 - 0.425}{L + 9.02 - L + 17.36}\right)x + 10 - lc + 17.36) + 0.425$$

$$D10 = 0.315$$

$$D30 = \left(\frac{0.5 - 0.85}{L + 22.48 - L + 32.19}\right)x + 30 - lc + 32.19) + 0.85$$


$$D30 = 0.771$$

$$D60 = \left(\frac{4.75 - 9.52}{L + 51.60 - L + 70.30}\right)x + 60 - lc + 70.30) + 9.52$$

$$D60 = 6.892$$

Gráfico 1

Curva Granulométrica

Con los diámetros característicos procederemos a evaluar los parámetros de Coeficiente de curvatura y coeficiente de uniformidad mediante las fórmulas:

$$Cu = \frac{D_{60}}{D_{10}}; \quad Cc = \frac{D_{30}^2}{D_{10} * D_{60}}$$

Fórmula N° 2 y 3 – Coeficiente de curvatura y compacidad Fuente: (Duque Escobar & Escobar Potes, 2002)

Coeficiente de curvatura:

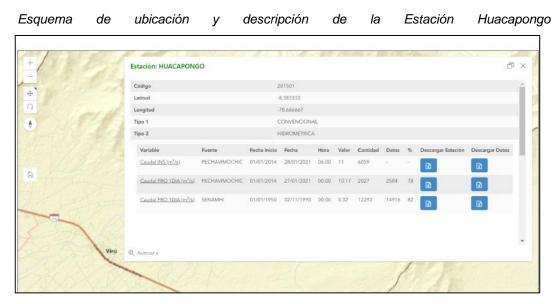
$$C = \frac{6.892}{0.315}$$

$$C = 21.909$$

Coeficiente de compacidad:

$$C = \frac{0.771^2}{0.315 * 6.892}$$

$$C = 0.274$$


En función a lo determinado con anterioridad, definiremos en la nomenclatura SUCS el tipo de suelo que tenemos: SP Arenas mal gradadas con baja cantidad de arcillas y limos

4.1.3. Estudio hidrológico

4.1.3.1. Aforo de caudales

Cuando existen datos de aforo en cantidad suficiente, se realiza un análisis estadístico de los caudales máximos instantáneos anuales para la estación más cercana al punto de interés. Se calculan los caudales para los períodos de retorno de interés (2, 5, 10, 20, 50, 100 y 500 años son valores estándar) usando la distribución log normal, log Pearson III y Valor Extremo Tipo I (Gumbel), etc., (Ministerio de Transportes y comunicaciones, 2012)

Imagen 7

Nota: Tomado de Senamhi

La estación hidrométrica más cercana al punto de análisis es la estación Huacapongo, de la cual extraeremos el archivo de aforos con la información más densa posible, en este caso es la que tiene una cantidad 12'292 entradas de datos, y la fuente de información es el SENAMHI. La representatividad, calidad, extensión y consistencia de los datos es primordial para el inicio del estudio hidrológico, por ello, se recomienda contar con un mínimo de 25 años de registro que permita a partir de esta información histórica la predicción de eventos futuros con el objetivo que los resultados sean confiables, asimismo dicha información deberá incluir los años en que se han registrado los eventos

del fenómeno "El Niño", sin embargo dado que durante el evento del fenómeno del niño la información no es medida ya que normalmente se estiman valores extraordinarios. (Ministerio de Transportes y comunicaciones, 2012)

Tabla 8Resumen del registro de aforos de la estación Huacapongo

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Qmax M3/S
1950	0.25	18	6	20.8	5.28	0.56	0.15	0.02	0.02	0.08	1.76	10	20.8
1951	8.5	15	22	4.8	2.9	0.09	0.13	0.02	0.02	0.00	1.70	10	22
1952	16.1	45	50	48.5	2.8	0.57	0.5	0.29				0.7	50
1953	16.1	40	24	28	3.75	0.37	0.3	0.23	0.4	0.06	0.45	2.4	40
1954	11.2	10	32	2.6	1.92	0.76	0.23	0.24	0.14	0.64	4.08	1.4	32
1955	6.4	28.8	36.6	4.8	9.6	3.2	0.51	0.14	0.14	4.8	0.11	4.8	36.6
1956	32	41.28	88	24	8	0.72	0.38	0.25	0.06	2.86	0.16	0.1	88
1957	3.2	64	47.18	80	11.2	1.28	0.48	0.13	0.08	0.4	1.36	4.43	80
1958	10.23	10.5	74	32.5	3.2	0.74	0.45	0.06	0.05	1.12	0.06	0.13	74
1959	0.09	8	40	32	19.2	0.51	0.32	0.08	0.05	1.6	1.28	8.4	40
1960	20.8	27.2	48	22.05	4.1	0.54	0.17	0.06	0.1	0.19	0.8	3.2	48
1961	12	13.12	20.16	12.8	6.62	0.8	0.32	0.08	0.06	0.06	0.16	2.8	20.16
1962	26.87	24	122.5	36	6.34	0.53	0.23	0.1	0.08	0.05	0.4	0.2	122.5
1963	3.2	1.76	20.8	138	5.6	0.18	0.07	0.05	0.04	0.02	0.16	10.4	138
1964	8	19.2	13.6	16	8	0.4	0.24	0.61	0.28	0.98	4.8	0.8	19.2
1965	1.56	4.8	48.58	26.1	1.74	0.32	0.19	0.05	0.41	0.64	1.66	6.4	48.58
1966	5.7	6.08	7.78	5	1.8	0.4	0.17	0.06	0.05	4	3.12	0.21	7.78
1967	16	200	50	6.4	3.2	0.8	0.96	0.21	0.05	9.6	3.52	0.74	200
1968	1.04	1.66	9.6	12	0.08	0.08	0.03	0.03	0.03	1.55	8	1.6	12
1969	1.92	4	19.2	28.8	1.43	0.22	0.06	0.03	0.02	1.63	4	14	28.8
1970	172.8	5.6	8	12.8	19.2	6.35	0.69	0.22	0.48	1.34	1.44	11.2	172.8
1971	6.4	32	48	26.2	4.8	0.7	0.53	0.54	0.35	1.92	0.96	12	48
1972	24	48	200	35	5.6	2.46	0.56	0.59	0.27	0.27	1.76	7.36	200
1973	29.04	12.56	15.76	51.7	8	1.6	1.92	0.88	0.96	1.6	2.4	2.4	51.7
1974	7.2	12.8	12.8	3.2	1.6	8.0	0.56	0.32	0.64	1.6	0.4	0.24	12.8
1975	7.2	50.8	110	50	4.8	3.2	0.96	0.48	0.96	2.4	8.0	0.35	110
1976	11.2	11.2	15	5.4	0.96	1.6	0.4	0.24	0.16	0.05	0.03	0.08	15
1977	5.04	45.6	41.5	24	8.0	0.56	0.29						45.6
1980					0.01	0.01	0.01	0.01	0.01	5	8	15	15
1981	3.2	80	110	10	2								110
1983			70	120	10	2.5	0.35	0.14	0.06	2.4	0.18	4	120
1984	2	80	100	6	16	2.4	0.96	0.32	0.08	0.96	1.9	7.2	100
1985	4	1.28	3.5	6	6	0.48	0.19	0.08	0.4	0.32	0.14	8.0	6
1986	10.5	7	7.2	15	11	0.64	0.13	0.05	0.03	0.02	8.0	10	15
1987	28	35	10	10	1.6	0.14	0.02	0.02	0.02	0.02	1.28	0.16	35
1988	19.2	25.6	20	20	4.8	0.8	0.1	0.01					25.6
1990							0.09	0.08	0.05	1.82	0.48		1.82

Nota: En la tabla anterior mostramos un resumen del caudal máximo durante los años que la estación Huacapongo estuvo en actividad, teniendo un total de 37 años de registro, suficientes para realizar una proyección en función a un determinado periodo de retorno con la finalidad de obtener un caudal de máxima avenida extraordinaria

4.1.3.2. Análisis Estadístico de Datos Hidrológicos

Modelos de distribución:

El análisis de frecuencias tiene la finalidad de estimar precipitaciones, intensidades o caudales máximos, según sea el caso, para diferentes períodos de retorno, mediante la aplicación de modelos probabilísticos, los cuales pueden ser discretos o continuos (Ministerio de Transportes y comunicaciones, 2012). En la estadística existen diversas funciones de distribución de probabilidad teóricas; para la resolución de este informe se han empleado las siguientes distribuciones recomendadas:

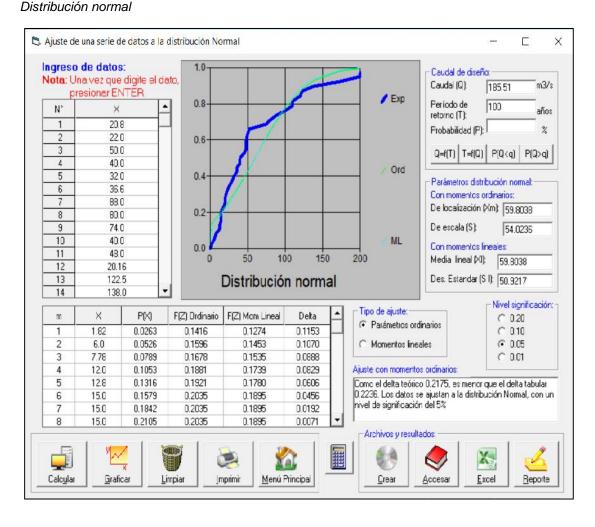

- a) Distribución Normal
- b) Distribución Log Normal 2 parámetros
- c) Distribución Log Normal 3 parámetros
- d) Distribución Gamma 2 parámetros
- e) Distribución Gamma 3 parámetros
- f) Distribución Log Pearson tipo III
- g) Distribución Gumbel
- h) Distribución Log Gumbel

Tabla 9Distribución Normal - Momentos lineales

m	Х	P(X)	F(Z) Ordinario	F(Z) Mom Lineal	Delta
1	1.82	0.0263	0.1416	0.1274	0.1153
2	6	0.0526	0.1596	0.1453	0.107
3	7.78	0.0789	0.1678	0.1535	0.0888
4	12	0.1053	0.1881	0.1739	0.0829
5	12.8	0.1316	0.1921	0.178	0.0606
6	15	0.1579	0.2035	0.1895	0.0456
7	15	0.1842	0.2035	0.1895	0.0192
8	15	0.2105	0.2035	0.1895	0.0071
9	19.2	0.2368	0.2261	0.2126	0.0107
10	20.16	0.2632	0.2315	0.2181	0.0316
11	20.8	0.2895	0.2352	0.2219	0.0543
12	22	0.3158	0.242	0.2289	0.0738
13	25.6	0.3421	0.2633	0.2509	0.0788
14	28.8	0.3684	0.283	0.2713	0.0854
15	32	0.3947	0.3034	0.2925	0.0913
16	35	0.4211	0.3231	0.3131	0.098
17	36.6	0.4474	0.3338	0.3243	0.1136
18	40	0.4737	0.357	0.3487	0.1167
19	40	0.5	0.357	0.3487	0.143
20	45.6	0.5263	0.3963	0.3901	0.13
21	48.0	0.5526	0.4135	0.4083	0.1391
22	48.0	0.5789	0.4135	0.4083	0.1654
23	48.6	0.6053	0.4177	0.4128	0.1876
24	50.0	0.6316	0.4280	0.4237	0.2036
25	51.7	0.6579	0.4404	0.4368	0.2175
26	74.0	0.6842	0.6036	0.6098	0.0806
27	80.0	0.7105	0.6457	0.6542	0.0648
28	88.0	0.7368	0.6991	0.7101	0.0377
29	100.0	0.7632	0.7716	0.7851	0.0084
30	110.0	0.7895	0.8236	0.8379	0.0341
31	110.0	0.8158	0.8236	0.8379	0.0078
32	120.0	0.8421	0.8674	0.8814	0.0253
33	122.5	0.8684	0.8771	0.8909	0.0087
34	138.0	0.8947	0.9261	0.9377	0.0314
35	172.8	0.9211	0.9818	0.9868	0.0607
36	200.0	0.9474	0.9953	0.9970	0.0479
37	200.0	0.9737	0.9953	0.9970	0.0216
			Delta '	Teórico =	0.2175

Nota: probabilidad de retorno por distribución normal.

Imagen 8

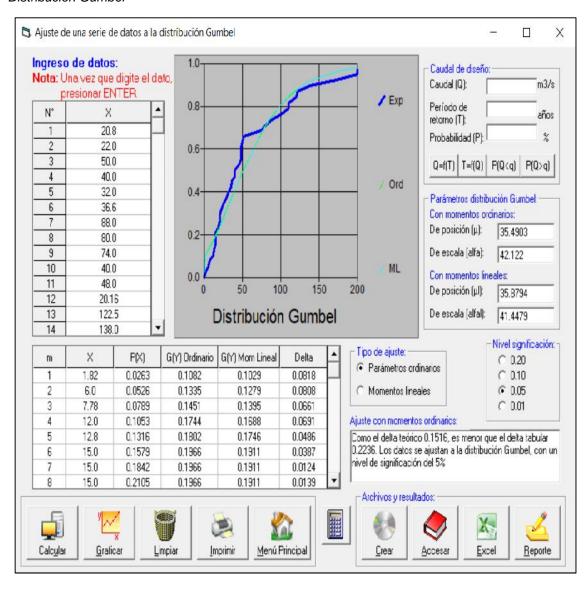


Tabla 10Distribución GUMBEL - Momentos lineales

m	Х	P(X)	G(Y) Ordinario	G(Y) Mom Lineal	Delta
1	1.820	0.026	0.108	0.103	0.082
2	6.000	0.053	0.134	0.128	0.081
3	7.780	0.079	0.145	0.140	0.066
4	12.000	0.105	0.174	0.169	0.069
5	12.800	0.132	0.180	0.175	0.049
6	15.000	0.158	0.197	0.191	0.039
7	15.000	0.184	0.197	0.191	0.012
8	15.000	0.211	0.197	0.191	0.014
9	19.200	0.237	0.229	0.224	0.007
10	20.160	0.263	0.237	0.232	0.026
11	20.800	0.290	0.242	0.237	0.047
12	22.000	0.316	0.252	0.247	0.064
13	25.600	0.342	0.282	0.278	0.060
14	28.800	0.368	0.310	0.305	0.059
15	32.000	0.395	0.337	0.334	0.057
16	35.000	0.421	0.364	0.360	0.058
17	36.600	0.447	0.378	0.374	0.070
18	40.000	0.474	0.407	0.404	0.067
19	40.000	0.500	0.407	0.404	0.093
20	45.600	0.526	0.455	0.453	0.071
21	48.000	0.553	0.476	0.474	0.077
22	48.000	0.579	0.476	0.474	0.103
23	48.580	0.605	0.481	0.479	0.125
24	50.000	0.632	0.492	0.491	0.139
25	51.700	0.658	0.506	0.505	0.152
26	74.000	0.684	0.670	0.671	0.014
27	80.000	0.711	0.706	0.708	0.004
28	88.000	0.737	0.750	0.753	0.013
29	100.000	0.763	0.806	0.808	0.042
30	110.000	0.790	0.843	0.846	0.054
31	110.000	0.816	0.843	0.846	0.027
32	120.000	0.842	0.874	0.877	0.032
33	122.500	0.868	0.881	0.884	0.013
34	138.000	0.895	0.916	0.918	0.021
35	172.800	0.921	0.962	0.964	0.041
36	200.000	0.947	0.980	0.981	0.033
37	200.000	0.974	0.980	0.981	0.006
- •	200.000	0.07		Teórico =	0.1516

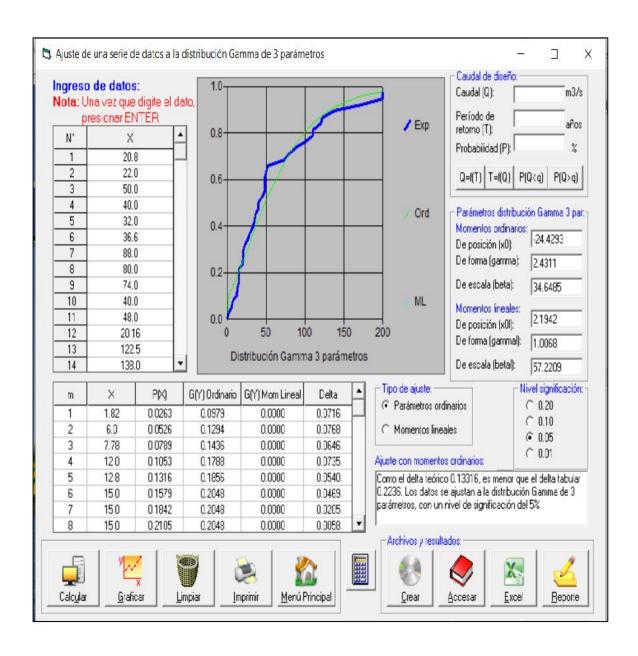
Nota: probabilidad de retorno por distribución GUMBEL

Imagen 9
Distribución Gumbel

Tabla 11Distribución Log Normal III- Momentos Lineales

m	X	P(X)	F(Z) Ordinario	F(Z) Mom Lineal	Delta
1	1.82	0.0263	-2.015	0.022	0.0044
2	6	0.0526	-1.6109	0.0536	0.001
3	7.78	0.0789	-1.4698	0.0708	0.0081
4	12	0.1053	-1.1847	0.1181	0.0128
5	12.8	0.1316	-1.1368	0.1278	0.0038
6	15	0.1579	-1.0133	0.1554	0.0024
7	15	0.1842	-1.0133	0.1554	0.0288
8	15	0.2105	-1.0133	0.1554	0.0551
9	19.2	0.2368	-0.805	0.2104	0.0264
10	20.16	0.2632	-0.7616	0.2231	0.04
11	20.8	0.2895	-0.7334	0.2317	0.0578
12	22	0.3158	-0.6821	0.2476	0.0682
13	25.6	0.3421	-0.5389	0.295	0.0471
14	28.8	0.3684	-0.4233	0.336	0.0324
15	32	0.3947	-0.3168	0.3757	0.019
16	35	0.4211	-0.224	0.4114	0.0097
17	36.6	0.4474	-0.1771	0.4297	0.0176
18	40	0.4737	-0.0824	0.4672	0.0065
19	40	0.5	-0.0824	0.4672	0.0328
20	45.6	0.5263	0.0604	0.5241	0.0022
21	48.0	0.5526	0.1173	0.5467	0.0060
22	48.0	0.5789	0.1173	0.5467	0.0323
23	48.6	0.6053	0.1307	0.5520	0.0533
24	50.0	0.6316	0.1629	0.5647	0.0669
25	51.7	0.6579	0.2005	0.5794	0.0784
26	74.0	0.6842	0.6158	0.7310	0.0468
27	80.0	0.7105	0.7087	0.7607	0.0502
28	88.0	0.7368	0.8234	0.7948	0.0580
29	100.0	0.7632	0.9789	0.8362	0.0730
30	110.0	0.7895	1.0962	0.8635	0.0740
31	110.0	0.8158	1.0962	0.8635	0.0477
32	120.0	0.8421	1.2040	0.8857	0.0436
33	122.5	0.8684	1.2297	0.8906	0.0222
34	138.0	0.8947	1.3787	0.9160	0.0213
35	172.8	0.9211	1.6633	0.9519	0.0308
36	200.0	0.9474	1.8503	0.9679	0.0205
37	200.0	0.9737	1.8503	0.9679	0.0058
			Delta ¹	Teórico =	0.0784

Nota: probabilidad de retorno por distribución Log normal III.

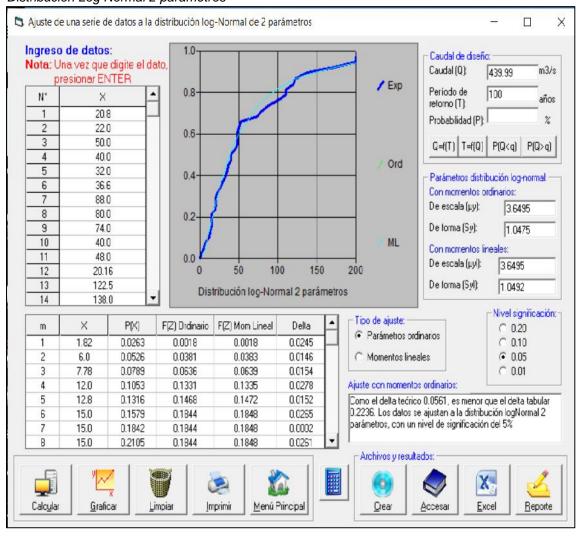

Tabla 12Distribución Gamma III- Momentos Lineales

m	Х	P(X)	G(Y) Ordinario	G(Y) Mom Lineal	Delta
1	1.820	0.026	0.098	0.000	0.072
2	6.000	0.053	0.129	0.000	0.077
3	7.780	0.079	0.144	0.000	0.065
4	12.000	0.105	0.179	0.000	0.074
5	12.800	0.132	0.186	0.000	0.054
6	15.000	0.158	0.205	0.000	0.047
7	15.000	0.184	0.205	0.000	0.021
8	15.000	0.211	0.205	0.000	0.006
9	19.200	0.237	0.242	0.000	0.005
10	20.160	0.263	0.251	0.000	0.012
11	20.800	0.290	0.257	0.000	0.033
12	22.000	0.316	0.267	0.000	0.048
13	25.600	0.342	0.300	0.000	0.042
14	28.800	0.368	0.329	0.000	0.039
15	32.000	0.395	0.358	0.000	0.037
16	35.000	0.421	0.385	0.000	0.036
17	36.600	0.447	0.399	0.000	0.049
18	40.000	0.474	0.429	0.000	0.045
19	40.000	0.500	0.429	0.000	0.072
20	45.600	0.526	0.476	0.000	0.051
21	48.000	0.553	0.495	0.000	0.057
22	48.000	0.579	0.495	0.000	0.084
23	48.580	0.605	0.500	0.000	0.105
24	50.000	0.632	0.511	0.000	0.120
25	51.700	0.658	0.525	0.000	0.133
26	74.000	0.684	0.678	0.000	0.006
27	80.000	0.711	0.712	0.000	0.002
28	88.000	0.737	0.753	0.000	0.016
29	100.000	0.763	0.805	0.000	0.042
30	110.000	0.790	0.841	0.000	0.051
31	110.000	0.816	0.841	0.000	0.025
32	120.000	0.842	0.871	0.000	0.028
33	122.500	0.868	0.877	0.000	0.009
34	138.000	0.895	0.912	0.000	0.017
35	172.800	0.921	0.959	0.000	0.038
36	200.000	0.947	0.978	0.000	0.031
37	200.000	0.974	0.978	0.000	0.005
			Delta	Teórico =	0.1332

Nota: probabilidad de retorno por distribución Gamma III.

Imagen 10

Distribución Gamma 3 parámetros

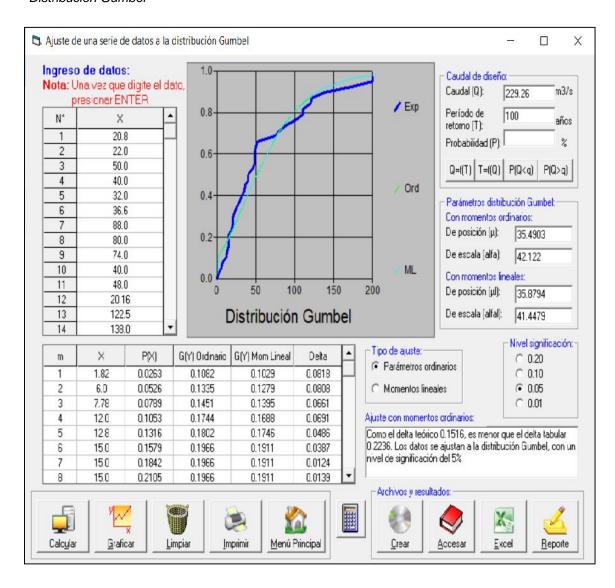

Tabla 13Distribución Log Normal 2 Parámetros - Momentos lineales

m	Х	P(X)	F(Z) Ordinario	F(Z) Mom Lineal	Delta
1	1.820	0.026	0.002	0.002	0.025
2	6.000	0.053	0.038	0.038	0.015
3	7.780	0.079	0.064	0.064	0.015
4	12.000	0.105	0.133	0.134	0.028
5	12.800	0.132	0.147	0.147	0.015
6	15.000	0.158	0.184	0.185	0.027
7	15.000	0.184	0.184	0.185	0.000
8	15.000	0.211	0.184	0.185	0.026
9	19.200	0.237	0.254	0.254	0.017
10	20.160	0.263	0.269	0.269	0.006
11	20.800	0.290	0.279	0.279	0.011
12	22.000	0.316	0.297	0.297	0.019
13	25.600	0.342	0.349	0.349	0.007
14	28.800	0.368	0.391	0.391	0.023
15	32.000	0.395	0.430	0.431	0.036
16	35.000	0.421	0.464	0.464	0.043
17	36.600	0.447	0.481	0.481	0.034
18	40.000	0.474	0.515	0.515	0.041
19	40.000	0.500	0.515	0.515	0.015
20	45.600	0.526	0.565	0.565	0.038
21	48.000	0.553	0.584	0.584	0.031
22	48.000	0.579	0.584	0.584	0.005
23	48.580	0.605	0.588	0.588	0.017
24	50.000	0.632	0.599	0.599	0.033
25	51.700	0.658	0.611	0.611	0.047
26	74.000	0.684	0.734	0.734	0.050
27	80.000	0.711	0.758	0.758	0.047
28	88.000	0.737	0.785	0.785	0.049
29	100.000	0.763	0.819	0.819	0.056
30	110.000	0.790	0.842	0.842	0.053
31	110.000	0.816	0.842	0.842	0.026
32	120.000	0.842	0.861	0.861	0.019
33	122.500	0.868	0.866	0.865	0.003
34	138.000	0.895	0.889	0.888	0.006
35	172.800	0.921	0.924	0.924	0.003
36	200.000	0.947	0.942	0.942	0.005
37	200.000	0.974	0.942	0.942	0.031
				Teórico =	0.0561

Nota: probabilidad de retorno por distribución Log Normal 2 Parametros.

Imagen 11

Distribución Log Normal 2 parámetros

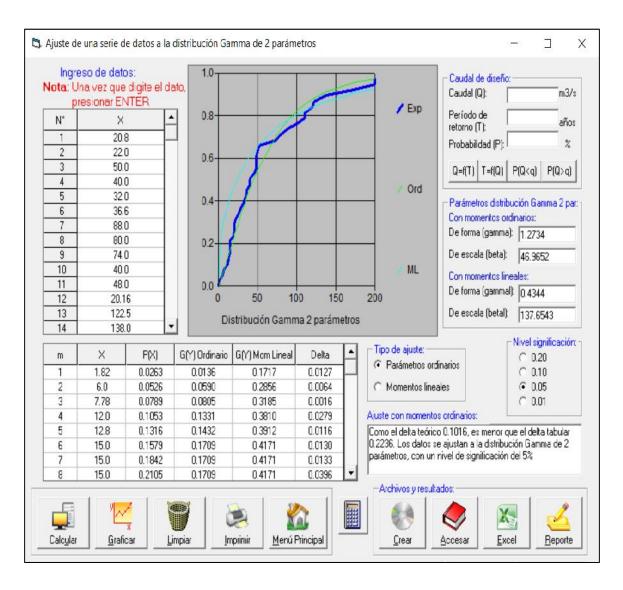

Tabla 14Distribución Log Gumbel - Momentos lineales

m	Χ	P(X)	G(Y) Ordinario	G(Y) Mom Lineal	Delta
1	1.820	0.026	0.108	0.103	0.082
2	6.000	0.053	0.134	0.128	0.081
3	7.780	0.079	0.145	0.140	0.066
4	12.000	0.105	0.174	0.169	0.069
5	12.800	0.132	0.180	0.175	0.049
6	15.000	0.158	0.197	0.191	0.039
7	15.000	0.184	0.197	0.191	0.012
8	15.000	0.211	0.197	0.191	0.014
9	19.200	0.237	0.229	0.224	0.007
10	20.160	0.263	0.237	0.232	0.026
11	20.800	0.290	0.242	0.237	0.047
12	22.000	0.316	0.252	0.247	0.064
13	25.600	0.342	0.282	0.278	0.060
14	28.800	0.368	0.310	0.305	0.059
15	32.000	0.395	0.337	0.334	0.057
16	35.000	0.421	0.364	0.360	0.058
17	36.600	0.447	0.378	0.374	0.070
18	40.000	0.474	0.407	0.404	0.067
19	40.000	0.500	0.407	0.404	0.093
20	45.600	0.526	0.455	0.453	0.071
21	48.000	0.553	0.476	0.474	0.077
22	48.000	0.579	0.476	0.474	0.103
23	48.580	0.605	0.481	0.479	0.125
24	50.000	0.632	0.492	0.491	0.139
25	51.700	0.658	0.506	0.505	0.152
26	74.000	0.684	0.670	0.671	0.014
27	80.000	0.711	0.706	0.708	0.004
28	88.000	0.737	0.750	0.753	0.013
29	100.000	0.763	0.806	0.808	0.042
30	110.000	0.790	0.843	0.846	0.054
31	110.000	0.816	0.843	0.846	0.027
32	120.000	0.842	0.874	0.877	0.032
33	122.500	0.868	0.881	0.884	0.013
34	138.000	0.895	0.916	0.918	0.021
35	172.800	0.921	0.962	0.964	0.041
36	200.000	0.947	0.980	0.981	0.033
37	200.000	0.974	0.980	0.981	0.006
			Delta	Teórico =	0.1516

Nota: probabilidad de retorno por distribución Log Gumbel.

Imagen 12

Distribución Gumbel


Tabla 15E.2.1.3 Distribución Gamma 2 Parámetros - Momentos lineales

m	X	P(X)	G(Y) Ordinario	G(Y) Mom Lineal	Delta
1	1.82	0.0263	0.0136	0.1717	0.0127
2	6.0000	0.0526	0.0590	0.2856	0.0064
3	7.7800	0.0789	0.0805	0.3185	0.0016
4	12.0000	0.1053	0.1331	0.3810	0.0279
5	12.8000	0.1316	0.1432	0.3912	0.0116
6	15.0000	0.1579	0.1709	0.4171	0.0130
7	15.0000	0.1842	0.1709	0.4171	0.0133
8	15.0000	0.2105	0.1709	0.4171	0.0396
9	19.2000	0.2368	0.2231	0.4602	0.0137
10	20.1600	0.2632	0.2349	0.4691	0.0283
11	20.8000	0.2895	0.2427	0.4749	0.0468
12	22.0000	0.3158	0.2571	0.4854	0.0586
13	25.6000	0.3421	0.2997	0.5145	0.0425
14	28.8000	0.3684	0.3361	0.5379	0.0323
15	32.0000	0.3947	0.3712	0.5594	0.0235
16	35.0000	0.4211	0.4029	0.5781	0.0182
17	36.6000	0.4474	0.4192	0.5875	0.0281
18	40.0000	0.4737	0.4528	0.6064	0.0209
19	40.0000	0.5000	0.4528	0.6064	0.0472
20	45.6000	0.5263	0.5046	0.6347	0.0217
21	48.0000	0.5526	0.5255	0.6459	0.0271
22	48.0000	0.5789	0.5255	0.6459	0.0534
23	48.5800	0.6053	0.5305	0.6486	0.0748
24	50.0000	0.6316	0.5424	0.6549	0.0892
25	51.7000	0.6579	0.5563	0.6622	0.1016
26	74.0000	0.6842	0.7065	0.7413	0.0223
27	80.0000	0.7105	0.7380	0.7583	0.0274
28	88.0000	0.7368	0.7750	0.7788	0.0382
29	100.0000	0.7632	0.8214	0.8056	0.0582
30	110.0000	0.7895	0.8529	0.8250	0.0634
31	110.0000	0.8158	0.8529	0.8250	0.0371
32	120.0000	0.8421	0.8790	0.8421	0.0369
33	122.5000	0.8684	0.8847	0.8461	0.0163
34	138.0000	0.8947	0.9151	0.8682	0.0203
35	172.8000	0.9211	0.9575	0.9059	0.0263
36	200.0000	0.9474	0.9754	0.9271	0.0280
37	200.0000	0.9737	0.9754	0.9271	0.0200
٠.	200.0000	0.07.07		Teórico =	0.1016

Nota: probabilidad de retorno por distribución Gamma 2 Parametros.

Imagen 13

Distribución Gamma 2 Parámetros

Prueba KOLMOGOROV - SMIRNOV

Método por el cual se comprueba la bondad de ajuste de las distribuciones, asimismo permite elegir la más representativa, es decir la de mejor ajuste. Esta prueba consiste en comparar el máximo valor absoluto de la diferencia D entre la función de distribución de probabilidad observada Fo (xm) y la estimada F (xm) (Ministerio de Transportes y comunicaciones, 2012)

$$D = máx / Fo(xm) - F(xm)/$$

Siendo:

DELTA TABULAR 0.2236

DELTA TEORICO - DELTA TABULAR:

 Normal:
 0.0061

 Gumbel:
 0.0720

 Log normal de 2 p:
 0.1675

 Log gumbel:
 0.0720

 Gamma 2 p:
 0.1220

 Log normal de 3 p:
 0.1452

 Log gamma 3p
 0.0904

Valor mínimo 0.0061

La distribución a emplear será normal

4.1.4. Determinación del periodo de retorno

Para adoptar el período de retorno a utilizar en el diseño de una obra, es necesario considerar la relación existente entre la probabilidad de excedencia de un evento, la vida útil de la estructura y el riesgo de falla admisible, dependiendo este último, de factores económicos, sociales, técnicos y otros.

El riesgo de falla admisible en función del período de retorno y vida útil de la obra está dado por:

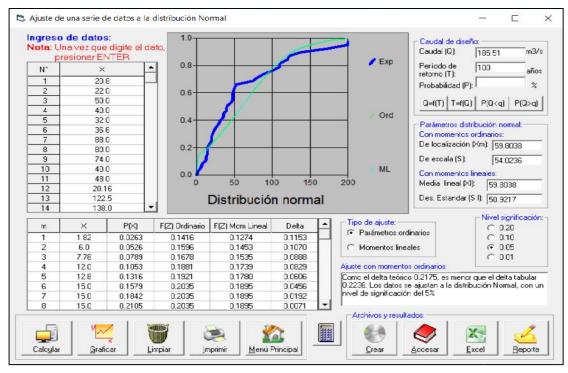
$$R = 1 - (1 - 1/T)^n$$

Fórmula 04. Determinación del periodo de retorno en función a riesgo admisible y vida útil

Fuente: Senamhi

Imagen 14

Determinación del periodo de retorno


Resolución de la ecuación de riesgo de por lo menos una excedencia del evento de diseño durante la vida útil, para ello se está proyectando una vida útil de 25

años y un riesgo admisible de 22%, finalmente se obtiene un periodo de retorno de 100 años.

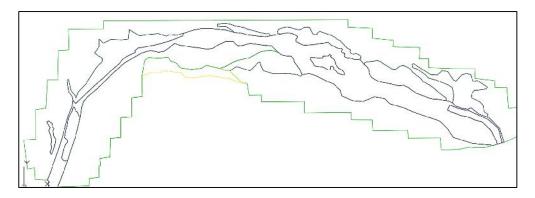
4.1.5. Determinación del caudal de diseño

Imagen 15

Determinación del caudal de diseño de distribución normal

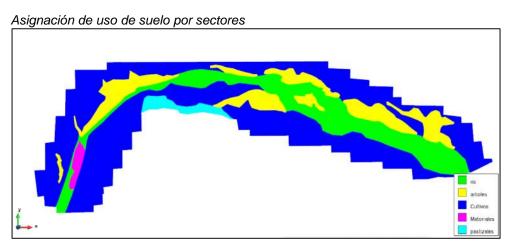
Se ha acomodado la serie de datos para la distribución Normal, la cual cumple con la condición estadística que establece un delta teórico de 0.2175, y un delta tabular de 0.2236, valores bastante cercanos que podrían hacer converger la línea de tendencia en la gráfica, finalmente se obtuvo el caudal de máxima avenida de 185.51 m3/s para un periodo de retorno de 100 años.

4.1.6. Encauzamiento del rio en el sector de ubicación de la toma


Para establecer un ancho hidráulico estable procedemos a realizar un modelamiento que pueda simular el comportamiento hidráulico de la superficie del cauce frente a un caudal de máxima avenida, en este caso se hará con la finalidad de determinar la altura de los muros de encauzamiento, ancho estable del río, y profundidad para

descolmatación siguiendo el alineamiento propuesto y el perfil longitudinal.

Determinación de uso de suelos


Imagen 16

Delimitación de uso de suelos

Lo primero que se realizó es la sectorización del uso de suelos, clasificando como: Áreas de cultivo, rio, árboles, matorrales y pastizales.

Imagen 17

Como se puede apreciar en la imagen adjunta, después de delimitar los sectores, se han asignado por colores de acuerdo a los usos de cada uno de ellos, esto será para posteriormente calcular o determinar según sea conveniente la rugosidad.

Imagen 18

Tipo de uso de suelo según rugosidad de Manning

	TIPO DE CANAL	MÍNIMO NORMAL		MÁXIMO
	a. con pasto sin arbusto			
D.2 PLANICIES DE	pastizales bajos	0.025	0.030	0.035
INUNDACION	pastizales altos	0.030	0.035	0.050
	b. áreas cultivadas			
	sin cultivo	0.020	0.030	0.040
	con cultivos	0.030	0.040	0.050
	c. Arbustos y Malezas	100000		83323
	escasos	0.040	0.060	0.080
	densos	0.070	0.100	0.160
	d. Arboles	100000		\$3350
	sauces	0.110	0.150	0.200
	tierra despejada con troncos	0.030	0.040	0.050
D3 Ríos Principales	Secciones Regulares	0.025	-	0.060
(ancho superior a 30 m)	Secciones Irregulares	0.035		0.100

Nota: Tomado de (Chow, 1983)

Para árboles se le asignará el coeficiente 0.20m, para cultivos, 0.050, matorrales: 0.16 y para pastizales 0.035.

4.1.7. Coeficiente de rugosidad de cauces naturales (n de Manning)

Para obtener el coeficiente de Manning, se requiere de la experiencia del especialista para realizar las estimaciones, que puede apoyarse en antecedentes de casos similares, tablas y publicaciones técnicas disponibles, sobre la base de los datos recopilados en la etapa de campo. (Ministerio de Transportes y comunicaciones, 2012)

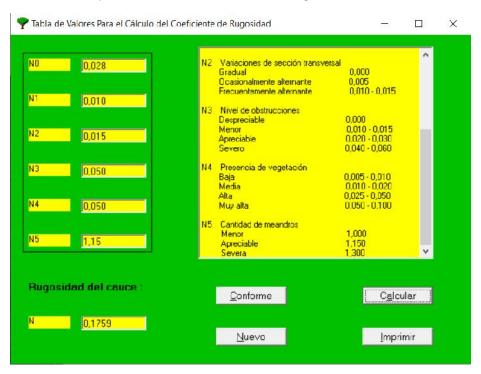
$$n = m 5 (n 0 + n 1 + n 2 + n 3 + n 4)$$

Imagen 19

Tabla de Cowan para determinar la influencia de diversos factores sobre el coeficiente n.

CONDICIONE	S DEL CANAL	VALORES		
	Tierra	n _o	0.020	
	Corte en Roca		0.025	
Material Involucrado	Grava Fina		0.024	
Grava Gruesa		0.028		
	Suave	n ₁ -	0.000	
Grado de Irregularidad	Menor		0.005	
Grado de irregularidad	Moderado		0.010	
	Severo		0.020	
	Gradual	n₂	0.000	
Variaciones de la Sección Transversal	Ocasionalmente Alternante		0.050	
	Frecuentemente Alternante		0.010-0.015	
	Insignificante	_	0.000	
Efecto Relativo de las	Menor		0.010-0.015	
Obstrucciones	Apreciable	113	0.020-0.030	
Obstrucciones Apreciable Severo		0.040-0.060		
	Baja	n.	0.005-0.010	
Vegetación	Media		0.010-0.025	
Vegetación	Alta		0.025-0.050	
	Muy Alta		0.050-0.100	
	Menor	m ₅	1.000	
Grado de los Efectos por Meandro	Apreciable		1.150	
N. Carlaro	Severo		1.300	

Nota: Tomado de (Rocha, 2005)


- n 0: Rugosidad base para un canal recto, uniforme, prismático y con rugosidad homogénea.
- n 1: Rugosidad adicional debida a irregularidades superficiales del perímetro mojado a lo largo del tramo en estudio.
- n 2: Rugosidad adicional equivalente debida a variación de forma y de dimensiones de las secciones a lo largo del tramo en estudio.
- n 3: Rugosidad equivalente debida a obstrucciones existentes en el cauce.

- n 4: Rugosidad adicional equivalente debida a la presencia de vegetación.
- m 5: Factor de corrección para incorporar efecto de sinuosidad del cauce o presencia de meandros.

Luego:

Imagen 20

Tabla de valores para el cálculo del coeficiente de rugosidad.

Determinación del coeficiente de rugosidad

Para la determinación de los coeficientes de rugosidad en el cauce del rio se ha empleado la ecuación de Cowan, por tratarse de una superficie con obstrucciones y marcada variación de sección transversal, además de presencia de vegetación frondosa, en resumen, colmatada casi en su totalidad y a ello se suma la naturaleza del cauce trenzado y de poca pendiente.

4.1.8. Creación del modelo hidráulico en 2D

El modelo digital de elevaciones generado tras procesar la data topográfica se inserta en IBER.2.4.3, pre configurando un tiempo de simulación de por lo menos 5000 instantes de tiempo con un intervalo de resultados de 100 segundos, con esto se le da al caudal el tiempo suficiente de escurrir a través de toda la superficie, cabe resaltar que en muchos casos la asignación de tiempo de simulación es un proceso iterativo.

Imagen 21
Superficie topográfica en Iber 2D

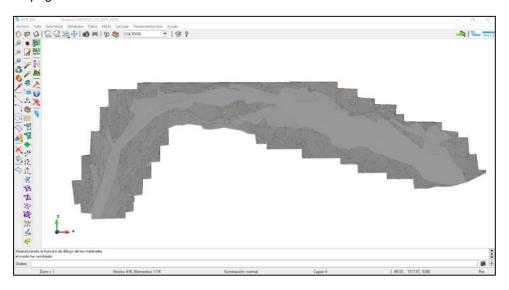
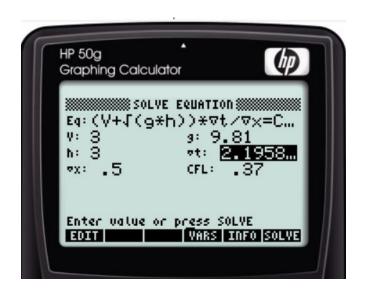


Imagen 22

Asignación de parámetros de tiempo de simulación

Número de Courant:

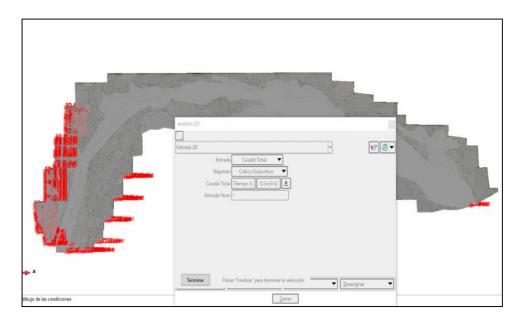
$$\Delta t < CFL \frac{\Delta x}{v + \sqrt{gh}}$$
 con CFL < 1


Fórmula 05. Número de Courant Friedrich

Fuente: (Flumen, Modelización bidimensional del flujo en lámina libre en aguas poco profundas: Manual básico de usuario, 2016)

La estabilidad en el procesamiento de modelos hidráulicos en Iber se basa en la convergencia de ecuaciones bidimensionales, esta se encuentra definida por el valor del parámetro CFL o número de Courant Friedrich, que establece una relación entre el espaciamiento del mallado, la velocidad de flujo y el tirante máximo alcanzado en el modelo.

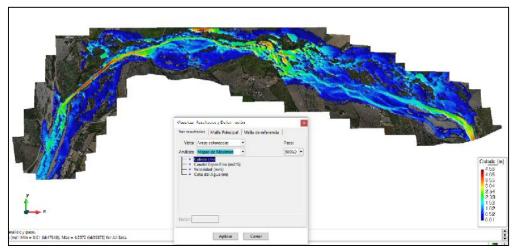
Imagen 23


Cálculo del Número de Courant

Para nuestro modelo hidráulico 2D, se ha resuelto la ecuación de COURANT, teniendo en cuenta los valores estimatorios del tirante máximo h=3m, el valor de gravedad, g=9.81m2/s, el espaciamiento de la malla Dx=0.25m y finalmente obtenemos el valor de CFL=0.37 y Dt=2.1958E-2.

Imagen 24

Imagen 25
Asignación de las condiciones de contorno



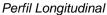
Se asigna un ingreso/salida de caudal, el ingreso es de 185.51 m3/s y se coloca aguas arriba, en el gráfico lo podemos ubicar en la esquina inferior derecha.

4.1.9. Resultados de la simulación

Imagen 26

Tirante en el cauce del rio

Como se puede apreciar, al tratarse de un rio trenzado, el recorrido que hace el caudal es irregular e incluso invasivo, ya que perjudica los terrenos agrícolas colindantes y demás propiedades de terceros, puesto que si un suceso de esta naturaleza tiene lugar, de todas maneras llegará a ocasionar un impacto económico importante de manera negativa en el caso no se tomen medidas preventivas, una de ellas es descolmatar el cauce, establecer un recorrido idóneo para el cauce y delimitar su sección calculando un ancho hidráulicamente estable.


4.1.10. Alineamiento del recorrido del cauce

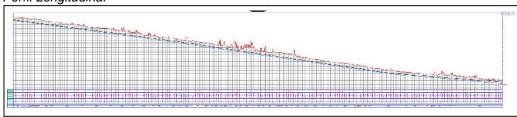

Tal como se ha mencionado en párrafos anteriores, uno de los requisitos para limitar el desplazamiento del cauce de manera irregular tras el paso de una máxima avenida, es definir su alineamiento natural lo más cercano posible, es por esto que con el apoyo de autocad Civil 3D hemos trazado un alineamiento aproximado con la finalidad de crear una simulación que permita prever el comportamiento o respuesta del cauce frente a un nuevo caso de máxima avenida.

Imagen 27

Imagen 28

4.1.11. Cálculo de la sección de ancho estable

Q DISEÑO (m³/seg)

185.51

Pendiente Zona del Proyecto (m/m)

0.01500

Primero establecemos el caudal de diseño para ancho estable siendo de 185.51 m3/s y la pendiente media del cauce, que es de 1.5%, estos valores van a ser necesarios básicamente para todas las metodologías contempladas.

Tabla 16 *Método de Simons y Henderson*

Método De Simons Y He	enderson	
$B = K_1 Q^{1/2}$		_
Condiciones de Fondo de río	K ₁	B (m)
Fondo y orillas de grava	2.9	39.5
i olido y olillas de glava	2.3	33.3

Nota: En esta metodología, establecemos que las condiciones del fondo y orillas del río son básicamente grava, a lo que corresponde un valor de K1=2.9, luego la resolución de la ecuación nos arroja un valor de 39.5m

Tabla 17 *Método de pettis*

Nota: Para el método de Pettis, nos dice que el ancho estable está en función de la raíz cuadrada del caudal, multiplicado por la constante 2.44, siendo como resultado un ancho estable de 33.24m

Tabla 18 *Método de Altunin - Manning*

Método De Altunin - Manning		
B = $(Q^{1/2}/S^{1/5})$ (n K ^{5/3}) ^{3/(3+5m)}		
Valores rugosidad de Manning (n)		B (m)
Descripción	n	
Torrentes con derrubio grueso y acarreo móvil = 0.045 - 0.050	0.05	
Coeficiente Material del Cauce		
Descripción	K	48.48
Material aluvial = 8 a 12	12	40.40
Coeficiente de Tipo de Río		
Descripción	m	
Para cauces aluviales	1	

Nota: En el método de Altunin Manning, se está contemplando un valor de rugosidad de 0.05, e cual corresponde a torrentes con derrubio grueso y acarreo móvil, además el cauce presenta gran cantidad de material aluvial, lo que asigna un valor de K=12, finalmente al tratarse de un cauce aluvial el valor de "m" asignado es de 1.

Tabla 19 *Método De Blench*

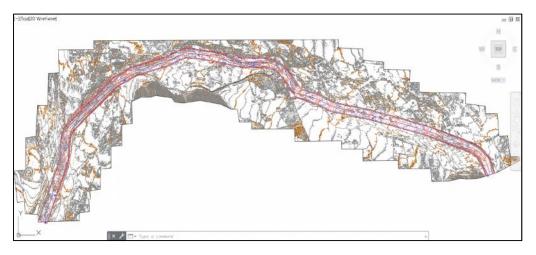
	De Blench	
B = 1.81(Q F _b /F _s) ^{1/2}	
Factores		B (m)
Factor de Fondo	F _b	
Material Grueso	1.2	
Factor de Orilla	Fs	85.40
Materiales sueltos	0.1	

Nota: Para el método de Blench, se fija como factor de fondo el arrastre de material grueso, siendo un valor de Fh=1.2 y para el factor de orilla se establece como materiales sueltos, siendo un valor de Fs=0.1.

Tabla 20Recomendación Practica

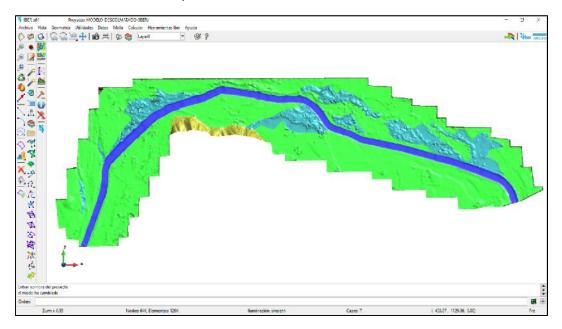
Recomendación Practica		
Q (M3/S)	ANCHO ESTABLE (B2)	
3000	200	
2400	190	
1500	120	
1000	100	
500	70	

Nota: Finalmente, tenemos la recomendación del método práctico, el cual nos establece de manera empírica anchos estables para los diferentes caudales conocidos, siendo como resultado para el valor que buscamos de la interpolación del caudal 185.51 m3/s, un valor de 70 m.


Tabla 21
Resumen

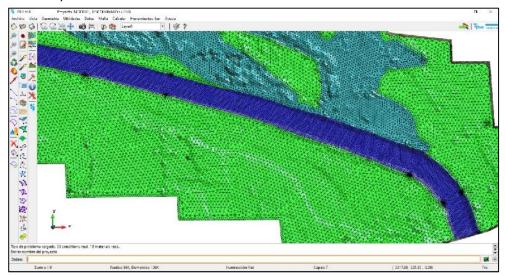
Método	В (М)
Método De Simons Y Henderson	20.50
Método De Pettis	39.50
Método De Altunin - Manning	33.23
•	48.48
Método De Blench	85.40
Método Práctico	70.00
=====> PROMEDIO B:	55.32
	33.32
======> SE ADOPTA B:	56.00

Nota: Resumen de los anchos del cauce mediante los métodos utilizados


Imagen 29

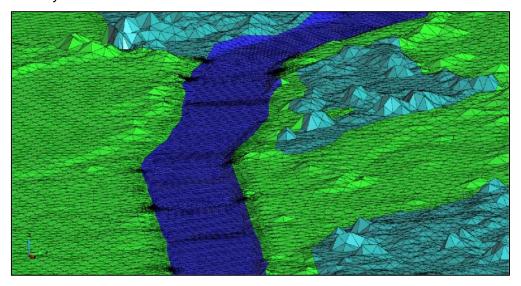
Inserción del ancho estable en la topografía

En esta etapa de la investigación se inserta el ancho estable en la topografía del estado actual del cauce del rio, con la finalidad de modificar la superficie y tener un resultado de la sección del rio "descolmatado".


Imagen 30Modelamiento de la nueva superficie con el ancho estable

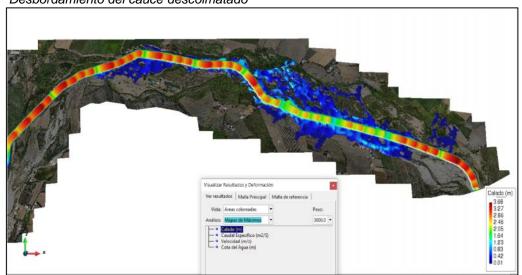
Se traslada la nueva superficie a la interfaz de Iber, y se aprecia de manera más armoniosa que el ancho del cauce es regular y aparentemente podría no presentar desbordamientos, sin embargo, la idea es poner a prueba el nuevo trazo del rio.

Imagen 31


Nueva superficie con ancho estable

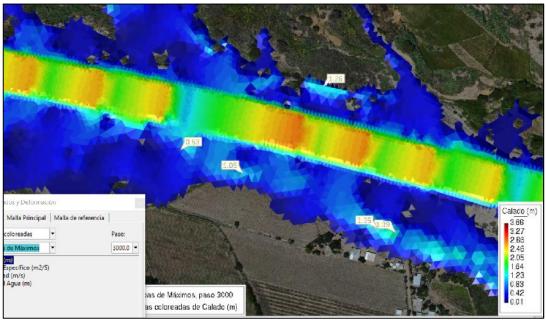
Aquí podemos apreciar de forma más detallada el cómo se vería el cauce descolmatado y con un trazo regular y claramente definido.

Imagen 32

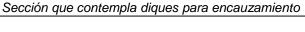

Ribera y fondo del cauce.

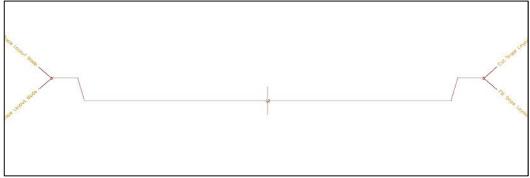
Podemos apreciar también que después de la modificación del cauce, hay sectores donde la cota de la ribera no difiere mucho de la cota de fondo del cauce, lo que indica que es muy posible un desbordamiento en esta zona.

Imagen 33

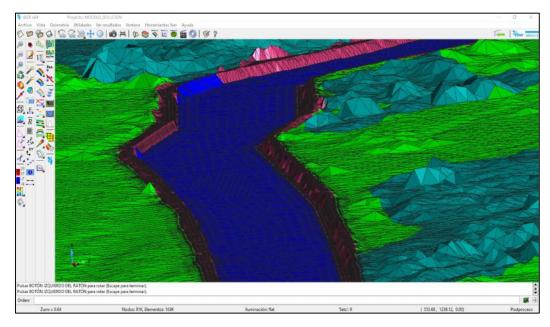

Desbordamiento del cauce descolmatado

Tal como se supuso, el cauce del rio se ha desbordado, ocasionando inundaciones en ambas márgenes que afectan directamente los terrenos de cultivo existentes.


Imagen 34


Desbordamiento del cauce descolmatado

En este caso, los tirantes de la planicie de inundación, tanto para el margen derecho como izquierdo oscilan entre 0.53 m y 1.39m, además el tirante máximo alcanzado dentro del cauce es de 3.68m, por lo tanto, se considera necesario el encauzamiento del rio con diques de por lo menos 3.80 a 4.00 m de altura.


Imagen 35

Por lo tanto, se colocaron diques de protección en ambos márgenes que alcanzan hasta los 4 metros de altura, esto dependiendo de la zona de ubicación en amas márgenes.


Imagen 36 Colocación de los diques en el modelo 2D.

De la manera que se idealizaron, finalmente se colocaron los diques en función a su necesidad o requerimiento a lo largo de ambas márgenes del rio con la finalidad de mitigar el desbordamiento tras el paso de una máxima avenida.

Imagen 37

Tránsito de máxima avenida en el rio encauzado

Probablemente la idealización mediante el modelo hidráulico sea bastante optimista, sin embargo, no se evidencia desbordamiento del cauce, lo que indica que se está cumpliendo el objetivo trazado respecto al encauzamiento con diques de protección en ambas márgenes del rio, además se evidencia un tirante en gran medida uniforme a lo largo y ancho del cauce.

4.1.12. Emplazamiento de la estructura de captación

Siguiendo la actual configuración del "puquio o tajadillo", y el trazo del canal existente, emplearemos esta información como base para establecer el lugar donde se emplazará la estructura de bocatoma.

Imagen 38

Recorrido del canal y ubicación del puquio

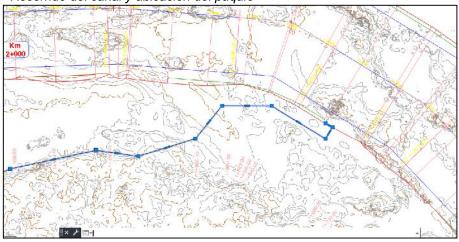
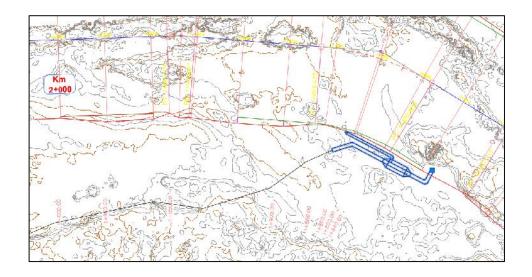



Imagen 39

Esquema de ubicación de la toma

La bocatoma se ubicará entre las progresivas 1+840 y 1+820, para fines prácticos ya que el "puquio" se encuentra ubicado actualmente entre dichas progresivas.

4.1.13. Planteamiento de la estructura de bocatoma

Como paso inicial se debe estructurar la bocatoma, cuidadosamente empleando las fórmulas empíricas cada una de las partes que le conforman, antes de todo ello se debe conocer el caudal que actualmente se deriva a través del canal existente.

4.1.13.1. Caudal de captación:

Para determinar el caudal de captación, se ha referenciado el estudio: (Obras de Control y Medición de Agua por Bloques de Riego en el Valle Virú, 2008), en el cuál el Ministerio de agricultura nos brinda a través del acceso a la información pública, los datos relevantes que se necesitan para conocer el caudal que deriva la toma rústica existente hacia el canal madre.

Imagen 40
Rutas de Acceso a las Comisiones de Regantes

De	Centro Poblado	Distancia	Tipo de vía	Comisiones de Regantes
Parte media y Baja	a del Valle			THE STATE OF THE S
Trujillo	Desvío Panamericana	49 km	Asfaltado	San Idelfonso
	Virú	3.5 km	Asfaltado	Santa Clara
Danis	Santa Elena	8.3 km	Afirmado	Santa Elena
Desvío	El Carmelo	5.1 km	Afirmado	El Carmelo
Panamericana	Huancaquito	5.0 km	Afirmado	Huancayo
				Canal Ramos
curs.	Huancaquito	4.2 km	Trocha Carrozable	El Cerrito
Huancaquito				Huancaquito Bajo
	Bajo			Toma Los Papayos
Parte Alta del Valle	e Virú	Ģ.	i i	58 5 ⁸ 1 10 ⁸ 01
	Tomabal	8.1 km	m Afirmado	Queneto
				Choloque
Virú	and the second s			Zaraque
	Huacapongo	9.0km	Trocha carrozable	Huacapongo

Nota: Tomado de (Intendencia de Recursos Hídricos, 2008)

Imagen 41
Bloques de asignación de agua - Valle Viru

SECTOR	COMISION DE REGANTES	Nº Bloques	BLOQUE	AREA BAJO RIEGO (ha)	N° DE USUARIOS	N° DE PREDIOS
		1	PEÑA AZUL	54.14	12	17
	3	2	HIERBA LUISA	45.27	8	11
	HUACAPONGO	3	SUSANGA	149.84	33	47
	HUACAPONGO	4	HUACAPONGO	328.66	101	134
00		5	CIRUELO	73.59	15	18
HUACAPONGO		6	ALAYO	30.30	6	6
ACA.	Sub Total	6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	681.80	175	233
È		7	CHOLOQUE	422.72	142	177
	EL CHOLOQUE	8	VINZOS	49.38	10	13
	EL CHOLOQUE	9	SAN NICOLAS ALTO	64.29	30	35
		10	SAN JUAN	121.85	44	54
	Sub Total	4		658.24	226	279
CARABAMBA	QUENETO	11	QUENETO	127.95	36	61
CARADAVIDA	Sub Total	1		127.95	36	61
	ZARAQUE	12	ZARAQUE	309.62	74	150
	Sub Total	1		309.62	74	150
		13	HIGUERON LA GLORIA LA HUERFANA CHEQUEPE(*	197.11	67	91
	SANTA CLARA	14	LA GLORIA	24.23	10	11
		15	CHEQUEPE	399.09	143	189
		16	LA CAPILLA-CHORRILLOS	71.73	44	62
		17	TENCO	303.76	208	257
VIRU		18	RITIN PLAZA CAMAL	277.06	119	144
		19	SAMAMPUR-CHANQUIN ALTO Y BAJO - FLORES	210.12	69	79
	Sub Total	7		1,483.10	660	833

Nota: (Intendencia de Recursos Hídricos, 2008)

Comisión de Regantes El Choloque. El ámbito de la comisión se abastece a través de 04 tomas, de las cuales 02 se ubican en la margen derecha y 02 en la margen izquierda del río Virú; así mismo existen 03 tomas que cuentan con estructura de control y compuerta de regulación (Vinzos, San Nicolás Alto y San Juan) y 01 toma rústica denominada El Choloque.

Imagen 42

Comisión de Regantes Choloque

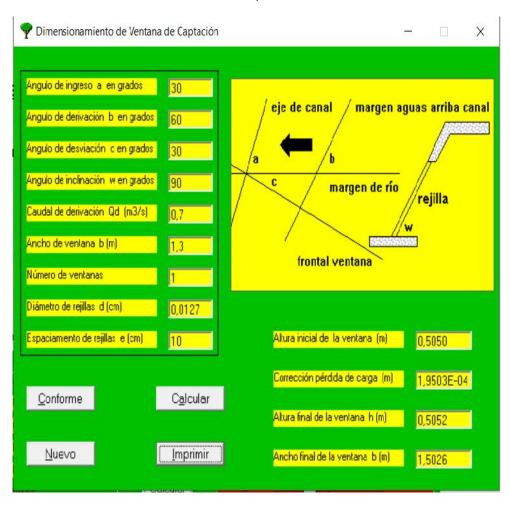
N°	BLOQUE DE RIEGO	CANAL PRINCIPAL	AREA BAJO RIEGO (ha)	N° DE PREDIOS	FUENTE DE AGUA	N° USUARIOS
07	CHOLOQUE	C.D.CHOLOQUE	422,72	171	RIO VIRU	142
08	VINZOS	C.D.VINZOS	49,38	13	RIO VIRU	10
09	SAN NICOLAS ALTO	C.D.SAN NICOLAS ALTO	64,29	35	RIO VIRU	30

Imagen 43

Canal de derivación Choloque

Nota: Tomado de (Intendencia de Recursos Hídricos, 2008)

Bocatoma San Juan pertenece a un bloque abastecido por el canal de derivación Choloque, de sección irregular de tierra 1.5x1.00 m de altura. **Qmáx=0.7** m³/s.

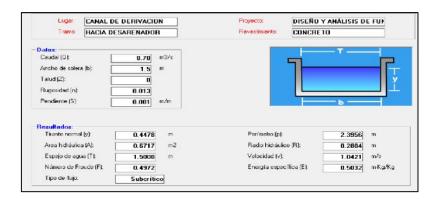

4.1.13.2. Dimensionamiento de la estructura

Ventana de captación:

"La captación de agua se realiza mediante una abertura llamada ventana de captación debido a que se encuentra a una altura de 0.60 m. del piso del canal de limpia como mínimo. Las dimensiones son calculadas en función del caudal a derivar y de las condiciones económicas más aconsejables." (Mansen Valderrama, 2010)

Imagen 44

Dimensionamiento de la Ventana de captación

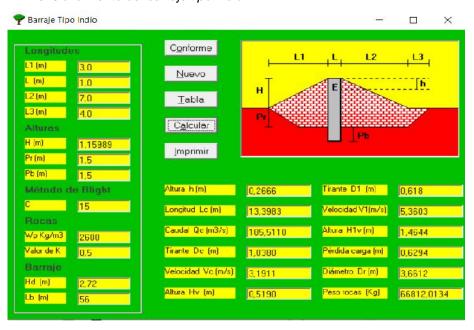


Considerando los ángulos formados por eje del canal, margen del cauce e inclinación de la rejilla, y el caudal de derivación se calculó la altura de la ventana de captación teniendo en cuenta además el ancho del canal existente (1.50m), dando como resultado 0.50m, para ello se ha utilizado.

Canal de derivación

Imagen 45

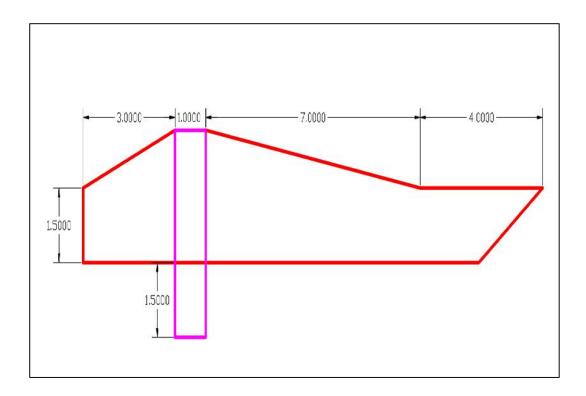
Dimensionamiento del canal de derivación



Conocido el caudal de 0.70 m3/s, se procede a dimensionar el canal, en función al ancho de solera del canal existente, cambiando el hecho de que el proyectado será de concreto, finalmente obtenemos un canal de 0.75 m de altura (0.45 tirante + 0.30 borde libre.) y 1.50 m de solera.

Barraje tipo indio

Imagen 46


Dimensionamiento del barraje tipo indio

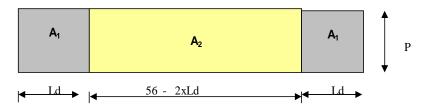
Se está considerando un barraje tipo indio, ya que al tener un cuerpo rígido en el centro y empotramiento de concreto armado ha dado excelentes resultados en cauces con tendencia a la socavación, principalmente la altura para este caso es de 1.16m.

Imagen 47

Diseño del Barraje tipo indio

Longitud del barraje fijo y del barraje movil

a. Dimensionamiento:


a.1 Por relacion de areas

El area hidraulica del canal desarenador tiene una relacione de 1/10 del area obstruida por el aliviadero, teniendose

 A_1 = Area del barraje movil

 $\mathbf{A}^{1} = \mathbf{A}^{2}/\mathbf{10}$

A² = Area del barraje fijo

$$A_1 = P * Ld$$

$$A2 = P * (120 - 2xLd)$$

Remplazando estos valores, tenemos que:

$$P * Ld = Px (56-2Ld)/10$$

$$L d = 4.67$$

Entonces: Ld =

a.2 Longitud de compuerta del canal desarenador (Lcd)

$$Lcd = Ld/2 = 2.33$$
 m.

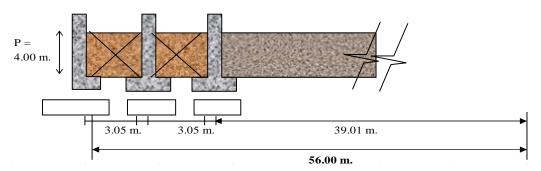
ARMCO MODELO 400

Usaremos:

2.0 comp de

120plg x 48plg

(Ver Anexo de Libro Bocatomas Ingº Arbulú)


$$Lcd = 3.05$$

a.3 Predimensionamiento del espesor del Pilar (e)

$$e = Lcd/4 = 0.76 \text{ m.} \qquad \text{m.}$$
 Consideremos
$$e = 0.80 \text{ m.}$$

b. Resumen:

Dimensiones reales del canal de limpia $\, y \, barraje \, fijo.$

Se tiene que tener en cuenta que los muros de contención para el encauzamiento de la bocatoma no pueden ser de menos de 4.00 metros, ya que los diques de protección que rodean ambas márgenes del cauce tienen esa altura debido al tirante de máxima avenida.

Diseño del desarenador

"Los desarenadores son obras hidráulicas que sirven para separar (decantar) y remover (evacuar), después, el material sólido que lleva el agua de un canal. El material sólido que se transporta ocasiona perjuicios a las obras, Una gran parte del material sólido va depositándose en el fondo de los canales disminuyendo su sección, esto aumenta el costo anual de mantenimiento y produce molestas interrupciones en el servicio de canal." (Sparrow Alamo, 2018)

Cálculo de la velocidad de flujo en el estanque

$$V = a\sqrt{d}$$

d= diámetro(mm)

a= cte en función al diámetro

Se determina mediante la fórmula de Camp; y se comprende de 0,20 a 0,60 m/s

a	d(mm)
51	<0.1
44	0.1-1
36	>1

a= 44

d = 0.42

V = 0.285 m/s

Cálculo de la velocidad de caída en aguas tranquilas

formula de Sudry:

$$w=k\sqrt{d(p-1)}$$

Forma y naturaleza	k	
Arena esférica		9.35
Granos redondeados		8.25
Granos Cuarzo >3mm		6.12
Granos Cuarzo		
>0.7mm		1.28
<0.7mm		1

w= velocidad de sedimentación (m/s)

• d= diámetro de las partículas(mm)

ps= Peso específico del material (gr/cm3)

K= Constante que varía de acuerdo con la forma y naturaleza de los granos

Luego:

Formula de scoti - foglieni

$$w = 3.8\sqrt{d} + 8.3d$$

W = 0.281 m/s

Metodología	Velocidad(m/s)
Camp	0.285
Sudry	0.580
Scoti foglieni	0.281

Se promedian los resultados de cada método

$$W = 0.382 \text{ m/s}$$

Longitud de Poza de sedimentación

$$L = \frac{hv}{W}$$

hv: Altura vertical o fondo de la poza

Teniendo en cuenta la turbulencia del flujo de agua la velocidad de sedimentación es menor es decir será w-w"; donde w" representa la reducción de velocidad por efectos de la turbulencia

Luego:

$$L = \frac{hv}{W - W''}$$

W" Según Eguiazaroff:

$$W'' = \frac{V}{5.7 + 2.3h}$$

$$W'' = 0.0371$$
 m/s

Se considera de 1.5 a 4 m recomendable

$$H = 2$$
 m

Según Levin y Bestelit

$$W'' = a. v$$

$$a = \frac{0.312}{\sqrt{h}}$$

W'' = 0.0843 m/s

Finalmente, W" podría considerarse como 0.061 m/s

En la proyección de desarenadores de bajas velocidades se realiza una corrección aplicando el coeficiente K que varía de acuerdo a las velocidades de escurrimiento en el estanque.

$$L = K \frac{hv}{w}$$

Velocidades de escurrimiento (m/s)	К
0.2	1.25
0.3	1.5
0.5	2

L = 10.47 m

$$L = \frac{hv}{W - W''}$$

L = 6.22 m

Se podría tomar un promedio de ambos métodos L= 8.35m

El ancho mínimo del desarenador:

$$b = \frac{Q}{H}$$

$$Q = 0.7 \text{ m3/s}$$

$$b = 0.35 \text{ m}$$

pero el ancho del canal es 1.5m

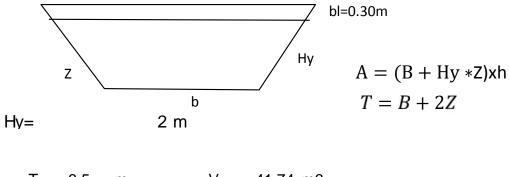
El tiempo de sedimentación:

$$t = \frac{h}{w}$$

$$t = 6.225 s$$

Volumen de agua conducido en ese tiempo:

$$V = Q.t$$


$$V = 4.357 \text{ m}3$$

Verificamos la capacidad del tanque:

$$V = b.h.L$$

$$V = 5.844 \text{ m}3$$

Sin embargo, se recomienda usar una sección trapezoidal

$$T=$$
 3.5 m $V=$ 41.74 m3 $Z=$ 0.5 Area= 5.00 m2 $E=$ 1.5 m $E=$ 8.35 m

Cálculo de la Longitud de transición

Se emplea la fórmula de Hind.

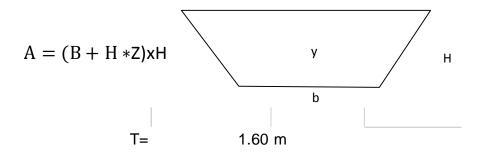
$$Lt = \frac{T1 - T2}{2 * t \cdot (22.5^{\circ})}$$

T canal= 1.5 m Lt= 2.41 m

Canal de Limpia

Vol. Desard.41.74 m3.Vcl asum.(3/5) m/s.Acl0.349281215m2.z0.5Q cap0.7m3/s

Tiempo Evac. 2 min. (5-15)


$$y = 0.303 \text{ m}.$$

El vertedero de demasías vierte el caudal sobre el canal de purga, por lo tanto:

Qcanal =
$$1.048 \text{ m}3/\text{s}$$

bl bord libre =
$$0.30$$
 m

$$h = 0.60 \text{ m}$$

Cálculo de las dimensiones de la compuerta de lavado

$$Q = CdxAox\sqrt{2x - h}$$

$$Cd = 0.6$$

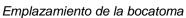
Q comp=
$$0.348 \text{ m}3/\text{s}$$

Ao =
$$0.10 \text{ m}^2$$

$$h = 0.16 \text{ m}$$

$$b = 0.32 \text{ m}$$

De manera que el caudal final es la suma de ambos caudales:

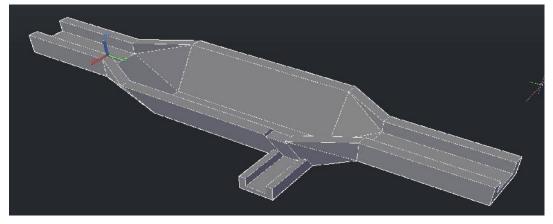

$$Q cap = 0.700 m3/s$$


$$Qfcap = 1.048 m3/s$$

4.1.14. Creación del modelo hidráulico de la bocatoma

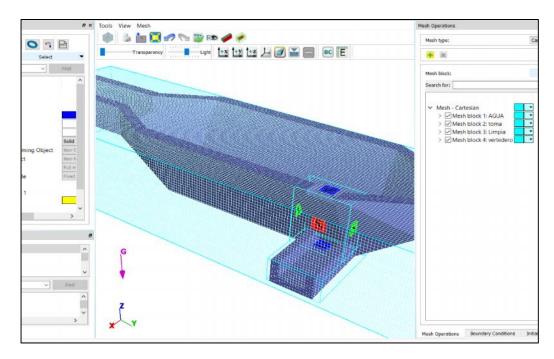
Se procede a crear un modelo completo de la bocatoma con la intención de simular la respuesta de esta estructura frente a los caudales de diseño establecidos, tanto en máxima avenida, como en caudal de captación.

Imagen 48

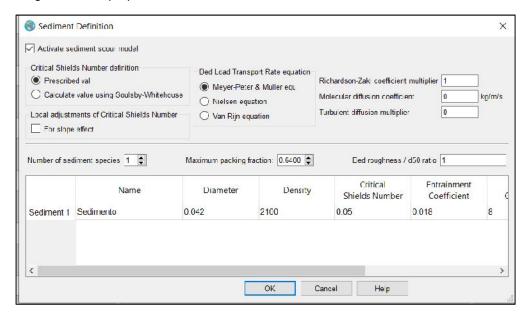


Con la ayuda del software Civil 3D, se ha construido un modelo digital en 3 dimensiones del cauce junto al emplazamiento de la bocatoma, para de esta manera tener una perspectiva más amplia del resultado final del diseño.

Imagen 49


Diseño del desarenador

Extraemos en un formato diferente el desarenador propuesto, con las medidas que han sido calculadas previamente, además hemos incluido el canal de purga constante, ya que se tiene idealizado el hecho de que será un apoyo debido a que evitará el colapso de la estructura por saturación de sedimentos, sin embargo, requerirá de mantenimiento por tiempos de operación al menos cada 15 días.


Imagen 50

Modelamiento del desarenador

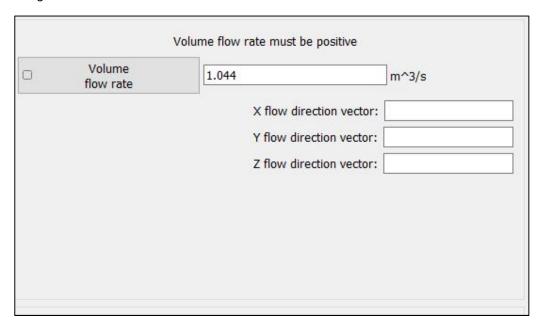

Con el apoyo de Flow 3D, se ha establecido en la interfaz la estructura de la desarenador propuesta, con la finalidad de poner a prueba la eficiencia del estanque frente a la retención de sedimentos. Para la discretización del sólido se ha colocado un mallado de 0.10m, de esta manera se obtendrán resultados mucho más cercanos a la realidad.

Imagen 51
Ingreso de las propiedades físicas del sedimento

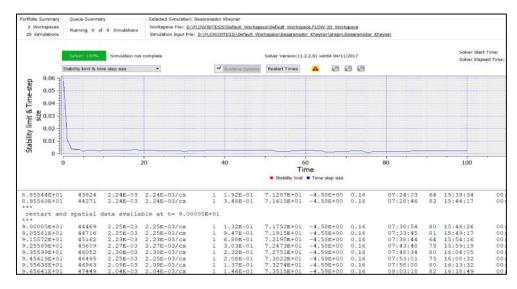
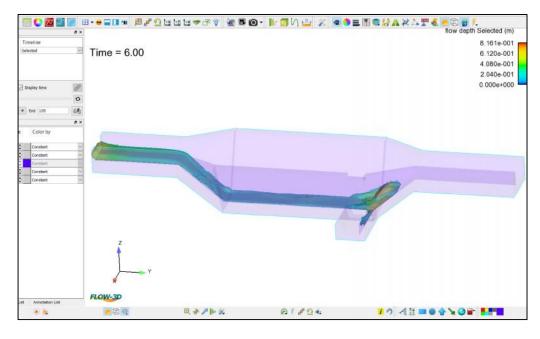
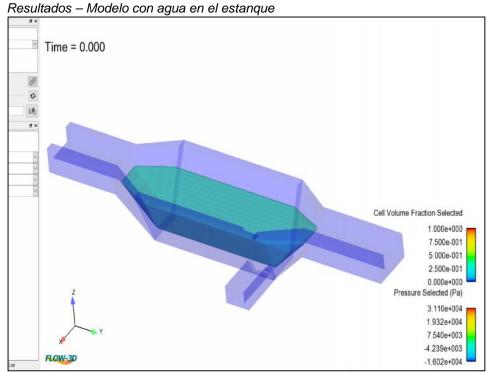

También se ha ingresado la información correspondiente al sedimento, de esta manera se cargará la estructura y se evaluará su eficiencia.

Imagen 52
Ingreso del caudal de la bocatoma

Se ingresa el caudal de captación de la bocatoma de 1.044 m3/s, esto forma parte de las condiciones de contorno del modelo.

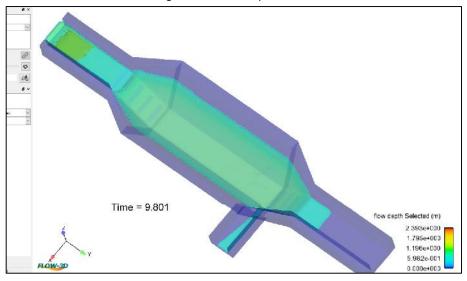

Imagen 53Cálculo del modelamiento completo

Finalmente, se inicia el procesamiento de la información en 50 instantes de tiempos (50s), el tiempo promedio de simulación depende del hardware del computador, para este caso fue de 2 horas.

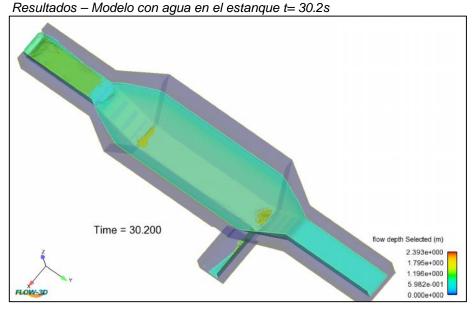

Imagen 54

Resultados – modelo del desarenador - resalto

Evaluamos dos casos, en el primero hemos prescindido de agua en el estanque, la desventaja es que al inicio de la operación se forma resalto y el flujo de agua es demasiado turbulento, esto podría colmatar de entrada el canal de conducción.


Imagen 55

Para este segundo caso, se está contemplando la colocación de un colchón de agua en el estanque, de preferencia libre de sedimentos, para este efecto se puede dejar reposar durante unas horas para que por gravedad las partículas en suspensión desciendan hasta el fondo del estanque.


Imagen 56

Resultados – Modelo con agua en el estanque t= 9.8s

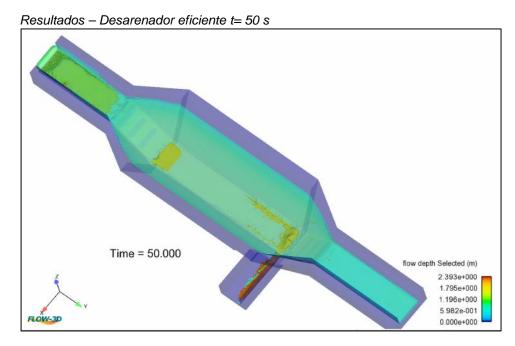

En este modelo podemos observar que el sedimento empieza a acumularse en el fondo del canal de aducción, luego será desplazado hacia el estanque del desarenador por el esfuerzo tractivo del agua.

Imagen 57

En este instante, ya se aprecia la acumulación de sedimento en el fondo del estanque, y empieza a operar la ventana de purga constante.

Imagen 58

Finalmente, damos por sentada la eficiencia del desarenador al acumular el sedimento en el fondo del estanque y no permitir el paso de importantes cantidades de sedimento al canal de conducción.

4.2. Docimasia de hipótesis

El diseño y modelamiento hidráulico de la bocatoma San Juan, Tomaval es esencial para una óptima distribución y captación de agua, esto se evidencia tras la simulación del emplazamiento de una estructura de bocatoma, por lo tanto, la hipótesis es válida y se cumple en su totalidad.

V. DISCUSIÓN DE RESULTADOS

- Se realizó el diseño de todos los componentes de la bocatoma y se sometió a un análisis mediante un software de simulación de estructuras hidráulicas, encontrándose que el diseño es eficiente, incluso la retención de sedimentos del estanque de la bocatoma cumple con las expectativas trazadas al inicio del proyecto, dentro del modelo cabe resaltar que se ha trabajado tanto en software bidimensional, así como también tridimensional.
- Se llevó a cabo un estudio de topografía levantando 4km de cauce en lugar de los 2km planteados en los objetivos del proyecto, todo esto para tener un panorama mucho más amplio sobre la localización, morfología y naturaleza trenzada del cauce, es imperativo tener en cuenta que, para el estudio y mapeo de toda la zona, se contó con el apoyo de un Drone de mapeo topográfico profesional, todo ello para garantizar óptimos resultados en los mapas de alta resolución del relieve topográfico.
- Se realizó un estudio de EMS, contemplando la granulometría del sedimento como capa estratigráfica no estacionaria en el cauce del rio, logrando así obtener sus características tanto como lo son los diámetros característicos, coeficiente de curvatura y coeficiente de uniformidad, esta información es absolutamente necesaria para el diseño del desarenador.
- Para el estudio de concentración de caudales o aforos, se realizó una recolección de datos provenientes de la estación Huacapongo, teniendo en cuenta una frontera de 37 años para registro de datos que está por encima de los 25 años mínimo exigidos por el manual de hidrología, hidráulica y drenaje del MTC, dentro de este estudio, se hizo un tratamiento estadístico de las muestras (datos de aforos) con la finalidad de comparar proyecciones bajo un periodo de retorno de 100 años, este último está basado en una vida útil de la estructura de por lo menos 25 años.

- Se investigó sobre el caudal de captación en función a los documentos sustentados por el ministerio de agricultura, los cuales han sido debidamente citados en los lineamientos de este informe, teniendo en cuenta la localización del canal madre o de derivación existente, se obtuvo como referencia un caudal de 0.70 m3/s.
- Se dimensionó la ventana de captación siendo cuidadosos de coincidir con el ancho del canal existente, también se dimensionó el canal de derivación, el vertedero de demasías, el estanque del desarenador, finalmente la ventana de purga de sedimentos con su respectivo canal de purga.

_

- Se realizó el dimensionamiento del barraje, proponiendo una estructura de tipo indio ya que para diferentes autores ha mostrado mucha estabilidad frente a flujos turbulentos, se consideró además necesaria la colocación de un barraje móvil, el cual representa una porción de la longitud de barraje total, además se realizó el encauzamiento del rio, en toda la zona de intervención con diques de protección y en el lugar de emplazamiento con muros de concreto armado.
- Se realizó la simulación de la respuesta del estanque del desarenador frente a la carga sedimentaria del rio, obteniendo resultados satisfactorios lo cual es indicador de que los criterios aplicados para el diseño de la poza han sido

lo más óptimos.

CONCLUSIONES

- Se realizó un levantamiento topográfico mediante mapeo con Drone topográfico profesional abarcando una longitud de cauce total de 4km, y cubriendo un área de 2.23 km2, además se construyeron mapas digitales con una resolución de 6.97 cm/pixel, el rango de elevaciones del DEM, se encuentra entre 204 y 161 m, finalmente se puede apreciar que el terreno es relativamente llano, características correspondientes a un valle, se pudo observar que el cauce del rio no es sinuoso pero si presenta vetas trenzadas, característico de un rio con baja pendiente y alto contenido de arenas.
- Dentro del estudio de EMS, se llevó a cabo un ensayo de granulometría para de esta manera conocer la naturaleza del material sedimentario o de arrastre de fondo en el cauce, material que puede representar un potencial factor de saturación y colmatación de la estructura de bocatoma, como es habitual se hizo el cuarteo de la muestra, quedando como muestra de análisis la cantidad de 1001.43g, los diámetros característicos del material son D10=0.315mm, D30=0.771mm, D50=4.238mm, D60=6.892mm, D90=11.629mm, los coeficientes de curvatura y uniformidad son 0.27 y 21.907 respectivamente, la clasificación del material según SUCS es SP arena mal gradada con baja cantidad de limos.
- Se realizó un estudio hidrológico considerando 37 años de registro de datos, a los cuales se les aplicó las distribuciones estadísticas contempladas por el Manual de hidrología, hidráulica y drenaje del MTC, teniendo como resultado el ajuste a la distribución normal, Los resultados fueron los siguientes: Delta tabular = 0.2236, Diferencia entre delta teórico y tabular: Normal: 0.0061, Gumbel: 0.0720; Log Normal de 2 Parámetros: 0.1675, Log Gumbel, 0.0720, Gamma 2 P: 0.1220, Log Normal de 3P: 0.1452, Log Gamma de 3 Parámetros: 0.0904, siendo el menor correspondiente a la distribución antes mencionada,

con esta distribución se hizo la proyección de un caudal para un riesgo de excedencia de 22%, una vida útil de 25 años, y periodo de retorno de 100 años, dando como resultado 185.51 m3/s.

- De acuerdo a los documentos citados en el informe se determinó que el caudal de captación es de 0.70m3/s, y el canal existente tiene 1.50 m de ancho por 1.00m de altura.
- Se dimensionó la ventana de captación en 1.50 m de ancho por 0.50m de altura, de ha colocado a 65 cm por encima del nivel de terreno natural del fondo del cauce del rio con la finalidad de contrarrestar el ingreso de sólidos al sistema de captación, se dimensionó el canal de derivación, tenido como resultado 1.50 m de solera y 1.00m de altura, con un coeficiente de rugosidad de 0.013 correspondiente a concreto liso, se calculó el ancho del desarenador siendo de 4.30m en la parte superior y 1.50 m en la base, por 2.00m de profundidad, finalmente la ventana de purga se dimensionó en 0.32 x 0.17 m y el vertedero de demasías con una longitud de 1.00m y una altura de 0.35m.
- El barraje se dimensionó con una altura de 1.16m, una longitud total de 56, el barraje móvil con una longitud de 5.8m y se dimensionaron los muros de encauzamiento con una altura de 4.00m y un espesor de 0.50m, el ancho de la cresta del barraje se estableció en 1.00m.
- Para evaluar el adecuado desempeño del desarenador se propuso un modelo hidráulico en 2 dimensiones sin embargo se complementó con un modelo en 3 dimensiones por ser una de las estructuras principales si bien es cierto para nuestro caso la más importante, teniendo como resultado una óptima derivación de los sedimentos de arrastre en fondo, y adecuado funcionamiento de la ventana de purga constante.

RECOMENDACIONES

- Debido a las dificultades que representa el acceso a la información por las disposiciones de ley por SARS COVID19, se ha limitado de cierto modo la investigación de campo, lo que nos deja abierta la investigación el aspecto de diseño para posterior implementación de canales de riego, incluso podría evaluarse la necesidad de incrementar el caudal en caso sea necesario.
- En la actualidad la estación Huacapongo se encuentra inactiva ya que los registros de datos presentados por el Senamhi son hasta el año 1990, sin embargo, si se contase con un registro de datos mucho más denso y actualizado se podrían mejorar los resultados en cuanto a estimación del caudal de máxima avenida.
- En caso complementario podría realizarse un modelo a escala del desarenador con la finalidad de contrastar resultados, sin embargo, esta tesis es cuasi experimental y no podría contemplarlo entre sus objetivos.
- Para tener resultados mucho más conservadores es necesario evaluar la totalidad del área en estudio mediante un modelamiento tridimensional, sin embargo, actualmente la tecnología en nuestro país nos limita en cuanto a la capacidad de nuestros ordenadores para desarrollar modelos tan complejos.

REFERENCIAS BIBLIOGRAFICAS

- Alfaro, M. (1981). Diseño de una Bocatoma, Caso: Bocatoma de Bocanegra. Lima: UNI.
- Autoridad Nacional del Agua, A. (2010). *Manual: Criterios de diseño de Obras Hidráulicas para la formulación de Proyectos Hidráulicos*. Lima: ANA.
- Chow, V. T. (1983). Hdráulica de canales Abiertos. Ciudad de Mexico, Mexico: Diana.
- Diaz, R. (2015). Análisis de estabilidad y diseño estructural de la bocatoma del P.H. Paso Ancho en la Facultad de Ingeniería, México. Universidad Nacional Autónoma de México. Mexico: UNAM.
- Flores, L. E. (2015). Diseño de una bocatoma de fondo para la captación de consumo humano para la parroquia "El paraiso de celen", Loja. Loja: UTPL.
- Flumen, I. (2014). *Manual de referencia hidráulico de Iber.* Catalunya: Grupo de Ingenieria, agua y medioambiente.
- Flumen, I. (2016). Modelización bidimensional del flujo en lámina libre en aguas poco profundas: Manual básico de usuario. Madrid: CEDEX.
- Intendencia de Recursos Hídricos, M. (2008). Obras de Control y Medición de Agua por Bloques de Riego en el Valle Virú. Lima: Ministerio de Agricultura.
- Jauregui, B. G. (2019). Diseño hidráulico de una bocatoma en el rio Moyobamba para el mejoramiento del sistema de irrigación CCECCA, ISHUSA Y HUAYCAHUACHO. Lima: UNALM.
- Mansen Valderrama, A. (2010). *Diseño de bocatomas, Apuntes de clase. Lima, Perú.*Lima: Universidad Nacional de Ingeniería, Facultad de Ingeniería Civil,
 Departamento Académico de Hidráulica E Hidrología.
- Ministerio de Transportes y comunicaciones, M. (2012). *Manual de hidrología, hidráulica y drenaje*. Lima: Ministerio de Transportes y comunicaciones.
- Nassi, G. R. (2018). Diseño y modelamiento hidráulico de la bocatoma el pueblo del distrito de Chóchope, provincia de Lambayeque, departamento de Lambayeque, utilizando el modelo numérico telemac 2d. Lambayeque: Universidad Católica Santo Toribio de Mogrovejo.
- Navarro, S. (2008). Manual de topografía . Plnimetría. Madrid.
- Novak, M. (2001). Estructuras Hidráulicas. Bogota: Mc Graw Hill.

- Ponce, B. (2018). Comportamiento Hidráulico y sedimentológico de la bocatoma independiente de aguas andinas en el rio Maipo. Santiago: UDCH.
- Ponce, R. (2015). Diseño Hidráulico de la Bocatoma en el rio Chicama, en la zona de Facalá. Lima: USMP.
- Rocha, A. (2005). *La Bocatoma, estructura clave en un proyecto de aprovechamiento hidráulico*. Lima: Revista de la Facultad de Ingenieria Civil.
- Sparrow Alamo, E. G. (2018). Estructuras Hidr·ulicas El desarenador. Ancash: UNS.
- UNATSABAR. (2005). *Guía para el diseño de desarenadores y sedimentadores.*Lima: Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente.

ANEXOS

INFORME DE TOPOGRAFÍA

LEVANTAMIENTO TOPOGRÁFICO - BOCATOMA TOMAVAL
02 Octubre 2020

Datos del levantamiento

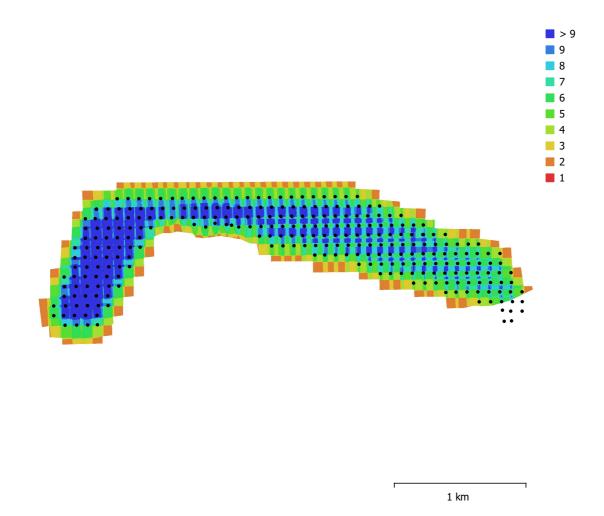


Fig. 1. Posiciones de cámaras y solapamiento de imágenes.

Número de imágenes: 281 Imágenes alineadas: 281
Altitud media de vuelo:204 m Puntos de paso: 267,399
Resolución en terreno: 6.97 cm/pix Proyecciones: 1,057,902
Área cubierta: 2.23 km^2 Error de reproyección: 1.19 pix

Modelo de cámara	Resolución	Distancia focal	Tamaño de píxel	Precalibrada
FC2204 (4.68mm)	4000 x 3000	4.68 mm	1.56 x 1.56 micras	Si
FC2204 (4.58mm)	4000 x 3000	4.58 mm	1.52 x 1.52 micras	Si
FC2204 (4.48mm)	4000 x 3000	4.48 mm	1.55 x 1.55 micras	Si
FC2204 (4.386mm)	4000 x 3000	4.386 mm	1.58 x 1.58 micras	Si

Tabla 1. Cámaras.

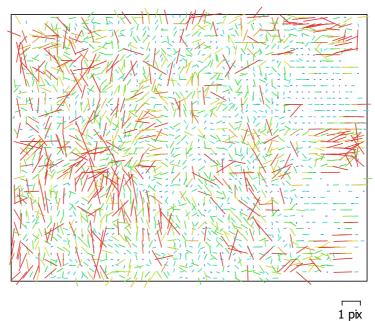


Fig. 2. Gráfico de residuales para FC2204 (4.68mm).

FC2204 (4.68mm)

Cuadro	4000 x 3000	4.68 mm	1.56 x 1.56 micras
Tipo	Resolución	Distancia focal	Tamaño de píxel

	Valor	Error	F	Сх	Су	K1	К2	кз	P1	P2
F	2693.61	12	1.00	-0.09	0.17	0.63	-0.80	0.86	0.20	0.04
Сх	19.5298	1.7		1.00	0.06	-0.12	0.14	-0.14	-0.17	0.22
Су	-20.6337	1.8			1.00	0.11	-0.13	0.14	-0.11	-0.04
K1	0.0454685	0.00062				1.00	-0.96	0.91	0.11	0.04
К2	-0.10721	0.0024					1.00	-0.99	-0.16	-0.04
кз	0.0794048	0.0025						1.00	0.17	0.04
P1	0.00153081	3.5e-05							1.00	-0.16
P2	4.49397e-05	3.4e-05								1.00

Tabla 2. Coeficientes de calibración y matriz de correlación.

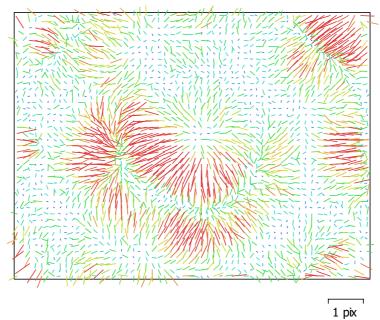


Fig. 3. Gráfico de residuales para FC2204 (4.58mm).

FC2204 (4.58mm)

Cuadro	4000 x 3000	4.58 mm	1.52 x 1.52 micras
Tipo	Resolución	Distancia focal	Tamaño de píxel

	Valor	Error	F	Cx	Су	K1	К2	кз	P1	P2
F	2706.71	7.8	1.00	-0.51	-0.00	0.92	-0.97	0.98	0.37	-0.30
Сх	16.5017	0.45		1.00	0.01	-0.48	0.50	-0.51	-0.07	0.15
Су	-4.24936	0.37			1.00	-0.00	0.00	-0.00	-0.01	0.18
K1	0.0415196	0.00026				1.00	-0.98	0.97	0.32	-0.27
К2	-0.0970229	0.0012					1.00	-1.00	-0.36	0.29
КЗ	0.0724848	0.0013						1.00	0.36	-0.29
P1	0.000964756	6.7e-06							1.00	-0.17
P2	-0.000537436	5.3e-06								1.00

Tabla 3. Coeficientes de calibración y matriz de correlación.

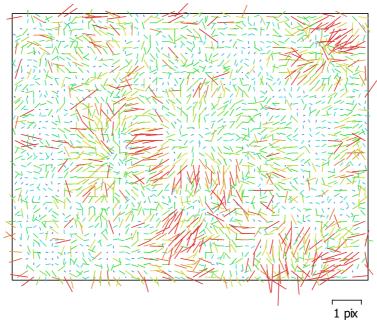


Fig. 4. Gráfico de residuales para FC2204 (4.48mm).

FC2204 (4.48mm)

Cuadro	4000 x 3000	4.48 mm	1.55 x 1.55 micras
Tipo	Resolución	Distancia focal	Tamaño de píxel

	Valor	Error	F	Cx	Су	K1	К2	кз	P1	P2
F	2653.74	7.6	1.00	-0.39	-0.04	0.68	-0.84	0.90	0.26	-0.15
Сх	26.3336	0.62		1.00	-0.10	-0.33	0.38	-0.39	0.06	0.12
Су	-10.7009	0.37			1.00	-0.01	0.02	-0.02	-0.05	0.39
K1	0.0383118	0.00032				1.00	-0.95	0.91	0.20	-0.12
К2	-0.0842049	0.0012					1.00	-0.99	-0.23	0.14
КЗ	0.0592655	0.0011						1.00	0.24	-0.15
P1	0.00171817	1.7e-05							1.00	-0.10
P2	-0.000787044	1.5e-05								1.00

Tabla 4. Coeficientes de calibración y matriz de correlación.

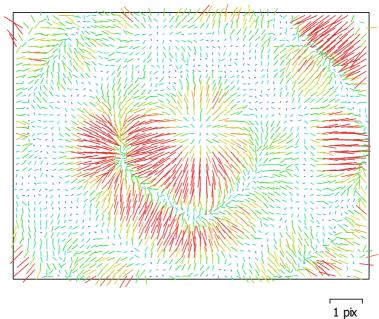


Fig. 5. Gráfico de residuales para FC2204 (4.386mm).

FC2204 (4.386mm)

Cuadro	4000 x 3000	4.386 mm	1.58 x 1.58 micras
Tipo	Resolución	Distancia focal	Tamaño de píxel

	Valor	Error	F	Cx	Су	К1	К2	кз	P1	P2
F	2578.48	7.1	1.00	-0.95	-0.39	0.96	-0.99	0.99	0.61	-0.48
Сх	15.6553	0.28		1.00	0.36	-0.92	0.94	-0.95	-0.51	0.45
Су	-3.43464	0.093			1.00	-0.38	0.39	-0.39	-0.23	0.44
K1	0.0361969	0.00021				1.00	-0.99	0.98	0.56	-0.46
К2	-0.0773383	0.00088					1.00	-1.00	-0.59	0.47
кз	0.0524489	0.00089						1.00	0.60	-0.47
P1	0.00101649	4.4e-06							1.00	-0.27
P2	-0.000542549	3.1e-06								1.00

Tabla 5. Coeficientes de calibración y matriz de correlación.

Posiciones de cámaras

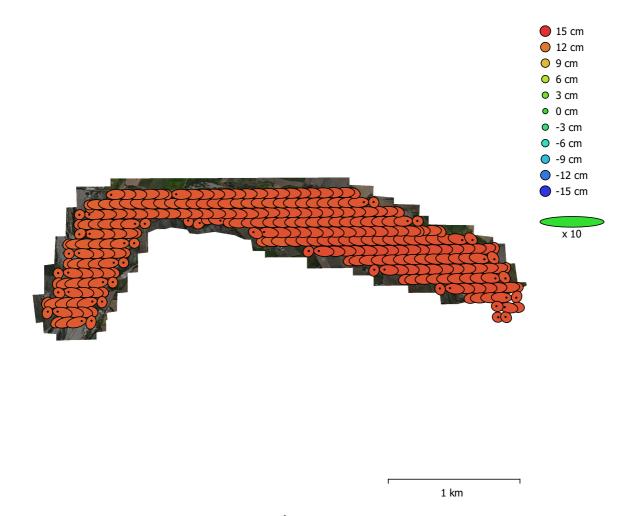


Fig. 6. Posiciones de cámaras y estimadores de error.

El color indica el error en Z mientras el tamaño y forma de la elipse representan el error en XY.

Posiciones estimadas de las cámaras se indican con los puntos negros.

Error en X (m)	Error en Y (m)	Error en Z (m)	Error en XY (m)	Error combinado (m)
0.065748	0.0742285	0.134339	0.0661657	0.134502

Tabla 6. Errores medios de las posiciones de cámaras.

X - Este, Y - Norte, Z - Altitud.

Puntos de control terrestre

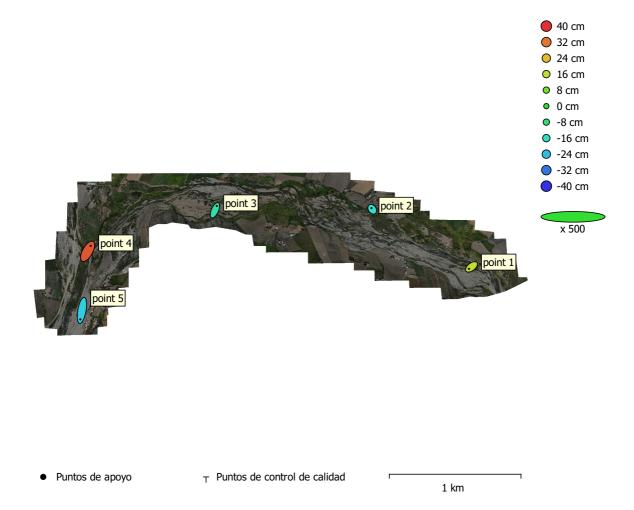


Fig. 7. Posiciones de puntos de apoyo y estimaciones de errores. El color indica el error en Z mientras el tamaño y forma de la elipse representan el error en XY.

Las posiciones estimadas de puntos de apoyo se marcan con puntos o cruces.

Número	Error en X (cm)	Error en Y (cm)	Error en Z (cm)	Error en XY (cm)	Total (cm)
5	6.43096	1.7327	2.5872	1.9963	9.2676

Tabla 7. ECM de puntos de apoyo. X - Este, Y - Norte, Z - Altitud.

Nombre	Error en X (cm)	Error en Y (cm)	Error en Z (cm)	Total (cm)	Imagen (pix)
point 1	-7.72265	-5.92228	16.715	19.3417	1.219 (8)
point 2	-2.45174	3.49181	-18.1089	18.6048	2.034 (6)
point 3	5.74247	13.0445	-13.3541	19.5312	1.230 (9)
point 4	9.22874	16.6446	35.7984	40.543	2.019 (13)
point 5	-4.79482	-27.2602	-21.994	35.3531	4.662 (6)
Total	6.43096	15.7327	22.5872	28.2676	2.359

Tabla 8. Puntos de apoyo.

X - Este, Y - Norte, Z - Altitud.

Modelo digital de elevaciones

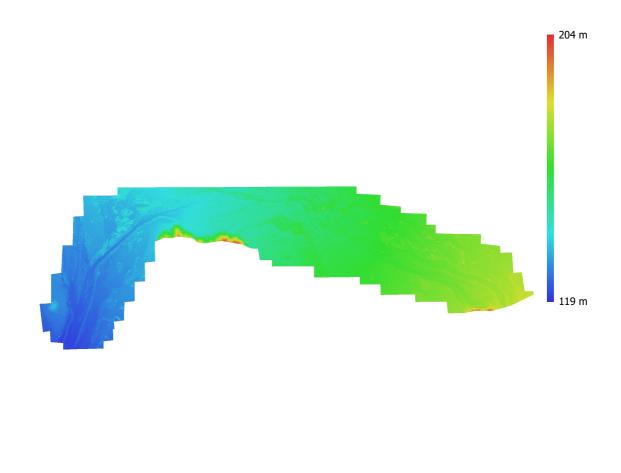


Fig. 8. Modelo digital de elevaciones.

1 km

Resolución: 13.9 cm/pix

Densidad de puntos: 51.5 puntos/m^2

Parámetros de procesamiento

Generales Cámaras 281 Cámaras orientadas 281 Marcadores 5 **Formas** Polilíneas 3089 Polígonos 68991 WGS 84 / UTM zone 17S (EPSG::32717) Sistema de coordenadas Ángulo de rotación Guiñada, cabeceo, alabeo Nube de puntos **Puntos** 267,399 de 283,274 RMS error de reproyección 0.160579 (1.18921 pix) Error de reproyección máximo 0.482526 (31.5268 pix) Tamaño promedio de puntos característicos 7.17516 pix Colores de puntos 3 bandas, uint8 Puntos clave No Multiplicidad media de puntos de paso 4.07647 Parámetros de orientación Precisión Media Pre-selección genérica Sí Sí Pre-selección de referencia 40,000 Puntos clave por foto 4,000 Puntos de paso por foto Ajuste adaptativo del modelo de cámara No Tiempo búsqueda de emparejamientos 2 minutos 30 segundos Tiempo de orientación 5 minutos 11 segundos Nube de puntos densa **Puntos** 142,823,809 Colores de puntos 3 bandas, uint8 Parámetros de obtención de mapas de profundidad Calidad Alta Nivel de filtrado Agresivo Tiempo de procesamiento 17 minutos 36 segundos Parámetros de generación de la nube densa Tiempo de procesamiento 18 minutos 23 segundos **MDE** Tamaño 26,903 x 8,884 Sistema de coordenadas WGS 84 / UTM zone 17S (EPSG::32717) Ortomosaico Tamaño 53,780 x 17,765 Sistema de coordenadas WGS 84 / UTM zone 17S (EPSG::32717) 3 bandas, uint8 Colores Parámetros de reconstrucción Modo de mezcla Mosaico Superficie MDE

Permitir el cierre de agujeros Tiempo de procesamiento

Versión del programa

Sistema

5 minutos 59 segundos

1.6.3.10723

Versión del programa OS RAM

GPU(s)

Windows 64 bit 31.85 GB CPU

Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz

GeForce GTX 1650 Intel(R) UHD Graphics 630

1.6.3 build 10723