PROPUESTA DE IMPLEMENTACIÓN DEL MODELO LEAN MANUFACTURING
PARA MEJORAR LA GESTIÓN OPERATIVA DE LA EMPRESA SIMILAN
E.I.R.L. TRUJILLO AÑO 2016

TESIS
Para obtener el Título Profesional de Licenciado en Administración

AUTORAS:
Br. Fasabi Luna Victoria, Ivonne Meggy
Br. La Rosa Toro Villalobos, Carla

ASESOR:
Mg. Fiorentini Candiotti Giovanni F.

Trujillo-Perú
2017
Señores miembros del Jurado:

Dando el cumplimiento con las disposiciones del Reglamento de Grados y Títulos de la Universidad Privada Antenor Orrego, sometemos a vuestra consideración la tesis titulada: “Propuesta de implementación del modelo Lean Manufacturing para mejorar la Gestión Operativa de la empresa SIMILAN E.I.R.L Trujillo Año 2016”, luego de haber culminado nuestros pasos por esta casa de estudio, donde nos formamos profesionalmente para estar al servicio de la sociedad.

El presente trabajo realizado con el propósito de obtener el Título de Licenciado en Administración, es producto de una investigación trabajo, esfuerzo y dedicación en base a los conocimientos adquiridos durante el proceso de formación universitaria en esta prestigiosa casa de estudios; producto de la orientación y enseñanza desinteresada de nuestros docentes, siendo por ello oportuno para expresarles nuestro más sincero agradecimiento, para poder así brindar un aporte que servirá de base a futuros estudios relacionados con el tema en mención.

Por lo expuesto señores miembros del jurado, ponemos a vuestra disposición el presente trabajo de investigación para su respectivo análisis y evaluación, no sin antes agradecer vuestra gentil atención al mismo.

Atentamente,

Br. Carla La Rosa Toro Villalobos

Br. Ivonne Meggy Fasabi Luna Victoria
AGRADECIMIENTO

Al cuerpo docente de la Escuela Profesional de Administración por todos los conocimientos y orientación impartidos a lo largo de nuestra formación académica profesional.

A nuestro asesor, por el apoyo y la paciencia brindada en el desarrollo de nuestra investigación siendo un gran participante de este resultado.

A la Universidad Privada Antenor Orrego por brindarnos a través de sus docentes todos los conocimientos y valores que nos ayudan en la vida profesional.

LAS AUTORAS
DEDICATORIA

A mis padres por su apoyo, especialmente a mi madre Oliva Villalobos Coronel, por ser el pilar primordial en mi vida, brindarme su amor incondicional en cada momento y ser una de mis mayores motivaciones para lograr mis objetivos.

Carla.

A mis padres Fredil y Yeni,

por apoyarme y brindarme su amor cada día.

Ivonne.
ÍNDICE

PRESENTACIÓN .. ii
AGRADECIMIENTO .. iii
DEDICATORIA .. iv
LISTA DE TABLAS .. vii
LISTA DE GRÁFICOS ... viii
RESUMEN ... ix
ABSTRACT ... x
CAPÍTULO I: INTRODUCCIÓN ... 1
1.1. Formulación del problema ... 2
 1.1.1. Realidad problemática .. 2
 1.1.2. Enunciado del problema ... 6
 1.1.3. Antecedentes ... 6
 1.1.3.1. Antecedentes Internacionales .. 6
 1.1.3.2. Antecedentes Nacionales ... 8
 1.1.3.3. Antecedentes Locales .. 9
 1.1.4. Justificación .. 10
 1.1.4.1. Justificación teórica ... 10
 1.1.4.2. Justificación práctica ... 10
 1.1.4.3. Justificación metodológica ... 11
 1.2. Hipótesis .. 11
1.3. Objetivos .. 11
 1.3.1. Objetivo general .. 11
 1.3.2. Objetivos específicos ... 11
1.4. Marco Teórico ... 12
 1.4.1. El concepto lean manufacturing .. 12
 1.4.2. Claves para implementar Lean Manufacturing ... 13
 1.4.3. Comprensión del enfoque Lean ... 15
 1.4.4. Herramientas Lean Manufacturing .. 15
 1.4.5. Origen de las 5 ESES .. 16
 1.4.6. Aplicación de SMED ... 26
 1.4.6.1. La gestión operativa ... 27
1.4.6.2. Cómo incrementar el valor de la gestión operativa........... 28
1.4.6.3. Medición de indicadores en la gestión operativa
(Suministros, RRHH, Financiera, Producción)................. 29
1.5. Marco conceptual .. 31

CAPÍTULO II: MATERIALES Y PROCEDIMIENTOS .. 33

2.1. Materiales ... 34
 2.1.1. Población .. 34
 2.1.2. Marco de muestreo ... 34
 2.1.3. Unidad de análisis ... 35
 2.1.4. Muestra .. 35
 2.1.5. Técnicas e instrumentos de recolección de datos .. 35

2.2 Procedimientos .. 37
 2.2.1 Diseño de contrastación ... 37
 2.2.2 Análisis de las variables ... 38
 2.2.3 Procesamiento y análisis de datos ... 40

CAPÍTULO III: PROPUESTA ... 41

3.1. Flujograma general de la empresa ... 42
3.2. Proceso productivo ... 43
3.3. Diagnóstico de los procesos de gestión operativa .. 48
3.4. Opción escogida para la mejora de la gestión operativa 53
 3.4.1. Clasificar .. 53

CAPÍTULO IV: PRESENTACIÓN Y DISCUSIÓN DE RESULTADOS 61

4.1. Presentación de resultados .. 62
 4.1.1. Resultados Cualitativos: ... 62
 4.1.2. Resultados Cualitativos ... 83
4.2. Discusión de resultados: ... 84

CONCLUSIONES .. 88

RECOMENDACIONES .. 89

ANEXOS .. 94

ANEXO N° 01: FICHAS DE OBSERVACIÓN ... 95
ANEXO N° 02: GUÍA DE PREGUNTAS ... 101
ANEXO N° 03: INDICADORES DE GESTIÓN SOLICITADOS EN BASE AÑO
 (2016).. 103
LISTA DE TABLAS

Tabla N°1 PRINCIPALES INDICADORES DE GESTIÓN (Suministros, RRHH, Financiera, Producción) .. 30
LISTA DE GRÁFICOS

Figura N°1: Diagrama Causa-Efecto Análisis del Problema.. 5
Figura N° 2 Modelo de Gestión Lean .. 13
Figura N°3: Flujograma de blusas ... 45
Figura N°4: Flujograma de pantalones .. 47
Figura N° 5: Objetos innecesarios de la empresa ... 54
Figura N° 6: Formato sugerido de la tarjeta roja ... 54
Figura N°7: Criterios de evaluación de clasificación de objetos innecesarios. 55
Figura N°8: Formato sugerido de tarjeta amarilla ... 57
Figura N°9: Formato sugerido para la Programación de turnos de limpieza 58
RESUMEN

El presente estudio se realizó con el fin de determinar una propuesta de implementación del modelo Lean Manufacturing para mejorar la gestión operativa de la empresa SIMILAN E.I.R.L Trujillo Año 2016. El problema formulado para la investigación fue: ¿Una propuesta de implementación del modelo Lean Manufacturing, puede mejorar la gestión operativa de la empresa SIMILAN E.I.R.L Trujillo Año 2016? Y se tuvo como hipótesis: Una propuesta de implementación del modelo Lean Manufacturing sí mejoraría la gestión operativa de la empresa SIMILAN E.I.R.L Trujillo Año 2016. Como objetivos específicos: Identificar cuáles son los principales procesos dentro de la producción de la empresa, determinar de qué manera se generan desperdicios dentro de los procesos de producción, elaborar una propuesta de mejoras dentro de la gestión lean manufacturing. La población sujeta a estudio estuvo conformada por todos los procesos productivos y los trabajadores de la empresa SIMILAN E.I.R.L siendo un total de 15 trabajadores con una estructura en comité en donde la autoridad y la responsabilidad fueron compartidas conjuntamente por un grupo de personas. El diseño de la investigación, fue no experimental de corte transversal de una sola casilla en cuanto a las técnicas e instrumentos de recolección de datos se utilizó la observación y la entrevista. La conclusión a la que se llegó fue: que hay suficiente evidencia para demostrar que una propuesta de implementación del modelo Lean Manufacturing sí mejoraría la gestión operativa de la empresa SIMILAN E.I.R.L Trujillo Año 2016.

Palabras claves: Lean Manufacturing, gestión operativa
ABSTRACT

The present study was carried out with the purpose of determining a proposal for the implementation of the Lean Manufacturing model to improve the operational management of the company SIMILAN E.I.R.L Trujillo Year 2016. The problem formulated for the investigation was: A proposal for the implementation of the Lean Manufacturing model, can improve the operational management of the company SIMILAN E.I.R.L Trujillo Year 2016? And it was hypothesized: A proposal to implement the Lean Manufacturing model would improve the operational management of the company SIMILAN E.I.R.L Trujillo Year 2016. As specific objectives: Identify which are the main processes within the production of the company, determine how generate waste within the production processes, develop a proposal for improvements within lean manufacturing management. The population subject to study consisted of all the productive processes and the workers of the company SIMILAN E.I.R.L being a total of 15 workers with a structure in committee where authority and responsibility were shared jointly by a group of person. The design of the research was non-experimental cross-sectional of a single box as far as techniques and instruments of data collection were used observation and interview. The conclusion reached was: that there is enough evidence to demonstrate that a proposed implementation of the Lean Manufacturing model would improve the operational management of the company SIMILAN E.I.R.L Trujillo Year 2016.

Keywords: Lean Manufacturing, operational management
CAPÍTULO I:
INTRODUCCIÓN
1.1. Formulación del problema

1.1.1. Realidad problemática

Hoy en día las empresas se desarrollan de forma muy acelerada y cada vez sus ventajas competitivas son mayores sobre aquellas que aún no aceptan el reto que implica una economía global, abarcando la mejora de procesos, reducción de costos, minimizar gastos, control de inventarios y la mejora continua. La manufactura esbelta propone el incremento de la productividad mediante la eliminación de operaciones que no le den valor agregado al producto, tomando como base, la integración de una serie de técnicas.

Marketing Directo (2015) afirma que actualmente la lista de empresas que están siendo seducidas por el lean manufacturing se ven interesadas a medida que se conocen los beneficios que esta técnica reporta a aquellos que confían en ella. La instauración de esta técnica trata sobre el flujo de valor que se centra en la atracción del cliente, en la mejora del producto y del proceso productivo, previniendo y eliminando los residuos en las fases de transporte, inventario, movimiento, espera, sobreproducción y deterioro. Estos desechos originados de forma inherente por las fases del proceso de producción, tienen un impacto directo en los costes, que son aquellas operaciones que no aportan valor al producto final y por las que los clientes no estarían dispuestos a pagar.

Según Lean Solution (2012) acota que Lean manufacturing es una filosofía de gestión sobre cómo operar un negocio enfocados en la eliminación de todos los desperdicios, permitiendo reducir el tiempo entre el pedido del cliente y el envío del producto, mejorando la calidad y reduciendo los costos, por otro lado la gestión operativa es entendida como un modelo de gestión compuesto por un conjunto de tareas y procesos enfocados a la mejora de las organizaciones internas, con el fin de aumentar su capacidad para conseguir los
propósitos de sus políticas y sus diferentes objetivos operativos. (ISOTools, 2015).

La empresa SIMILAN E.I.R.L. es una pyme encargada de brindar a sus clientes prendas de calidad con diseños exclusivos, teniendo como público objetivo a las mujeres modernas entre los 15 a 40 años de edad, esta empresa se encuentra ubicada en Av. Víctor Larco Nro. 399 Urb. La Merced I etapa Trujillo - La Libertad, la cual cuenta con 15 trabajadores.

En la actualidad la empresa se dedica a la fabricación de pantalones y blusas para dama, en el proceso productivo de blusas para el corte no existe un tiempo estándar, es muy difícil de estimarlo ya que tienen muchas variaciones; depende del tipo de tela, de las cantidades a cortar y del producto como tal. Sin embargo, con la información recolectada vimos que en el proceso de corte la blusa tarda 1 día, para el proceso de ensamblaje es muy importante la preparación de las máquinas y los insumos, en el proceso de planchado el tiempo de ciclo es de seis minutos por prenda, para empaque se tiene un tiempo de ciclo de cinco minutos aproximadamente, las actividades que se realizan como parte del acabado de la prenda es colocar etiqueta, doblar, empacar y apilar.

En el proceso productivo de pantalones antes del corte es necesario reposar la tela por lo menos dos horas, luego cortar las piezas según el molde, separarlas y etiquetarlas, en el proceso de ensamblaje se tiene un tiempo de ciclo por prenda de una hora aproximadamente. El proceso de calidad tiene un tiempo de ciclo de diez minutos por prenda. Para el proceso de planchado el tiempo de ciclo es de tres minutos por prenda aproximadamente, donde este producto solo debe plancharse muy superficialmente debido a la tela. Para empaque se tiene un tiempo de ciclo de cinco minutos aproximadamente, las
actividades que se realizan como parte del acabado de la prenda son poner etiqueta, limpiar, colocar botones, doblar, empacar y apilar.

Normalmente las prendas de vestir permanecen en inventario de 48 horas, que es lo que normalmente se demora la despachadora en recoger el producto para consolidarlo y según los datos otorgado por SIMILAN E.I.R.L. la empresa tiene un 30% de inventarios en los procesos productivos se estima que con la implementación de la herramienta lean manufacturing haya una disminución del 15% al 20% de inventarios de tránsito.

A su vez en la observación realizada a la empresa se puede afirmar que las áreas están desorganizadas y sucias por lo que el personal que opera no puede reportar donde y qué cantidad de material existe, además no hay un lugar para cada cosa, es por ello que cuando se necesita una herramienta no se encuentran fácilmente ya que no están debidamente identificados reflejando que en la empresa SIMILAN E.I.R.L. no tiene un modelo de gestión enfocado a la creación de flujo para poder entregar el máximo valor para los clientes, utilizando para ello los mínimos recursos necesarios para mejorar la gestión operativa.

En consecuencia, el presente trabajo de investigación desarrollará una propuesta de implementación del modelo Lean manufacturing para mejorar la gestión operativa de la empresa SIMILAN E.I.R.L Trujillo año 2016.
Figura N°1: Diagrama Causa-Efecto Análisis del Problema

Elaboración: Las autoras
1.1.2. **Enunciado del problema**

¿Una propuesta de implementación del modelo Lean Manufacturing puede mejorar la gestión operativa de la empresa SIMILAN E.I.R.L Trujillo Año 2016?

1.1.3. **Antecedentes**

1.1.3.1. **Antecedentes Internacionales**

Los autores concluyeron

Al finalizar la aplicación de las 5 fases del ciclo seis sigmas (DMAMC – Definir, Medir, Analizar, Mejorar y Controlar) se encontró que la causa por la que no se alcanzan los niveles estándares de producción son debido a la aplicación no efectiva del mantenimiento y que la capacitación tanto de la gente de producción como del mecánico de la línea es vital para evitar el desperdicio. Adicionalmente a esto, se logró encontrar una ventana óptima de operación bajo la cual es posible la utilización de los nuevos materiales de empaque (papel y la película) asegurando la consistencia de calidad en el producto final. Con todo esto se lograrán ahorros de 10 MDD anuales.

Los autores concluyeron:
El Modelo de Gestión Lean Management es aplicable a hoteles pequeños y medianos, y a cada una de las diferentes áreas con las que se cuenta en tales empresas, esto radica en que la forma de operar de estos tamaños de hoteles es similar, tal y como se ha detectado en la etapa de diagnóstico y verificado en la etapa de validación. La validación del diseño propuesto se realizó en el Hotel Claire’s obteniendo indicadores que comprueban que los resultados de la filosofía Lean Management se pueden obtener en los pequeños y medianos hoteles de El Salvador.

Los autores concluyeron

El desarrollo de un modelo de gestión como el Lean Manufacturing, cuyo enfoque se determina especialmente en la eliminación de los desperdicios en cualquier sistema productivo y/o empresarial, establece una nueva condición para la administración de las empresas, puesto que con su orientación hacia la mejora apunta a la optimización de resultados. La aplicación de las técnicas Lean Manufacturing en etapas, se constituye en la base fundamental sobre las condiciones para implementar el modelo de gestión Lean Manufacturing, siendo un proceso que puede convertirse en largo y tedioso, puesto que, para llegar a un nivel mínimamente satisfactorio, se encuentra condicionado a la complejidad de los procesos y a la preparación que desde la alta dirección se estime.
1.1.3.2. Antecedentes Nacionales

Los autores concluyeron

Los conocimientos y herramientas del Lean Manufacturing convierten en verdaderos agentes del cambio a las organizaciones.

El Lean Manufacturing mejora la productividad en la empresa manufactura en un 100%, ya que se consigue duplicar el flujo de producción en la fase inicial.

La Metodología Kanban reduce costos y aumenta la productividad del proceso.

El Lean Manufacturing reduce los plazos de servicio al mínimo utilizando sólo los recursos imprescindibles y asegurando la calidad esperada en todo momento.

Con la aplicación del Kanban se produce exactamente aquella cantidad de trabajo que el sistema es capaz de asumir, es decir no se acumulan productos en las fases, es decir el equipo solo produce el límite WIP y así generar un flujo continuo.

Los autores concluyeron

Del presente caso de estudio se desprenden conclusiones relevantes como la importancia de la filosofía Lean, su aplicabilidad y el grado de impacto que puede tener en el desarrollo de una empresa con la
visión a seguir creciendo y ser cada vez más competitiva.

Luego de realizar la evaluación económica en el capítulo 4, se concluye que las inversiones necesarias para la implementación de las propuestas de mejora son justificables, ya que presentan un VAN positivo y un TIR por encima del 20% (rentabilidad mínima esperada por la empresa).

Es muy importante la recolección de datos los cuáles fueron representados en el VSM actual, ya que es a partir de estos datos con los que se realizaron el diagnóstico de la empresa y las propuestas de mejora. Los principales desperdicios detectados en la etapa del diagnóstico serán reducidos luego de la implementación del balance de línea, el sistema Kanban y el sistema SMED propuesto. Así mismo, es necesario la culminación de las 5’ S para la implementación de estas propuestas de mejora.

1.1.3.3. Antecedentes Locales

Los autores concluyeron

Se incrementó el margen de utilidad bruto en un 17.14% tomando como base el inicio de operaciones en el año 2010, con base al último año cerrado se tiene un decremento de 6.19%; esto se debe por motivo de un incremento de capacidad, más no de reducción de costos. Como se puede apreciar, la expectativa para el 2016 en adelante es mucho más prometedora, junto con el incremento considerado de la demanda.
Según la información histórica recolectada en la empresa sobre los pedidos y ventas históricas desde enero del 2010 hasta diciembre del 2012, se proyectó la demanda hasta diciembre del año 2022. Se identificó que esta tiene un comportamiento estacional con picos en los meses de Julio y Diciembre. La demanda pronosticada supera totalmente la capacidad de planta actual de la empresa (106 docenas/mes).

Según el rediseño propuesto en donde se utilizaron técnicas de Lean Manufacturing: Kaizen, 5'S y Balance de línea; la velocidad de producción de una docena de calzado para dama será de 62 min/doc (Corte). Logrando una capacidad de producción mensual de 251 doc/mes.

1.1.4. Justificación

1.1.4.1. Justificación teórica

Esta investigación se realizó con el propósito de aportar al conocimiento existente sobre el uso de las herramientas de la filosofía del Lean Manufacturing, enfocadas en la reducción de los ocho tipos de desperdicio en productos manufacturados, cuyos resultados de esta investigación pudieron sistematizarse en una propuesta de implementación del modelo de Lean Manufacturing para ser incorporado como una mejora en la gestión operativa.

1.1.4.2. Justificación práctica

Pretendió dar solución a un problema del entorno real relacionado con una propuesta de implementación del modelo

1.1.4.3. Justificación metodológica

Se abarcó una metodología de investigación que nos llevó a conocer la situación actual de una propuesta de implementación del modelo Lean Manufacturing para mejorar la gestión operativa de la empresa SIMILAN E.I.R.L. Trujillo año 2016.

1.2. Hipótesis

1.3. Objetivos

1.3.1. Objetivo general

Determinar una propuesta de implementación del modelo Lean Manufacturing para mejorar la gestión operativa de la empresa SIMILAN E.I.R.L Trujillo Año 2016.

1.3.2. Objetivos específicos

- Identificar cuáles son los principales procesos dentro de la producción de la empresa.
- Determinar de qué manera se genera desperdicios dentro de los procesos de producción.
- Elaborar una propuesta de mejora dentro de la gestión lean manufacturing.
1.4. Marco Teórico

1.4.1. Los conceptos lean manufacturing

Pérez (2011) afirma que el desarrollo de los modelos de gestión que llevaron al mejoramiento continuo y flexible de las formas de producción dio origen a mediados del siglo pasado, por otro lado Womack, Jones y Roos (1990) acota que el Sistema de Producción Toyota (TPS), el cuál bajo la premisa de producir lo necesario, en las condiciones requeridas y en el momento oportuno, integrado con la participación de los colaboradores y centrándolo en las actividades que no aportan valor para el cliente, transmite beneficios sostenidos en: calidad, productividad, seguridad y oportunidad; agrupando una serie de técnicas para mejorar y optimizar los procesos operativos de cualquier compañía industrial, esto fue divulgado en occidente bajo el concepto Lean Manufacturing conocido en el mundo empresarial como resultado de una investigación realizada para lograr el éxito competitivo de la compañía Toyota.

Rajenthirakumar, Mohanram y Harikarthik (2011) acota que el modelo desarrollado bajo la dirección del ingeniero Taichi Ohno, se concentra en un "enfoque de sentido común", buscando reducir los costos, a través de la eliminación de residuos y la implementación de diferentes técnicas de mejoramiento, centrados en la localización de las principales fuentes de desperdicios, influyendo sustancialmente en el desempeño operativo de las plantas industriales.

Lean Manufacturing es una filosofía de trabajo, basada en las personas, que define la forma de mejora y optimización de un sistema de producción focalizándose en identificar y eliminar todo tipo de "desperdicios", definidos éstos como aquellos procesos o actividades que usan más recursos de los estrictamente necesarios. Identificando varios tipos de "desperdicios" que se observan a lo largo de la producción como: sobreproducción, tiempo de espera, transporte, exceso de procesado, inventario, movimiento y defectos, es decir mira
lo que no deberíamos estar haciendo porque no agrega valor al cliente y tiende a eliminarlo. Para alcanzar sus objetivos, despliega una aplicación sistemática y habitual de un conjunto extenso de técnicas que cubren la práctica total de las áreas operativas de fabricación como: organización de puestos de trabajo, gestión de la calidad, flujo interno de producción, mantenimiento, gestión de la cadena de suministro. A su vez Rajadell y Sánchez (2010) agregan que el Lean Manufacturing tiene como objetivo la eliminación del despilfarro, mediante la utilización de un conjunto de herramientas como son: TPM, 5S, SMED, Kanban, Kaizen, Heijunka, Jidoka, entre otras, que se fundamentan principalmente en la mejora continua, el aprovechamiento de todo el potencial a lo largo de la cadena de valor y la participación de los operarios.

Figura N° 2 Modelo de Gestión Lean
Fuente: Rajadell & Sánchez (2010)

1.4.2. Claves para implementar Lean Manufacturing

Liker y Morgan (2011) afirma que en todas las etapas dentro de la cadena de valor de una empresa es posible eliminar desperdicios,
mejorar la calidad, reducir los costes y aumentar la flexibilidad es así como se identifican cinco rectores claves para implementarlo:

- Definir el valor del producto, es decir qué agrega valor para el cliente dentro de la operación de la empresa para así producir lo que el cliente realmente percibe como valor.
- Definir e identificar el flujo del proceso, conociendo las operaciones sobre las cuáles se busca cumplir con los requisitos del cliente. Cada operación, función o actividad debe añadir valor. El objetivo es identificar todas aquellas actividades que no agreguen valor al proceso, con el fin de minimizarlas, modificarlas o eliminarlas del proceso de trabajo.
- Crear flujo continuo o hacer que el producto fluya sin interrupciones. Los materiales deben pasar de un proceso a otro al ritmo del tiempo que marca el cliente. Hay que conseguir que el producto fluya continuamente agregando valor.
- Introducir el sistema de jalar en el proceso. Una vez se ha fijado el esquema del flujo continuo, hay que introducir un sistema donde el cliente lo requiera, siendo el eje central del proceso y quién establece las condiciones para las entregas del producto, tratando de dar en todo momento una respuesta rápida a sus peticiones.
- Esforzarse por la perfección y gestionarla. Es necesario establecer actividades para mejorar, ya que en el enfoque Lean, la perfección no sólo significa librar de defectos y errores los procesos y productos, también implica la entrega a tiempo de productos que cumplan con los requerimientos del cliente, a un precio justo y con la calidad especificada.

Además De Orbegoso (2005) afirma que es importante recalcar la gestión de la perfección ya que es una batalla continua para eliminar el modo, que nunca tiene fin, ya que reducir tiempos, costes, espacio, errores y esfuerzos inútiles es una acción permanente que se debe llevar a cabo
1.4.3. Comprensión del enfoque Lean

Feld (2001) afirma que recoge las diferentes técnicas en cinco elementos primarios, que representan la dimensión requerida para soportar un programa sólido de Lean Manufacturing y el despliegue de esos elementos en una organización. Estos elementos se complementan uno con otro, y son requeridos como apoyo de la exitosa implementación; y su aplicación se desarrolla bajo las siguientes fases:

- **Fase 1: Flujo de manufactura**: Se consideran los aspectos que direccionan los cambios físicos y el diseño de estándares que se implementan, entre las técnicas que se aplican están: evaluación de producto/cantidad (grupo de productos), mapeo del proceso, análisis de ruta (proceso, trabajo, volumen), estándar de trabajo, y el flujo de una pieza.

- **Fase 2: Organización**: Este aspecto se concentra en identificar los roles y funciones de las personas, entrenamiento en nuevas formas de trabajar, y comunicación, para lo cual se basa en: enfoque en el producto, equipos de trabajo multidisciplinarios, desarrollo de la matriz de habilidades, entrenamiento cruzado del personal, y diseño de planes de comunicación para la implementación.

- **Fase 3: Control de proceso**: Se dirige a monitorear, controlar, estabilizar y detectar alternativas para mejorar el proceso, algunas de las técnicas como: Mantenimiento.

1.4.4. Herramientas Lean Manufacturing

A continuación, se describen las herramientas que podemos encontrar:

- **Mapeo de la cadena de valor**: Díaz y Ruiz (2003) afirma que es el análisis de la cadena de valor centrándola en el flujo del proceso de producción en lugar de ver los procesos de manera aislada

 Es una técnica usada en los programas de mejoramiento continuo y contribuye a entender y mejorar el flujo de material y de
información, categorizando las actividades de los procesos en dos áreas: los procesos que adicionan valor y las actividades que no adicionan valor, a su vez aclara que todo proceso Lean Manufacturing debe comenzar con análisis de la cadena de valor.

- **Cinco Eses**: Su objetivo es mejorar y mantener las condiciones de organización, el orden y limpieza en el lugar de trabajo, la seguridad, el clima laboral, la motivación del personal y la eficiencia y, en consecuencia, la calidad, la productividad y la competitividad de la organización. Rajadell y Sánchez (2010) establecen que las 5S son el punto de partida operativa para cualquier empresa que quiera implementar con éxito el modelo Arrieta, Domínguez, Echevarría y Gutiérrez (2011) expone que las 5S representan los bloques fundacionales sobre los que se puede instalar la producción en flujo continuo (mover un pequeño lote, hacer un pequeño lote), el control visual de la planta y las operaciones estándar. Por otro lado Hossein (2011) afirma que con el fin de incrementar la productividad, de toda organización, intencional o no intencionalmente se debe usar un sistema de 5S o al menos alguna parte de ellas, para obtener un mejor rendimiento de su sistema productivo. Finalmente, por medio de esta técnica se puede contar con un área de trabajo limpia y ordenada, creando un sistema de control visual, que mejora la productividad, incrementa la vida útil de las máquinas, y reconoce los diferentes tipos de desperdicio, siendo el puente para otras técnicas.

1.4.5. **Origen de las 5 ESES**

López (2001) acota que el método de las 5S, denominado así por la primera letra del nombre que en japonés designa cada una de sus cinco etapas, es una técnica de gestión japonesa basada en cinco principios simples. Se inició en Toyota en los años 1960 con el objetivo de lograr lugares de trabajo mejor organizados, más ordenados y más
limpios de forma permanente para conseguir una mayor productividad y un mejor entorno laboral. Las 5S han tenido una amplia difusión y son numerosas las organizaciones de diversa índole que lo utilizan, tales como, empresas industriales, empresas de servicios, hospitales, centros educativos o asociaciones.

ETAPAS

a. **Seleccionar (seiri):**

Es la primera de las cinco fases. Consiste en identificar los elementos que son necesarios en el área de trabajo, separarlos de los innecesarios y desprenderse de estos últimos, evitando que vuelvan a aparecer. Asimismo, se comprueba que se dispone de todo lo necesario.

- Algunas normas ayudan a tomar buenas decisiones.
- Se desecha (ya sea que se venda, regale, recicle o se tire) todo lo que se usa menos de una vez al año. Sin embargo, se tiene que tomar en cuenta en esta etapa de los elementos que, aunque de uso infrecuente, son de difícil o imposible reposición. Ejemplo: es posible que se tenga papel guardado para escribir y deshacerme de ese papel debido que no se utiliza desde hace tiempo con la idea de adquirir nuevo papel llegado de necesitarlo. Pero no se puede desear una soldadora eléctrica sólo porque hace 2 años que no se utiliza, y comprar otra cuando sea necesaria. Hay que analizar esta relación de compromiso y prioridades. Hoy existen incluso compañías dedicadas a la tercerización de almacenaje, tanto de documentos como de material y equipos, que son movilizados a la ubicación geográfica del cliente cuando éste lo requiere.
- De lo que queda, todo aquello que se usa menos de una vez al mes se aparta (por ejemplo, en la sección de archivos, o en el almacén en la fábrica).
• De lo que queda, todo aquello que se usa menos de una vez por semana se aparta no muy lejos (típicamente en un armario en la oficina, o en una zona de almacenamiento en la fábrica).
• De lo que queda, todo lo que se usa menos de una vez por día se deja en el puesto de trabajo.
• De lo que queda, todo lo que se usa menos de una vez por hora está en el puesto de trabajo, al alcance de la mano.
• Y lo que se usa al menos una vez por hora se coloca directamente sobre el operario.
• Esta jerarquización del material de trabajo prepara las condiciones para la siguiente etapa, destinada al orden (seiton).
• El objetivo particular de esta etapa es aprovechar lugares despejados.

b. **Ordenar (seiton):**

Consiste en establecer el modo en que deben ubicarse e identificarse los materiales necesarios, de manera que sea fácil y rápido encontrarlos, utilizarlos y reponerlos.

Se pueden usar métodos de gestión visual para facilitar el orden, identificando los elementos y lugares del área. Es habitual en esta tarea el lema (leitmotiv) “un lugar para cada cosa, y cada cosa en su lugar”. En esta etapa se pretende organizar el espacio de trabajo con objeto de evitar tanto las pérdidas de tiempo como de energía.

Normas de orden:

• Organizar racionalmente el puesto de trabajo (proximidad, objetos pesados fáciles de coger o sobre un soporte).
• Definir las reglas de ordenamiento.
• Hacer obvia la colocación de los objetos.
• Los objetos de uso frecuente deben estar cerca del operario.
• Clasificar los objetos por orden de utilización.
• Estandarizar los puestos de trabajo.
• Favorecer el 'FIFO' (en español, PEPS) primero en entrar primero en salir.

c. **Limpiar (seisō):**

Una vez despejado (seiri) y ordenado (seiton) el espacio de trabajo, es mucho más fácil limpiarlo (seisō). Consiste en identificar y eliminar las fuentes de suciedad, y en realizar las acciones necesarias para que no vuelvan a aparecer, asegurando que todos los medios se encuentran siempre en perfecto estado operativo. El incumplimiento de la limpieza puede tener muchas consecuencias, provocando incluso anomalías o el mal funcionamiento de la maquinaria.

Normas de limpieza:
- Limpiar, inspeccionar, detectar las anomalías.
- Volver a dejar sistemáticamente en condiciones.
- Facilitar la limpieza y la inspección.
- Eliminar la anomalía en origen.

d. **Estandarizar (seiketsu):**

Consiste en detectar situaciones irregulares o anómalas, mediante normas sencillas y visibles para todos.

Aunque las etapas previas de las 5S pueden aplicarse únicamente de manera puntual, en esta etapa (seiketsu) se crean estándares que recuerdan que el orden y la limpieza deben mantenerse cada día. Para conseguir esto, las normas siguientes son de ayuda:

- Hacer evidentes las consignas “cantidades mínimas” e “identificación de zonas”.
- Favorecer una gestión visual.
- Estandarizar los métodos operatorios.
• Formar al personal en los estándares.

Metodología
• Involucrar a todos los niveles de la organización.
• Diseñar un plan de acción a seguir, con reglas y lineamientos en acuerdo al orden y limpieza que debe de existir.
• Revisión constante por parte de los mandos.
• Métodos de gestión visual. Considerar colores formas e iluminación.
• Estandarización de los uniformes e higiene del personal.

e. Mantener (shitsuke):
Con esta etapa se pretende trabajar permanentemente de acuerdo con las normas establecidas, comprobando el seguimiento del sistema 5S y elaborando acciones de mejora continua, cerrando el ciclo PDCA (Planificar, hacer, verificar y actuar). Si esta etapa se aplica sin el rigor necesario, el sistema 5S pierde su eficacia.

Establece un control riguroso de la aplicación del sistema. Tras realizar ese control, comparando los resultados obtenidos con los estándares y los objetivos establecidos, se documentan las conclusiones y, si es necesario, se modifican los procesos y los estándares para alcanzar los objetivos.

Mediante esta etapa se pretende obtener una comprobación continua y fiable de la aplicación del método de las 5S y el apoyo del personal implicado, sin olvidar que el método es un medio, no un fin en sí mismo.

En conjunto los puntos anteriormente indicados tienen como objetivo:
- Mantener un ambiente de trabajo sano, limpio y agradable.
- Obtener áreas más seguras.
- Fortalecer el trabajo en equipo.
- Mejorar ostensiblemente la gestión.
- Orientar nuestros esfuerzos hacia la satisfacción del Cliente.
- Motivar y mejorar la moral de los trabajadores.
- Incentivar la Creatividad.

- **Quality Function Deployment**: Hernández (2013) afirma que es “una metodología muy poderosa en el diseño y revisión de nuevos productos, que permite cumplir con los requisitos de los clientes mediante el despliegue de éstos a través de las diferentes fases del desarrollo de nuevos productos.” Esta metodología fue introducida en Japón en el año de 1960 por el profesor Yoji Akao, y su primera implementación fue en Mitsubishi Heavy Industries Kobe.

Para finales de los años 70’s casi todas las empresas manufactureras en Japón estaban utilizando QFD trayendo numerosos beneficios a las organizaciones que intentan incrementar su competitividad mejorando continuamente la calidad y productividad. El proceso tiene los beneficios de ser orientado al cliente, eficiente en tiempo, orientado al trabajo en equipo y hacia la documentación.

Estos beneficios se explican en los siguientes:

- **Orientado al cliente**: QFD requiere la recolección del input y retroalimentación del cliente. Esta información se traduce en un conjunto de requisitos específicos del cliente.
- **Eficiente en tiempo**: QFD puede reducir el tiempo de desarrollo porque se centra en requisitos específicos del
cliente y claramente identificados. Debido a esto, no se desperdicia tiempo en desarrollar características que tienen poco o nulo valor para el cliente.

- **Orientado al trabajo en equipo**: QFD es un enfoque orientado al trabajo en equipo. Todas las decisiones están basadas en el consenso e incluyen discusión a fondo y tormenta de ideas. Puesto que todas las acciones que deben tomarse se identifican como parte del proceso, los individuos ven dónde encajan en la escena completa, promoviendo de esta manera el trabajo en equipo.

- **Orientado a la documentación**: QFD fuerza el aspecto de la documentación. Uno de los productos del proceso QFD es un documento amplio y completo que reúne todos los datos pertinentes acerca de todos los procesos. Este documento cambia constantemente al conocer nueva información y descartar la obsoleta.

- **Mantenimiento Productivo Total**: Es el sistema japonés de mantenimiento industrial desarrollado a partir del concepto de "mantenimiento preventivo" creado en la industria de los Estados Unidos. Soconnini (2008) afirma que es una metodología de mejora que permite la continuidad de la operación, en los equipos y plantas, al introducir los conceptos de: prevención, cero defectos, cero accidentes y participación total de las personas. Rajadell y Sánchez (2010) complementa que el TPM busca lograr una actitud de mayor responsabilidad y atención en las instalaciones en las que se trabaja cotidianamente. El TPM dentro del entorno Lean se considera como una estrategia para maximizar la efectividad global del equipo, ya que empodera a los trabajadores para mantener y mejorar las operaciones y sus equipos en sus áreas de trabajo, previniendo rupturas, mal funcionamiento y accidentes.
Gajdzik (2008) asevera que, por otra parte, se enseña a los operadores de máquina y los trabajadores cómo observar los equipos de la compañía, ya que gracias a este sistema cada pieza del equipo de la línea de producción siempre está lista para realizar las tareas productivas y por lo tanto evitar interrupciones en los procesos de producción.

Salazar (sf) afirman que la adaptación de la filosofía Lean, en empresas intensivas en maquinaria, se ha acuñado con el nombre de TPM (Mantenimiento Productivo Total). TPM se fundamenta en la búsqueda permanente de la mejora de la eficiencia de los procesos y los medios de producción, por una implicación concreta y diaria de todas las personas que participan en el proceso productivo. Cero defectos, cero accidentes, cero paradas.

Objetivos del TPM
• Crear una organización corporativa que maximice la eficiencia de los sistemas de producción.
• Gestionar la planta con el objetivo de evitar todo tipo de pérdidas durante la vida entera del sistema de producción.
• Involucrar a todos los departamentos de la empresa en la implantación y desarrollo.
• Involucrar a todas las personas, desde la alta dirección a los operarios de planta, en un mismo proyecto.
• Orientar decididamente las acciones hacia las cero pérdidas, cero accidentes y cero defectos, apoyándose en las actividades de pequeños grupos de mejora.

Las bases del TPM
TÉCNICA DE LAS 5S, para la mejora de la organización, orden y limpieza de las áreas de trabajo. Es el cimiento en el que después se sustentan los pilares.
IMPLEMENTACIÓN DEL INDICADOR OEE, que permitirá conocer la eficiencia con que trabajan máquinas y procesos, y ante todo nos permitirá conocer y cuantificar las pérdidas.

Los 8 pilares del TPM son los siguientes:

- **MEJORAS ENFOCADAS:** Son grupos de trabajo interdisciplinares formados en técnicas para la mejora continua y la resolución de problemas. Estos grupos enfocarán su trabajo en la eliminación de las pérdidas y la mejora de la eficiencia.

- **MANTENIMIENTO PLANIFICADO:** Actividades de mantenimiento preventivo, predictivo y correctivo orientadas a la prevención y eliminación de averías.

- **MANTENIMIENTO AUTÓNOMO:** Basado en operaciones de inspección y pequeñas actuaciones sencillas, realizadas por los operarios de las máquinas.

- **MANTENIMIENTO DE CALIDAD:** Basado en actuaciones preventivas sobre las piezas de las máquinas que tienen una alta influencia en la calidad del producto.

- **PREVENCIÓN DEL MANTENIMIENTO:** Basado en la gestión temprana de las condiciones que deben reunir los equipos o las instalaciones, para facilitar su mantenibilidad en su etapa de uso.

- **MANTENIMIENTO ÁREAS SOPORTE:** Busca el apoyo necesario para que las actividades de TPM, aseguren la eficiencia y la implicación global.

- **MEJORA DE LA POLIVALENCIA Y HABILIDADES DE OPERACIÓN:** Formación continua del personal de producción y mantenimiento para mejorar sus habilidades y aumentar su polivalencia y especialización.

- **SEGURIDAD Y ENTORNO:** La seguridad y prevención de efectos adversos sobre el entorno son temas importantes en las industrias responsables. La seguridad se promueve sistemáticamente en las actividades de TPM.
• **Kanban:** Su significado japonés es “etiqueta de instrucción”. Su principal función es ser una orden de trabajo, es decir, un dispositivo de dirección automático que nos da información acerca de qué se va a producir, en qué cantidad, mediante qué medios y cómo transportarlo. Kanban cuenta con dos funciones principales: control de la producción y mejora de procesos. En este sistema de producción, el proceso se conduce de tal forma que cada operación vaya jalando el producto necesario de la operación anterior, solamente a medida que lo necesite.

Villaseñor (2009) acota que el Kanban tiene los siguientes propósitos:

- **Prevenir la sobreproducción (y la sobre transportación) de materiales entre todos los procesos de producción.**
- **Proporcionar instrucciones específicas entre los procesos, basadas en los principios de surtido.** Kanban logra esto mediante el control del tiempo del movimiento de materiales y la cantidad de material que se transporta.
- **Servir como una herramienta de control visual para los supervisores de producción y para determinar cuándo la producción va por debajo o por arriba de lo programado.** Con una mirada rápida al dispositivo que tiene el kanban en el sistema, se puede ver si el material y la información están fluyendo acorde a lo planeado o existen anomalidades.
- **Establecer una herramienta para el mejoramiento continuo.** Cada kanban representa un contenedor de inventario en el mapa de procesos. Conforme pase el tiempo, la reducción planeada de los kanbans en el sistema será directamente igual a la reducción de inventarios y proporcional a la disminución del tiempo de entrega para los consumidores.
SMED (Single Minute Exchange of Die): Ferdousi (2010) acota que es el cambio de herramientas en un solo dígito de un minuto, es decir que esté por debajo de los 10 minutos, siendo el tiempo de cambio el que transcurre desde que sale la última pieza buena de un lote anterior hasta que sale la primera pieza del siguiente lote después del cambio el sistema concebido siendo el resultado de la necesidad de reducir los tiempos de cambio y de incrementar la producción de pequeños lotes requeridos para encontrar la flexibilidad que el cliente demanda.

1.4.6. Aplicación de SMED

Arrieta, et al (2011) afirma que esta técnica permite disminuir el tiempo que se pierde en las máquinas e instalaciones debido al cambio de utillaje necesario para pasar de producir un tipo de producto a otro. Algunos de los beneficios que aporta esta herramienta son:

- Reducir el tiempo de preparación y pasarlo a tiempo productivo.
- Reducir el tamaño del inventario.
- Reducir el tamaño de los lotes de producción.
- Flexibilidad porque produce en el mismo día varios modelos en la misma máquina o línea de producción.

Por otro lado, hace referencia que el sistema busca eliminar o disminuir el tiempo de paro de las máquinas, durante la espera que tiene lugar mientras están listas para operar; estableciendo que el SMED sirve para reducir el tiempo de preparación y volverlo productivo, reducir el tamaño del inventario, reducir el tamaño de los lotes de producción y producir varios modelos o productos el mismo día en la misma máquina o línea de producción. Además, Arrieta, et al (2011) asevera que el SMED tiene como clave la observación detenida del entorno y la zona de trabajo, para determinar cómo se
hacen las cosas y así proceder a mejorarlas, por otro lado, Chen y Meng (2010) acotan que las tareas que se deben conocer son las siguientes: operaciones de montaje y desmontaje, operaciones de manufactura, operaciones de ajuste y calibración, fabricación de piezas y operaciones para el surtido de materiales.

1.4.6.1. La gestión operativa

La gestión operativa puede definirse como un modelo de gestión compuesto por un conjunto de tareas y procesos enfocados a la mejora de las organizaciones internas, con el fin de aumentar su capacidad para conseguir los propósitos de sus políticas y sus diferentes objetivos operativos.

Los objetivos operativos se derivan directamente de los objetivos tácticos, por lo que se encuentran involucradas cada una de las actividades de la cadena de valor interno. Por lo tanto, dentro de la gestión operativa quedan englobadas también las diversas gestiones de producción, distribución, aprovisionamiento, recursos humanos y financieros.

A su vez Martínez & Milla (2005) afirman que los ámbitos de actuación de las principales funciones de la gestión operativa son:

- Análisis de los servicios. Fundamentalmente en lo que se refiere a la concordancia entre los servicios ofrecidos o que se piensan ofrecer y los requerimientos de clientes y proveedores. También implica el cumplimiento de las especificaciones técnicas propias de cada producto o servicio y a las pruebas de su correcto funcionamiento.

- Análisis de los procesos. Gestión de los procesos técnicos y administrativos de la organización y el estricto cumplimiento de leyes y normativas relacionadas con el
proceso de producción de artículos y prestación de servicios.

- Revisión de los modos de diseñar y dirigir. Enfoque estratégico basado en un proceso continuo y permanente de los procedimientos más eficaces para la realización de proyectos y la prestación de servicios, tratando de lograr los mejores resultados y la máxima productividad y rentabilidad con el fin de optimizar al máximo los recursos.

Zambrano (2006) asevera que, en definitiva, la tarea esencial de la gestión operativa es el despliegue de recursos y capacidades para obtener resultados concretos. En lo que respecta a la definición de lo objetivos, estos deben ser acertados, realistas, concretos, cuantificables y medibles y que, sobre todo, se encuentren alineados con las posibilidades de la organización, su situación en el mercado, la posición que ocupa actualmente en relación a la competencia y sus posibilidades y expectativas en el corto, medio y largo plazo.

1.4.6.2. Cómo incrementar el valor de la gestión operativa

La gestión operativa puede mejorarse significativamente implantando acciones y estrategias encaminadas a:

- Conseguir un aumento de la cantidad o la calidad de las actividades en relación a los recursos (personales, tecnológicos, de infraestructuras, etc.) empleados.
- Reducción de los costos fijos y extraordinarios para los niveles actuales de producción.
- Alcanzar una mejor identificación de los requerimientos y de la respuesta a las exigencias y expectativas de los clientes.
- Realizar los cometidos de la organización con mayor imparcialidad.
- Incrementar la disponibilidad de respuesta e innovación.
Con el objeto de reestructurar las organizaciones actuales con los alineamientos y preceptos de una gestión operativa innovadora, los directivos de las empresas deben analizar cinco cuestiones principales:

1. Decidir qué productos y servicios ofrecer y qué pautas de actuación llevar a cabo para comercializar y distribuir adecuadamente esos productos.
2. Diseñar las operaciones necesarias para producir esos productos o servicios con la mejor calidad posible.
3. Utilizar y ajustar los sistemas administrativos de su organización, e innovar en ellos, para aumentar la calidad, flexibilidad y productividad de los sistemas.
4. Atraer colaboradores nuevos para la realización de los objetivos de la organización.
5. Definir el tipo, grado y ubicación de las innovaciones que se consideren necesarias.

Por otro lado, Zambrano (2006) acota que para conseguir todas estas metas es muy importante especificar la misión y los objetivos de la organización de forma simple, clara y general. A partir de este punto, se debe delimitar una jerarquía de finalidades y metas que sirvan para orientar y dirigir en la línea correcta las actividades operativas hasta llegar a los parámetros de calidad deseados en los productos o servicios, dentro de unos márgenes adecuados de rentabilidad y productividad.

1.4.6.3. Medición de indicadores en la gestión operativa (Suministros, RRHH, Financiera, Producción)

ISOTools (2015) afirma que la gestión está condicionada por la capacidad de la institución de generar la información necesaria y de elaborar los indicadores, con niveles adecuados de
calidad, certeza y confiabilidad. Es obviamente necesario determinar la calidad y cantidad de información que será necesario procesar para evaluar la gestión. En este sentido puede ser útil elaborar un catastro con la información disponible en el servicio, distinguiendo aquélla que es posible generar en forma relativamente sencilla, de la que requerirá de un trabajo específico para su obtención.

Tabla N°1
PRINCIPALES INDICADORES DE GESTIÓN (Suministros, RRHH, Financiera, Producción)

<table>
<thead>
<tr>
<th>INDICADORES PARA EL AREA DE SUMINISTROS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Movilidad de los inventarios</td>
<td>_ Inventario__</td>
</tr>
<tr>
<td></td>
<td>Capital Contable</td>
</tr>
<tr>
<td>2. Rotación de Inventarios</td>
<td>_ Materia Prima empleada en el mes__</td>
</tr>
<tr>
<td></td>
<td>Inventario Materia Prima</td>
</tr>
<tr>
<td>3. Rotación de créditos pasivos</td>
<td>_ Compras Anuales__</td>
</tr>
<tr>
<td></td>
<td>Saldo promedio de los proveedores *360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDICADORES PARA EL AREA DE RECURSOS HUMANOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. productividad De mano de Obra</td>
<td>_ Producción__</td>
</tr>
<tr>
<td></td>
<td>Horas Hombre trabajadas</td>
</tr>
<tr>
<td>2. Ausentismo</td>
<td>_ Horas Hombre ausentes__</td>
</tr>
<tr>
<td></td>
<td>Horas hombre trabajadas</td>
</tr>
<tr>
<td>3. Importancia de los salarios</td>
<td>_ Total salarios pagados__</td>
</tr>
<tr>
<td></td>
<td>Costos de producción</td>
</tr>
<tr>
<td>4. Indicador de rotación de trabajadores =</td>
<td>_ Total de trabajadores retirados__</td>
</tr>
<tr>
<td></td>
<td>Número promedio de trabajadores</td>
</tr>
<tr>
<td>5. Indicador Ventas- Trabajador</td>
<td>_ Ventas totales__</td>
</tr>
<tr>
<td></td>
<td>Número promedio de trabajadores</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDICADORES DE ESTRUCTURA FINANCIERA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Indicador Capital de Trabajo</td>
<td>_ Capital de trabajo__</td>
</tr>
<tr>
<td></td>
<td>Activo circulante</td>
</tr>
<tr>
<td>2. Indicador punto de equilibrio</td>
<td>_ Punto de equilibrio__</td>
</tr>
<tr>
<td></td>
<td>Ventas Totales</td>
</tr>
<tr>
<td>3. Punto de equilibrio</td>
<td>_ Gastos fijos__</td>
</tr>
<tr>
<td></td>
<td>Margen en porcentaje</td>
</tr>
</tbody>
</table>
1.5. Marco conceptual

- **Procesos Productivos**: Se conoce como proceso productivo a la forma en que una serie de insumos se transforman en productos mediante la participación de una determinada tecnología (combinación de mano de obra, maquinaria) dicho de otra forma un proceso productivo es el conjunto de operaciones que mediante recursos técnicos y humanos transforman la materia prima en un producto, además el proceso productivo puede realizarse de manera artesanal o industrial. (Chen y Meng, 2010).

- **Nivelación**: Es una etapa en la que se intenta distribuir uniformemente el trabajo (por volumen y la variedad) para a minorar los inventarios y poder trabajar con lotes menores. (Villaseñor, 2007)

- **Just in Time (JIT)**: Significa fabricar un producto indicado en el momento requerido y en la cantidad exacta. Todo exceso de producción es considerado desperdicio. La esencia del JIT es hacer que el valor fluya de manera que el cliente pueda jalarlo. (Hirano, 1989)

<table>
<thead>
<tr>
<th>INDICADORES DE PRODUCTOS Y SERVICIOS</th>
<th>=__</th>
<th>INDICADORES PARA LOS MEDIOS DE PRODUCCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rentabilidad por producto</td>
<td>Margen</td>
<td>1. Productividad maquinaria</td>
</tr>
<tr>
<td></td>
<td>Total de ventas</td>
<td>= Producción</td>
</tr>
<tr>
<td>2. Índice de comercialidad</td>
<td>Venta producto</td>
<td>2. Indicador Mantenimiento-Producción</td>
</tr>
<tr>
<td></td>
<td>Ventas Totales</td>
<td>= Costo de mantenimiento</td>
</tr>
<tr>
<td>3. Punto de equilibrio</td>
<td>Gastos fijos</td>
<td>= Costo de Producción</td>
</tr>
<tr>
<td></td>
<td>Margen en porcentaje</td>
<td>4. Nivel de Calidad</td>
</tr>
<tr>
<td>4. Nivel de Calidad</td>
<td>= Total productos sin defectos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= Total productos elaborados</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: ISOTools (2015)
• **Cadena de Valor:** El modelo de la cadena de valor resalta las actividades específicas del negocio en las que pueden aplicar mejor las estrategias competitivas y en las que es más probable que los sistemas de información tengan un impacto estratégico. (Porter, 1985).

• **Modelo de Gestión:** Nuestra visión de un modelo de gestión es integrado, que parte de una clara definición de valor para la empresa donde se identifican los planteamientos estratégicos que determinarán la definición del modelo organizativo y de procesos, así como la cobertura tecnológica más adecuada. (Villaseñor, 2009).

• **Lean Manufacturing:** Es una filosofía de trabajo basada en las personas que define la forma de mejora y optimización de un sistema de producción focalizándose en identificar y eliminar todo tipo de desperdicios definidos estos como aquellos procesos o actividades que usan más recursos de los estrictamente necesarios. (Hernández y Vizán, 2013)

• **Gestión Operativa:** Es un modelo de gestión compuesto por un conjunto de tareas y procesos enfocados a la mejora de las organizaciones internas, con el fin de aumentar su capacidad para conseguir los propósitos de sus políticas y sus diferentes objetivos operativos. (ISOTools,2015)
CAPÍTULO II: MATERIALES Y PROCEDIMIENTOS
2.1. Materiales

2.1.1. Población

El presente trabajo se realizó en la ciudad de Trujillo. La población sujeta a estudio, estuvo conformada por todos los procesos productivos y los trabajadores de la empresa SIMILAN E.I.R.L siendo un total de 15 trabajadores con una estructura en comité en donde la autoridad y la responsabilidad fueron compartidas conjuntamente por un grupo de personas.

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Cargo</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Administrador</td>
</tr>
<tr>
<td>02</td>
<td>Operarios para el corte</td>
</tr>
<tr>
<td>06</td>
<td>Operarios para ensamblaje</td>
</tr>
<tr>
<td>02</td>
<td>Operarios para el calidad</td>
</tr>
<tr>
<td>02</td>
<td>Operario para el planchado</td>
</tr>
<tr>
<td>02</td>
<td>Operario para la empaque</td>
</tr>
<tr>
<td>15</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Fuente: La empresa SIMILAN E.I.R.L.

Elaboración: Los autores

2.1.2. Marco de muestreo

La relación de los trabajadores de la empresa SIMILAN E.I.R.L y los procesos de las cinco áreas principales de producción que fueron el área de corte, ensamblaje, calidad, planchado y empaque.
2.1.3. **Unidad de análisis.**

Cada uno de los trabajadores de la empresa SIMILAN E.I.R.L. y las actividades de las cinco áreas principales de producción.

2.1.4. **Muestra**

Al ser pequeña la población se tomó en cuenta el total de la población como muestra para objeto de la investigación contando con un tipo de muestreo no probabilístico.

\[n = 15 \text{ trabajadores} \]

2.1.5. **Técnicas e instrumentos de recolección de datos**

Las técnicas e instrumentos que se utilizaron para el trabajo de investigación fueron las siguientes:

<table>
<thead>
<tr>
<th>TÉCNICAS</th>
<th>INSTRUMENTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrevista</td>
<td>Guía de preguntas</td>
</tr>
<tr>
<td>Observación</td>
<td>Ficha de observación</td>
</tr>
</tbody>
</table>

a. **Técnicas:**

- **Entrevista:** Se utilizó para obtener datos o testimonios verbales por medio de la intervención del investigador y persona entrevistada.
• **Observación:** Consistió en observar personas, fenómenos, hechos, casos, objetos, acciones, situaciones obteniendo determinada información necesaria para una investigación.

b. **Instrumentos:**

• **Guía de preguntas:** Nos permitió visualizar de una manera global un tema a través de una serie de preguntas literales que dieron una respuesta específica. Las preguntas se contestaron con referencia a datos, ideas y detalles expresados en una lectura. La utilización de un esquema fue opcional.

• **Ficha de observación:** Fue un instrumento de la investigación de campo. Se usó cuando el investigador debió registrar datos que aportaron otras fuentes como fueron personas, grupos sociales o lugares donde se presentó la problemática. Se realizó tres fichas de observación:
 - Ficha de observación que evaluó el estado actual de la empresa frente a la comprensión del enfoque Lean.
 - Ficha de observación que evaluó el estado actual de la empresa frente a las 5S.
 - Ficha de observación que evaluó el estado actual de la empresa frente al SMED y TPM.
2.2 Procedimientos

2.2.1 Diseño de contrastación

El diseño de contrastación fue no experimental de corte transversal de una sola casilla, ya que se recolectó y analizó datos en un periodo de tiempo pre determinado, se hizo con la finalidad de hacer inferencias respecto a la variable.

La representación gráfica fue como sigue:

\[M \rightarrow O \]

Dónde:

M =Representa a los trabajadores de la empresa SIMILAN E.I.R.L. como muestra de estudio.

O =Representa la observación e información extraída de la población muestra que sirvió de base para determinar la factibilidad de una propuesta de implementación del modelo lean manufacturing para mejorar la gestión operativa.
2.2.2 Análisis de las variables

<table>
<thead>
<tr>
<th>Variables a investigar</th>
<th>Definición Conceptual</th>
<th>Definición operacional</th>
<th>Dimensiones</th>
<th>Indicadores</th>
<th>Tipo de Variables</th>
<th>Escala de medición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propuesta de modelo de implementación del modelo Lean Manufacturing</td>
<td>Es una filosofía de trabajo basada en las personas que define la forma de mejora y optimización de un sistema de producción focalizándose en identificar y eliminar todo tipo de desperdicios definidos estos como aquellos procesos o actividades que usan más recursos de los estrictamente necesarios. (Hernández & Vizán, 2013)</td>
<td>Feld (2001) afirma que la comprensión del enfoque Lean recoge las diferentes técnicas en cinco elementos primarios que representan la dimensión requerida para soportar un programa sólido de Lean Manufacturing, por otro lado López (2001) acota que el método de 5S es una técnica de gestión japonesa basada en cinco principios simples, a su vez Arrieta et al (2011) afirma el SMED es una técnica que permite disminuir el tiempo que se pierde en las maquinas e instalaciones debido al cambio de utilaje necesario para producir un tipo de producto a otro Salazar (2013) afirma que el TPM es una adaptación de la filosofía Lean en empresas intensivas en maquinaria.</td>
<td>Comprensión del enfoque Lean</td>
<td>Flujo de manufactura</td>
<td>Cualitativa</td>
<td>Escala de Likert</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Organización</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control del proceso</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seleccionar</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ordenar</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cinco eses</td>
<td></td>
<td>Limpiar</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Estandarizar</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mantener</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMED</td>
<td></td>
<td>Tiempo</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flexibilidad</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tamaño de inventario</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPM</td>
<td></td>
<td>Mantenimiento preventivo</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cero defectos</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cero accidentes</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aumentar el control</td>
<td>Cualitativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Movilidad de inventarios</td>
<td>Cuantitativa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Hernández & Vizán, 2013)
<table>
<thead>
<tr>
<th>Variable dependiente</th>
<th>Suministros</th>
<th>Rotación de inventarios</th>
<th>Cuantitativa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotación de créditos pasivos</td>
<td>Cuantitativa</td>
<td>Ordinal</td>
</tr>
<tr>
<td>Gestión operativa</td>
<td>RRHH</td>
<td>Productividad de mano de obra</td>
<td>Cuantitativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ausentismo</td>
<td>Cuantitativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Importancia de los salarios</td>
<td>Cuantitativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotación de trabajadores</td>
<td>Cuantitativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicador de ventas – trabajador</td>
<td>Cuantitativa</td>
</tr>
<tr>
<td></td>
<td>Financiera</td>
<td>Capital del trabajo</td>
<td>Cuantitativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indicador de punto de equilibrio</td>
<td>Cuantitativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Punto de equilibrio</td>
<td>Cuantitativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independencia financiera</td>
<td>Cuantitativa</td>
</tr>
<tr>
<td></td>
<td>Producción</td>
<td>Rentabilidad por producto</td>
<td>Ordinal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Índice comercial</td>
<td>Ordinal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nivel de calidad</td>
<td>Ordinal</td>
</tr>
</tbody>
</table>
2.2.3 Procesamiento y análisis de datos

Para el análisis de la información, siendo el estudio de tipo cuantitativo y cualitativo, los resultados de las observaciones y entrevista fueron mostrados utilizando Ms. Excel.

La discusión de resultados se realizó con los objetivos, los antecedentes. Finalmente se establecieron las conclusiones en relación directa con los objetivos y se propusieron las recomendaciones debidas para la Gerencia.
CAPÍTULO III: PROPUESTA
3.1. Flujograma general de la empresa

Fuente: La empresa SIMILAN E.I.R.L.
Elaboración: Los autores
3.2. Proceso productivo

La empresa SIMILAN E.I.R.L opera en un solo turno de ocho horas, desde las 8:00 am hasta las 5:00 pm con un descanso de 10 minutos a las 10:30 am y una hora de almuerzo a la 1:00 pm

a. Blusa

El proceso ocurre en el siguiente orden:

- Corte

 En este proceso de corte se realiza la extensión de la tela para reposar, el corte de los metros de tela y la etiquetada de las piezas y finalmente se espera a que pasen la orden de producción para pasar las piezas a ensamblaje. No existe un tiempo estándar para corte, es muy difícil de estimarlo ya que tiene muchas variaciones; depende del tipo de tela, de las cantidades a cortar y del producto como tal. Sin embargo, con la información recolectada vimos que en el proceso de corte la blusa tarda un día, por otro lado, está a confiabilidad de la máquina de corte es de un 80% dato estimado según el cortador de la empresa quien expresa que este tipo de maquina se compró hace muchos años, y en ocasiones falla debido a su vida útil.

- Ensamblaje

 Para el proceso de ensamblaje es muy importante la preparación y el alistamiento de las máquinas e insumos. El tiempo de alistamiento de esta referencia fue de una hora. Esta referencia se trabajó con un total de seis operarias. Se observó que tuvo cuatro días de inventario en el módulo de confección. En cuanto respecta a la confiabilidad de las máquinas, se estimó junto con la supervisora de la planta que las maquinas trabajan con una confiabilidad del 90% ya que se les realiza el respectivo mantenimiento.

- Calidad

 El proceso de calidad tiene un tiempo de ciclo de diez minutos por prenda aproximadamente.
Para este proceso de calidad se vio una gran acumulación de inventario de otras referencias, es decir la operaria de calidad no estaba revisando las prendas que salían inmediatamente de ensamblaje, si no de días anteriores. Se observó un inventario de dos días y medio.

- **Planchado**
 Para este proceso, el tiempo de ciclo es de seis minutos por prenda aproximadamente. De igual forma aquí se pudo evidenciar inventario en cajas, debido a producciones atrasadas. Al producto no se le dio salida de inmediato ya que se estaban planchando otros pedidos. Tuvo un inventario de tres días por esta razón.

- **Empaque**
 Para empaque se tiene un tiempo de ciclo de dos minutos aproximadamente, las actividades que se realizan son botonar, poner etiqueta, doblar, empacar y apilar. Normalmente el inventario es de dos días, que es el tiempo que pasa el producto en espera mientras es recogido por la encargada de bodega y despacho.
Figura N°3: Flujograma de blusas

Fuente: La empresa SIMILAN E.I.R.L.

Elaboración: Las autoras
b. Pantalón

- Corte
 Para este proceso de corte según este producto es necesario reposar la tela un aproximado de dos horas antes de cortarla, luego cortar en las piezas según el molde, separarlas y etiquetarlas. Con un tiempo de ciclo aproximado de dos días.

- Ensamblaje
 En el proceso de ensamblaje de esta referencia se tiene un tiempo de ciclo de una hora, el tiempo de alistamiento fue de media hora. Se observó un inventario de tres días. Las operarias no siempre trabajan a una eficiencia del 100% es por esto que se observó este inventario. Confiabilidad de las máquinas de los módulos 90%.

- Calidad
 El proceso de calidad tiene un tiempo de ciclo de diez minutos por prenda aproximadamente. Tuvo un inventario de un día debido a la acumulación de trabajo y a que las cantidades de esta referencia son muchas.

- Plancha
 Para el proceso de plancha el tiempo de ciclo es de tres minutos por prenda aproximadamente; donde este producto solo debe plancharse muy superficialmente debido a la tela. Tuvo un inventario de dos días y medio.

- Empaque
 Para empaque se tiene un tiempo de ciclo de seis minutos aproximadamente, las actividades que se realizan para este producto son poner etiqueta, doblar, empacar y apilar. Hubo un inventario de dos días que es lo que normalmente se demora la despachadora en recoger el producto para consolidarlo.
Figura N°4: Flujograma de pantalones

Fuente: La empresa SIMILAN E.I.R.L.

Elaboración: Las autoras
3.3. Diagnóstico de los procesos de gestión operativa

Una vez realizado el diagnóstico, se puede definir el estado actual de la empresa. Para este objetivo se va a realizar un análisis de síntomas, causa y problemas.

a. Gestión del Sistema de producción

La empresa realiza su planeación a un tiempo relativamente corto, basada en datos históricos y no a una demanda pronosticada. La planeación de la producción no toma en cuenta factores importantes como: Políticas y nivel de inventarios, Lead time de proveedores, mantenimiento periódico de las máquinas y el flujo secuencial dentro de la planta.

b. Gestión de inventarios y proveedores

La empresa no realiza una planificación acertada.
c. Cultura organizacional orientada a la mejora continua

<table>
<thead>
<tr>
<th>Síntomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faixa de coordinación entre departamentos</td>
</tr>
<tr>
<td>No existe participación activa por parte de los empleados</td>
</tr>
<tr>
<td>Error en el manejo de las telas, máquinas, programas</td>
</tr>
<tr>
<td>No hay programas de capacitación propios de la empresa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Causas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poca inversión en capacitaciones</td>
</tr>
<tr>
<td>Mala comunicación entre departamentos</td>
</tr>
<tr>
<td>No hay un programa de incentivos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>La empresa no realiza capacitaciones a todos sus empleados, de igual forma no fomenta el aprendizaje de estos; la participación activa de los empleados en las políticas de mejora de la empresa es baja.</td>
</tr>
</tbody>
</table>

d. Gestión estratégica orientada a la mejora continua

<table>
<thead>
<tr>
<th>Síntomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto inventario de Producto terminado.</td>
</tr>
<tr>
<td>Maquinas dañadas.</td>
</tr>
<tr>
<td>Mala comunicación entre departamentos.</td>
</tr>
<tr>
<td>Alto nivel de desperdicios en telas e insumos.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Causas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falta de tecnificación en la planta.</td>
</tr>
<tr>
<td>Inversión media en los recursos de la empresa.</td>
</tr>
<tr>
<td>Falta de union y trabajo en equipo entre los departamentos.</td>
</tr>
<tr>
<td>Poca inversión en publicidad y mercadeo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problemas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aunque la empresa tiene los objetivos claros, no existe una participación de todos los empleados en la planeación estratégica de la empresa. La empresa no tiene indicadores para medir el avance de sus objetivos propuestos</td>
</tr>
</tbody>
</table>

Una vez identificado los problemas más críticos, se procede a mirar que herramientas Lean pueden ayudar a atacar esos síntomas y brindar una solución factible al problema.

Identificando inventarios de días muy altos. A lo largo de la recolección de los datos de la empresa se observó que el alto nivel de inventario en días es precisamente porque los insumos o materiales no se encuentran listos, o
existe una acumulación de trabajo por otras referencias afectando directamente al tiempo de entrega.

La producción de blusas obtuvo un tiempo de proceso donde la primera prenda debería tardar 2.1 días en ser fabricado, sin embargo, al analizar su lead tiene se observó un tiempo de 19.5 días, un valor muy superior a su tiempo de proceso lo que permite concluir que existen actividades en este proceso que no están agregando valor y por el contrario están afectando la entrega de los pedidos.

Si analizamos la producción de pantalones encontramos un Lead time menor con respecto a la referencia anterior. Esto es primordialmente por su diseño, no requiere tantos insumos que regularmente demoran más tiempo y su complejidad a la hora de confección es mucho menor que la de una blusa. A pesar que su demanda es muy grande, no tuvo tantos días en inventario ya que esta referencia es muy representativa en las ventas por lo que se debe despachar de manera inmediata a los clientes mayoristas y a los diferentes almacenes.

El pantalón tuvo un Lead time de 13.5 días, con un tiempo de proceso de 62040 segundos es decir que el primer pantalón en estar listo debía tardarse alrededor de dos días.

Como sugerencias para la identificación del valor dentro de la planta, se recomienda mostrar en las áreas de trabajo tableros de comparación entre el estado ideal (takt time) y el estado actual. Cuando el estado ideal sea diferente del estado actual se podrá identificar fácilmente que existe un problema.

Entre las posibles herramientas que pueden implementarse en la empresa SIMILAN E.I.R.L. son las siguientes:

VALUE STREAM MAPPING.

Antes de lograr entender un mapa de la cadena de valor, es primordial saber que es valor. Valor puede ser un producto un servicio o ambos, pero lo más importante es reconocer que el cliente quien determina este valor. Al realizar la recolección de información se encontró que para la empresa su valor es
la calidad y la buena horda de sus diseños. Donde para ellos sus clientes más antiguos están dispuestos a pagar por productos de muy buena calidad. Sin embargo, en la empresa también se encuentra actividades que no agregan valor al proceso. Según las condiciones encontradas, vimos que actualmente existe una mala planeación productiva, lo que acarrea tiempos de espera innecesarios, paros en la producción, falta de sincronización entre los diferentes departamentos y otros factores que influyen en el cumplimiento de los pedidos. Con la implementación de un Value Stream Mapping se quiere poder visualizar el proceso total para identificar las fuentes de desperdicio que no permiten que la empresa desarrolle un flujo continuo. Con la elaboración de un VSM es posible ver toda la cadena productiva desde el proveedor hasta al cliente por lo que permite un seguimiento del desempeño de toda la cadena de valor enfocándose en los análisis de las causas de los problemas y el mejoramiento continuo.

5´s.
Como primera instancia vemos que 5´s es una herramienta indispensable para la implementación de futuras herramientas Lean. Según las condiciones de la empresa, se puede ver que no existe un orden ni un proceso estándar en la limpieza y operaciones en los puestos de trabajo, de manera que esta herramienta permitirá mejorar la eficiencia y calidad de vida en el lugar de trabajo. Para la implementación se requiere seguir los 5 principios fundamentales que son Seiri, Seiton, Seiso, Seiketsu, Shitsuke. El desarrollo de esta herramienta permitirá liberar espacios útiles en la planta, reducir tiempos de accesos a materiales, herramientas y otros elementos, mejorar los controles visuales de las materias primas, e insumos. También se conseguirá un lugar agradable donde cada elemento tiene un espacio designado de acuerdo a su frecuencia de uso, las áreas de trabajo estarán marcadas e identificadas y así la estética de la planta reflejará un mensaje de orden, limpieza, y seguridad.
DAILY ACCOUNTABILITY

Este sistema de gestión diaria operativa pretende evaluar diariamente por medio de reuniones todos los problemas y acontecimientos que sucedieron en el área productiva durante las últimas 24 horas. Se vio este sistema como un potencial muy grande para poder mejorar la planeación y la programación de los productos de la empresa, porque permite solucionar los problemas mediante un plan de acción de una manera rápida y desde su raíz. De acuerdo en las condiciones en las que se encuentra la empresa, vemos que no existe ningún tipo de comités o reuniones formales establecidas para plantear y solucionar los problemas que se presentan, lo que se busca con esto es poder tener una comunicación efectiva de manera que la información sea en tiempo real. Es por esta razón que se debe realizar un seguimiento de los indicadores de gestión todos los días. Actualmente la empresa cuenta con indicadores de gestión en los módulos de confección, plancha y empaque sin embargo no existen una documentación de las reuniones donde se evalúan estos indicadores. Dentro de las condiciones de la empresa también se encontró que los empleados no tienen una participación directa en las decisiones y solución de problemas. Por estos motivos se hace evidente la propuesta de mejora bajo el sistema de Daily Accountability para poder darle una solución a estas falencias. Además, la implementación futura de este sistema permitirá un monitoreo a la aplicación 5’s.

CELDAS DE MANUFACTURA

Mediante esta herramienta de celdas, se busca analizar el método de trabajo de confección en la empresa. Durante las visitas realizadas se vio que esta empresa trabajo bajo un sistema de módulos. Como se conoce bien el trabajo en módulos es trabajo en equipo, donde cada equipo debe ser autónomo y responsable por su producción. Lo que se quiere lograr con esta herramienta es poder conocer los módulos de trabajo en una empresa de confección, para que bajo las condiciones en las que se encuentre se puedan hacer sugerencias y recomendaciones.
3.4. Opción escogida para la mejora de la gestión operativa

Por la situación de la empresa SIMILAN E.I.R.L. se recomienda utilizar la herramienta de Lean Manufacturing de las 5’S, para ellos se debe tener en cuenta lo siguiente:

Inicialmente se realizará una capacitación donde se le brindará al trabajador u operario toda la información relacionada con la metodología. En esta capacitación se abordarán temas como:

- ¿Qué son las 5S?
- ¿Para qué sirven las 5S?
- ¿Por qué se van a implementar las 5S?
- ¿Qué beneficios traerá para la empresa y los empleados la implementación de las 5S?
- ¿Qué responsabilidades se tendrán al momento de implementar?

3.4.1. Clasificar

La implementación de este primer pilar se desarrollará mediante los siguientes pasos:

- Seleccionar y clasificar los objetos o herramientas en dos grupos:
 - Objetos necesarios: que son todos aquellos elementos o herramientas que se utilizan en el sistema productivo de la empresa y que se encuentran en buen estado.
 - Objetos innecesarios: que son todos aquellos elementos o herramientas que no son utilizados en el sistema productivo de la empresa o que se encuentran defectuosos
Esta selección y clasificación se desarrolla mediante una jornada donde los empleados de la empresa SIMILAN E.I.R.L., realicen la separación de los objetos innecesarios por medio de la ayuda de las tarjetas rojas, donde dan a conocer la importancia del objeto.

Figura N° 6: Formato sugerido de la tarjeta roja

<table>
<thead>
<tr>
<th>TARJETA ROJA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
</tr>
<tr>
<td>NOMBRE DEL OBJETO</td>
</tr>
<tr>
<td>RAZONES DE LA ELIMINACIÓN</td>
</tr>
<tr>
<td>NO USO</td>
</tr>
<tr>
<td>ESTADO DEL OBJETO</td>
</tr>
<tr>
<td>BUENO</td>
</tr>
<tr>
<td>DISPOSICION FINAL</td>
</tr>
<tr>
<td>ELIMINAR</td>
</tr>
<tr>
<td>TRANSFERIR A OTRA AREA</td>
</tr>
<tr>
<td>ALMACENAR</td>
</tr>
<tr>
<td>OBSERVACIONES</td>
</tr>
</tbody>
</table>
- Teniendo la información obtenida anteriormente se determina la disposición final de los objetos que se consideraron como innecesarios, esto se realiza con la autorización previa de la gerente. Para ello nos guiremos de los siguientes criterios de evaluación:

Figura N°7: Criterios de evaluación de clasificación de objetos innecesarios.

![Diagrama de criterios de evaluación](image)

Fuente: Guachisaca, Caiche, & Montalvo (2011)

3.1.1. Ordenar

Teniendo la clasificación de los objetos necesarios que se realiza el primer pilar, se procede a realizar los siguientes pasos:

- Realizar la respectiva demarcación de las áreas por medio de señalización donde se visualice claramente las zonas de almacenamiento.
- Clasificar los artículos necesarios por frecuencia de uso y dependiendo de esta clasificación se asignarán los espacios más cercanos al puesto de trabajos para el almacenamiento.
de los artículos con mayor uso, y en los almacenajes retirados
los artículos con un uso poco frecuente pero que son utilizados
en el proceso. Con este procedimiento se logra despejar las
áreas de trabajo para continuar con las siguiente S.
Para ello se debe seguir criterios para el almacenamiento de
herramientas que mencionaremos a continuación:
✓ Las herramientas que se utilizan todo el tiempo
(herramientas básicas) colocarlas encima de la mesa o en
un cinturón de herramientas.
✓ Las herramientas que se utilizan varias veces al día
colocarlas en cajones de escritorio próximos a los
trabajadores
✓ Las herramientas que se utilizan varias veces por semana
colocarlos cerca al área de trabajo
✓ Las herramientas que se utilizan varias veces al mes
colocarlas en áreas comunes.
✓ Las herramientas que son posibles que se usen colocarlas
en áreas de almacenamiento menos accesibles
- Para la empresa se recomienda diseñar un carro para el
almacenamiento temporal de hilos que se pueda desplazar
fácilmente por todas las áreas y que solo contenga los hilos
utilizados para la confección que se esté realizando en ese
momento, cuando se cambie el tipo de confección se
cambiaran los hilos necesarios para la siguiente confección,
así se lograría disminuir el tiempo de búsqueda de materiales
y se tendría un control visual.

3.1.2. Limpiar
Para la implementación del tercer pilar, se trabaja con la ayuda de las
tarjetas amarillas las cuales proporcionaran los focos de suciedad,
ayudando a facilitar la limpieza. Se recomienda realizar un cuadro de
turnos para la limpieza, donde a cada operario se le asignara una
responsabilidad para encargarse de la limpieza antes, durante y
después de la jornada laboral. Este cuadro deberá estar a la vista de todos los operarios y se les debe informar cada vez que se realice algún cambio en este.

Figura N°8: Formato sugerido de tarjeta amarilla

![Tarjeta amarilla](image)
3.1.3. Estandarizar

Para la implementación del cuarto pilar, Se debe crear hábitos de limpieza en los operarios para que se mantengan las 3 primeras S.

Para cada pilar se plantean estrategias fundamentales para mantener el orden y el aseo en los puestos de trabajo. Estas estrategias son:

- **Clasificar:** mantener las tarjetas rojas dentro de los hábitos de los operarios, porque si en algún momento consideran que en los puestos de trabajo hay algún artículo o herramienta que se considera innecesario, se procesa a realizar su identificación para posteriormente evaluar y asegurar su disposición final.

- **Ordenar:** Asegurar mediante la comunicación visual (Carteles) que los artículos y herramientas sean devueltas a su respectivo lugar de almacenamiento.

- **Limpieza:** Creando e incentivando los hábitos de limpieza
3.1.4. Disciplina

Para la implementación del quinto pilar, se debe mantener las cuatro S anteriores, para lo cual se realizarán auditorías por medio del formato establecido y debe evaluarse por medio de los indicadores descritos anteriormente. Estas auditorías se deben realizar 1 vez al mes para evaluar las actividades desempeñadas.

3.2. Indicadores

- **Personal capacitado:**

 Personal capacitado = \(\frac{\text{Número de personas capacitadas}}{\text{Número de personas a capacitar}} \times 100\% \)

Éste indicador, le permite a la empresa medir la eficacia de las capacitaciones del personal de la empresa en el manejo de las herramientas elegidas de la metodología lean manufacturing.

Es importante recordar, que, si no se capacita a todo el personal operario en el manejo de las herramientas, no se logra los resultados propuestos.

- **Avance en documentación de procesos:**

 Estandarización = \(\frac{\text{N°de operaciones estandarizadas}}{\text{N°de operaciones totales}} \times 100\% \)

Para medir el impacto positiivo que se espera de la implementación de ésta metodología, se propone este indicador, el cual permite conocer el grado de operaciones estandarizadas de la empresa.
- **Productividad**

 Efic.de metodología = Und. Prod. Después de la implementación $\times 100\%$

 Und. Prod. Antes de la implementación

 Con este indicador se espera medir el grado de incremento de la producción con la implementación de la metodología y compararla con la producción antes de la implementación.

- **Reducción de tiempos de desperdicios**

 Reducción de desperdicios = Cant. Desperdicios mes actual $\times 100\%$

 Cant. De desperdicios anterior

 A fin de lograr la reducción de los desperdicios que se plantea con la metodología, se hace necesario a través de este indicador se realice un seguimiento mensual y se compare con el mes anterior para controlar que realmente se logre los resultados esperados.

- **Reducción de tiempos de producción**

 Reducción de tiempos = T. utilizado por unidad mes actual $\times 100\%$

 T. utilizado por unidad mes anterior

 Con este indicador se espera medir realmente la reducción del tiempo utilizado en la producción de una unidad.
CAPÍTULO IV: PRESENTACIÓN Y DISCUSIÓN DE RESULTADOS
4.1. Presentación de resultados

4.1.1. Resultados Cualitativos:
En este apartado se hace referencia a los resultados obtenidos de aplicar la técnica de observación a los trabajadores de SIMILAN E.I.R.L. con las puntuaciones siguientes:

1 : Totalmente en desacuerdo
2 : En desacuerdo
3 : Ni de acuerdo ni en desacuerdo
4 : De acuerdo
5 : Totalmente de acuerdo
FICHA DE OBSERVACIÓN PARA EVALUAR EL ESTADO ACTUAL DE LA EMPRESA FRENTE A LA COMPRENSIÓN DEL ENFOQUE LEAN MANUFACTURING EN EL PROCESO DE CORTE, ENSAMBLAJE, CALIDAD, PLANCHA Y EMPAQUE EN LA PRODUCCIÓN DE PANTALONES

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
<th>RANGOS</th>
<th>TOTAL</th>
<th>PUNTAJE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>La administración tiene conocimiento de los conceptos y métodos de lean manufacturing y tiene un plan para ponerlos en práctica.</td>
<td>0 9 6 0 0</td>
<td>15</td>
<td>0 18 18 0 0</td>
<td>36</td>
</tr>
<tr>
<td>Conocen los empleados las siete fuentes de desperdicios básicos, participan activamente en su identificación, dentro de sus áreas de trabajo y están autorizados a trabajar para su eliminación y/o minimización.</td>
<td>7 4 3 1 0</td>
<td>15</td>
<td>7 8 9 4 0</td>
<td>28</td>
</tr>
<tr>
<td>Existe un proceso formal para que los empleados reciban una retroalimentación de los problemas encontrados en los procesos de fabricación de pantalones.</td>
<td>7 5 3 0 0</td>
<td>15</td>
<td>7 10 9 0 0</td>
<td>26</td>
</tr>
<tr>
<td>El trabajo en equipo es estimulado en todas las áreas de la empresa</td>
<td>0 1 7 4 3</td>
<td>15</td>
<td>0 2 21 16 15</td>
<td>54</td>
</tr>
<tr>
<td>Los empleados se sienten cómodos de identificar problemas y brindar ideas. Hay una recompensa y un sistema de reconocimiento por las acciones de mejora con éxito en los procesos de la producción de pantalones.</td>
<td>0 0 5 6 4</td>
<td>15</td>
<td>0 0 15 24 20</td>
<td>59</td>
</tr>
<tr>
<td>Está diseñado el proceso de trabajo para poder identificar de manera inmediata los defectos en el momento y lugar donde se manifiesten.</td>
<td>8 4 3 0 0</td>
<td>15</td>
<td>8 8 9 0 0</td>
<td>25</td>
</tr>
<tr>
<td>La empresa tiene excesos de trabajos o inventarios en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones.</td>
<td>0 1 4 6 4</td>
<td>15</td>
<td>0 2 12 24 20</td>
<td>58</td>
</tr>
<tr>
<td>Frente a la fabricación de productos defectuosos, se toma acciones para evitar que se presenten nuevamente en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones.</td>
<td>0 0 3 5 7</td>
<td>15</td>
<td>0 0 9 20 35</td>
<td>64</td>
</tr>
</tbody>
</table>

Fuente: la empresa Similan E.I.R.L.
Elaboración: Autoras

Nota: El puntaje total se obtiene multiplicando la cantidad de trabajadores observados en cada ítem por los rangos establecidos
En el resultado 15 (TOTAL) es la sumatoria de todos los trabajadores observados; por otro lado, los rangos están establecidos de acuerdo a la escala Likert
Interpretación. Examinando los resultados obtenidos de la observación realizada a los 15 trabajadores de la empresa SIMILAN E.I.R.L., hemos podido determinar que la mayor cantidad de observados consideran que el estado actual de la empresa frente a la comprensión del enfoque lean manufacturing en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de pantalones, es el siguiente:

- 9 de ellos están en desacuerdo que la administración tenga conocimientos de los conceptos y métodos de Lean Manufacturing afirmando así que no cuentan con un plan para ponerlos en práctica en los procesos de corte, ensamblaje, calidad, plancha empaque en la producción de pantalones.
- 7 de ellos están totalmente en desacuerdo que conocen las siete fuentes de desperdicio básico aplicado activamente en la identificación dentro de sus áreas del trabajo trabajando para su eliminación y/o minimización en los procesos de corte, ensamblaje, calidad, plancha empaque en la producción de pantalones.
- 7 de ellos están en desacuerdo que existe un proceso formal para que los empleados reciban una retroalimentación de los problemas encontrados en los procesos de los clientes internos y/o externos en los procesos de corte, ensamblaje, calidad, plancha empaque en la producción de pantalones.
- 7 de ellos no están de acuerdo ni en desacuerdo que el trabajo en equipo es estimulado a través de todos los niveles de la empresa en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones.
- 6 de ellos están de acuerdo que los empleados se sienten cómodos identificando problemas y ofreciendo ideas a su vez existe recompensas y un sistema de reconocimiento por las acciones de mejora con éxito siendo así que los empleados están comprometidos e involucrados en los procesos de corte, ensamblaje, calidad, plancha empaque en la producción de pantalones.
- 8 de ellos totalmente en desacuerdo que el proceso de trabajo diseñado puede identificar de manera inmediata los defectos en el momento y lugar donde se manifiesten en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones.
• 6 de ellos están de acuerdo que la empresa tiene excesos de trabajo o inventario en los procesos de corte, ensamblaje, calidad, plancha empaque en la producción de pantalones.

• 7 de ellos están de acuerdo que cuentan con acciones para evitar nuevamente la fabricación de los productos defectuosos en los procesos de corte, ensamblaje, calidad, plancha empaque en la producción de pantalones.
FICHA DE OBSERVACIÓN PARA EVALUAR EL ESTADO ACTUAL DE LA EMPRESA FRENTE A LA COMPRENSIÓN DEL ENFOQUE LEAN MANUFACTURING EN EL PROCESO DE CORTE, ENSAMBLAJE, CALIDAD, PLANCHADO Y EMPAQUE EN LA PRODUCCIÓN DE BLUSAS

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
<th>RANGOS</th>
<th>TOTAL</th>
<th>PUNTAJE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>La administración tiene conocimiento de los conceptos y métodos de lean</td>
<td>1 8 6</td>
<td>0 0 0</td>
<td>15 1 16</td>
<td>18 0 0</td>
</tr>
<tr>
<td>manufacturing y tiene un plan para ponerlos en prácticas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conocen los empleados las siete fuentes de desperdicios básicos, participan</td>
<td>8 3 3</td>
<td>1 0 0</td>
<td>15 8 6</td>
<td>9 4 0</td>
</tr>
<tr>
<td>activamente en su identificación, dentro de sus áreas de trabajo y están</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>autorizados a trabajar para su eliminación y/o minimización.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existe un proceso formal para que los empleados reciban una retroalimentación</td>
<td>6 5 4</td>
<td>0 0 0</td>
<td>15 6 10</td>
<td>12 0 0</td>
</tr>
<tr>
<td>de los problemas encontrados en los procesos de fabricación de blusas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El trabajo en equipo es estimulado en todas las áreas de la empresa</td>
<td>0 7 3</td>
<td>4 1 0</td>
<td>15 0 14</td>
<td>9 16</td>
</tr>
<tr>
<td>Los empleados se sienten cómodos de identificar problemas y brindar ideas.</td>
<td>0 0 4</td>
<td>7 4 0</td>
<td>15 0 0 12</td>
<td>28 20</td>
</tr>
<tr>
<td>Hay una compensa y un sistema de reconocimiento por las acciones de mejora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>con éxito en los procesos de la producción de blusas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Está diseñado el proceso de trabajo para poder identificar de manera inmediata</td>
<td>7 5 3</td>
<td>0 0 0</td>
<td>15 7 10</td>
<td>9 0 0</td>
</tr>
<tr>
<td>los defectos en el momento y lugar donde se manifiesten.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La empresa tiene excesos de trabajos o inventarios en los procesos de corte,</td>
<td>0 3 4</td>
<td>5 3 0</td>
<td>15 0 6</td>
<td>12 20</td>
</tr>
<tr>
<td>ensamblaje, calidad, planchado y empaque en la producción de blusas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frente a la fabricación de productos defectuosos, se toma acciones para evitar</td>
<td>0 0 2</td>
<td>6 7 0</td>
<td>15 0 0 6</td>
<td>24 35</td>
</tr>
<tr>
<td>que se presenten nuevamente en los procesos de corte, ensamblaje, calidad,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planchado y empaque en la producción de blusas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: la empresa Similan E.I.R.L.

Elaboración: Au

Notas:
- El puntaje total se obtiene multiplicando la cantidad de trabajadores observados en cada ítem por los rangos establecidos.
- En el resultado 15 (TOTAL) es la sumatoria de todos los trabajadores observados; por otro lado, los rangos están establecidos de acuerdo a la escala Likert.
Interpretación. Examinando los resultados obtenidos de la observación realizada a los 15 trabajadores de la empresa SIMILAN E.I.R.L., hemos podido determinar que la mayor cantidad de observados consideran que el estado actual de la empresa frente a la comprensión del enfoque lean manufacturing en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas, es el siguiente:

- 8 de ellos están en desacuerdo que la administración tenga conocimientos de los conceptos y métodos de Lean Manufacturing afirmando así no contar con un plan para ponerlos en práctica en los procesos de corte, ensamblaje, calidad, plancha empaque en la producción de blusas.
- 8 de ellos están totalmente en desacuerdo que conocen las siete fuentes de desperdicio básico aplicado activamente en la identificación dentro de sus áreas del trabajo trabajando para su eliminación y/o minimización en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas.
- 7 de ellos están en desacuerdo que existe un proceso formal para que los empleados reciban una retroalimentación de los problemas encontrados en los procesos de los clientes internos y/o externos en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas.
- 7 de ellos están en desacuerdo que el trabajo en equipo es estimulado a través de todos los niveles de la empresa en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas.
- 7 de ellos están de acuerdo que los empleados se sienten cómodos identificando problemas y brindando ideas a su vez existe recompensas y un sistema de reconocimiento por las acciones de mejora con éxito siendo así que los empleados están comprometidos e involucrados en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas.
- 5 de ellos totalmente en desacuerdo que el proceso de trabajo diseñado puede identificar de manera inmediata los defectos en el
momento y lugar donde se manifiesten en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas.

- 7 de ellos están de acuerdo que la empresa tiene excesos de trabajo o inventario en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas.
- 8 de ellos están de acuerdo que cuentan con acciones para evitar nuevamente la fabricación de los productos defectuosos en los procesos de corte, ensamblaje, calidad, plancha empaque en la producción de blusas.
FICHA DE OBSERVACIÓN PARA EVALUAR EL ESTADO ACTUAL DE LA EMPRESA FRENTE A LA 5S EN EL PROCESO DE CORTE, ENSAMBLAJE, CALIDAD, PLANCHA Y EMPAQUE EN LA PRODUCCIÓN DE PANTALONES

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
<th>RANGOS</th>
<th>PUNTAJE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>En el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones, todo lo que se requiere para el trabajo está fuera del área productiva, solo hay productos y herramientas en las estaciones de trabajo.</td>
<td>9 5 1 0 0</td>
<td>15 9 10 3 0</td>
<td>22</td>
</tr>
<tr>
<td>En el área de producción se cuenta con herramientas en mal estado o inservibles.</td>
<td>1 1 3 6 4</td>
<td>15 1 2 9 24</td>
<td>56</td>
</tr>
<tr>
<td>En el proceso de producción de pantalones se aprovecha el espacio de manera eficiente y racional.</td>
<td>8 6 1 0 0</td>
<td>15 8 12 3 0</td>
<td>23</td>
</tr>
<tr>
<td>Las áreas están desorganizadas y sucias, el personal que opera puede reportar en donde y que cantidad de materia prima existe.</td>
<td>8 6 1 0 0</td>
<td>15 8 12 3 0</td>
<td>23</td>
</tr>
<tr>
<td>En el área de producción de pantalones existe un lugar para cada cosa y siempre que se necesita una herramienta se encuentra fácilmente y están correctamente identificados.</td>
<td>7 6 2 0 0</td>
<td>15 7 12 6 0</td>
<td>25</td>
</tr>
<tr>
<td>Existen líneas en el suelo para distinguir las diferentes áreas de trabajo, áreas de paso y las de manipulación.</td>
<td>7 8 0 0 0</td>
<td>15 7 16 0 0</td>
<td>23</td>
</tr>
<tr>
<td>Se tiene claro las especificaciones de clasificación y distribución de residuos.</td>
<td>7 5 1 1 1</td>
<td>15 7 10 3 4</td>
<td>29</td>
</tr>
<tr>
<td>El área de producción está limpia de materiales innecesarios.</td>
<td>8 4 1 1 1</td>
<td>15 8 8 3 4</td>
<td>28</td>
</tr>
<tr>
<td>Lo operarios consideran la limpieza diaria como parte de sus trabajos.</td>
<td>6 5 3 1 0</td>
<td>15 6 10 9 4</td>
<td>29</td>
</tr>
<tr>
<td>En el proceso de producción de pantalones la necesidad de las 5’s se ha discutido, pero las acciones no han sido tomadas.</td>
<td>0 0 0 0 15</td>
<td>15 0 0 0 0</td>
<td>75</td>
</tr>
</tbody>
</table>

Fuente: la empresa Similan E.I.R.L.
Elaboración: Autoras

Nota: El puntaje total se obtiene multiplicando la cantidad de trabajadores observados en cada ítem por los rangos establecidos.

En el resultado 15 (TOTAL) es la sumatoria de todos los trabajadores observados; por otro lado, los rangos están establecidos de acuerdo a la escala Likert.
Interpretación. Examinando los resultados obtenidos de la observación realizada a los 15 trabajadores de la empresa SIMILAN E.I.R.L, hemos podido determinar que la mayor cantidad de observados consideran que el estado actual de la empresa frente las cinco eses en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de pantalones es el siguiente:

- 9 de ellos consideran totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones todo lo que no se requiere para el trabajo está fuera del área productiva.
- 6 de ellos están de acuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones se cuenten con herramientas en mal estado o inservible.
- 8 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones se aprovecha el espacio de manera eficiente y racional.
- 8 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones las áreas estén desorganizadas y sucias.
- 7 de ellos están en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones existe un lugar para cada cosa.
- 7 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones existan líneas en el suelo para distinguir las diferentes áreas de trabajo.
- 7 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones tienen claro las especificaciones de clasificación y disposición de residuos.
- 8 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones la planta está generalmente limpia de materiales innecesarios y las áreas de tránsito están libres de obstrucciones.
• 6 de ellos están en desacuerdo que en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones los operarios consideran la limpieza diaria como una parte de su trabajo.

• 15 de ellos están totalmente de acuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones la necesidad de las 5 S se ha discutido pero las acciones no han sido tomadas.
<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
<th>RANGOS</th>
<th>TOTAL</th>
<th>PUNTAJE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>En el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas, todo lo que se requiere para el trabajo esta fuera del área productiva, solo hay productos y herramientas en las estaciones de trabajo.</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>En el área de producción se cuenta con herramientas en mal estado o inservibles.</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>En el proceso de producción de blusas se aprovecha el espacio de manera eficiente y racional.</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Las áreas están desorganizadas y sucias, el personal que opera puede reportar en donde y que cantidad de materia prima existe.</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>En el área de producción de blusas existe un lugar para cada cosa y siempre que se necesita una herramienta se encuentra fácilmente y están correctamente identificados.</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Existen líneas en el suelo para distinguir las diferentes áreas de trabajo, áreas de paso y las de manipulación.</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Se tiene claro las especificaciones de clasificación y distribución de residuos.</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>El área de producción está limpia de materiales innecesarios.</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Los operarios consideran la limpieza diaria como parte de sus trabajos.</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>En el proceso de producción de blusas la necesidad de las 5’s se ha discutido, pero las acciones no han sido tomadas.</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>13</td>
</tr>
</tbody>
</table>

Fuente: la empresa Similan E.I.R.L.
Elaboración: Autoras

Nota: El puntaje total se obtiene multiplicando la cantidad de trabajadores observados en cada ítem por los rangos establecidos.
En el resultado 15 (TOTAL) es la sumatoria de todos los trabajadores observados; por otro lado, los rangos están establecidos de acuerdo a la escala Likert.
Interpretación. Examinando los resultados obtenidos de la observación realizada a los 15 trabajadores de la empresa SIMILAN E.I.R.L., hemos podido determinar que la mayor cantidad de observados consideran que el estado actual de la empresa frente las cinco eses en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de pantalones es el siguiente:

- 8 de ellos consideran totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas todo lo que no se requiere para el trabajo está fuera del área productiva.
- 7 de ellos están de acuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas se cuenten con herramientas en mal estado o inservible.
- 9 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas se aprovecha el espacio de manera eficiente y racional.
- 8 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas las áreas estén desorganizadas y sucias.
- 9 de ellos están en desacuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas existe un lugar para cada cosa.
- 10 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas existan líneas en el suelo para distinguir las diferentes áreas de trabajo.
- 8 de ellos están totalmente en desacuerdo en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas tienen claro las especificaciones de clasificación y disposición de residuos.
- 7 de ellos están totalmente en desacuerdo en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas.
la planta está generalmente limpia de materiales innecesarios y las áreas de tránsito están libres de obstrucciones.

- 6 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas los pisos están limpios y sin residuos de basura y se limpian por lo menos una vez al día.
- 6 de ellos están ni de acuerdo ni en desacuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas los operarios consideran la limpieza diaria como una parte de su trabajo.
- 5 de ellos están ni de acuerdo ni en desacuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas las máquinas, equipos y herramientas están en buenas condiciones.
- 7 de ellos están ni de acuerdo y en desacuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas la limpieza es buena, pero es la única presencia de las 5S
- 15 de ellos están totalmente de acuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas la necesidad de las 5 S se ha discutido pero las acciones no han sido tomadas.
Ficha de Observación para Evaluar el Estado Actual de la Empresa Frente al SMED y TPM en el Proceso de Corte, Ensamblaje, Calidad, Planchado y Empaque en la Producción de Pantalones

En el proceso para producción de pantalones, los tiempos de preparación no se miden. No se han realizado estrategias para reducir los tiempos.

En el proceso para la producción de pantalones, los tiempos de preparación son conocidos y se tienen en cuenta a la hora de programar las prendas sin embargo los tiempos de preparación de los equipos fuera de ellos no se miden de forma rutinaria. No hay una comprensión limitada de las estrategias de reducción de puesta apunto.

En el proceso para la producción de pantalones se ha identificado, conservar y almacenar de manera ordenada garantizando su correcto funcionamiento, todos los ítems necesarios para el cambio.

En el proceso para producción de pantalones se han desarrollado e implementado instrumentos y equipos que ayuden a reducir el tiempo de cambio y/o trabajo necesario.

En el proceso para la producción de pantalones se ha incorporado un sistema formal de mantenimiento preventivo.

En el proceso para la producción de pantalones se conoce y entiende el actual estado de los equipos, sus capacidades, procesos de desempeño, calidades, métodos y técnicas.

Para la producción de pantalones se enfocan al aumento de la utilización disponible de los equipos y la disminución de variabilidad en el tiempo de ciclo.

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
<th>RANGOS</th>
<th>TOTAL</th>
<th>PUNTAJE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMD EN EL PROCESO DE CORTE, CALIDAD, PLANCHADO Y EMPAQUE EN LA PRODUCCIÓN DE PANTALONES</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>En el proceso para producción de pantalones, los tiempos de preparación no se miden. No se han realizado estrategias para reducir los tiempos.</td>
<td>0 0 2 4 9</td>
<td>15</td>
<td>0 0 6 16 45</td>
<td>67</td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones, los tiempos de preparación son conocidos y se tienen en cuenta a la hora de programar las prendas sin embargo los tiempos de preparación de los equipos fuera de ellos no se miden de forma rutinaria. No hay una comprensión limitada de las estrategias de reducción de puesta apunto.</td>
<td>0 0 2 3 10</td>
<td>15</td>
<td>0 0 6 12 50</td>
<td>68</td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones de manera frecuente y habitual, el tiempo transcurrido entre la última pieza buena en el trabajo anterior y a la primera pieza buena del siguiente proceso es menor de diez minutos.</td>
<td>7 5 3 0 0</td>
<td>15</td>
<td>7 10 9 0 0</td>
<td>26</td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones se han desarrollado e implementado instrumentos y equipos que ayuden a reducir el tiempo de cambio y/o trabajo necesario.</td>
<td>8 5 2 0 0</td>
<td>15</td>
<td>8 10 6 0 0</td>
<td>24</td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones se ha identificado, conservar y almacenar de manera ordenada garantizando su correcto funcionamiento, todos los ítems necesarios para el cambio.</td>
<td>9 5 1 0 0</td>
<td>15</td>
<td>9 10 3 0 0</td>
<td>22</td>
</tr>
<tr>
<td>Para la producción de pantalones los procesos y equipos están mantenidos de manera ordenada garantizando el flujo de trabajo sin interrupciones.</td>
<td>0 15 0 0 0</td>
<td>15</td>
<td>0 30 0 0 0</td>
<td>30</td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones se ha incorporado un sistema formal de mantenimiento preventivo.</td>
<td>5 7 3 0 0</td>
<td>15</td>
<td>5 14 9 0 0</td>
<td>28</td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones algunos mantenimientos preventivos se realizan de manera informal y no planificada por los técnicos de mantenimiento. No se recoge la historia de equipos. Nadie es consciente de los principios y método del TPM.</td>
<td>0 2 4 9 0</td>
<td>15</td>
<td>0 4 12 36 0</td>
<td>52</td>
</tr>
<tr>
<td>Se realiza un programa de mantenimiento preventivo a todos los equipos y maquinarias y los resultados son debidamente documentados.</td>
<td>8 4 3 0 0</td>
<td>15</td>
<td>8 8 9 0 0</td>
<td>25</td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones los responsables del mantenimiento y sus equipos han sido entrenados en los conceptos y principios del TPM.</td>
<td>2 9 4 0 0</td>
<td>15</td>
<td>2 18 12 0 0</td>
<td>32</td>
</tr>
<tr>
<td>En la producción de pantalones la empresa mantiene un inventario de partes y repuestos claves para equipos críticos.</td>
<td>7 5 3 0 0</td>
<td>15</td>
<td>7 10 9 0 0</td>
<td>26</td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones La empresa establece un programa de mantenimiento bajo los conceptos del mantenimiento total productivo (TPM)</td>
<td>9 5 1 0 0</td>
<td>15</td>
<td>9 10 3 0 0</td>
<td>22</td>
</tr>
<tr>
<td>En la producción de pantalones se conoce y entiende el actual estado de los equipos, sus capacidades, procesos de desempeño, calidades, métodos y técnicas.</td>
<td>0 0 9 6 0</td>
<td>15</td>
<td>0 0 27 24 0</td>
<td>51</td>
</tr>
<tr>
<td>Para producción de pantalones las actividades de mantenimiento se enfocan al aumento de la utilización disponible de los equipos y la disminución de variabilidad en el tiempo de ciclo.</td>
<td>0 0 1 8 6</td>
<td>15</td>
<td>0 0 3 32 30</td>
<td>65</td>
</tr>
<tr>
<td>En el proceso de corte, ensamblaje, calidad, planchado y empaque para producción de pantalones. Los objetivos, funciones y responsabilidades para el TPM están claramente establecidos. El personal de mantenimiento y operadores trabajan juntos para reducir los seis tipos de pérdidas que se esquematizan bajo el TPM.</td>
<td>0 8 4 3 0</td>
<td>15</td>
<td>0 16 12 12 0</td>
<td>40</td>
</tr>
</tbody>
</table>

Fuente: la empresa Similan E.I.R.L.
Elaboración: Autoras

Nota: El puntaje total se obtiene multiplicando la cantidad de trabajadores observados en cada ítem por los rangos establecidos

En el resultado 15 (TOTAL) es la sumatoria de todos los trabajadores observados; por otro lado, los rangos están establecidas de acuerdo a la escala Likert
Interpretación. Examinando los resultados obtenidos de la observación realizada a los 15 trabajadores de la empresa SIMILAN E.I.R.L., hemos podido determinar que la mayor cantidad de observados consideran que el estado actual de la empresa frente al SMD Y TPM en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de pantalones es el siguiente:

- 9 de ellos están totalmente de acuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones los tiempos de preparación no se miden no se ha realizado estrategias para reducir los tiempos.
- 10 de ellos están totalmente de acuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones los tiempos de preparación son conocidos, sin embargo, los tiempos de preparación de los equipos fuera de la sala no se miden rutinariamente.
- 7 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones de manera frecuente y habitual el tiempo transcurrido entre la última pieza buena del trabajo anterior y la primera pieza del trabajo del siguiente proceso es menor de diez minutos.
- 8 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones se han desarrollado e implementado instrumentos y equipos que ayuden a reducir el tiempo.
- 9 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones están identificados, conservados y almacenados de manera ordenada y garantizando su correcto funcionamiento.
- 15 de ellos están en desacuerdo que en la producción de pantalones los procesos y los equipos están mantenidos de manera que garanticen el flujo de trabajo sin interrupciones no deseadas.
- 7 de ellos están en desacuerdo que, en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de pantalones existe un sistema formal de mantenimiento preventivo.
• 9 de ellos están de acuerdo que en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones algunos mantenimientos preventivos se realizan de forma informal y no planificada por los técnicos de mantenimiento.

• 8 de ellos están totalmente en desacuerdo que en el proceso de producción de pantalones se realiza un programa de mantenimiento preventivo a todos los equipos y maquinarias y los resultados son debidamente documentados.

• 9 de ellos están en desacuerdo que en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones los responsables de mantenimiento y sus equipos han sido entrenados en los conceptos y principios del TPM.

• 7 de ellos están totalmente en desacuerdo que en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones la empresa mantiene un inventario de partes y repuestos claves para equipos críticos.

• 9 de ellos están totalmente en desacuerdo que en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones la empresa establece su programa de mantenimiento bajo el concepto de mantenimiento total productivo (TPM).

• 9 de ellos no están de acuerdo ni en desacuerdo que en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones conocen y entienden el actual estado de los equipos, capacidades, procesos, desempeños, calidades, métodos y técnicas, sin embargo 6 de ellos afirman que están de acuerdo que conocen y entienden el actual estado de los equipos de producción.

• 8 de ellos están de acuerdo que en el proceso de producción de pantalones las actividades de mantenimiento se enfocan al aumento de la utilización disponible de los equipos y la disminución de la variabilidad en el tiempo de ciclo.

• 8 de ellos están en desacuerdo que en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de
pantalones los objetivos, funciones y responsabilidades para el TPM están claramente establecidos.
FICHA DE OBSERVACIÓN PARA EVALUAR EL ESTADO ACTUAL DE LA EMPRESA FRENTE AL SMED Y TPM EN EL PROCESO DE CORTE, ENSAMBLAJE, CALIDAD, PLANCHA Y EMPAQUE EN LA PRODUCCIÓN DE BLUSAS

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
<th>RANGOS</th>
<th>TOTAL</th>
<th>PUNTAJE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMD EN EL PROCESO DE CORTE, CALIDAD, PLANCHA Y EMPAQUE EN LA PRODUCCIÓN DE BLUSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para producir blusas, los tiempos de preparación no se miden. No se han realizado estrategias para reducir los tiempos.</td>
<td>0 0 3 4 5</td>
<td>15</td>
<td>0 0 9 16 40</td>
<td>65</td>
</tr>
<tr>
<td>En el proceso para la producción de blusas, los tiempos de preparación son conocidos y se tienen en cuenta a la hora de programar las prendas sin embargo los tiempos de preparación de los equipos fuera de ellos no se miden de forma rutinaria. No hay una comprensión limitada de las estrategias de reducción de puesta a punto.</td>
<td>0 0 2 5 8</td>
<td>15</td>
<td>0 0 6 20 40</td>
<td>66</td>
</tr>
<tr>
<td>En el proceso para la producción de blusas de manera frecuente y habitual, el tiempo transcurrido entre la última pieza buena en el trabajo anterior y a la primera pieza buena del siguiente proceso es menor de diez minutos.</td>
<td>8 4 3 0 0</td>
<td>15</td>
<td>8 8 9 0 0</td>
<td>25</td>
</tr>
<tr>
<td>En el proceso para producción de blusas se han desarrollado e implementado instrumentos y equipos que ayuden a reducir el tiempo de cambio y/o trabajo necesario.</td>
<td>9 4 2 0 0</td>
<td>15</td>
<td>9 8 6 0 0</td>
<td>23</td>
</tr>
<tr>
<td>En el proceso para la producción de blusas se ha identificado, conservar y almacenar de manera ordenada garantizando su correcto funcionamiento, todos los items necesarios para el cambio.</td>
<td>10 3 2 0 0</td>
<td>15</td>
<td>10 6 6 0 0</td>
<td>22</td>
</tr>
</tbody>
</table>

TPM EL PROCESO DE CORTE, ENSAMBLAJE, CALIDAD, PLANCHA Y EMPAQUE EN LA PRODUCCIÓN DE BLUSA				
Para la producción de blusas los procesos y equipos están mantenidos de manera ordenada garantizando el flujo del trabajo sin interrupciones no deseadas.	12 3 0 0 0	15	12 6 0 0 0	18
En la producción de blusas existe un sistema formal de mantenimiento preventivo, el mantenimiento se realiza solo cuando el equipo falla. Las operaciones de producción operan los equipos y los técnicos de mantenimiento lo preparan.	5 6 4 0 0	15	5 12 12 0 0	29
En el proceso para la producción de blusas algunos mantenimientos preventivos se realizan de manera informal y no planificada por los técnicos de mantenimiento. No se recoge la historia de equipos. Nadie es consciente de los principios y método del TPM.	0 2 4 9 0	15	0 4 12 36 0	52
En la producción de blusas se realiza un programa de mantenimiento preventivo a todos los equipos y maquinarias y los resultados son debidamente documentados.	8 4 3 0 0	15	8 8 9 0 0	25
En el proceso para la producción de blusas los responsables del mantenimiento y sus equipos han sido entrenados en los conceptos y principios del TPM.	7 5 3 0 0	15	7 10 9 0 0	26
En la producción de blusas la empresa mantiene un inventario de partes y repuestos clave para equipos críticos.	7 6 2 0 0	15	7 12 6 0 0	25
En el proceso para la producción de blusas La empresa establece un programa de mantenimiento bajo los conceptos del mantenimiento total productivo (TPM).	9 5 1 0 0	15	9 10 3 0 0	22
En la producción de blusas se conoce y entiende el actual estado de los equipos, sus capacidades, procesos de desempeño, calidades, métodos y técnicas.	0 0 7 8 0	15	0 21 32 0	53
Para producción de blusas las actividades de mantenimiento se enfocan al aumento de la utilización disponibles de los equipos y la disminución de variabilidad en el tiempo de ciclo	0 2 6 7 0	15	0 4 18 28 0	50
En el proceso de producción de blusas. Los objetivos, funciones y responsabilidades para el TPM están claramente establecidos. El personal de mantenimiento y operadores trabajan juntos para reducir los seis tipos de pérdidas que se esquematizan bajo el TPM	0 7 5 3 0	15	0 14 15 12 0	41

Fuente: la empresa Similan E.I.R.L.
Elaboración: Autoras

Nota: El puntaje total se obtiene multiplicando la cantidad de trabajadores observados en cada ítem por los rangos establecidos

En el resultado 15 (TOTAL) es la sumatoria de todos los trabajadores observados; por otro lado, los rangos están establecidas de acuerdo a la escala Likert
Interpretación. Examinando los resultados obtenidos de la observación realizada a los 15 trabajadores de la empresa SIMILAN E.I.R.L., hemos podido determinar que la mayor cantidad de observados consideran que el estado actual de la empresa frente al SMD Y TPM en el proceso de corte, ensamblaje, calidad, plancha y empaque en la producción de blusas es el siguiente:

- 8 de ellos consideran totalmente de acuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas los tiempos de preparación no se miden y a la vez no se han realizado estrategias para reducir los tiempos.

- 8 de ellos están totalmente de acuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas los tiempos de preparación son conocidos y que se toman en cuenta a la hora de programar en trabajo, sin embargo, los tiempos de preparación de los equipos fuera de la sala no se miden rutinariamente.

- 8 de ellos están en totalmente en desacuerdo que, en el proceso de producción de blusas de manera frecuente y habitual el tiempo transcurrido entre la última pieza buena del trabajo anterior y la primera pieza del trabajo del siguiente proceso es menor de diez minutos.

- 9 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas se han desarrollado e implementado instrumentos y equipos que ayuden a reducir el tiempo.

- 10 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas están identificados, conservados y almacenados de manera ordenada y garantizando su correcto funcionamiento.

- 12 de ellos están en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas los procesos y los equipos están mantenidos de manera que garanticen el flujo de trabajo sin interrupciones no deseadas.
• 6 de ellos están en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas existe un sistema formal de mantenimiento preventivo.
• 9 de ellos están de acuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas algunos mantenimientos preventivos se realizan de manera informal y no planificada por los técnicos de mantenimiento.
• 8 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas se realiza un programa de mantenimiento preventivo a todos los equipos y maquinarias y los resultados son debidamente documentados.
• 7 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas los responsables de mantenimiento y sus equipos han sido entrenados en los conceptos y principios del TPM.
• 7 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas la empresa mantiene un inventario de partes y repuestos claves para equipos críticos.
• 9 de ellos están totalmente en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas la empresa establece su programa de mantenimiento bajo el concepto de mantenimiento total productivo (TPM).
• 8 de ellos están de acuerdo que en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas conocen y entienden el actual estado de los equipos, capacidades, procesos, desempeños, calidades, métodos y técnicas
• 7 de ellos están de acuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas las actividades de mantenimiento se enfocan al aumento de la utilización disponible de los equipos y la disminución de la variabilidad en el tiempo de ciclo.
7 de ellos están en desacuerdo que, en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas los objetivos, funciones y responsabilidades para el TPM están claramente establecidos.
4.1.2. Resultados Cualitativos

En este apartado se hace referencia a los resultados obtenidos de aplicar la técnica de la entrevista a la señorita Paty Carruitero Alvinco, dueña y accionista de la empresa SIMILAN E.I.R.L. el día miércoles 21 de Julio del 2016 a las 10 am en las instalaciones de la empresa.

<table>
<thead>
<tr>
<th>OBJETIVO</th>
<th>PREGUNTAS</th>
<th>COMENTARIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluación de la gestión operativa de la empresa SIMILAN E.I.R.L.</td>
<td>¿Cuál es el giro de la empresa?</td>
<td>“El giro de nuestro negocio es la fabricación de prendas de vestir para dama de 15 a 40 años de edad.”</td>
</tr>
<tr>
<td></td>
<td>¿La empresa tiene un plan estratégico?</td>
<td>“La empresa en estos momentos no cuenta con un plan estratégico porque no hemos tomado la iniciativa de realizarlo.”</td>
</tr>
<tr>
<td></td>
<td>¿Considera que todas las áreas de la empresa se encuentran en sinergia para controlar la calidad?</td>
<td>“Como somos una empresa pequeña podemos decir que si practicamos la sinergia”</td>
</tr>
<tr>
<td></td>
<td>¿Considera que los insumos son repartidos en el momento oportuno?</td>
<td>“Algunas veces los insumos no son repartidos en su momento, pero la mayoría de veces sí”</td>
</tr>
<tr>
<td></td>
<td>¿Considera que los implementos necesarios para la fabricación tienen una debida clasificación?</td>
<td>“Nosotros siempre tenemos identificados nuestros implementos pero no los hemos clasificado aún”</td>
</tr>
<tr>
<td></td>
<td>Cree usted que los elementos de la fabricación tienen un espacio establecido?</td>
<td>“Sí creo que los elementos tengan un espacio establecido”</td>
</tr>
<tr>
<td></td>
<td>¿Existe una estandarización de trabajo para realizar las tareas diarias?</td>
<td>“Algunas veces aplicamos la estandarización en nuestro trabajo”</td>
</tr>
<tr>
<td></td>
<td>¿Existe un control de los objetivos establecidos?</td>
<td>“Mensualmente hacemos un control para saber qué objetivos estamos o no cumpliendo”</td>
</tr>
<tr>
<td></td>
<td>¿Los colaboradores conocen las necesidades de cada operación?</td>
<td>“Nuestros 15 trabajadores conocen las necesidades de las operaciones y con los nuevos se realiza una inducción”</td>
</tr>
<tr>
<td></td>
<td>¿Utilizan tecnología adecuada para que los procesos sean flexibles?</td>
<td>“no contamos con tecnología muy avanzada”</td>
</tr>
<tr>
<td></td>
<td>¿Se realizan tareas preventivas en el proceso productivo?</td>
<td>“No tenemos tareas preventivas en los procesos productivos”</td>
</tr>
<tr>
<td></td>
<td>¿Su proveedor deja en buenas condiciones la línea de mantenimiento?</td>
<td>“Algunas veces tenemos alguna queja de nuestro proveedor”</td>
</tr>
<tr>
<td></td>
<td>¿Se puede identificar el mal funcionamiento de los equipos?</td>
<td>“a veces se puede detectar rápidamente el mal funcionamiento”</td>
</tr>
</tbody>
</table>
¿Los trabajadores cuentan con el conocimiento necesario para reparar una falla leve? | “pocas veces capacitamos a nuestro personal pero cuando es necesario contratamos un técnico”
---|---
¿La empresa tiene como objetivo la eficiencia? | “tratamos que sea nuestro pilar”
¿Se busca utilizar todas las capacidades del personal para llegar al éxito? | “Claro que podemos utilizar todas las capacidades de nuestro personal ya que se encuentran debidamente capacitados”
¿Su personal recibe capacitación? | “Nuestro personal recibe capacitaciones cada año”
¿Desarrolla nuevos productos en base a las necesidades del cliente? | “Siempre buscamos satisfacer las necesidades de nuestros clientes es por eso que buscamos innovar nuestros productos siguiendo las tendencias de moda.”
¿Considera que su producto es de calidad? | “Los productos que brinda la empresa se caracteriza por el precio y su buena calidad”
¿Tiene ventaja competitiva en costo de calidad que ayude a la productividad? | “De momento no hemos percibido alguna ventaja competitiva”
¿Se ha utilizado tecnología para la innovación de su maquinaria de producción? | “Estamos en proceso de implementar una tecnología que innove nuestra maquinaria de producción”
¿Ha utilizado un método innovador en producción o distribución? | “Estamos en proceso de buscar un método innovador en producción o distribución de nuestros productos”
¿En qué indicadores de gestión ha habido una mejora? | “Hemos tenido una mejora en los indicadores de movilidad de inventarios, rotación de inventarios y nivel de calidad”

Fuente: Aplicación de entrevista. Julio 2016.
Elaboración: Por las autoras

4.2. Discusión de resultados:

Teniendo en cuenta los resultados obtenidos a través de la aplicación del instrumento de recolección de datos, podemos confirmar el cumplimiento de la hipótesis científica propuesta, por lo que “una propuesta de implementación del modelo Lean Manufacturing sí mejoraría la gestión operativa de la empresa SIMILAN E.I.R.L Trujillo Año 2016” tal como ha sido confirmado por Cadorna (2013) en su tesis Modelo para la implementación de técnicas Lean Manufacturing en empresas editoriales en donde afirma que el desarrollo de un modelo de gestión como el Lean Manufacturing, cuyo enfoque se determina especialmente en la eliminación de los desperdicios en cualquier sistema productivo y/o empresarial, establece una nueva condición para la
administración de las empresas, puesto que con su orientación hacia la mejora apunta a la optimización de resultados.

La aplicación de las técnicas Lean Manufacturing en etapas se constituye una base fundamental sobre las condiciones de implementación de este modelo de gestión, siendo un proceso que puede convertirse en largo y tedioso, puesto que, para llegar a un nivel mínimamente satisfactorio, se encuentra condicionado a la complejidad de los procesos y a la preparación que desde la alta dirección se estime.

El primer objetivo específico de la investigación fue “Identificar cuáles son principales procesos dentro de la producción de la empresa.” Se puede afirmar que según la entrevista dada por la dueña y accionista Srta. Paty Carruitero Alvinco el proceso productivo está compuesto por cinco áreas que son el área de corte, ensamblaje, calidad, planchado y empaque, por otro lado en la observación realizada a los 15 trabajadores de la empresa SIMILAN E.I.R.L se aprecia que 8 de ellos están totalmente en desacuerdo que exista un proceso formal para que los empleados reciban una retroalimentación de los problemas encontrados en los procesos de los clientes internos y/o externos encontrados en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones por otro lado 9 de ellos están totalmente en desacuerdo que exista un proceso formal en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas a su vez 8 de ellos están totalmente en desacuerdo que el proceso de trabajo diseñado puede identificar de manera inmediata los defectos en el momento y lugar donde se manifiesten en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones y 7 de ellos están totalmente en desacuerdo que el proceso de trabajo diseñado puede identificar de manera inmediata los defectos y lugar en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones, además en la entrevista a la Sra. Paty nos pudimos dar cuenta que el personal recibe capacitaciones una vez al año y no están debidamente capacitados para poder solucionar fallas leves.
Nuestros resultados son similares a los hallazgos de Chen y Meng (2010) donde afirman que un proceso productivo es la forma en que una serie de insumos se transforman en productos mediante la participación de una determinada tecnología (combinación de mano de obra, maquinaria) dicho de otra forma un proceso productivo es el conjunto de operaciones que mediante recursos técnicos y humanos transforman la materia prima en un producto, además el proceso productivo puede realizarse de manera artesanal o industrial.

El segundo objetivo planteado en la investigación fue “Determinar de qué manera se generan desperdicios dentro de los procesos de producción”. y que de acuerdo con López (2001) acota que el método de las 5S, denominado así por la primera letra del nombre que en japonés designa cada una de sus cinco etapas, es una técnica de gestión japonesa basada en cinco principios simples que son: seleccionar (seiri), consiste en identificar los elementos que son necesarios en el área de trabajo, separarlos de los innecesarios y desprenderse de estos últimos, evitando que vuelvan a aparecer, además ordenar (seiton) establece el modo en que deben ubicarse e identificarse los materiales necesarios, de manera que sea fácil y rápido encontrarlos, utilizarlos y reponerlos por otro lado limpiar (seisō) consiste en identificar y eliminar las fuentes de suciedad, y en realizar las acciones necesarias para que no vuelvan a aparecer, asegurando que todos los medios se encuentran siempre en perfecto estado operativo a su vez estandarizar (seiketsu) detectar situaciones irregulares o anómalas, mediante normas sencillas y visibles para todos y mantener (shitsuke) con esta etapa se pretende trabajar permanentemente de acuerdo con las normas establecidas.

La empresa SIMILAN E.I.R.L. genera desperdicio dentro de los procesos productivos cuando sus áreas están desorganizadas y sucias impidiendo al personal reportar donde y qué cantidad de material existe y de acuerdo con la observación realizada a los trabajadores 8 de ellos están totalmente en desacuerdo que tanto en el proceso de corte, ensamblaje, calidad, planchado y empaque de la producción de blusas y pantalones las áreas de la empresa estén organizadas generando así desperdicios en la planta con materiales
in necesarios, componentes incorrectos, y según lo observado 8 de ellos lo reafirman debido a que están totalmente en desacuerdo que la planta está generalmente limpia de materiales innecesarios y las áreas de tránsito están libres de obstrucciones en el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas y 7 de ellos están también en total desacuerdo que las áreas de la empresa Similan E.I.R.L estén organizadas en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas

Por último el tercer objetivo fue “Elaborar una propuesta de mejoras dentro de la gestión lean manufacturing” y en la observación realizada a los 15 trabajadores de la empresa SIMILAN E.I.R.L. 9 de ellos están en desacuerdo que la administración tenga conocimientos de los conceptos, métodos de Lean Manufacturing teniendo afirmando no tener un plan para ponerlos en práctica en los procesos de corte, ensamblaje, calidad, planchado y producción de pantalones, por ende no creen que se aplique a sus operaciones, estos resultados son similares a los hallazgos de Rajenthirakumar Mohanram y Harikarthik (2011) afirman que dicho modelo se concentra en un “enfoque de sentido común”, buscando reducir los costos, a través de la eliminación de residuos y la implementación de diferentes técnicas de mejoramiento, centrados en la localización de las principales fuentes de desperdicios, influyendo sustancialmente en el desempeño operativo de las plantas industriales.
CONCLUSIONES

1. Se determinó que una propuesta de implementación del modelo Lean Manufacturing sí mejoría la gestión operativa de la empresa SIMILAN E.I.R.L. ya que llevarán al mejoramiento continuo y flexible en las formas de producción mejorando y optimizando el sistema de producción debido a que se focalizara e identificara todo tipo de desperdicios para poder eliminarlo.

2. Se identificó que los principales procesos dentro de la producción de la empresa compuestos por cinco áreas que son el área de corte, ensamblaje, calidad, planchado y empaque.

3. Se determinó que se generan desperdicios dentro de los procesos de producción cuando sus áreas están desorganizadas y sucias impidiendo al personal reportar donde y qué cantidad de material existe, de acuerdo con la observación realizada, 8 de los trabajadores están totalmente en desacuerdo que tanto en el proceso de corte, ensamblaje, calidad, planchado y empaque de la producción de blusas y pantalones las áreas de la empresa estén organizadas, generando así desperdicios en la planta con materiales innecesarios, ocasionando de esta manera que las áreas de tránsito estén obstruidas, de igual manera 7 de ellos están en total desacuerdo que las áreas de la empresa Similan E.I.R.L estén organizadas en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas.

4. Se elaboró una propuesta de mejoras a través de la gestión Lean Manufacturing debido a que 9 de los trabajadores están en desacuerdo que la administración tenga conocimientos de los conceptos y herramientas de esta filosofía, por ende no cuenta con un plan para ponerlos en práctica en los procesos de corte, ensamblaje, calidad y planchado de la producción de pantalones.
RECOMENDACIONES

1. Capacitar a los trabajadores sobre la filosofía Lean Manufacturing, por lo menos una vez al año, con la finalidad de obtener mayores habilidades y conocimientos para que puedan reparar de forma más rápida y eficiente las fallas leves que presenten los procesos de producción.

2. Circular folletos dentro de la empresa indicando en qué consiste y los beneficios que trae aplicar una propuesta de implementación del modelo Lean Manufacturing con la finalidad que los trabajadores y los clientes tengan conocimiento que la empresa está en búsqueda de métodos para mejorar la gestión operativa.

3. Mantener las áreas de la empresa organizadas y limpias de materiales innecesarios, teniendo solo componentes correctos logrando así que las áreas de tránsito estén libres de obstrucciones para poder realizar los trabajos de producción de forma eficiente y eficaz.

4. Implementar la propuesta del modelo lean manufacturing para mejorar la gestión operativa de la empresa y tener un control permanente para verificar el logro de los objetivos.
REFERENCIAS BIBLIOGRÁFICAS

Libros

Artículo científico

Artículo de revista

Tesis y trabajos de investigación

Aranibar, M (2016) *Aplicación del Lean Manufacturing para la mejora de la productividad en una empresa manufacturera* (Tesis de licenciatura) Universidad Mayor de San Marcos, Lima, Perú

Baluis, C (2013) *Optimización de procesos en la fabricación de termas eléctricas utilizando herramientas de lean manufacturing* (Tesis de licenciatura) Pontificia Universidad Católica del Perú, Lima, Perú

Página web

Blog

Marketing directo (29 de mayo del 2015) ¿Qué beneficios tiene la implantación de una estrategia de lean manufacturing? [Mensaje en blog] Recuperado de https://www.marketingdirecto.com/marketing-general/tendencias/que-beneficios-tiene-la-implantacion-de-una-estrategia-de-lean-manufacturing
ANEXOS
ANEXO N° 01: FICHAS DE OBSERVACIÓN

Se aplicará la técnica de observación a los trabajadores de SIMILAN E.I.R.L. con las puntaciones siguientes:

1 : Totalmente en desacuerdo
2 : En desacuerdo
3 : Ni de acuerdo ni en desacuerdo
4 : De acuerdo
5 : Totalmente de acuerdo
<table>
<thead>
<tr>
<th>Observaciones</th>
<th>Rangos</th>
<th>Total</th>
<th>Puntaje</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>La administración tiene conocimiento de los conceptos y métodos de lean manufacturing y tiene un plan para ponerlos en práctica.</td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conocen los empleados las siete fuentes de desperdicios básicos, participan activamente en su identificación, dentro de sus áreas de trabajo y están autorizados a trabajar para su eliminación y/o minimización.</td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existe un proceso formal para que los empleados reciban una retroalimentación de los problemas encontrados en los procesos de fabricación de pantalones.</td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El trabajo en equipo es estimulado en todas las áreas de la empresa</td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los empleados se sienten cómodos de identificar problemas y brindar ideas. Hay una recompensa y un sistema de reconocimiento por las acciones de mejora con éxito en los procesos de la producción de pantalones.</td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Está diseñado el proceso de trabajo para poder identificar de manera inmediata los defectos en el momento y lugar donde se manifiesten.</td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La empresa tiene excesos de trabajos o inventarios en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones.</td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frente a la fabricación de productos defectuosos, se toman acciones para evitar que se presenten nuevamente en los procesos de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones.</td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FICHA DE OBSERVACIÓN PARA EVALUAR EL ESTADO ACTUAL DE LA EMPRESA FRENTE A LA COMPRENSIÓN DEL ENFOQUE LEAN EN EL PROCESO DE CORTE, ENSAMBLAJE, CALIDAD, PLANCHADO Y EMPAQUE EN LA PRODUCCIÓN DE BLUSAS

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
<th>RANGOS</th>
<th>TOTAL</th>
<th>RANGOS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>La administración tiene conocimiento de los conceptos y métodos de lean manufacturing y tiene un plan para ponerlos en prácticas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conocen los empleados las siete fuentes de desperdicios básicos, participan activamente en su identificación, dentro de sus áreas de trabajo y están autorizados a trabajar para su eliminación y/o minimización.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existe un proceso formal para que los empleados reciban una retroalimentación de los problemas encontrados en los procesos de fabricación de blusas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El trabajo en equipo es estimulado en todas las áreas de la empresa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los empleados se sienten cómodos de identificar problemas y brindar ideas. Hay una recompensa y un sistema de reconocimiento por las acciones de mejora con éxito en los procesos de la producción de blusas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Está diseñado el proceso de trabajo para poder identificar de manera inmediata los defectos en el momento y lugar donde se manifiesten.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La empresa tiene excesos de trabajos o inventarios en los procesos de corte, ensamblaje, calidad, planchado y embalaje en la producción de blusas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frente a la fabricación de productos defectuosos, se toman acciones para evitar que se presenten nuevamente en los procesos de corte, ensamblaje, calidad, planchado y embalaje en la producción de blusas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: la empresa Similon E.I.R.L.

Elaboración: Autoras
FICHA DE OBSERVACIÓN PARA EVALUAR EL ESTADO ACTUAL DE LA EMPRESA FRENTE A LAS 5 S EN EL PROCESO DE CORTE, ENSAMBLAJE, CALIDAD, PLANCHADO Y EMPAQUE EN LA PRODUCCIÓN DE PANTALONES

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
<th>RANGOS</th>
<th>PUNTAJE</th>
<th>TOTAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **En el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de pantalones, todo lo que se requiere para el trabajo está fuera del área productiva, solo hay productos y herramientas en las estaciones de trabajo.**

2. **En el área de producción se cuenta con herramientas en mal estado o inservibles.**

3. **En el proceso de producción de pantalones se aprovecha el espacio de manera eficiente y racional.**

4. **Las áreas están desorganizadas y sucias, el personal que opera puede reportar en donde y que cantidad de materia prima existe.**

5. **En el área de producción de pantalones existe un lugar para cada cosa y siempre que se necesita una herramienta se encuentra fácilmente y están correctamente identificados.**

6. **Existen líneas en el suelo para distinguir las diferentes áreas de trabajo, áreas de paso y las de manipulación.**

7. **Se tiene claro las especificaciones de clasificación y distribución de residuos.**

8. **El área de producción está limpia de materiales innecesarios.**

9. **Los operarios consideran la limpieza diaria como parte de sus trabajos.**

10. **En el proceso de producción de pantalones la necesidad de las 5’s se ha discutido, pero las acciones no han sido tomadas.**

Fuente: La empresa Simion E.I.R.L.

Elaboración: Autoras
FICHA DE OBSERVACIÓN PARA EVALUAR EL ESTADO ACTUAL DE LA EMPRESA FRENTE A LAS 5 S EN EL PROCESO DE CORTE, ENSAMBLAJE, CALIDAD, PLANCHADO Y EMPAQUE EN BLUSAS

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
<th>RANGOS</th>
<th>TOTAL</th>
<th>PUNTAJE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>En el proceso de corte, ensamblaje, calidad, planchado y empaque en la producción de blusas, todo lo que se requiere para el trabajo está fuera del área productiva, solo hay productos y herramientas en las estaciones de trabajo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el área de producción se cuenta con herramientas en mal estado o inservibles.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso de producción de blusas se aprovecha el espacio de manera eficiente y racional.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Las áreas están desorganizadas y sucias, el personal que opera puede reportar en donde y que cantidad de materia prima existe.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el área de producción de blusas existe un lugar para cada cosa y siempre que se necesita una herramienta se encuentra fácilmente y están correctamente identificados.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existen líneas en el suelo para distinguir las diferentes áreas de trabajo, áreas de paso y las de manipulación.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se tiene claro las especificaciones de clasificación y distribución de residuos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El área de producción está limpia de materiales innecesarios.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lo operarios consideran la limpieza diaria como parte de sus trabajos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso de producción de blusas la necesidad de las 5’s se ha discutido, pero las acciones no han sido tomadas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: la empresa Similon E.I.R.L.
Elaboración: Autoras
FICHA DE OBSERVACIÓN PARA EVALUAR EL ESTADO ACTUAL DE LA EMPRESA FRENTE AL SMED Y TPM EN EL PROCESO DE CORTE, ENSAMBLAJE, CALIDAD, PLANCHADO Y EMPAQUE EN LA PRODUCCIÓN DE PANTALONES

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
<th>RANGOS</th>
<th>TOTAL</th>
<th>PUNTAJE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>En el proceso para producción de pantalones, los tiempos de preparación no se miden. No se han realizado estrategias para reducir los tiempos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones, los tiempos de preparación son conocidos y se tienen en cuenta a la hora de programar las prendas sin embargo los tiempos de preparación de los equipos fuera de ellos no se miden de forma rutinaria. No hay una comprensión limitada de las estrategias de reducción de puesta a punto.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones se han desarrollado e implementado instrumentos y equipos que ayuden a reducir el tiempo de cambio y/o trabajo necesario.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones se ha identificado, conservado y almacenado de manera ordenada garantizando su correcto funcionamiento, todos los ítems necesarios para el cambio.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Para la producción de pantalones los procesos y equipos están mantenidos de manera ordenada garantizando el flujo de trabajo sin interrupciones.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En la producción de pantalones existen un sistema formal de mantenimiento preventivo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones algunos mantenimientos preventivos se realizan de manera informal y/o planeada por los técnicos de mantenimiento. No se recoge la historia de equipos. Nadie conoce de los principios y métodos del TPM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se realiza un programa de mantenimiento preventivo a todos los equipos y maquinarias y los resultados son debidamente documentados.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones los responsables del mantenimiento y sus equipos han sido entrenados en los conceptos y principios del TPM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En la producción de pantalones la empresa mantiene un inventario de partes y repuestos claves para equipos criticos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de pantalones La empresa establece un programa de mantenimiento bajo los conceptos del mantenimiento total productivo (TPM).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En la producción de pantalones se conoce y entiende el actual estado de los equipos, sus capacidades, procesos de desempeño, calidades, métodos y técnicas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Para producción de pantalones las actividades de mantenimiento se enfocan al aumento de la utilización disponible de los equipos y la disminución de variabilidad en el tiempo de ciclo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso de corte, ensamblaje, calidad, planchado y empaque para producción de pantalones. Los objetivos, funciones y responsabilidades para el TPM están claramente establecidos. El personal de mantenimiento y operadores trabajan juntos para reducir los seis tipos de pérdidas que se esquematizan bajo el TPM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: la empresa Similón E.I.R.L.

Elaboración: Autoras
FICHA DE OBSERVACIÓN PARA EVALUAR EL ESTADO ACTUAL DE LA EMPRESA FRENTE AL SMED Y TPM EN EL PROCESO DE CORTE, ENSAMBLAJE, CALIDAD, PLANCHADO Y EMPAQUE EN LA PRODUCCIÓN DE BLUSAS

<table>
<thead>
<tr>
<th>OBSERVACIONES</th>
<th>RANGOS</th>
<th>TOTAL</th>
<th>PUNTAJE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMD EN EL PROCESO DE CORTE, CALIDAD, PLANCHADO Y EMPAQUE EN LA PRODUCCIÓN DE BLUSAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para producir blusas, los tiempos de preparación no se miden. No se han realizado estrategias para reducir los tiempos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de blusas, los tiempos de preparación son conocidos y se tienen en cuenta a la hora de programar las prendas sin embargo los tiempos de preparación de los equipos fuera de ellos no se miden de forma rutinaria. No hay una comprensión limitada de las estrategias de reducción de puesta apunto.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de blusas de manera frecuente y habitual, el tiempo transcurrido entre la última pieza buena en el trabajo anterior y la primera pieza buena del siguiente proceso es menor de diez minutos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para producción de blusas se han desarrollado e implementado instrumentos y equipos que ayuden a reducir el tiempo de cambio y/o trabajo necesario.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de blusas se ha identificado, conservar y almacenar de manera ordenada garantizando su correcto funcionamiento, todos los items necesarios para el cambio.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPM EN EL PROCESO DE CORTE, ENSAMBLAJE, CALIDAD, PLANCHADO Y EMPAQUE EN LA PRODUCCIÓN DE BLUSAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Para la producción de blusas los procesos y equipos están mantenidos de manera ordenada garantizando el flujo de trabajo sin interrupciones.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En la producción de blusas existe un sistema formal de mantenimiento preventivo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de blusas algunos mantenimientos preventivos se realizan de manera informal y no planificada por los técnicos de mantenimiento. No se recoge la historia de equipos. Nadie es consciente de los principios y método del TPM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se realiza un programa de mantenimiento preventivo a todos los equipos y maquinarias y los resultados son debidamente documentados.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de blusas los responsables del mantenimiento y sus equipos han sido entrenados en los conceptos y principios del TPM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En la producción de blusas la empresa mantiene un inventario de partes y repuestos claves para equipos críticos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso para la producción de blusas la empresa establece un programa de mantenimiento bajo los conceptos del mantenimiento total productivo (TPM).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En la producción de blusas se conoce y entiende el actual estado de los equipos, sus capacidades, procesos de desempeño, calidades, métodos y técnicas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Para producción de blusas las actividades de mantenimiento se enfocan al aumento de la utilización disponible de los equipos y la disminución de la variabilidad en el tiempo de ciclo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>En el proceso de corte, ensamblaje, calidad, planchado y empaque para producción de blusas. Los objetivos, funciones y responsabilidades para el TPM están claramente establecidos. El personal de mantenimiento y operadores trabajan juntos para reducir los seis tipos de perdidas que se esquematizan bajo el TPM.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: la empresa Similton E.I.R.L.

Elaboración: Autoras
ANEXO N° 02: GUÍA DE PREGUNTAS

La presente entrevista se efectuará a la dueña y accionista de la empresa Srta. Paty Carruitero Alvinco, relacionado al proceso de gestión operativa, siendo sólo con fines académicos. Agradecemos su participación

- ¿Cuál es el giro de la empresa?
- ¿La empresa tiene un plan estratégico?
- ¿Considera que todas las áreas de la empresa se encuentran en sinergia para controlar la calidad?
- ¿Considera que los insumos son repartidos en el momento oportuno?
- ¿Considera que los implementos necesarios para la fabricación tiene una debida clasificación?
- ¿Cree usted que los elementos de la fabricación tienen un espacio establecido?
- ¿Existe una estandarización de trabajo para realizar las tareas diarias?
- ¿Existe un control de los objetivos establecidos?
- ¿Los colaboradores conocen las necesidades de cada operación?
- ¿Utilizan tecnología adecuada para que los dispositivos sean flexibles?
- ¿Se realizan tareas preventivas en el proceso productivo?
- ¿Su proveedor deja en buenas condiciones la línea de mantenimiento?
- ¿Se puede identificar el mal funcionamiento de los equipos?
- ¿Los trabajadores cuentan con el conocimiento necesario para reparar una falla leve?
- ¿La empresa tiene como objetivo la eficiencia?
- ¿Se busca utilizar todas las capacidades del personal para llegar al éxito?
- ¿Su personal recibe capacitación?
- ¿Desarrolla nuevos productos en base a las necesidades del cliente?
- ¿Considera que su producto es de calidad?
- ¿Tiene ventaja competitiva en costo de calidad que ayude a la productividad?
- ¿En qué indicadores de gestión ha habido una mejora?
ANEXO N° 03: INDICADORES DE GESTIÓN SOLICITADOS EN BASE AÑO (2016)

- Movilidad inventarios
- Rotación de Inventarios.
- Rotación de créditos pasivos
- Productividad de mano de obra
- Ausentismo del trabajador
- Importancia de los salarios
- Rotación de trabajadores
- Indicador ventas - trabajador
- Capital de trabajo
- Indicador de punto de equilibrio
- Punto de equilibrio
- Independencia financiera
- Rentabilidad por producto
- Índice Comercial
- Punto de equilibrio
- Nivel de calidad