“COMPARATIVO DE RENDIMIENTO DE CUATRO HÍBRIDOS Y UN TESTIGO COMERCIAL DE PEPINILLO (Cucumis sativus L.) EN CONDICIONES DEL VALLE DE VIRÚ”

Tesis para optar el título de:
INGENIERO AGRÓNOMO

YDELFONSO ERASMO YUPANQUI MERCADO

TRUJILLO, PERÚ
2016
La presente tesis ha sido revisada y aprobada por el siguiente jurado:

Ing. M.Sc. José Luis Holguín del Río
PRESIDENTE

Ing. Dr. Juan Carlos Cabrera La Rosa
SECRETARIO

Ing. Cesar Morales Skrabonja
VOCAL

Ing. Dr. Álvaro Pereda Paredes
ASESOR
DEDICATORIA

A Dios por todo lo maravilloso que puso en mi vida.

A mis padres Francisco y Juana, por sus enseñanzas, por sus consejos, por su apoyo.

A mi esposa Milagritos por su apoyo y comprensión, a mis hijas Fátima y Julieta, mis princesas, por ser el motor que me impulsa a ser mejor cada día.
AGRADECIMIENTO

Mi más sincero agradecimiento a Farmex S.A. por haberme proporcionado el material vegetal que me permitió llevar a cabo el presente trabajo de investigación.

Un agradecimiento especial al Dr. Álvaro Pereda Paredes por aceptar ser asesor de mi tesis y por haberme apoyado en todo momento; de igual forma al M.Sc. Guillermo Gonzales Altuna por aceptar ser mi co-asesor en el desarrollo del presente trabajo de investigación.

Un agradecimiento especial a todos los ingenieros docentes de la Escuela Profesional de Ingeniería Agrónoma por compartir los conocimientos que hoy me ayudan a desempeñarme como un buen profesional.
ÍNDICE

<table>
<thead>
<tr>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carátula</td>
</tr>
<tr>
<td>Aprobación por el Jurado de tesis</td>
</tr>
<tr>
<td>Dedicatoria</td>
</tr>
<tr>
<td>Agradecimiento</td>
</tr>
<tr>
<td>Índice</td>
</tr>
<tr>
<td>Índice de Cuadros</td>
</tr>
<tr>
<td>Índice de Figuras</td>
</tr>
<tr>
<td>Índice de anexos</td>
</tr>
<tr>
<td>Resumen</td>
</tr>
<tr>
<td>Abstract</td>
</tr>
<tr>
<td>I. INTRODUCCIÓN</td>
</tr>
<tr>
<td>II. REVISIÓN BIBLIOGRÁFICA</td>
</tr>
<tr>
<td>2.1. GENERALIDADES</td>
</tr>
<tr>
<td>2.2. CARACTERÍSTICAS DE LA ESPECIE</td>
</tr>
<tr>
<td>2.2.1. Descripción de la especie</td>
</tr>
<tr>
<td>2.2.2. Floración</td>
</tr>
<tr>
<td>2.2.3. Fruto</td>
</tr>
<tr>
<td>2.2.4. Semillas</td>
</tr>
<tr>
<td>2.3. SISTEMA DE REPRODUCCIÓN</td>
</tr>
<tr>
<td>2.3.2. Reproducción sexual</td>
</tr>
<tr>
<td>2.3.3. Plantas individuales</td>
</tr>
<tr>
<td>2.4. TIPOS DE FECUNDACIÓN</td>
</tr>
<tr>
<td>2.4.1. Apomixis</td>
</tr>
<tr>
<td>2.4.2. Fecundación cruzada</td>
</tr>
<tr>
<td>2.5. CARACTERÍSTICAS DEL CULTIVO</td>
</tr>
<tr>
<td>2.6. TIPO DE SIEMBRA</td>
</tr>
<tr>
<td>2.6.1. Directa</td>
</tr>
<tr>
<td>2.7. ÓRGANO REPRODUCTIVO</td>
</tr>
</tbody>
</table>
2.7.1. Semillas .................................................8
2.7.2. Inicio del desarrollo del fruto ..........................8
2.7.3. Terminación de desarrollo del fruto ......................8
2.8. CARACTERÍSTICAS ECOGEOGRÁFICAS ..................9
2.8.1. Intervalo altitudinal ....................................9
2.8.2. Hábitat ................................................9
2.8.3. Vegetación ..............................................9
2.8.4. Suelo ..................................................9
2.9. FERTILIZACIÓN ..........................................10
III. MATERIALES Y MÉTODOS ................................12
3.1. LUGAR DE EJECUCIÓN ..................................12
3.2. MATERIALES .............................................12
3.3. TRATAMIENTOS EN ESTUDIO ...........................12
3.4. CROQUIS DEL EXPERIMENTO ...........................14
3.5. DISEÑO ESTADÍSTICO ....................................14
3.6. CARACTERÍSTICAS DEL CAMPO EXPERIMENTAL ......15
3.7. ESTABLECIMIENTO Y CONDUCCIÓN DEL EXPERIMENTO 15
3.8. PARÁMETROS A EVALUAR: ...............................17
IV. RESULTADOS Y DISCUSIÓN ...............................19
4.1. FLORES FEMENINAS Y CUAJADAS POR PLANTA DE 19
PEPINILLO SEGÚN HÍBRIDO ................................19
4.2. NÚMERO, PESO Y TAMAÑO DE FRUTOS POR PLANTA DE 23
PEPINILLO SEGÚN HÍBRIDO ................................23
V. CONCLUSIONES ...........................................33
VI. RECOMENDACIONES .......................................34
VII. BIBLIOGRAFÍA ...........................................35
VIII. ANEXOS ...............................................39
ÍNDICE DE CUADROS

Página

Cuadro 1. Número de flores femeninas de pepinillo por planta ...............19
Cuadro 4. Peso de Frutos por planta pepinillo según tratamientos .........25
Cuadro 5. Tamaño de fruto por planta de pepinillo según tratamiento ....27
Cuadro 6. Producción final por planta de pepinillo según tratamientos ...29
<table>
<thead>
<tr>
<th>ÍNDICE DE FIGURAS</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1</td>
<td>20</td>
</tr>
<tr>
<td>Promedio de número de flores femeninas de pepinillo según híbrido.</td>
<td></td>
</tr>
<tr>
<td>Figura 2</td>
<td>22</td>
</tr>
<tr>
<td>Promedio de número de frutos cuajados de pepinillo según híbrido.</td>
<td></td>
</tr>
<tr>
<td>Figura 4</td>
<td>26</td>
</tr>
<tr>
<td>Promedio de peso de frutos de pepinillo por planta según híbrido.</td>
<td></td>
</tr>
<tr>
<td>Figura 5</td>
<td>28</td>
</tr>
<tr>
<td>Promedio de tamaño de fruto de pepinillo según híbrido.</td>
<td></td>
</tr>
<tr>
<td>Figura 6</td>
<td>30</td>
</tr>
<tr>
<td>Promedio de producción final por planta en kg. de frutos de pepinillo según híbrido.</td>
<td></td>
</tr>
<tr>
<td>Figura 7</td>
<td>32</td>
</tr>
<tr>
<td>Promedio de producción final de frutos de pepinillo en t.ha(^{-1}) según tratamiento e híbrido.</td>
<td></td>
</tr>
</tbody>
</table>
ÍNDICE DE ANEXOS

<table>
<thead>
<tr>
<th>Anexo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Análisis de varianza del cuadro 1 de Flores femeninas por planta de pepinillo</td>
</tr>
<tr>
<td>2</td>
<td>Análisis de varianza del cuadro 2 Flores cuajadas por planta de pepinillo.</td>
</tr>
<tr>
<td>3</td>
<td>Análisis de varianza del cuadro 3 Número de frutos por planta de pepinillo</td>
</tr>
<tr>
<td>4</td>
<td>Análisis de varianza del cuadro 4 Peso de frutos por planta de pepinillo.</td>
</tr>
<tr>
<td>5</td>
<td>Análisis de varianza del cuadro 5 Tamaño de frutos por planta de pepinillo.</td>
</tr>
<tr>
<td>6</td>
<td>Análisis de varianza del cuadro 6 Producción por planta de pepinillo.</td>
</tr>
<tr>
<td>7</td>
<td>Análisis de varianza del cuadro 7 Producción de pepinillo.</td>
</tr>
</tbody>
</table>
RESUMEN

El presente trabajo de investigación se realizó en el sector Socorro, distrito Virú, provincia Virú, región La Libertad con el objeto de determinar que híbridos producirían mayor rendimiento para las condiciones climatológicas del valle de Virú. Para ello se utilizó cinco híbridos de pepinillo los cuales fueron Híbrido Cobra F1® (T1), Híbrido Nativo F1® (T2), Híbrido CU21138® (T3), Híbrido Salvador F1® – Comercial (T4) y Híbrido FX – 193 F1® (T5). Tomando como testigo al T4 por ser de naturaleza comercial. Se utilizó el diseño estadístico Bloques Completamente al Azar (B.C.A.) para evaluar el rendimiento de los cuatro híbridos nuevos y un comercial de pepinillo (Cucumis sativus L.) con 5 tratamientos y 4 repeticiones. Se efectuó el análisis de varianza y la prueba Duncan al 0.05%; los parámetros a evaluar fueron el número de flores, número de frutos cuajados, número de frutos por planta, tamaño de frutos por planta, peso de fruto por híbrido, producción final en Kg por planta y producción final (t.ha⁻¹) dando como resultado que el híbrido CU121138®, tiene 30.75 número de flores femeninas por planta y el híbrido testigo desarrolló 27 número de flores femeninas por planta. En cuanto a frutos cuajados, se obtuvieron 20.75 y 18 número de frutos cuajados respectivamente. El peso del fruto del híbrido CU21138® es de 493.25 gramos por planta de pepinillo, sin embargo, el híbrido testigo Salvador F1® – Comercial arrojó 533.25 gramos por planta de pepinillo. Se determinó que de los cinco híbridos estudiados el híbrido CU21138® tiene mayor rendimiento para las condiciones del Valle de Virú con una producción de 98 t.ha⁻¹. Se concluye que las condiciones climáticas en la interacción genotipo-ambiente no afectan al pepinillo híbrido CU21138®.
ABSTRACT

The present research work was carried out in the sector of Socorro, in the district of Viru, Viru province, La Libertad Region, in order to determine that hybrids would produce greater performance for the climatic conditions of the Viru Valley. For this, five types of cucumber were used: hybrid Cobra F1 hybrid® (T1), hybrid native F1® (T2), hybrid CU21138® (T3), hybrid Salvador F1® - commercial (T4) and hybrid FX - 193 F1® (T5). The T4 was used as the control as the natural commercial type. The statistical design of Blocks Completely at Random was used to assess the performance of the four new hybrids and a commercial cucumber (Cucumis sativus l.) with 5 treatments and 4 replications. A variance analysis and Duncan test at the 0.05% were completed; the parameters evaluated were the number of flowers, number of mature fruits, number of fruits per plant, size of fruit per plant, weight of fruit by hybrid, final production in kg per plant and final production (t/ha-1). The results for the hybrid CU21138® were 30.75 female flowers per plant and the hybrid control developed 27 female flowers per plant. As for matured fruit, 20.75 and 18 number of fruits respectively were obtained. The weight of the fruit of the hybrid CU21138® was 493.25 grams per cucumber plant, however the hybrid control Salvador F1® - commercial produced 533.25 grams per cucumber plant. It was determined that of the five hybrids studied, the hybrid CU21138® has higher performance to the conditions of the Viru Valley, with a production of 98 t.ha⁻¹. It is concluded that interaction between climatic conditions and genotype do not affect the cucumber hybrid CU21138®.
I. INTRODUCCIÓN

El cultivo del pepinillo es muy importante ya que tiene un elevado índice de consumo pues sirve de alimento tanto en fresco como industrializado. El cultivo de esta hortaliza tiene una estabilidad en la superficie cultivada, con un aumento de la producción (Infoagro, 2015).

Según el mismo autor, el pepinillo posee propiedades nutritivas, tiene especial importancia su elevado contenido de ácido ascórbico y pequeñas cantidades del complejo vitamínico B. En cuanto a minerales es rico en Calcio, Cloro, Potasio y Hierro. Las semillas son ricas en aceites vegetales. Es una especie cultivada en diferentes zonas ecológicas de la geografía mundial, sobre todo entre los 50° de latitud norte y los 30° de latitud sur, fundamentalmente en climas cálidos y no demasiado fríos (Infoagro, 2015).

Debido a la amplia gama de altitudes en que Cucumis sativus L. se cultiva tanto en el continente americano como en el continente Europeo, como resultado una gran diversidad morfológica de sus semillas y frutos (colores, formas, grosores y durabilidad de la cáscara del fruto), la existencia de variedades con ciclos de vida de diferente duración, así como la de numerosas variantes locales con características agronómicas sobresalientes (resistencia a enfermedades virales), que indican claramente la prominente variación genética de sus poblaciones, aunado a ello, la presencia de poblaciones silvestres de su antecesor C. Hardwickii presente en las faldas del Himalaya en Asia, dan la pauta para el mejoramiento genético de esta especie (Bisognin, 2002; Krístková y col., 2003; InfoAgro: 2015; AgroNet, 2004).

En base a lo mencionado, el presente trabajo tiene como objetivo principal determinar el o los híbridos de pepinillo (Cucumis sativus L.) con mayor adaptabilidad y rendimiento en las condiciones del valle de Virú.
II. REVISIÓN BIBLIOGRÁFICA

2.1. GENERALIDADES
Moroto (1999), reporta que el pepinillo es el fruto de una planta herbácea cuyo nombre botánico es *Cucumis spp.* y pertenece a la familia de las cucurbitáceas, al igual que frutas como la sandía o el melón y otras hortalizas como la calabaza y el calabacín. Posee forma alargada que se torna redondeada en sus dos extremos, por norma general alcanza los 15-25 cm de longitud y 5 de diámetro (a excepción de los pepinillos que se consumen en encurtidos), y llegan como máximo a los 15 cm de longitud. Su peso suele oscilar entre los 30 y los 200 gramos, dependiendo de la variedad. De piel verde con ligeros tonos amarillentos en sus extremos, contiene una carne o pulpa blanquecina en cuyo centro se encuentran las semillas. Destaca en alimentación como un producto fresco, de sabor algo insípido (similar a los melones no maduros) pero que combina a la perfección con innumerables ensaladas elaboradas a base de ingredientes de la huerta o el campo.

2.2. CARACTERÍSTICAS DE LA ESPECIE

2.2.1. Descripción de la especie
Hierbas anuales, postradas o tendidas. Tallos angulosos, híspidos. Zarcillos simples, densa o esparcidamente híspidos. Hojas pecioladas, pecíolos 4.0-7.0 cm largo, híspidos; láminas 8.0-12.0 cm largo, 6.0-11.0 cm ancho, cordado-triangulares, angulosamente 3-5-lobadas, el lóbulo terminal triangular, acuminado, ambas superficies híspidas (Nee, 1993; Krístková y col., 2003).
2.2.2. Floración

2.2.2.1. Tamaño y tipo de flor

Flores monoicas (algunos cultivares con flores andromonoicas, con flores hermafroditas y estaminadas, ginomonoicas, con flores hermafroditas y pistiladas y ginoicas, únicamente con flores pistiladas); flores estaminadas escasas, en fascículos; pedicelos 0.8 cm largo, pilosos; perianto pentámero; receptáculo 0.5-0.6 cm largo, campanulado, piloso; sépalos 0.45 cm largo, subulados, pilosos; pétalos 2.5 cm largo, campanulada, esparcidamente pilosa por fuera, lóbulos 0.6 cm largo (Nee, 1993; Krístková y col., 2003). Flores pistiladas solitarias, junto con las estaminadas; pedicelos 1.0-2.0 cm largo; perianto como en las estaminadas; ovario fusiforme, tuberculado; estilo 0.1-0.2 cm largo; estigma lobado, capitado-esférico (Nee, 1993; Krístková y col., 2003).

2.2.2.2. Color de flor


2.2.2.3. Tiempo de antesis

Las flores de esta especie permanecen abiertas sólo un día (Chávez, 2001).

2.2.2.4. Estimación cuantitativa y cualitativa

2.2.2.4.1. Número promedio de flores por planta

Las plantas de *Cucumis sativus*, típicamente exhiben una expresión sexual monoica y presentan una proporción de flores estaminadas de 10:1 con respecto a las pistiladas, aunque este cociente puede variar dependiendo de la variante cultivada, del uso de reguladores hormonales y de las condiciones del medio ambiente (Yin & Quinn, 1995; Hossain y otros, 2002).
2.2.2.4.2. Número total de flores por planta
Para esta especie se tiene registrado que cada planta puede producir más de 30 flores pistiladas y más de 663 flores estaminadas, con un total de flores por planta mayor a 690, lo cual dependerá de la variedad cultivada, del uso de reguladores hormonales y de las condiciones del medio ambiente (Yin & Quinn, 1995, Hossain y otros, 2002).

2.2.2.5. Inflorescencias

2.2.2.5.1. Tamaño y tipo de inflorescencia
Las flores estaminadas se agrupan en inflorescencias fasciculadas, las flores pistiladas son solitarias (Nee, 1993; Krístková y otros, 2003).

2.2.2.6. Polen
Los granos de polen son grandes, pegajosos y pesados por lo que no pueden ser transportados por el viento, siendo necesaria la participación de insectos (vectores entomófilos) para el transporte del polen (Chávez, 2001; Krístková y col., 2003).

2.2.2.6.1. Distancia de dispersión
Se tiene reportado que la distancia de dispersión por parte de los insectos, no es muy amplia, cuya mayor distancia oscila entre de 750-1000 m a partir del centro de la congregación (Hokanson y col., 1997).

2.2.2.7. Polinización
La polinización es cruzada. Al ser una planta típicamente monoica, necesita de polinizadores para la transportación de los granos de polen hacia los ovarios y aunque algunas veces se presentan flores
hermafroditas, estas tienen un porcentaje bajo de autopolinización o son incapaces de autopolinizarse (Rashid & Singh, 2000; Chávez, 2001).

2.2.2.7.1. **Agente de polinización**
Los agentes de polinización son principalmente los insectos de la familia Apidae, (*Apis mellifera* L. y *Megachile pacifica* Panzer), aunque esta última en menor proporción y utilizada principalmente en cultivos confinados. También se cita a especies del género *Xylocopa Latreille* como polinizadores del pepino (Vicidomini, 2000).

2.2.2.7.2. **Movimiento de polen**
El movimiento del polen es posible sólo por transporte de insectos, ya que el polen es muy pesado y largo para ser transportado por viento (Chávez, 2001).

2.2.3. **Fruto**
Frutos de tamaño variable, cilíndrico u oblongo, tuberculado, al menos cuando joven, cáscara (epicarpo) con patrones de coloración variables, verde claro a verde oscuro cuando inmaduros, hasta amarillo a anaranjado al madurar, glabros, lisos o ásperos; pulpa (mesocarpo) abundante, carnoso, de coloración blanca a verde claro cuando inmaduro, a amarillo-aceoso cuando madura, sabor de ligeramente dulce a dulce (Nee, 1993; Krístková *et al.*, 2003; InfoAgro, 2015; AgroNet, 2004).

2.2.3.3. **Número de frutos**
Se tiene reportado que el número de frutos oscila entre 5 a 41 por planta, lo cual dependerá de la variante cultivada, del uso de reguladores hormonales y de las condiciones del medio ambiente (Cardoso, 2002; Hossain y col., 2002).
2.2.4. Semillas
Semillas 0.8-1.0 cm largo, 0.3-0.5 cm ancho, numerosas, ovado-elípticas, comprimidas (Nee, 1993; Krístková y col., 2003).

2.2.4.1. Color de las semillas

2.2.4.2. Número de semillas por fruto
Se reporta que el número de semillas por fruto es aproximadamente de 30 a 300 (Thoa, 1998).

2.3. SISTEMA DE REPRODUCCIÓN

2.3.1. Reproducción vegetal
Se tiene reportado que la propagación del pepino es por semilla (sexual), por lo que la reproducción vegetativa no se presenta (Rashid & Singh, 2000).

2.3.2. Reproducción sexual
La reproducción de esta especie al ser una planta generalmente monoica, es de manera sexual por alogamia (Chávez, 2001).

2.3.3. Plantas individuales

2.3.3.1. Andromonoicas
Para algunas variedades de esta especie se reporta la presencia de plantas andromonoicas, con flores masculinas y hermafroditas por separado, en la misma planta (Krístková y col., 2003).
2.3.3.2. **Hermafroditas**

Se reporta la presencia en algunos cultivares la presencia de individuos hermafroditas (Krístková y col., 2003).

2.3.3.3. **Monoicas**

La expresión sexual típica de esta especie es monoica con flores masculinas y femeninas por separado, pero en la misma planta, aunque en la actualidad muchos de los cultivares son ginoicos, las cuales poseen únicamente flores pistiladas (Kristková y col., 2003).

2.4. **TIPOS DE FECUNDACIÓN**

2.4.1. **Apomixis**

En esta especie es muy común el desarrollo de frutos sin semilla, es decir, mediante partenocarpia (Krístková y col., 2003).

2.4.2. **Fecundación cruzada**

Los nectarios de las flores son una atracción olfatoria para los visitadores, debido a ello, el índice de los visitadores en las flores esta especie favorece la fecundación cruzada y por ende la variabilidad genética y nuevas combinaciones alélicas dentro de la especie (Chávez, 2001).

2.5. **CARACTERÍSTICAS DEL CULTIVO**

El pepino puede cultivarse todo el año, tanto en época de secas (si se cuenta con riego), como de temporal. En general abarca un periodo de desarrollo de 4 a 6 meses (Izquierdo, 2003).
2.6. TIPO DE SIEMBRA

2.6.1. Directa
Puede realizarse siembra directa sobre el suelo y puede ser de forma manual o mecanizada, se depositan de dos a tres semillas, a una profundidad de 1 a 3 cm. El sistema de siembra directa puede establecerse bajo las modalidades de piso, que se realiza empleando un surco o camellón con anchos de 0.9-1.8 m y con distanciamiento entre plantas a tresbolillo de 30-60 cm. En espaldera se siembra a doble hilera separadas a 1.0 m y entre cada hilera se establece una separación de 1.5-2.0 m. En general cuando se emplean surcos o camellones se sugiere orientarlos de este-oeste si el cultivo se practica en invierno-primavera y de norte-sur en la época más calurosa del año (Izquierdo, 2003).

2.7. ÓRGANO REPRODUCTIVO

2.7.1. Semillas
La siembra es por semillas (Izquierdo, 2003).

2.7.2. Inicio del desarrollo del fruto
A partir del día 40-50 el fruto inicia su desarrollo, aunque el lapso puede ser mayor o menor dependiendo de la variedad y de la región (Santamaría, 2000).

2.7.3. Terminación de desarrollo del fruto
La maduración del fruto se da entre los 60-90 días, aunque el lapso puede variar dependiendo de la maduración que se requiera (Santamaría, 2000).
2.8. CARACTERÍSTICAS ECOGEOGRÁFICAS

2.8.1. Intervalo altitudinal
Esta especie se cultiva primordialmente en zonas con climas cálidos, desde el nivel del mar a 1500 - 2000 msnm (Nee, 1993).

2.8.2. Hábitat
Se encuentra en cultivos, agroecosistemas y en huertos familiares, generalmente abarcando climas cálidos (Nee, 1993).

2.8.3. Vegetación
Cuando es escapada al cultivo, forma parte de vegetación secundaria y ruderal, derivados de bosques tropicales, aunque también se encuentra en matorrales, vegetación de dunas costeras, bosques de galería, pastizales y bosques de encino (Nee, 1993).

2.8.4. Suelo
El pepinillo puede cultivarse en cualquier tipo de suelo de estructura suelta, bien drenado y con suficiente materia orgánica. Es una planta medianamente tolerante a la salinidad (algo menos que el melón), de forma que si la concentración de sales en el suelo es demasiado elevada las plantas absorben con dificultad el agua de riego, el crecimiento es más lento, el tallo se debilita, las hojas son más pequeñas y de color oscuro y los frutos obtenidos serán torcidos. Si la concentración de sales es demasiado baja el resultado se invertirá, dando plantas más frondosas, que presentan mayor sensibilidad a diversas enfermedades. El pH óptimo oscila entre 5,5 y 7 (AgroNet, 2004).
2.9. FERTILIZACIÓN
La agricultura intensiva desarrollada a partir de los años 60 del siglo XX en los países más avanzados, es un sistema que debido a la incorporación de los avances tecnológicos en distintas áreas: la mecanización, el riego, la fertilización, el control fitosanitario, etc., tuvo logros importantes como el de incrementar la producción de alimentos para una población humana en creciente aumento (Moroto, 1999).

Las técnicas modernas incluyen la adopción de sistemas de monocultivos, modernas variedades de cultivos, semillas mejoradas, insumos externos como fertilizantes químicos, pesticidas, herbicidas, maquinaria e infraestructura (Pretty, 1995). Los fertilizantes químicos son esenciales en la agricultura moderna ya que aportan los nutrientes requeridos por las plantas; sin embargo, su uso excesivo ha causado un deterioro en el ambiente, además que no todo el fertilizante es aprovechado por las plantas (Adesemoye y col., 2010). El uso de rizobacterias promotoras de crecimiento vegetal (RPCV) es una alternativa a la aplicación de fertilizantes químicos. Las RPCV colonizan las rizósfera e incrementan el crecimiento de las plantas (Yang y col., 2009); también se ha observado que la producción de antibióticos y enzimas por estos microorganismos disminuye la incidencia de enfermedades (Kokalis-Burelle y col., 2002; Glick y col., 2007; Yang y col., 2009).

Las RPCV tienen la capacidad de convertir el fósforo no asimilable a formas más disponibles para las plantas. La inoculación de rizobacterias que tienen la capacidad de solubilizar fósforo, aumenta la concentración de éste en la planta (Martín y col., 2003; Hariprasad y Niranjana, 2009).
La producción de hortalizas en sistemas intensivos es una actividad altamente demandante de fertilizantes químicos, además por representar un sistema productivo en regiones de condiciones de altas temperaturas como es el caso del Valle Mexicali, Baja California (Martín y col., 2003; Hariprasad y Niranjana, 2009).
III. MATERIALES Y MÉTODOS

3.1. LUGAR DE EJECUCIÓN
El presente trabajo de investigación se realizó en el sector Socorro, distrito de Virú, provincia de Virú, Región La Libertad entre los meses de Junio a Agosto del 2015.

3.2. MATERIALES

- Semillas de pepinillo.
- Pesticidas.
- Agua.
- Terreno de cultivo.
- Mano de obra.
- Palanas.
- Insumos.
- Material de escritorio.
- Cámara fotográfica.

3.3. TRATAMIENTOS EN ESTUDIO

T1: **Híbrido Cobra F1®**
Híbrido de alta productividad y rusticidad, presenta buena carga de frutos de buen tamaño y de buen color con un largo entre 20 – 25 cm. y un ancho entre 5 – 6 cm. Se adapta muy bien a las condiciones de siembra de nuestro país y es tolerante a varios tipos de virus y enfermedades. (Farmex).

T2: **Híbrido Nativo F1®**
Híbrido monoico multivirus de planta sana, vigorosa y ciclo similar al ginoico en precocidad, volumen concentrado y calidad. Frutos

**T3:** Híbrido CU21138®.
Planta ginoica con una excelente carga de frutos, recomendado para siembras de verano. Aún no es comercial.

**T4:** Híbrido Salvador F1® – Comercial (Testigo).
Híbrido de alta adaptabilidad a las condiciones de nuestro país, tolerante a varios tipos de virus y enfermedades entre los que destacan el PRSV, SC, WMV, CMV, Antracnosis, Mildiú. Precoz, con excelente carga de frutos de buen tamaño, buen color y uniformidad con un largo entre 22 – 26 cm y un ancho entre 5 – 6 cm. (Farmex).

**T5:** Híbrido FX – 193 F1®.
Planta ginoica con una excelente carga de frutos, recomendado para siembras de invierno. Aún no es comercial.
3.4. CROQUIS DEL EXPERIMENTO

3.5. DISEÑO ESTADÍSTICO

El diseño estadístico empleado para evaluar el rendimiento de cuatro híbridos nuevos y un comercial de pepinillo (Cucumis sativus L.) fue el de BLOQUES COMPLETOS AL AZAR (B.C.A.) con 5 tratamientos y 4 repeticiones. Se efectuó el análisis de varianza y la prueba Duncan al 0.05%.
3.6. CARACTERISTICAS DEL CAMPO EXPERIMENTAL

Características de parcela

- Ancho : 6 m.
- Largo : 5 m.
- Área : 30 m².
- Surcos por parcela : 4.
- Surcos con valor estadístico: 2.
- Distancia entre plantas : 0.20 m.
- Distancia entre surcos : 3 m.
- Número de plantas : 100 plantas.

Características de bloque

- Ancho de bloque : 30 m.
- Largo : 5 m.
- Ancho de calle : 1 m.
- Área : 150 m².
- Área total : 450 m²

3.7. ESTABLECIMIENTO Y CONDUCCIÓN DEL EXPERIMENTO

- Limpieza del campo
  Se procedió a rastrillar los rastrojos y restos del cultivo anterior, con la finalidad que el campo quede limpio.

- Preparación del suelo
  Se realizó una pasada de arado y dos de grada de forma cruzada y posteriormente se marcó los surcos con caballo.

- Siembra
  Previo a la siembra se remojo los surcos por doce horas, al
alcanzar la capacidad de campo se realizó la siembra manual colocando una semilla por golpe cada 20 cm.

❖ **Cultivo**
Se realizaron riegos semanales por gravedad, también se realizó desmalezado manual en dos oportunidades y dos aporques a los 15 y 35 DDS.

❖ **Abonamiento**
Se realizó cinco fertilizaciones, la primera se hizo a los 15 días junto con el aporque, se utilizó 4 bolsas de 50 kg de Fertiphos, 3 bolsas de 50 kg sulfato de potasio, 2 bolsas de 50 Kg de fosfato de amonio, 5 bolsas de 50 kg de nitrato de amonio.
La segunda fertilización se hizo a los 25 días, se utilizó 5 bolsas de 50 kg de nitrato de amonio, 3 bolsas de 50 kg de Fertiphos.
La tercera fertilización se hizo a los 35 días junto con el aporque utilizando 5 bolsas de 50 kg de nitrato de amonio y 4 bolsas de Fertiphos.
La cuarta y quinta fertilización se hizo al voleo utilizando 5 bolsas de 50 kg de nitrato de amonio en cada una después de la primera y segunda cosecha.

❖ **Manejo fitosanitario**
**Plagas,** el cultivo sufrió el ataque de insectos picadores, chupadores, masticadores y nematodos. Destacando los siguientes:

**Mosca blanca** (*Bemisia tabaci*, **Prodiplosis longifila**), estas dos plagas nos atacaron desde los 7 DDS hasta el término del cultivo, logramos controlar usando Imidacloprid, Spiroximate, Tiametoxan, Fipronil, extractos de capsicina, Fentocoato y
Acetamiprid. Todos estos ingredientes activos se usaron en rotación.

**Diaphania nitidalis;** Esta plaga nos atacó desde la etapa de floración controlamos con Spinosad, Clorantraniliprole y methomil. Todos estos ingredientes activos se usaron en rotación.

**Nematodos,** esta plaga nos atacó en los primeros 35 días y logramos controlarlo utilizando oxamilo a dosis de 1.5 lt /ha, haciendo aplicaciones a drench semanalmente hasta los 35 días.

**Enfermedades,** fueron dos las que nos atacaron:

Oidiosis (*Erysiphe cichoracearum*) y Mildiu (*Peronospora sparsa*), nos atacó desde los 25 DDS, Para lo cual se usó a los 20 días Strobilurnas, seguido se aplicó a los 32 día Orchestra®, con Hieloxil®, a los 40 días se aplicó Meteor®, con Equation pro®, 47 días se aplicó Prosper®, con Hieloxil®, a los 60 días se aplicó Infinito®, con Orchestra®.

❖ **Cosecha**

La cosecha se realizó semanalmente y duro 30 días.

3.8. PARÁMETROS A EVALUAR:

1. **Número de flores femeninas/planta;** la evaluación se iniciará a los 25 DDS y se realizará con un intervalo de 10 días hasta llegar a la etapa de fructificación (aprox. a los 45 días).

2. **Número de frutos cuajados/planta;** se contará los frutos cuajados de las plantas competitivas de cada línea (10 por línea) de los surcos centrales de cada parcela.

3. **Número de frutos/planta;** se contará los frutos cosechados de cada planta en evaluación.
4. **Tamaño de fruto;** se medirá la longitud de cada fruto cosechado en cm.

5. **Peso de fruto;** se medirá el peso de cada fruto cosechado en gr.

6. **Producción final/planta;** se consolidará el peso de todos los frutos obtenidos por planta en Kg.

7. **Producción total (Kg/ha).**
IV. RESULTADOS Y DISCUSIÓN

4.1. FLORES FEMENINAS Y CUAJADAS POR PLANTA DE PEPINILLO SEGÚN HÍBRIDO

4.1.1. Flores femeninas por planta

Cuadro 1. Número de flores femeninas de pepinillo por planta

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Promedio</th>
<th>Duncan al 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3 (CU21138)</td>
<td>30.75</td>
<td>a</td>
</tr>
<tr>
<td>T4 (Salvador F1)</td>
<td>27</td>
<td>a</td>
</tr>
<tr>
<td>T1 (Cobra F1)</td>
<td>26</td>
<td>a b</td>
</tr>
<tr>
<td>T2 (Nativo F1)</td>
<td>16.5</td>
<td>b</td>
</tr>
<tr>
<td>T5 (FX-193 F1)</td>
<td>11.75</td>
<td>c</td>
</tr>
</tbody>
</table>

CV: 6.27% DE: 7.94

El Cuadro 1, para el parámetro de número de flores femeninas de pepinillo por planta según tratamientos y repeticiones. El rendimiento de flores femeninas por planta de pepinillo se encuentra entre 11.75 y 30.75 flores por planta, pero el rendimiento que se repite mayor número de veces en los tratamientos es 12 y 28 flores por planta.

En el Cuadro 1 para el parámetro número de flores femeninas por planta al realizar el análisis estadístico correspondiente se observaron diferencias estadísticas entre tratamientos, pero no así entre bloques, el coeficiente de variación obtenido indica que los datos son ampliamente confiables. Al aplicar la evaluación Duncan al 5% se obtiene que los tratamientos T3 y T4 son estadísticamente iguales y a la vez superiores a los tratamientos T2 y T5.
En la Figura 1 se observa un resumen del número promedio de flores femeninas por planta en cada tratamiento con su respectivo intervalo de confianza. Para el caso del Tratamiento T3 (Híbrido CU21138) el número medio es de aproximadamente 30.9 (alrededor de 31 flores femeninas por planta) y su intervalo es de 30 a 31, es decir, se espera que con un 95% de confianza el número promedio de flores por planta se encuentre entre 30 y 32 aproximadamente. Los datos son similares a los obtenidos por Aguilar (1999), en su estudio determinó que el promedio más alto de flores femeninas de pepinillo (*Cucumis sativus L.*) es de 33.05 flores por planta y que este alto índice de flores femeninas, se debe a que la variedad es predominantemente de floración femenina.

**Figura 1** Promedio de número de flores femeninas de pepinillo según híbrido.

En la Figura 1, para el parámetro de número de flores femeninas por planta el Tratamiento 3 (T3) obtiene el mayor número de flores femeninas contando con aproximadamente 31 flores femeninas por planta de híbrido de pepinillo. Es decir que el tratamiento T3 es el
que acumula el mayor número de flores femeninas por planta con 31 en cada parcela demostrativa a diferencia del T5 quien sólo logró 11.75 flores femeninas en promedio. Esto nos hace pensar que es el Tratamiento 3 (CU21138) el que más se adecúa a las condiciones de clima de Virú en el proceso de adaptación de los híbridos en el campo. Al realizar sus estudios Aguilar (1999) encuentra análogos resultados, pues el híbrido en experimentación el cual cuenta con mayor número de flores femeninas presenta 33.05 flores femeninas por planta.

4.1.2. Número de frutos cuajados por planta

Cuadro 2. Número de frutos cuajados de pepinillo por planta

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Promedio</th>
<th>Duncan al 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3 (CU 21138)</td>
<td>20.75</td>
<td>a</td>
</tr>
<tr>
<td>T4 (Salvador F1)</td>
<td>18.50</td>
<td>a</td>
</tr>
<tr>
<td>T1 (Cobra F1)</td>
<td>16</td>
<td>ab</td>
</tr>
<tr>
<td>T2 (Nativo F1)</td>
<td>12.5</td>
<td>b</td>
</tr>
<tr>
<td>T5 (FX – 193 F1)</td>
<td>9.75</td>
<td>c</td>
</tr>
</tbody>
</table>

C.V: 7.3% DE: 4.44

El Cuadro 2, para el parámetro de número de frutos cuajados de pepinillo por planta según tratamientos y repeticiones. El rendimiento de frutos cuajados por planta de pepinillo se encuentra entre 9 y 22 frutos por planta pero el rendimiento que se repite mayor número de veces en los tratamientos es 13 y 19 frutos por planta.

En el Cuadro 2 para el parámetro número de frutos cuajados por planta al realizar el análisis estadístico correspondiente se observó
diferencias estadísticas entre tratamientos pero no así entre bloques, el coeficiente de variación obtenido indica que los datos son ampliamente confiables. Al aplicar la evaluación Duncan al 5% se obtiene que los tratamientos T3 y T4 son estadísticamente iguales y a la vez superiores a los tratamientos T2 y T5.

En la Figura 2 se aprecia un resumen del número promedio de flores cuajadas por planta en cada tratamiento con su respectivo intervalo de confianza; así para el caso del Tratamiento T3 (Híbrido C121138) el número medio es de aproximadamente 20.75 (alrededor de 21 flores cuajadas por planta) y su intervalo es de 20 a 22, es decir, se espera que con un 95% de confianza el número promedio de frutos por planta se encuentre entre 20 y 21 aproximadamente.

![Gráfico de barras](image)

**Figura 2.** Promedio de número de frutos cuajados de pepinillo según híbrido.

En la Figura 2, para el mismo parámetro de número de frutos cuajados por planta con el mayor número de frutos cuajados,
aproximadamente 21 frutos cuajados por planta de híbrido de pepinillo. Como se puede observar en la Figura 2, el tratamiento T3 es el que acumula el mayor número de frutos cuajados por planta con 21 en cada parcela demostrativa a diferencia del T5 quien sólo logró 9.75 frutos cuajados en promedio. Esto nos hace pensar que es el Tratamiento 3 (CU21138) el que más se adecúa a las condiciones de clima de Virú en el proceso de adaptación de los híbridos en el campo.

4.2. NÚMERO, PESO Y TAMAÑO DE FRUTOS POR PLANTA DE PEPINILLO SEGÚN HÍBRIDO

4.2.1. Número de frutos por planta

Cuadro 3. Número de frutos de pepinillo por planta según tratamiento

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Promedio</th>
<th>Duncan al 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3 (CU 21138)</td>
<td>14.75</td>
<td>a</td>
</tr>
<tr>
<td>T4 (Salvador F1)</td>
<td>12.75</td>
<td>a</td>
</tr>
<tr>
<td>T1 (Cobra F1)</td>
<td>10</td>
<td>b</td>
</tr>
<tr>
<td>T2 (Nativo F1)</td>
<td>7.5</td>
<td>c</td>
</tr>
<tr>
<td>T5 (FX – 193 F1)</td>
<td>5.25</td>
<td>d</td>
</tr>
</tbody>
</table>

CV: 7.4%  DE: 13.89

El Cuadro 3, para el parámetro de número de frutos de pepinillo por planta según tratamientos y repeticiones. El rendimiento de numero de frutos por planta de pepinillo se encuentra entre 5 y 16 frutos por planta; pero el rendimiento que se repite mayor número de veces en los tratamientos es 5, 8 y 14 frutos por planta.
En el Cuadro 3 para el parámetro número de frutos por planta al realizar el análisis estadístico correspondiente se observó diferencias estadísticas entre tratamientos pero no así entre bloques, el coeficiente de variación obtenido indica que los datos son ampliamente confiables. Al aplicar la evaluación Duncan al 5% se observa que los tratamientos T3 y T4 son estadísticamente iguales y a la vez superiores a los tratamientos T1, T2 y T5.

En la Figura 3, se observa un resumen del número promedio de frutos por planta en cada tratamiento con sus respectivos intervalos de confianza; así para el caso del Tratamiento T3 (Híbrido CU21138) el número medio es de aproximadamente 14.75 (alrededor de 15 frutos por planta) y su intervalo es de 14. a 15.71, es decir, se espera que con un 95% de confianza el número promedio de frutos por planta se encuentre entre 14 y 16 aproximadamente.

![Gráfico de barra de frutos por planta]

**Figura 3. Promedio de número de frutos de pepinillo según híbrido.**
En la Figura 3, para el mismo parámetro de número de frutos por planta con el mayor número de flores femeninas cuajadas es el que cuenta con mayor número de frutos, aproximadamente 15 frutos por planta de híbrido de pepinillo. El tratamiento T3 es el que acumula el mayor número de frutos por planta, aproximadamente 15 en cada parcela demostrativa a diferencia del T5 quien sólo logró 5.25 frutos en promedio. Esto nos hace pensar que es el Tratamiento 3 (CU21138) el que más se adecúa a las condiciones de clima de Virú en el proceso de adaptación de los híbridos en el campo. Análogo resultado obtuvo Sánchez (1998) quien en su trabajo de investigación observó que las condiciones agro meteorológicas tuvieron influencia a la adaptación de los híbridos de pepinillo.

4.2.2. Peso de fruto por planta

Cuadro 2. Peso de Frutos por planta pepinillo según tratamientos

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Promedio (g)</th>
<th>Duncan al 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4 (Salvador F1)</td>
<td>533.25</td>
<td>a</td>
</tr>
<tr>
<td>T3 (CU 21138)</td>
<td>493.25</td>
<td>a</td>
</tr>
<tr>
<td>T1 (Cobra F1)</td>
<td>403.25</td>
<td>a</td>
</tr>
<tr>
<td>T2 (Nativo F1)</td>
<td>359.5</td>
<td>b</td>
</tr>
<tr>
<td>T5 (FX – 193 F1)</td>
<td>330.25</td>
<td>b</td>
</tr>
</tbody>
</table>

CV: 4.96%        DE: 86.76

El Cuadro 4, para el parámetro de peso de fruto por planta según tratamientos y repeticiones. El rendimiento de peso de frutos en gramos por planta de pepinillo se encuentra entre 284 y 545 gramos por planta, pero el rendimiento que se repite mayor número de veces en los tratamientos es 373 y 524 gramos por planta aproximadamente.
En el Cuadro 4 para el parámetro de peso de fruto por planta al realizar el análisis estadístico correspondiente se observó diferencias estadísticas entre tratamientos pero no así entre bloques, el coeficiente de variación obtenido indica que los datos son ampliamente confiables. Al aplicar la evaluación Duncan al 5% obtenemos que los tratamientos T3, T4 y T1 son iguales entre sí estadísticamente y a la vez superiores a los tratamientos T2 y T5 los cuales estadísticamente son iguales entre sí.

En el Cuadro 4 se observa un resumen del peso promedio de frutos por planta en cada tratamiento con su respectivo intervalo de confianza; así para el caso del Tratamiento T4 (Híbrido SALVADOR) el peso medio de frutos es de aproximadamente 533.25 g (alrededor de 0.53 Kg/planta) y su intervalo es de 512.0 a 555.0, es decir, se espera que con un 95% de confianza el peso promedio de frutos por planta se encuentre entre 512 y 555 g aproximadamente.

Figura 3. Promedio de peso de frutos de pepinillo por planta según híbrido.
En la Figura 4, se observa que el T4 (Híbrido SALVADOR®) logró el mayor peso promedio de fruto por planta al alcanzar 533.25 g, a diferencia del T5 quien solamente alcanzó 330.25 g, es decir, 203 g de diferencia. Los resultados coinciden con los obtenidos por López y col. (2011), quienes evaluando cultivares de pepinillo no encontraron diferencias significativas para dichas variables, quien menciona que el peso del fruto en pepino americano fluctúa de 300 a 400 g. A nuestro entender en cuanto a peso de fruto, el híbrido Salvador® tiene una mayor capacidad de adaptación en las condiciones del campo experimental.

4.2.3. Tamaño de fruto por planta

Cuadro 3. Tamaño de fruto por planta de pepinillo según tratamiento

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Media (cm)</th>
<th>Duncan al 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4 (Salvador F1)</td>
<td>19.5</td>
<td>a</td>
</tr>
<tr>
<td>T3 (CU 21138)</td>
<td>17.75</td>
<td>b</td>
</tr>
<tr>
<td>T2 (Nativo F1)</td>
<td>17.25</td>
<td>c</td>
</tr>
<tr>
<td>T1 (Cobra F1)</td>
<td>13.75</td>
<td>d</td>
</tr>
<tr>
<td>T5 (FX – 193 F1)</td>
<td>14.25</td>
<td>e</td>
</tr>
</tbody>
</table>

CV: 24.6% DE: 2.44

El Cuadro 5, para el parámetro de tamaño de frutos por planta de pepinillo según tratamientos y repeticiones. El rendimiento de tamaño de fruto en centímetros por planta de pepinillo se encuentra entre 13 y 21 cm planta⁻¹; pero el rendimiento que se repite mayor número de veces en los tratamientos es 18 cm planta⁻¹.
En el Cuadro 5 para el parámetro tamaño de frutos por planta y al realizar el análisis estadístico correspondiente, se observó diferencias estadísticas entre tratamiento, pero no así entre bloques, el coeficiente de variación obtenido indica que los datos son ampliamente confiables. Al aplicar la evaluación Duncan al 5% obtenemos que el tratamiento T4 es estadísticamente superior a los demás tratamientos en evaluación los cuales a la vez son diferentes entre sí.

El Cuadro 5 nos muestra un resumen del tamaño promedio de frutos por planta en cada tratamiento con sus respectivos intervalos de confianza; así para el caso del Tratamiento T4 (Híbrido SALVADOR®) el tamaño medio de frutos es de aproximadamente 19.5 cm (alrededor de 18 cm) y su intervalo es de 18.6 a 19.8, es decir, se espera que con un 95% de confianza el tamaño promedio de frutos por planta se encuentre entre 18 y 19 cm aproximadamente.

![Figura 4. Promedio de tamaño de fruto de pepinillo según híbrido.](image)
En la Figura 5, se muestra que el Tratamiento 4 (T4) híbrido SALVADOR® presenta el mayor tamaño promedio de fruto por planta, aproximadamente 19.5 cm.

4.3. PRODUCCION FINAL

4.3.1. Producción final por planta

Cuadro 4. Producción final por planta de pepinillo según tratamientos

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Media (kg.planta⁻¹)</th>
<th>Duncan al 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3 (CU 21138)</td>
<td>7.5</td>
<td>a</td>
</tr>
<tr>
<td>T4 (Salvador F1)</td>
<td>6.75</td>
<td>b</td>
</tr>
<tr>
<td>T1 (Cobra F1)</td>
<td>4.0</td>
<td>c</td>
</tr>
<tr>
<td>T2 (Nativo F1)</td>
<td>2.75</td>
<td>d</td>
</tr>
<tr>
<td>T5 (FX – 193 F1)</td>
<td>2.0</td>
<td>e</td>
</tr>
</tbody>
</table>

CV: 9.90%  DE: 2.43

En el Cuadro 6 para el parámetro producción final por planta al realizar el análisis estadístico correspondiente se observó diferencias estadísticas entre tratamientos pero no así entre bloques, el coeficiente de variación obtenido indica que los datos son ampliamente confiables. Al aplicar la evaluación Duncan al 5% obtenemos que el tratamiento T3 es estadísticamente superior a los demás tratamientos en evaluación los cuales a la vez son diferentes entre sí.

En el Cuadro 6 se observa un resumen del promedio de producción final en Kg/planta de pepinillo en cada tratamiento con sus respectivos intervalos de confianza; así para el caso del Tratamiento
T3 (Híbrido CU21138) el rendimiento o producción en promedio es de aproximadamente 7.5 (alrededor de 8 kg planta⁻¹) y su intervalo es de 7.03 a 7.85, es decir, se espera que con un 95% de confianza el rendimiento promedio de frutos por planta se encuentre entre 7 y 8 kg planta⁻¹ aproximadamente.

**Figura 5.** Promedio de producción final por planta en kg. de frutos de pepinillo según híbrido

En la Figura 6, se muestra que el Tratamiento 3 (T3), híbrido CU21138® presenta el mayor rendimiento de pepinillo en kg planta⁻¹ con 7.5 kg planta⁻¹.
4.3.2. Producción por hectárea

Cuadro 7. Producción por hectárea de pepinillo

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Media (t ha(^{-1}))</th>
<th>Duncan al 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3 (CU 21138)</td>
<td>97.75</td>
<td>a</td>
</tr>
<tr>
<td>T4 (Salvador F1)</td>
<td>90.75</td>
<td>a</td>
</tr>
<tr>
<td>T1 (Cobra F1)</td>
<td>54</td>
<td>b</td>
</tr>
<tr>
<td>T2 (Nativo F1)</td>
<td>36.25</td>
<td>c</td>
</tr>
<tr>
<td>T5 (FX – 193 F1)</td>
<td>23.75</td>
<td>d</td>
</tr>
</tbody>
</table>

CV: 1.05%    DE: 31.63

El Cuadro 7, para el parámetro de producción por hectárea de pepinillo por planta según tratamientos y repeticiones al realizar el análisis estadístico correspondiente se observó diferencias estadísticas entre tratamientos pero no así entre bloques, el coeficiente de variación obtenido indica que los datos son ampliamente confiables. Al aplicar la evaluación Duncan al 5% obtenemos que los tratamientos T3 y T4 son estadísticamente iguales y a la vez superiores a los demás tratamientos en estudio.

El Cuadro 7, es un resumen del promedio de producción final en t/ha de pepinillo en cada tratamiento con sus respectivos intervalos de confianza; así para el caso del Tratamiento T3 (Híbrido CU21138) el rendimiento o producción en promedio es de 97.75 t.ha\(^{-1}\) y su intervalo es de 98 a 99 t.ha\(^{-1}\), es decir, se espera que con un 95 % de confianza el rendimiento promedio de toneladas por hectárea se encuentre cerca de 99 t.ha\(^{-1}\) aproximadamente.
Figura 6. Promedio de producción final de frutos de pepinillo en t.ha\(^{-1}\) según tratamiento e híbrido.

En la Figura 7, se muestra que el Tratamiento 3 (T3), híbrido CU21138\(^{®}\) presenta el mayor rendimiento de pepinillo en t.ha\(^{-1}\) de híbrido de pepinillo, aproximadamente 97.75 t.ha\(^{-1}\) de híbrido de pepinillo. Grijalva y col. (2011) manifiestan en su investigación que las diferencias en rendimiento pueden obedecer a que se trata de experimentos con otros híbridos, diferentes condiciones de clima y de manejo. Igualmente, en sus investigaciones Aguilar (1999) encuentra máximos rendimientos de entre 88 a 119 t.ha\(^{-1}\).
V. CONCLUSIONES

- Se determinó que el híbrido de mayor rendimiento para las condiciones del valle de Virú es CU21138® con 97.75 t.ha⁻¹.
- El mayor número de flores femeninas por planta fue del híbrido CU21138® y el menor fue el híbrido FX – 193 F1®, con 21 y 11.75 flores planta⁻¹ respectivamente. De la misma forma el híbrido con mayor número de flores femeninas cuajadas fue CU21138® con 21 flores planta⁻¹; mientras que el híbrido con menor número de flores femeninas cuajadas fue FX – 193 F1® con 9.75 flores planta⁻¹.
- El híbrido testigo Salvador F1®, desarrolló 12.75 frutos planta⁻¹. El híbrido CU21138® desarrolló 15 frutos planta⁻¹, es decir que este híbrido desarrolló aproximadamente 2 frutos más con respecto al testigo. Mientras que el híbrido FX – 193 F1® obtuvo 5.25 frutos planta⁻¹, es decir que desarrolló 7.5 frutos planta⁻¹ menos que el testigo.
- El híbrido con mayor peso y tamaño de fruto en planta fue el testigo Salvador F1® con 533.25 g planta⁻¹ y 19.5 cm planta⁻¹ respectivamente.
- El híbrido con mayor producción en kg por planta de pepinillo fue CU21138®, con 7.5 kg planta⁻¹; el híbrido testigo Salvador F1® obtuvo una producción de 6.75 kg planta⁻¹; mientras que el híbrido FX – 193 F1® obtuvo una producción de 2.0 kg planta⁻¹, siendo el híbrido con menor producción.
VI. RECOMENDACIONES

- Se recomienda realizar ensayos en otras localidades, en diferentes pisos ecológicos, con los cinco híbridos del pepinillo estudiados, para confirmar los resultados obtenidos.
VII. BIBLIOGRAFÍA


- Farmex s.a. descripción de sus híbridos en su página <web 2015
VIII. ANEXOS
Anexo 1  Análisis de varianza del cuadro 1 de Flores femeninas por planta de pepinillo

<table>
<thead>
<tr>
<th></th>
<th>F. V.</th>
<th>S. C.</th>
<th>G.L</th>
<th>C. M.</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>1008.3</td>
<td>4</td>
<td>252.075</td>
<td>127.6329114</td>
<td>1.008664E-09</td>
<td></td>
</tr>
<tr>
<td>Bloques</td>
<td>30.8</td>
<td>3</td>
<td>10.26666667</td>
<td>5.198312236</td>
<td>0.015693121</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>23.7</td>
<td>12</td>
<td>1.975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1062.8</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo 2  Análisis de varianza del cuadro 2 Flores cuajadas por planta de pepinillo.

<table>
<thead>
<tr>
<th></th>
<th>F. V.</th>
<th>S. C.</th>
<th>G.L</th>
<th>C. M.</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>315.5</td>
<td>4</td>
<td>78.875</td>
<td>61.8627451</td>
<td>6.58091E-08</td>
<td></td>
</tr>
<tr>
<td>Bloques</td>
<td>2.2</td>
<td>3</td>
<td>0.733333333</td>
<td>0.575163399</td>
<td>0.642201426</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>15.3</td>
<td>12</td>
<td>1.275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>333</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 3  Análisis de varianza del cuadro 3 Número de frutos por planta de pepinillo

<table>
<thead>
<tr>
<th>F. V.</th>
<th>S. C.</th>
<th>G. L</th>
<th>C. M.</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>235.7</td>
<td>4</td>
<td>58.925</td>
<td>105.5373134</td>
<td>3.04746E-09</td>
</tr>
<tr>
<td>Bloques</td>
<td>4.55</td>
<td>3</td>
<td>1.516666667</td>
<td>2.71641791</td>
<td>0.091312862</td>
</tr>
<tr>
<td>Error</td>
<td>6.7</td>
<td>12</td>
<td>0.558333333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>246.95</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo 4  Análisis de varianza del cuadro 4 Peso de frutos por planta de pepinillo

<table>
<thead>
<tr>
<th>F. V.</th>
<th>S. C.</th>
<th>G. L</th>
<th>C. M.</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>120443.8</td>
<td>4</td>
<td>30110.95</td>
<td>68.01404209</td>
<td>3.835E-08</td>
</tr>
<tr>
<td>Bloques</td>
<td>1387.4</td>
<td>3</td>
<td>462.4666667</td>
<td>1.044610925</td>
<td>0.408222125</td>
</tr>
<tr>
<td>Error</td>
<td>5312.6</td>
<td>12</td>
<td>442.7166667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>127143.8</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo 5  Análisis de varianza del cuadro 5 Tamaño de frutos por planta de pepinillo

<table>
<thead>
<tr>
<th>F. V.</th>
<th>S. C.</th>
<th>G. L</th>
<th>C. M.</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>95</td>
<td>4</td>
<td>23.75</td>
<td>13.83495146</td>
<td>0.000189919</td>
</tr>
<tr>
<td>Bloques</td>
<td>3.4</td>
<td>3</td>
<td>1.133333333</td>
<td>0.660194175</td>
<td>0.592139546</td>
</tr>
<tr>
<td>Error</td>
<td>20.6</td>
<td>12</td>
<td>1.716666667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>119</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo 6  Análisis de varianza del cuadro 6 Producción por planta de pepinillo.

<table>
<thead>
<tr>
<th></th>
<th>F. V.</th>
<th>S. C.</th>
<th>G.L</th>
<th>C. M.</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>94.3</td>
<td>4</td>
<td>23.575</td>
<td>113.16</td>
<td>2.03125E-09</td>
<td></td>
</tr>
<tr>
<td>Bloques</td>
<td>2</td>
<td>3</td>
<td>0.666666667</td>
<td>3.2</td>
<td>0.062277551</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>2.5</td>
<td>12</td>
<td>0.208333333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>98.8</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo 7  Análisis de varianza del cuadro 7 Producción de pepinillo.

<table>
<thead>
<tr>
<th></th>
<th>F. V.</th>
<th>S. C.</th>
<th>G.L</th>
<th>C. M.</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>17134</td>
<td>4</td>
<td>4283.5</td>
<td>148.3891455</td>
<td>4.16694E-10</td>
<td></td>
</tr>
<tr>
<td>Bloques</td>
<td>232.6</td>
<td>3</td>
<td>77.53333333</td>
<td>2.68591224</td>
<td>0.093613307</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>346.4</td>
<td>12</td>
<td>28.86666667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17713</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>