# UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERÍA

# PROGRAMA DE ESTUDIO DE INGENIERÍA CIVIL



#### TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Diseño estructural del pavimento articulado para la pavimentación de la avenida Progreso de la localidad de Chicama, provincia de Ascope, La Libertad - 2023

Línea de Investigación: Ingeniería de Transportes

Sub línea de investigación: Transportes

#### Autor:

Garcia Vigo, Jeferson Michel

#### Jurado evaluador:

Presidente: Burgos Sarmiento, Tito Alfredo

Secretario : Sanchez Malpica, Carmen Esperanza

**Vocal** : Rodriguez Ramos, Mamerto

#### Asesor:

Merino Martínez, Marcelo Edmundo

**Código Orcid:** https://orcid.org/0000-0003-4733-4959

TRUJILLO - PERÚ

2023

Fecha de sustentación: 2023 / 12 / 19

# UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERÍA

## PROGRAMA DE ESTUDIO DE INGENIERÍA CIVIL



#### TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Diseño estructural del pavimento articulado para la pavimentación de la avenida Progreso de la localidad de Chicama, provincia de Ascope, La Libertad - 2023

Línea de Investigación: Ingeniería de Transportes

Sub línea de investigación: Transportes

#### Autor:

Garcia Vigo, Jeferson Michel

#### Jurado evaluador:

**Presidente :** Burgos Sarmiento, Tito Alfredo

Secretario : Sanchez Malpica, Carmen Esperanza

Vocal : Rodriguez Ramos, Mamerto

#### Asesor:

Merino Martínez, Marcelo Edmundo

Código Orcid: https://orcid.org/0000-0003-4733-4959

TRUJILLO - PEERÚ

2023

Fecha de sustentación: 2023 / 12 / 19

# Diseño estructural del pavimento articulado para la pavimentación de la avenida Progreso de la localidad de Chicama, provincia de Ascope, La Libertad - 2023

|        | ME DE ORIGINALIDAD                    |                            |                     |                            |
|--------|---------------------------------------|----------------------------|---------------------|----------------------------|
|        | 4 <sub>%</sub>                        | 16%<br>FUENTES DE INTERNET | 1%<br>PUBLICACIONES | 2% TRABAJOS DEL ESTUDIANTE |
| FUENTE | S PRIMARIAS                           |                            |                     |                            |
| 1      | repositor<br>Fuente de Inter          | rio.upao.edu.pe            |                     | 5                          |
| 2      | hdl.hand                              |                            |                     | 3                          |
| 3      | repositor<br>Fuente de Inter          | rio.ucv.edu.pe             |                     | 3                          |
| 4      | Submitte<br>Orrego<br>Trabajo del est | ed to Universida           | d Privada Ant       | cenor 2                    |
| 5      | repositor                             | rio.unc.edu.pe             |                     | 1                          |

Excluir citas Activo Excluir coincidencias < 1%
Excluir bibliografía Activo

V4

ing. Merino Martinez Marcelo

#### DECLARACIÓN DE ORIGINALIDAD

Yo, Merino Martinez, Marcelo Edmundo, docente del Programa de Estudio de Ingeniería Civil de la Universidad Privada Antenor Orrego, asesor de la tesis de investigación titulada "Diseño estructural del pavimento articulado para la pavimentación de la avenida Progreso de la localidad de Chicama, provincia de Ascope, La Libertad - 2023", del autor Garcia Vigo, Jeferson Michel, dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud del .1.4.%. Así lo consigna el reporte de similitud emitido por el software Turnitin el día 11 de diciembre del 2023.
- He revisado detalle dicho con reporte de la tesis "Diseño estructural del pavimento articulado para la pavimentación de la avenida Progreso de la localidad de Chicama, provincia de Ascope, La Libertad - 2023", y no se advierte indicios de plagio.
- Las citas a otros autores y sus respectivas referencias cumplen con las normas establecidas por la Universidad.

Ciudad y fecha: Trujillo – 11 de diciembre del 2023

Garcia Vigo, Jeferson Michel

DNI: 76513411

DNI: .17.98.37 39

ORCID: https://orcid.org/0000-0003-4733-4959



#### **DEDICATORIA**

Dedico el resultado de esta ardua investigación principalmente a Dios, por todas las bendiciones que me brinda a diario y darme las fuerzas necesarias para cumplir un sueño muy importante en mi formación profesional.

A mi familia, quiénes son pilares fundamentales para mí, mi mayor ejemplo y gran motivación; a mi madre Maritza Isabel por brindarme esta oportunidad y por creer siempre en mi potencial, por inculcarme desde pequeño buenos valores y enseñarme a no rendirme en las dificultades y que con esfuerzo y humildad puedo lograr todo lo que me proponga en la vida. A mi hermano Bryan Franco, por su apoyo, lealtad y compañía desde que tengo memoria; y a mi abuela Blanquita, que desde el cielo me acompaña, que siempre creyó en mí y nunca dudo que lo conseguiría, cumpliendo hoy la promesa que hicimos juntos.

A mis amigos, que fueron parte de mi proceso como profesional y me regalaron grandes momentos de alegría y enseñanza.

Gracias a todos de corazón.

#### **AGRADECIMIENTO**

Agradecer a Dios, por guiarme y acompañarme a lo largo de mi vida y por permitirme concluir con este tan importante objetivo, a mis queridos padres por brindarme las herramientas y el apoyo para poder cumplir mis metas personales y profesionales, a mi hermano y familiares que estuvieron en todo momento para impulsarme a seguir adelante, por brindarme consejos, ánimos y críticas constructivas para seguir adelante con mis metas y no desistir ante las adversidades.

A mi asesor, el Ing. Marcelo Edmundo Merino Martínez, por haberme compartido su amplia experiencia y sabiduría, orientándome en el desarrollo de mi tesis y resolviendo cada una de mis interrogantes de manera comprometida y desinteresada, con su apoyo, paciencia y dedicación constante pude lograr este logro profesional tan anhelado.

Finalmente, a mi alma mater, en especial al programa de estudio y a los maestros de la facultad de Ingeniería Civil de mi Universidad Privada Antenor Orrego, agradecerles por sus conocimientos y las exigencias brindadas que me permitieron desarrollar importantes habilidades como profesional, a todos los directivos por su trabajo y por su gestión para impulsar la carrera con el fin de obtener mejores resultados académicos, de igual manera al personal de limpieza y trabajadores en general que forman parte de la universidad y que de un modo u otro ayudaron a tener un mejor confort durante mi etapa universitaria.

#### **RESUMEN**

La investigación realizada propone realizar un diseño estructural de pavimento articulado para la vía urbana de la avenida progreso, ubicada en la localidad de Chicama, provincia de Ascope, con la finalidad de dar solución a una problemática social que se presenta hace varias décadas y no se hace lo posible por resolverla, además de impulsar el desarrollo y calidad de vida de los pobladores de la localidad.

Para obtener el correcto diseño estructural del pavimento articulado de la avenida Progreso, se ha aplicado la metodología AASHTO 93, de igual forma se siguieron los lineamientos y estándares que señala el Reglamento Nacional de Edificaciones: Norma CE. 010 Pavimentos Urbanos, Norma CE. 030 Obras Especiales y Complementarias, CE. 040 drenaje Pluvial, los cuales permitieron determinar los espesores requeridos para cada una de las capas del pavimento articulado, el sistema de drenaje pluvial y los sistemas de señalización y ciclovías de la vía urbana.

Por consiguiente, considerando una proyección de tráfico vehicular de 20 años, características del suelo de la zona y su topografía, se determinó que la estructura óptima del pavimento articulado para la avenida Progreso corresponde a una carpeta de rodadura (adoquín) de 6 cm, con una base de arena de 4 cm y una carpeta base de 10 cm; además se diseñó el sistema de drenaje pluvial en la cual se recolectarán las aguas de lluvia para ser evacuadas hacia el rio Chicama, finalizando la pavimentación de la avenida con las obras complementarias de señalización y delimitación de ciclovías.

Palabras Clave: Pavimento articulado, vía urbana, diseño estructural, tráfico vehicular, Reglamento Nacional de Edificaciones.

#### **ABSTRACT**

The research carried out proposes to carry out a structural design of articulated pavement for the urban road of Avenida Progreso, located in the town of Chicama, province of Ascope, with the purpose of providing a solution to a social problem that has existed for several decades and has not been does everything possible to resolve it, in addition to promoting the development and quality of life of the local residents.

To obtain the correct structural design of the articulated pavement of Progreso Avenue, the AASHTO 93 methodology has been applied, in the same way the guidelines and standards indicated by the National Building Regulations were followed: CE Standard. 010 Urban Pavements, CE Standard. 030 Special and Complementary Works, CE. 040 Storm drainage, which made it possible to determine the thicknesses required for each of the layers of the articulated pavement, the storm drainage system and the signaling and bicycle lane systems of the urban road.

Therefore, considering a 20-year projection of vehicular traffic, characteristics of the area's soil and its topography, it was determined that the optimal structure of the articulated pavement for Progreso Avenue corresponds to a 6 cm rolling surface (paving stone), with a 4cm sand base and a 10cm base folder; In addition, the storm drainage system was designed in which rainwater will be collected to be evacuated to the Chicama River, completing the paving of the avenue with the complementary works of signage and delimitation of cycle paths.

Keywords: Articulated pavement, urban roads, structural design, vehicular traffic, National Building Regulations.

#### **PRESENTACIÓN**

Señores miembros del jurado:

Dando cumplimiento y conformidad a los requerimientos establecidos en el Reglamento de Grados y Títulos de la Universidad Privada Antenor Orrego, así como también los estipulados en la facultad de Ingeniería, Programa de Estudios de Ingeniería Civil. Presento ante ustedes, con el fin de obtener el título de Ingeniero Civil, la tesis titulada:

Diseño estructural del pavimento articulado para la pavimentación de la avenida Progreso de la localidad de Chicama, provincia de Ascope, La Libertad – 2023.

La presente tesis ha sido desarrollada teniendo en consideración la norma internacional establecida por la American Association of State Highway and Transportation y nuestras Normas Técnicas Peruanas. Haciendo uso de igual manera los conocimientos técnicos adquiridos durante mi proceso de formación universitaria y el asesoramiento del Ing. Marcelo Edmundo Merino Martínez.

Atentamente.

Br. Garcia Vigo, Jeferson Michel

# ÍNDICE

| I.  | II  | NTR   | ODUCCIÓN                                              | 1   |
|-----|-----|-------|-------------------------------------------------------|-----|
|     | 1.1 | F     | Problema de Investigación                             | 1   |
|     | 1.2 | C     | Objetivos                                             | . 3 |
|     | 1   |       | Objetivo General                                      |     |
|     |     |       | Objetivos Específicos                                 |     |
|     | 1.3 | J     | Justificación del Estudio                             | . 4 |
| II. | . 1 | /IAR  | CO DE REFERENCIA                                      | . 5 |
|     | 2.1 | A     | Antecedentes del Estudio                              | . 5 |
|     | 2   | 2.1.1 | Antecedentes Internacionales                          | . 5 |
|     | 2   | 2.1.2 | Antecedentes Nacionales                               | . 6 |
|     | 2   | 2.1.3 | Antecedentes Locales                                  | . 7 |
|     | 2.2 | N     | Marco teórico                                         | . 8 |
|     | 2   | 2.2.1 | Pavimento                                             | . 8 |
|     |     | 2.2   | 2.1.1 Pavimento Articulado                            | . 8 |
|     |     | 2.2   | 2.1.2 Estructura del pavimento articulado             | . 9 |
|     |     | 2     | 2.2.1.2.1 Sub Rasante                                 | . 9 |
|     |     | 2     | 2.2.1.2.2 Sub base                                    | . 9 |
|     |     | 2     | 2.2.1.2.3 Base                                        | . 9 |
|     |     | 2     | 2.2.1.2.4 Cama de arena                               | . 9 |
|     |     | 2     | 2.2.1.2.5 Adoquines                                   | . 9 |
|     | 2   | 2.2.2 | Estudio de Suelos                                     | . 9 |
|     |     | 2.2   | 2.2.1 Técnicas de investigación de Campo              | 10  |
|     |     | 2.2   | 2.2.2 Investigación en laboratorio.                   | 10  |
|     |     | 2     | 2.2.2.2.1 Propiedades Físicas                         | 12  |
|     |     |       | 2.2.2.2.1.1 Análisis Granulométrico por Tamizado      | 12  |
|     |     |       | 2.2.2.1.2 Contenido de Humedad                        | 12  |
|     |     |       | 2.2.2.2.1.3 Límites de Consistencia                   | 12  |
|     |     | 2     | 2.2.2.2.2 Propiedades Mecánicas                       | 13  |
|     |     |       | 2.2.2.2.1 Ensayo de Compactación (Proctor Modificado) | 13  |
|     |     |       | 2.2.2.2.2 Ensayo California Bearing Ratio (CBR)       | 13  |
|     |     | 2.2   | 2.2.3 Clasificación de Suelos                         | 13  |

| 2.2.3 Estudio Topográfico                          | 16 |
|----------------------------------------------------|----|
| 2.2.3.1 Levantamiento Topográfico.                 | 16 |
| 2.2.3.2 Curvas de Nivel                            | 16 |
| 2.2.4 Estudio de Tránsito                          | 16 |
| 2.2.4.1 Clasificación por tipo de vehículos        | 17 |
| 2.2.4.1.1 Vehículos Livianos                       | 17 |
| 2.2.4.1.2 Vehículos Pesados                        | 17 |
| 2.2.4.2 Componentes del Estudio de Tránsito        | 17 |
| 2.2.4.2.1 Conteo Vehicular.                        | 17 |
| 2.2.4.2.2 Índice Medio Diario (IMD).               | 17 |
| 2.2.4.2.3 Periodo de diseño                        | 17 |
| 2.2.4.2.4 Carril de diseño                         | 18 |
| 2.2.4.2.5 Factor de crecimiento.                   | 19 |
| 2.2.4.2.6 Tránsito Proyectado                      | 19 |
| 2.2.5 Diseño de Pavimento                          | 20 |
| 2.2.5.1 Método Analítico.                          | 20 |
| 2.2.5.2 Método Gráfico.                            | 20 |
| 2.2.5.2.1 Confiabilidad                            | 22 |
| 2.2.5.2.2 Desviación Estándar                      | 22 |
| 2.2.5.2.3 Servicialidad (ΔPSI).                    | 23 |
| 2.2.5.2.4 Módulo de Resiliencia (M <sub>R</sub> )  | 24 |
| 2.2.5.2.5 Coeficiente de drenaje (m <sub>i</sub> ) | 24 |
| 2.2.5.2.6 Coeficientes Estructurales.              | 24 |
| 2.2.5.2.7 Espesores de las capas del pavimento     | 26 |
| 2.3 Marco Conceptual                               | 26 |
| 2.4 Sistema de Hipótesis                           | 28 |
| 2.4.1 Independiente                                | 28 |
| III. METODOLOGÍA EMPLEADA                          | 30 |
| 3.1 Tipo y nivel de Investigación                  |    |
|                                                    |    |
| 3.2 Población y muestra de Estudio                 |    |
| 3.2.1 Población                                    |    |
| 3.2.2 Muestra                                      | 30 |

| 3.3    | Diseño de Investigación                                                                | 30     |
|--------|----------------------------------------------------------------------------------------|--------|
| 3.4    | Técnicas en Instrumentos de Investigación                                              | 30     |
| 3.5    | Procesamiento y análisis de datos                                                      | 31     |
| IV. RE | SENTACIÓN DE RESULTADOS                                                                | 31     |
| 4.1    | Propuesta de Investigación                                                             | 31     |
| 4.2    | Análisis e interpretación de resultados                                                | 31     |
| 4.2    | .1 Estudio Topográfico                                                                 |        |
| 4.2    | .2 Estudio de Suelos                                                                   | 32     |
| 4      | 2.2.2.1 Investigación de Campo.                                                        | 33     |
| 4      | 2.2.2 Investigación en laboratorio                                                     | 35     |
|        | 4.2.2.2.1 Propiedades Físicas                                                          | 35     |
|        | 4.2.2.2.1.1 Contenido de Humedad (W%)                                                  | 35     |
|        | 4.2.2.2.1.2 Análisis Granulométrico por Tamizado                                       | 36     |
|        | 4.2.2.2. Propiedades Mecánicas                                                         | 37     |
|        | 4.2.2.2.1 Ensayo de Compactación (Proctor Modificado)                                  | 37     |
|        | 4.2.2.2.2 Ensayo California Bearing Ratio (CBR)                                        | 38     |
| 4.2    | .3 Estudio de Tránsito                                                                 | 40     |
| 4      | .2.3.1 Conteo Vehicular                                                                | 40     |
| 4      | .2.3.2 Índice Medio Diario (IMD)                                                       | 42     |
| 4      | .2.3.3 Índice Medio Diario Anual (IMDA)                                                | 43     |
| 4      | .2.3.4 Factor de Crecimiento Vehicular (Fc)                                            | 44     |
| 4      | .2.3.5 Factor vehículo pesado (Fvp)                                                    | 45     |
| 4      | .2.3.6 Factor de distribución direccional (F <sub>d</sub> ) y Factor de distribución d | carril |
| (      | F <sub>c</sub> ). 48                                                                   |        |
| 4      | .2.3.7 Factor de ajuste por presión de neumáticos (Fp)                                 | 49     |
| 4      | .2.3.8 Cálculo de ESAL de diseño                                                       | 49     |
| 4.2    | .4 Diseño de pavimento                                                                 | 51     |
| 4      | 2.4.1 Tipo de Vía                                                                      | 51     |
| 4      | -2.4.2 Confiabilidad (R).                                                              | 51     |
| 4      | 2.4.3 Desviación Estándar Normal (Z <sub>r</sub> ).                                    | 52     |
| 4      | .2.4.4 Desviación Estándar (S₀).                                                       | 53     |
| 4      | 2.4.5 Servicialidad (∆PSI)                                                             | 53     |

| 4.2.4.6 Índice de Servicialidad Inicial (Pi)                                  | 53 |
|-------------------------------------------------------------------------------|----|
| 4.2.4.7 Índice de Servicialidad Final (Pt)                                    | 53 |
| 4.2.4.8 Módulo de Resiliencia (MR).                                           | 54 |
| 4.2.4.9 Número Estructural (SN)                                               | 55 |
| 4.2.4.9.1 Método Analítico                                                    | 55 |
| 4.2.4.9.2 Método Computarizado.                                               | 56 |
| 4.2.5 Espesores de las capas del Pavimento                                    | 57 |
| 4.2.5.1 Espesor del Adoquín (h <sub>1</sub> )                                 | 58 |
| 4.2.5.2 Coeficientes estructurales                                            | 59 |
| 4.2.5.2.1 Coeficiente Estructural de la Carpeta de Rodadura (a <sub>1</sub> ) | 59 |
| 4.2.5.2.2 Coeficiente Estructural de la base (a <sub>2</sub> )                | 59 |
| 4.2.5.3 Coeficiente de drenaje (D <sub>2</sub> ).                             | 60 |
| 4.2.6 Estudio Hidrológico                                                     | 61 |
| 4.2.6.1 Curva Intensidad Duración Frecuencia (IDF)                            | 63 |
| 4.2.6.2 Hietograma                                                            | 66 |
| 4.2.6.3 Curva IDF de Proyecto.                                                | 66 |
| 4.2.6.4 Hietograma de Proyecto.                                               | 69 |
| 4.2.7 Diseño de Drenaje Pluvial                                               | 71 |
| 4.2.7.1 Vereda y Pista                                                        | 71 |
| 4.2.7.2 Sumidero                                                              |    |
| 4.2.7.3 Buzones                                                               | 73 |
| •                                                                             | 74 |
| 4.2.7.5 Sistema de evacuación                                                 | 75 |
| 4.2.8 Señalización Urbana                                                     |    |
| 4.2.8.1 Propuesta de Señalización Vertical                                    |    |
| 4.2.8.1.1 Señales Restrictivas (SR)                                           |    |
| 4.2.8.1.2 Señales Preventivas (SP)                                            |    |
| 4.2.8.1.3 Señales Informativas (SI)                                           |    |
| 4.2.8.1.4 Señales Turísticas y de Servicios (STS)                             |    |
| 4.2.8.2 Propuesta de Señalización Horizontal                                  |    |
| 4.2.8.2.1 Señales de líneas Longitudinales                                    |    |
| 4.2.9 Elaboración del Presupuesto                                             | 78 |
| 4.3 Docimasia de Hipótesis                                                    | 80 |
|                                                                               |    |

| IV.   | DISCUSIÓN DE RESULTADOS                                        | . 80     |
|-------|----------------------------------------------------------------|----------|
| V. (  | CONCLUSIONES                                                   | . 82     |
| VI.   | RECOMENDACIONES                                                | . 83     |
| VII.  | REFERENCIAS BIBLIOGRÁFICAS                                     | . 84     |
| VIII. | ANEXOS                                                         | . 86     |
| 8.1   | Anexo 1. Conteo vehicular en la zona de estudio                | . 86     |
| 8.2   | Anexo 2. Ubicación de Calicatas en zona de estudio             | . 89     |
| 8.3   | Anexo 3. Perfil Estratigráfico de calicatas                    | . 89     |
| 8.4   | Anexo 4. Certificados de ensayos de Laboratorio de Mecánica de | <u> </u> |
| Su    | elos                                                           | 103      |
| 8.5   | Anexo 5. Panel Fotográfico                                     | 158      |
| 8.6   | Anexo 6. Relación de planos                                    | 174      |
| 8.7   | Anexo 7. Encuestas                                             | 182      |

## **ÍNDICE DE TABLAS**

| Tabla 1: Puntos de investigación de acuerdo al tipo de vía                           | 10  |
|--------------------------------------------------------------------------------------|-----|
| Tabla 2: Normatividad de Ensayos de Laboratorio                                      | 11  |
| Tabla 3: Valor Relativo de Soporte, CBR                                              | 13  |
| Tabla 4: Simbología convencional para Perfil de Calicatas – clasificación            |     |
| ASSTHO                                                                               | 13  |
| Tabla 5: Simbología convencional para Perfil de Calicatas – clasificación SUCS       | 314 |
| Tabla 6: CBR según el tipo de suelo y sus usos                                       | 16  |
| Tabla 7: Periodo de diseño en base al tipo de vía                                    | 18  |
| Tabla 8: Factores de distribución de carril para determinar el tránsito en el carril | l   |
| de diseño                                                                            | 18  |
| Tabla 9: Niveles de confiabilidad recomendados por AASTHO                            | 22  |
| Tabla 10: Desviación estándar para pavimentos rígidos y flexibles                    | 22  |
| Tabla 11: Índices de servicialidad para pavimentos rígidos y flexibles               | 23  |
| Tabla 12: Coeficiente de drenaje en base a la calidad de drenaje                     | 24  |
| Tabla 13: Coeficiente Estructural para la Carpeta de Rodadura                        | 25  |
| Tabla14: Coeficiente Estructural para la Base                                        | 25  |
| Tabla15: Coeficiente Estructural para la Sub – base                                  | 25  |
| Tabla16: Uso y resistencia según espesor de adoquín                                  | 26  |
| Tabla 17: Operacionalización de variable independiente                               | 28  |
| Tabla18: Técnicas e instrumentos de recolección de datos                             | 30  |
| Tabla 19: Relación de calicatas exploradas                                           | 33  |
| Tabla 20: Ensayos realizados para la subrasante                                      | 35  |
| Tabla 21: Contenido de Humedad de la subrasante de cada muestra                      | 35  |
| Tabla 22: Distribución granulométrica y clasificación del Suelo                      | 36  |
| Tabla 23: Densidad seca máxima y contenido de humedad óptimo del suelo               | 37  |
| Tabla 24: Determinación del CBR de diseño                                            | 38  |
| Tabla 25: Determinación del CBR de diseño                                            | 39  |
| Tabla 26: Conteo vehicular de Norte – Sur                                            | 41  |
| Tabla 27: Conteo vehicular de Sur – Norte                                            | 41  |
| Tabla 28: Determinación del IMD                                                      | 42  |
| Tabla 29: Determinación del IMDA                                                     | 43  |
| Tabla 30: Índices de crecimiento vehicular                                           | 44  |

| Tabla 31: Relación de carga por eje para determinar Ejes Equivalentes (EE) para |
|---------------------------------------------------------------------------------|
| pavimentos flexibles y articulados                                              |
| Tabla 32: Eje Equivalente según tipo de vehículo para pavimentos articulados 46 |
| Tabla 33: Eje Equivalente según tipo de vehículo para pavimentos articulados 46 |
| Tabla 34: Eje Equivalente según tipo de vehículo para pavimentos articulados 47 |
| Tabla 35: Factor de distribución Direccional y Factor de distribución Carril 48 |
| Tabla 36: Cálculo de ESAL para diseño de pavimento articulado                   |
| Tabla37: Clasificación de Vía Urbana según EALs ¡Error! Marcador no definido.   |
| Tabla 38: Desviación estándar normal según nivel de confiabilidad    52         |
| Tabla39: Clasificación del CBR y Módulo Resiliente de la subrasante 54          |
| Tabla 40: Espesores mínimos para capa de rodadura y base, en función del        |
| ESAL                                                                            |
| Tabla 41: Tipo de adoquín según su uso                                          |
| Tabla 42: Tipo de adoquín según su espesor y resistencia a la compresión 58     |
| Tabla 43: Datos históricos pluviométricos                                       |
| Tabla 44: Intensidad y altura de precipitación cada 5 minutos                   |
| Tabla 45: Datos de intensidad de proyecto adaptados                             |
| Tabla 46: Intensidad y altura de precipitación de proyecto cada 5 minutos 69    |
| Tabla 47: Pendientes mínimas para calzada o pista                               |
| Tabla 48: Señalización restrictiva: Límite máximo    75                         |
| Tabla 49: Señalización restrictiva: Serie de estacionamiento                    |
| Tabla 50:    Señalización preventiva:    Reductor de velocidad                  |
| Tabla 51: Señalización Informativa en la avenida                                |
| Tabla 52:    Señalización Turística y de Servicios en la avenida                |
| Tabla 53: Presupuesto General de pavimentación urbana para la avenida           |
| Progreso                                                                        |
| Tabla 54: Conteo vehicular de Norte a Sur                                       |
| Tabla 55: Conteo vehicular de Sur a Norte                                       |
| Tabla 56: Perfil estratigráfico de Calicata N°1   90                            |
| Tabla 57: Perfil estratigráfico de Calicata N°2   91                            |
| Tabla 58: Perfil estratigráfico de Calicata N°3    92                           |
| Tabla 59: Perfil estratigráfico de Calicata N°4    93                           |
| Tabla60: Opinión acerca de la relación Desarrollo / Pavimentación Urbana 182    |
| Tabla61: Opinión acerca de la gestión hecha por la municipalidad                |

## **ÍNDICE DE FIGURAS**

| Figura 1: Factores de distribución de carril para determinar el tránsito en el carril |
|---------------------------------------------------------------------------------------|
| de diseño18                                                                           |
| Figura 2: Monograma AASHTO para determinar el número estructural 21                   |
| Figura 3: Curvas de nivel con equidistancia de 0.20 m. y 1.00 m. en civil 3d 32       |
| Figura 4: Ubicación de calicatas en zona de estudio                                   |
| Figura 5: Número Estructural para el diseño del pavimento mediante el programa        |
| PavimR                                                                                |
| Figura 6: Correlación CBR – Coeficiente Estructural para la capa de la base 59        |
| Figura 7: Configuración Estructural para pavimento articulado de la avenida           |
| Progreso61                                                                            |
| Figura 8: Cálculo de IDF computarizado64                                              |
| Figura 9: Sumidero de rejilla en pista o calzada73                                    |
| Figura 10: Distanciamiento entre buzones en la avenida Progreso                       |
| Figura 11: Buzones y tubería de drenaje pluvial en la avenida Progreso 74             |
| Figura 12: Delimitación entre calzada y ciclovía                                      |
| Figura 13: Ubicación de conteo vehicular en zona de estudio 86                        |
| Figura 14: Ubicación de calicatas en zona de estudio                                  |
| Figura 15: Certificado de ensayo de Contenido de Humedad                              |
| Figura 16: Certificado de ensayo de Granulometría por Tamizado 104                    |
| Figura 17: Certificado de ensayo de Proctor Modificado 105                            |
| Figura 18: Certificado de ensayo de CBR106                                            |
| Figura 19: Estado actual sin pavimentación de la vía de la avenida Progreso 158       |
| Figura 20: Creación de charcos frente a mercado principal por las lluvias 158         |
| Figura 21: Creación de charcos frente a colegio "Santo Domingo de Guzmán" por         |
| las Iluvias                                                                           |
| Figura 22: Creación de charcos frente a iglesia de Chicama por las lluvias 159        |
| Figura 23: Conteo vehicular frente a colegio "Santo Domingo de Guzmán" de             |
| Norte a Sur160                                                                        |
| Figura 24: Conteo vehicular frente a colegio "Santo Domingo de Guzmán" de Sur         |
| a Norte                                                                               |
| Figura 25: Materiales utilizados para generar el reconocimiento de la vía 161         |
| Figura 26: Estudio de la zona desde el punto 1.00 km de la avenida                    |

| Figura 2                                                                                                    | 7: Estudio topográfico de la zona                                                                                                                                                                                                            | 162                                                                       |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Figura 2                                                                                                    | 8: Materiales a utilizar para exploración de calicatas                                                                                                                                                                                       | 162                                                                       |
| Figura 2                                                                                                    | 9: Delimitación de dimensiones de cada calicata                                                                                                                                                                                              | 163                                                                       |
| Figura 3                                                                                                    | 0: Excavación de calicata 01 en el punto 0.00 km. de la avenida Prog                                                                                                                                                                         | reso                                                                      |
|                                                                                                             |                                                                                                                                                                                                                                              | 163                                                                       |
| Figura 3                                                                                                    | 1: Medición de calicata 01 en el punto 0.00 km. de la avenida Progres                                                                                                                                                                        | 80                                                                        |
|                                                                                                             |                                                                                                                                                                                                                                              | 164                                                                       |
| Figura 3                                                                                                    | 2: Excavación de calicata 02 en el punto 1.00 km. de la avenida Prog                                                                                                                                                                         | reso                                                                      |
|                                                                                                             |                                                                                                                                                                                                                                              | 164                                                                       |
| Figura 3                                                                                                    | 3: Excavación de calicata 03 en el punto 2.00 km. de la avenida Prog                                                                                                                                                                         | reso                                                                      |
|                                                                                                             |                                                                                                                                                                                                                                              | 165                                                                       |
| Figura 3                                                                                                    | 4: Excavación de calicata 04 en el punto 3.00 km. de la avenida Prog                                                                                                                                                                         | reso                                                                      |
|                                                                                                             |                                                                                                                                                                                                                                              | 165                                                                       |
| Figura 3                                                                                                    | 5: Muestras de suelo obtenido de las calicatas                                                                                                                                                                                               | 166                                                                       |
| Figura 3                                                                                                    | 6: Muestras de suelo colocadas en el horno                                                                                                                                                                                                   | 166                                                                       |
| Figura 3                                                                                                    | 7: Proceso de tamizado en muestras de suelo                                                                                                                                                                                                  | 167                                                                       |
| Figura 3                                                                                                    | 8: Materiales a utilizar para ensayo de subrasante                                                                                                                                                                                           | 167                                                                       |
|                                                                                                             |                                                                                                                                                                                                                                              |                                                                           |
| Figura 3                                                                                                    | 9: Destinación de más de 30 kg de muestra para ensayo de subrasan                                                                                                                                                                            | ite                                                                       |
| _                                                                                                           | 9: Destinación de más de 30 kg de muestra para ensayo de subrasan                                                                                                                                                                            |                                                                           |
|                                                                                                             |                                                                                                                                                                                                                                              | 168                                                                       |
| Figura 4                                                                                                    |                                                                                                                                                                                                                                              | 168<br>168                                                                |
| Figura 4                                                                                                    | <b>0:</b> Tamizado (3/4") de muestra seca                                                                                                                                                                                                    | 168<br>168<br>169                                                         |
| Figura 4 Figura 4 Figura 4                                                                                  | 0: Tamizado (3/4") de muestra seca                                                                                                                                                                                                           | <ul><li>168</li><li>168</li><li>169</li><li>169</li></ul>                 |
| Figura 4 Figura 4 Figura 4 Figura 4                                                                         | O: Tamizado (3/4") de muestra seca  1: Adición de diferentes porcentajes de agua  2: Compactación de subrasante con 56 golpes por capa                                                                                                       | 168<br>168<br>169<br>169                                                  |
| Figura 4 Figura 4 Figura 4 Figura 4 Figura 4                                                                | O: Tamizado (3/4") de muestra seca  1: Adición de diferentes porcentajes de agua  2: Compactación de subrasante con 56 golpes por capa  3: Moldes compactados con diferentes porcentajes de humedad                                          | 168<br>168<br>169<br>169<br>170                                           |
| Figura 4 Figura 4 Figura 4 Figura 4 Figura 4                                                                | O: Tamizado (3/4") de muestra seca  1: Adición de diferentes porcentajes de agua  2: Compactación de subrasante con 56 golpes por capa  3: Moldes compactados con diferentes porcentajes de humedad  4: Extracción de muestras de cada molde | 168<br>169<br>169<br>170<br>170                                           |
| Figura 4                                              | O: Tamizado (3/4") de muestra seca                                                                                                                                                                                                           | 168<br>169<br>169<br>170<br>170<br>171                                    |
| Figura 4                                     | O: Tamizado (3/4") de muestra seca                                                                                                                                                                                                           | 168<br>169<br>169<br>170<br>170<br>171<br>171                             |
| Figura 4                            | 0: Tamizado (3/4") de muestra seca                                                                                                                                                                                                           | 168<br>169<br>169<br>170<br>171<br>171<br>172<br>172                      |
| Figura 4                   | 0: Tamizado (3/4") de muestra seca                                                                                                                                                                                                           | 168<br>169<br>169<br>170<br>171<br>171<br>172<br>172                      |
| Figura 4 Figura 5                   | 0: Tamizado (3/4") de muestra seca                                                                                                                                                                                                           | 168<br>169<br>169<br>170<br>171<br>171<br>172<br>173<br>173               |
| Figura 4 Figura 5 Figura 5 Figura 5          | 0: Tamizado (3/4") de muestra seca                                                                                                                                                                                                           | 168<br>169<br>169<br>170<br>171<br>171<br>172<br>173<br>173               |
| Figura 4 Figura 5 Figura 5 Figura 5 Figura 5 | 0: Tamizado (3/4") de muestra seca                                                                                                                                                                                                           | 168<br>169<br>169<br>170<br>170<br>171<br>171<br>172<br>173<br>173<br>174 |

# ÍNDICE DE GRÁFICOS

| Gráfico 1:                                                                     |
|--------------------------------------------------------------------------------|
| IMDA de la avenida Progreso43                                                  |
| Gráfico 2:                                                                     |
| Curva Intensidad Duración Frecuencia                                           |
| Gráfico 3:                                                                     |
| Hietograma de Precipitación                                                    |
| Gráfico 4:                                                                     |
| Comparación de curvas IDF – IDF de Proyecto                                    |
| Gráfico 5:                                                                     |
| Hietograma de Precipitación de proyecto                                        |
| Gráfico 6:                                                                     |
| Curva de estadísticas de cada muestreo por cantidad de golpes ¡Error! Marcado: |
| no definido.                                                                   |
| Gráfico 7:                                                                     |
| Curva de CBRjError! Marcador no definido                                       |
| Gráfico 8:                                                                     |
| Opinión acerca de la relación Desarrollo / Pavimentación Urbana                |
| Gráfico 9:                                                                     |
| Opinión acerca de la gestión hecha por la municipalidad 183                    |

#### I. INTRODUCCIÓN

#### 1.1 Problema de Investigación

Los adoquines son tan antiguos como los primeros pavimentos que se crearon. Su origen va desde hace 25 siglos y se considera como creadores a los cartagineses y a los romanos, quiénes en su búsqueda de crear nuevas vías de rápida construcción y duración lograron instaurar una nueva forma de pavimentación. A partir de la década de 1970, los adoquines de concreto empiezan a utilizarse de forma masiva; países como Estados Unidos, Holanda y Reino Unido incorporaron el pavimento articulado en sus principales vías urbanas e industriales.

Actualmente, uno de los principales problemas en común que se evidencian en Latinoamérica, es el estado tan lamentable en el que se observan sus vías urbanas. Sea cualquier tipo de pavimento que presenten, rígido, flexible o articulado, es recurrente detectar fallas estructurales o funcionales que impide el tránsito normal de los vehículos o los peatones, lo que genera conflictos y retroceso para el desarrollo de un país. En pleno 2023, países como Nicaragua, Bolivia, Haití y Colombia presentan particulares y grandes retos en este campo, ya que son países con puntajes muy bajos en cuanto a la calidad de pavimentación urbana; otorgado por el Foro Económico Mundial, sin embargo, muchos de estos países latinoamericanos también presentan bajos estándares de calidad, lo que se traduce como que aún existe una gran brecha por solucionar en cuanto a pavimentación urbana.

Un correcto diseño de pavimentación siempre es fundamental para el desarrollo de un país, por las grandes ventajas que esto implica siendo la principal el tránsito y traslado de cargas y personas. Actualmente en nuestro país se presenta gran cantidad de conflictos que son de gran consideración y que están relacionados al área de infraestructura vial urbana. Dentro de todo el territorio peruano se pueden apreciar localidades enteras que presentan un ineficiente y deteriorado diseño de pavimentación o que incluso en el peor de sus casos, no cuentan con este; causando diversos problemas y molestias en los habitantes.

El Gobierno Regional de La Libertad, tiene grandes retos en cuanto a infraestructura urbana se plantea, ya que muchas de sus provincias carecen de un diseño estructural urbano adecuado, muchos de los distritos pertenecientes a la Costa no presentan un mantenimiento adecuado de sus vías de tránsito hace ya mucho tiempo. Por otro lado, enfocándonos en nuestra Sierra Liberteña la situación empeora, ya que la mayoría de sus localidades y distritos no presenta ningún sistema o tipo de pavimentación urbana, justificando que por las condiciones morfológicas o climatológicas de la zona es complicado realizar este tipo de proyectos.

Asimismo, el distrito de Chicama, tampoco es ajeno a este tipo de problemas urbanos. Dentro de la localidad de Chicama, La avenida Progreso, siendo su vía principal, se encuentra en un estado totalmente deplorable e incluso algunos tramos se encuentran a nivel de tierra suelta (sin pavimentar), perjudicando la actividad comercial existente en la zona y la seguridad de los ciudadanos al no existir una diferencia perceptible entre la vereda y las vías de tránsito, entre otras problemáticas existentes. Todo esto, produce molestias en la población de Chicama, ya que siguen pasando los años y no se presenta una propuesta ni muchos menos un accionar para la pavimentación de su principal vía local.

En épocas de verano donde suele llover comúnmente en la zona, las pistas de la avenida se convierten en charcos y lodazales, sumado a que no existe un adecuado sistema de desagüe pluvial; trae por consecuencia el incremento del deterioro de la carpeta de rodadura, presentando fisuras, hundimientos y baches en su superficie. Asimismo, durante estas épocas es común que las aguas de lluvia creen lagunas en ciertos tramos de las veredas durante toda la avenida Progreso; esto debido a la pendiente y el desnivel que existe entre la carpeta de rodadura y las veredas.

Debido a la carencia del apropiado diseño de pavimentación, se puede deducir que esto en un futuro tendrá como consecuencias riesgos ecológicos y daños al bienestar de los pobladores, produciendo problemas respiratorios. Ya que según la posta médica existen reiterados casos de asma, rinitis alérgica, enrojecimiento de los ojos, faringitis, irritación de las fosas nasales, laringitis,

alergias y complicaciones en los pulmones, ocasionados probablemente por las grandes nubes de polvo que se forman a diario por el paso vehicular.

Por otro lado, también existen consecuencias a nivel social, ya que la población se ve afectada y envuelta en un círculo vicioso de constante retroceso que no ayudan a su surgimiento y genera estancamiento y conformidad ya que muchas veces las autoridades pertinentes no toman las medidas respectivas y no hacen lo posible por ayudar o presentar soluciones que hagan que el distrito de Chicama y su población surjan y se desarrollen como sociedad.

Por lo tanto, si no se toman las medidas correspondientes, se seguirán sosteniendo los mismos problemas; y la calidad de vida de los habitantes de Chicama seguirá siendo la misma, situación que a las autoridades del distrito no muestran el interés debido al no solucionar esta problemática que se suscita desde años atrás y que genera gran malestar en los habitantes de la zona.

#### Enunciado del Problema

¿Cuál es el diseño estructural del pavimento articulado para la pavimentación de la avenida Progreso de la localidad de Chicama, La Libertad, 2023?

#### 1.2 Objetivos

#### 1.2.1 Objetivo General

Realizar el diseño estructural del pavimento articulado para la pavimentación de la avenida Progreso en la localidad de Chicama, aplicando el método ASSTHO 93.

#### 1.2.2 Objetivos Específicos

- Realizar estudios topográficos para conocer la configuración del terreno y hacer planos de toda la zona a intervenir.
- Elaborar estudios de tránsito y calcular la carga vehicular (Esal) de la avenida Progreso, para su diseño de pavimentación.
- Determinar las características geotécnicas del terreno, a través de calicatas y ensayos de laboratorio.

- Efectuar un estudio hidrológico para determinar el comportamiento de las masas de agua de la zona.
- Diseñar la estructura del pavimento articulado de acuerdo a los criterios técnicos del método ASSTHO 93.
- Realizar el diseño de obras de arte y propuesta de evacuación de aguas pluviales.
- Planificar el diseño de señalización vial.
- Ejecutar el presupuesto de lo que sería la ejecución real del proyecto propuesto.

#### 1.3 Justificación del Estudio

Siempre a lo largo de las décadas, especialmente en épocas como el fenómeno del niño o de las precipitaciones torrenciales, la avenida Progreso se vuelve intransitable, las veredas en ciertos tramos se inundan completamente y las pistas se convierten en charcos y lodazales, que cuando secan generan enormes nubes de polvo en toda la avenida. El propósito de la presente tesis es generar un impacto positivo para los pobladores de la zona, en el cual plantearemos el correcto análisis para el diseño estructural del pavimento articulado con la finalidad de realizar la pavimentación en toda la avenida, mejorando de esta manera la calidad de vida de la población del distrito en general y aportando una solución determinante ante la problemática que año tras año sigue y no se plantea ningún accionar concreto.

A nivel teórico, el informe presente se realiza con la finalidad de realizar un correcto diseño de pavimentación para la avenida Progreso, la cual se basa en teorías y normas reconocidas internacionalmente, de esta manera se describe de manera verbal las condiciones funcionales para los pavimentos articulados; y así realizar los estudios y análisis necesarios para llevar a cabo su ejecución.

A nivel académico, para lograr los objetivos de estudio, se aplica el método ASSTHO 93, el cual nos brindará el número estructural (SN) requerido, para determinar los espesores correspondientes de cada capa que conformarán el pavimento articulado a realizar, de igual manera se determinará la carga vehicular (ESAL) de la avenida, y se realizarán pruebas en laboratorio para evaluar las propiedades mecánicas y físicas que presenta el suelo.

A nivel social, los estudios y propuesta realizada ayudarán a que la avenida Progreso cuente con una adecuada infraestructura de pavimentación, que realzará el ornato de la localidad, ya que el pavimento articulado es uno de los más utilizados en las grandes ciudades del mundo, incrementando el comercio en la zona y reduciendo la contaminación de nuestro medio ambiente, eliminando posibles focos infecciosos brindará mayor seguridad a los pobladores de la localidad de Chicama, mejorando de esta manera su calidad de vida, y solucionando una problemática que hace muchos años no los deja avanzar ni crecer como comunidad y que parece que a las autoridades competentes no les interesa presentar una solución definitiva al respecto.

A nivel económico; al realizar la pavimentación de la Avenida Progreso se incrementará el ornato de la localidad, haciendo que Chicama se convierta en un destino muy atractivo para los viajeros, suscitando fuertemente el turismo; y generando ganancias económicas para los comerciantes de la zona. Asimismo, comerciantes foráneos se animarían a invertir o traer sus productos, lo cual beneficiaría el mercado, haciendo que los costos sean más bajos, debido a que existiese una mayor oferta. Por otro lado, los habitantes ahorrarían gran cantidad de dinero que suelen gastar comúnmente en reparaciones de sus vehículos, debido la deteriorada carpeta asfáltica que presenta la avenida principal. Todo esto afecta en gran medida la economía del sector.

#### II. MARCO DE REFERENCIA

#### 2.1 Antecedentes del Estudio

#### 2.1.1 Antecedentes Internacionales

Según Amir e Ivan (2019) en su tesis pregrado titulada "Mejora de la red vial del Barrio La Bianca", tiene como objetivo principal mejorar la calidad de vida de los habitantes del barrio La Bianca, planteando un nuevo diseño estructural vial urbano, en el cual mejorarán la estética visual del barrio, el confort de los propios ciudadanos, mejorarán el ordenamiento del tránsito y el nivel socioeconómico del mismo. Para ello emplearán la metodología de diseño ASSHTO, con variaciones en

la subrasante, y diseños para las diferentes capas. En tal sentido, las conclusiones alcanzadas presentan que para el proyecto se trabajará con pavimento flexible, la cual presentará una capa de rodamiento de 7 cm. de espesor en las avenidas internas y de 12 cm. en la avenida más transitada, apoyadas sobre una base de 15 cm. y mejoramiento de la subrasante. Por lo tanto, el aporte de la presente tesis de investigación yace principalmente en el impacto social, en el cual se busca dar solución a un problema de pavimentación urbana para un desarrollo, dentro de todos los ámbitos enfocados a la calidad de vida de los propios habitantes de la zona a intervenir, planteando un proyecto enfocado en solucionar una problemática social.

Yomara Hernández Cepeda (2018) sustentó su tesis pregrado denominada "Pavimentos de adoquines de concreto, una solución ambiental en la construcción de infraestructura vial colombiana", tesis que tiene por objetivo presentar una alternativa que disminuya el impacto ambiental por la construcción de vías en Colombia, promoviendo la construcción de infraestructuras de baja contaminación utilizando material adoquinado para la pavimentación de la zona a intervenir, evitando en la mayor medida el uso de pavimento asfáltico proveniente del petróleo. Lo cual ayudará a la flexibilidad y rapidez en la distribución de mercancías, contribuyendo a disminuir tiempos y costos de viaje. Las conclusiones a las que llegó el autor indican que para la pavimentación final se utilizará adoquines de binder y de hormigón debido a que sus requerimientos y procesos constructivos no afectan en gran escala nuestro medio ambiente. Por consiguiente, el principal aporte de la presente investigación es tener en cuenta que hoy en día es indispensable reflexionar y comprender la importancia del medio ambiente y comenzar a construir y aplicar metodologías y que vayan de la mano con el cuidado y la conservación de nuestro entorno.

#### 2.1.2 Antecedentes Nacionales

Deyssi Chávez y Carlos Yañez (2021) presentaron su tesis pregrado titulada "Diseño de pavimento articulado para mejorar el uso peatonal en la calle Las Pizzas del distrito de Miraflores – Lima 2021", en la que proponen como objetivo determinar el diseño de los espesores correspondientes del pavimento articulado y brindar una solución a la ausencia de una infraestructura vial urbana adecuada. En este aspecto, las conclusiones que presentaron de acuerdo al

análisis realizado, determinan que los espesores de cada capa del pavimento articulado son sub base (15 cm.), base (15cm.); cama de arena (4 cm.); y el adoquín pre fabricado de 6 cm, el cual presentará una resistencia a la compresión de 380 kg/cm²; ideal para resistir los esfuerzos de carga al que será expuesto de acuerdo al ESAL obtenido. De tal manera, la principal contribución de la tesis de investigación presente es dar a conocer la eficacia e importancia de la metodología ASSHTO, ya que es una alternativa de análisis muy completa y eficaz para determinar los espesores de cada capa del pavimento articulado en el que inclusive la relación costo y tiempo de ejecución podría llegar a ser menor a las demás metodologías de estudio, siendo esto de gran importancia a la hora de ejecutar el proyecto.

Andrés Becerra y Elaine Valverde (2022) en su tesis pregrado "Diseño estructural del pavimento mediante la metodología AASHTO 93 para la av. Manuel Seoane entre el tramo de la av. Universitaria con la panamericana norte, distrito Guadalupe- provincia Pacasmayo- La Libertad", tiene como finalidad realizar el diseño estructural del pavimento flexible, rígido y articulado utilizando el método AASHTO, evaluando cuál de las dos opciones es la más óptima para dar solución a la gran demanda de vehículos que transitan en la zona. En este sentido, Becerra y Valverde concluyen que la composición ideal para el pavimento articulado es: bloques de concreto de 8 cm, con una capa de arena gruesa de 4 cm, la base de afirmado poseerá un espesor de 20 cm y finalmente se empleará una subbase de hormigón de 15 cm. Y que a su vez este tipo de pavimento es el más costoso; siendo el pavimento flexible es que menor costo de ejecución presenta; sin embargo, recomiendan utilizar para este proyecto el tipo de pavimentación rígido o articulado por tener mayores estándares de durabilidad. Por lo tanto, el aporte de la presente tesis, yace en evaluar mediante diferentes estándares de calidad cuál pavimentación es la más óptima para el proyecto que deseamos realizar, valorando criterios que van más allá del valor económico y lo esencial.

#### 2.1.3 Antecedentes Locales

Según Carlo Heras y Enrique Ramirez (2022), en su tesis pregrado "Evaluación técnica y económica de propuestas de diseño de pavimentos flexible, rígidos y articulados, para el centro poblado de Farias, distrito de Chocope, Provincia de Ascope — La Libertad", sustentaron como principal objetivo la evaluación técnica y económica de las propuestas de diseño de pavimentación flexible, rígido y articulado del centro poblado de Farias perteneciente al distrito de Chocope. En este aspecto, los autores realizaron estudios de tránsito, de mecánica de suelos en laboratorios respectivos, guiándose del Reglamento de Edificaciones CE.010 Pavimentos Urbanos 2010, tesis en la que concluyeron que los pavimentos más ideales para realizar el proyecto son los pavimentos rígido y articulado, esto debido a que en la localidad se presenta humedad y lluvias en diferentes épocas del año, lo que indica que de ejecutarse el pavimento flexible, no tardaría en presentar fallas y la destrucción temprana del dicho pavimento. Por consiguiente, el aporte de la tesis es brindar atención a aspectos que muchas veces pasan por desapercibidos a la hora de elegir la propuesta correcta para un proyecto, aspectos que involucren desde la parte económica como también la parte ambiental, social y sobre todo enfocándose en lo que la localidad necesite.

#### 2.2 Marco teórico

#### 2.2.1 Pavimento

De acuerdo a lo establecido con Rondón (2015) cada pavimento está constituido por capas superpuestas, aquellas capas están diseñadas con la finalidad de soportar todo el tránsito vehicular y las condiciones climáticas de la zona, además de ello tienen que garantizar la comodidad de tránsito de y el confort de conductores y peatones. (p. 13)

Es importante conocer el tipo de material que será utilizado para el diseño de vía, teniendo en cuenta que los materiales que presentan mayor rigidez y resistencia deben ir en los estratos superiores, esto debido a que estarán directamente en contacto con los agentes transmisores de cargas, en tanto que los materiales que formarán parte de las capas inferiores son lo que reciben menor proporción de presiones.

#### 2.2.1.1 Pavimento Articulado.

De acuerdo a Rondón (2015) afirma que este tipo de pavimentos están conformados por adoquines, los cuales son materiales rígidos prefabricados, que se unen entre sí por arena, a su vez estos se apoyarán sobre una cama de are de

entre 3 -5 cm. La cual a la vez se apoya sobre una base compactada previamente.

#### 2.2.1.2 Estructura del pavimento articulado.

A continuación, se describen las capas que conforman un pavimento articulado, las cuales son importantes para que se cumpla la función estructural, servicial y de seguridad que debe tener todo pavimento conforme a normativa.

#### 2.2.1.2.1 Sub Rasante.

Se refiere a la superficie que termina al nivel del movimiento de tierras, superficie en la que descansará la estructura del pavimento.

#### 2.2.1.2.2 Sub base.

Es una capa compuesta por un material específico y con un espesor de diseño que tiene que soportar a la base y a la carpeta de rodadura.

#### 2.2.1.2.3 Base.

Es una capa que se coloca entre la subrasante y la carpeta de rodadura. Dicha capa le da mayor espesor y capacidad estructural al pavimento. Esta puede estar compuesta por dos o más capas con materiales seleccionados.

#### 2.2.1.2.4 Cama de arena.

Capa de arena donde serán asentados los adoquines, que se coloca entre estos y la base.

#### 2.2.1.2.5 Adoquines.

Según el RNE (2021), nos dice que deberán estar conforme a lo que dice la norma NTP 399.611:2003 y son dispuestos conforme a la trama definida por el PR para el proyecto en particular, de manera que esta garantice el correcto intertrabado entre adoquines.

#### 2.2.2 Estudio de Suelos

El estudio de suelos tiene la finalidad de identificar el estado y las características del terreno en la zona a intervenir y conocer si está apto a resistir las transmisiones de cargas al cual será sometido, al mismo tiempo también

identificar si será necesario realizar un mejoramiento de la subrasante con el fin de alcanzar la estabilidad que se requiere.

#### 2.2.2.1 Técnicas de investigación de Campo.

Son las diferentes técnicas de investigación que se dan en el campo, que son aplicables en los estudios de mecánica de suelos para el diseño estructural de los distintos pavimentos con fines de pavimentación.

El número de puntos de investigación será de acuerdo con el tipo de vía según se indica en la siguiente tabla:

**Tabla 1:**Puntos de investigación de acuerdo al tipo de vía

| TIPO DE VÍA | NÚMERO DE<br>PUNTOS DE<br>INVESTIGACIÓN | ÁREA (m²) |
|-------------|-----------------------------------------|-----------|
| Expresas    | 1 cada                                  | 1000      |
| Arteriales  | 1 cada                                  | 1200      |
| Colectoras  | 1 cada                                  | 1500      |
| Locales     | 1 cada                                  | 1800      |

Nota. Fuente: Manual MTC (2013)

#### 2.2.2.2 Investigación en laboratorio.

De cada muestra que se ha extraído se deberá realizar un trabajo en laboratorio con la finalidad de determinar las propiedades físico-mecánicas que se correlacionan con características de resistencia y permeabilidad. (Menéndez, 2016)

La normativa MTC señala los ensayos mínimos a realizar en una capa subrasante, con una aceptación de variantes, por si se presenta condiciones especiales como se señala en la tabla a continuación. (MTC, 2013).

**Tabla 2:**Normatividad de Ensayos de Laboratorio

| Norma             | Denominación                                                            |
|-------------------|-------------------------------------------------------------------------|
|                   | SUELOS. Métodos para la reducción                                       |
| NTP 339.126:1998  | de las muestras de campo a tamaños                                      |
|                   | de muestras de ensayo.                                                  |
|                   | SUELOS. Método de ensayo para                                           |
| NTP 339.127:1998  | determinar el contenido de humedad                                      |
|                   | de un suelo.                                                            |
| NTP 339.128:1998  | SUELOS. Método de ensayo para el                                        |
|                   | análisis granulométrico                                                 |
|                   | SUELOS. Método de ensayo para                                           |
| NTP 339.129:1998  | determinar el límite líquido, límite                                    |
|                   | plástico, e índice de plasticidad de                                    |
|                   | suelo.                                                                  |
| NTP 339.131:1998  | SUELOS. Método de ensayo para<br>determinar el peso específico relativo |
|                   | de sólidos.                                                             |
|                   | SUELOS. Método de ensayo para                                           |
| NTP 339.132:1998  | determinar el material que pasas el                                     |
| 1411 000.102.1000 | tamiz N°200.                                                            |
|                   | SUELOS. Método de ensayo para la                                        |
| NTP 339.134:1998  | clasificación de suelos con propósitos                                  |
|                   | de ingeniería S.U.C.S.                                                  |
| NTD 000 405 4000  | SUELOS. Clasificación de suelos para                                    |
| NTP 339.135:1998  | uso en vías de transporte.                                              |
|                   | SUELOS. Relación Humedad-                                               |
| NTP 339.141:1998  | Densidad por método de Proctor                                          |
|                   | Estándar.                                                               |
|                   | SUELOS. Relación Humedad-                                               |
| NTP 339.142.1999  | Densidad por método de Proctor                                          |
|                   | Modificado.                                                             |
|                   | SUELOS. Determinación del CBR                                           |
| NTP 339.145:1999  | (California Bearing Ratio – Valor                                       |
| 1111 000.170.1000 | Soporte de California) medido en                                        |
|                   | muestras compactadas en laboratorio.                                    |
|                   | SUELOS. Método de Ensayo Para la                                        |
| NTP 339.177:2002  | Determinación Cuantitativa de                                           |
|                   | Cloruros solubles en suelos y agua                                      |
|                   | subterránea.                                                            |

Nota. Fuente: Manual MTC (2013)

#### 2.2.2.2.1 Propiedades Físicas

#### 2.2.2.2.1.1 Análisis Granulométrico por Tamizado.

Se encarga de clasificar las partículas que componen el suelo según su dimensión, el cual consiste en el paso de la muestra por diferentes tamices de distintos diámetros, lo que indicará el tipo de suelo de acuerdo a los porcentajes retenidos en cada tamiz.

#### 2.2.2.2.1.2 Contenido de Humedad.

Permite reconocer el porcentaje de agua que presenta el suelo. El resultado de este ensayo será comparado con la humedad óptima que se obtiene del ensayo de compactación, para determinar si el suelo necesita aumentar su porcentaje de humedad o por el contario reforzar la compactación de este con la finalidad de reducir su cantidad de agua. El contenido de humedad se expresa a través de la siguiente relación:

$$W = \frac{W_w}{W_s} * 100$$

#### 2.2.2.1.3 Límites de Consistencia.

- **a) Límite Líquido.** es el contenido de humedad máximo que puede presentar un suelo, siempre que este mantenga su estado plástico. De tener más agua pasará a convertirse en un fluido viscoso.
- **b) Límite Plástico.** hace referencia a la mínima cantidad de agua que puede contener el suelo, siempre que este mantenga su estado semisólido. De tener menos humedad, el suelo se rompería fácilmente.
- c) Índices de Plasticidad. se consigue restando el límite líquido y el límite plástico.

#### 2.2.2.2. Propiedades Mecánicas

#### 2.2.2.2.1 Ensayo de Compactación (Proctor Modificado).

El porcentaje de agua en el terreno es importante para determinar el nivel de su compactación; de esta manera se determinará cuál es el contenido de humedad favorable, obteniendo de este ensayo la cantidad de agua óptima que brinde como resultado la mejor compactación que demanda la vía a diseñar.

#### 2.2.2.2.2 Ensayo California Bearing Ratio (CBR).

Es un parámetro del suelo que cuantifica su capacidad resistente al aplicársele un esfuerzo cortante. Este parámetro permitirá conocer las propiedades de la subrasante, sub base y base en el diseño de pavimentos e indicará si es necesario reforzar dependiendo de su condición requerida.

Tabla 3: Valor Relativo de Soporte, CBR

| Vías Locales y    |             |
|-------------------|-------------|
| Colectoras        | Mínimo 80%  |
| Vías Arteriales y |             |
| Expresas          | Mínimo 100% |
|                   |             |

Nota. Fuente: Manual MTC (2013)

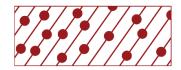
#### 2.2.2.3 Clasificación de Suelos.

Los suelos son clasificados mediante los métodos SUCS y AASHTO, ya que ambas metodologías se utilizan para el diseño de vías.

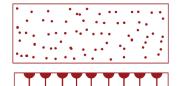
#### Tabla 4:

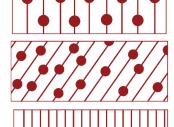
Simbología convencional para Perfil de Calicatas – clasificación ASSTHO

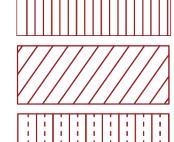
| SIMBOLOGÍA | CLASIFICACIÓN | SIMBOLOGÍA | CLASIFICACIÓN        |
|------------|---------------|------------|----------------------|
| 00000      | A – 1 – a     |            | A – 5                |
|            | A - 1 - b     |            | A – 6                |
|            | A – 3         |            | A – 7 – 5            |
|            | A – 2 – 4     |            | A – 7 – 6            |
|            | A – 2 – 5     |            | Materia Orgánica     |
|            | A-2-6         |            | Roca Sana            |
|            | A-2-7         |            | Roca<br>Desintegrada |
|            | A – 4         |            |                      |

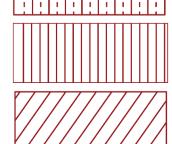

Nota. Fuente: Manual MTC (2013)

**Tabla 5:**Simbología convencional para Perfil de Calicatas – clasificación SUCS


| SIMBOLOGÍA | CLASIFICACIÓN                                                                                                      |
|------------|--------------------------------------------------------------------------------------------------------------------|
| 00000      | Grava bien graduada, mezcla de grava con poco o nada de material fino, existe variación en sus tamaños granulares. |
|            | Grava mal graduada, mezcla de grava y arena limosa.                                                                |
|            | Grava limosa, mezcla de grava y arena limosa.                                                                      |


#### **SIMBOLOGÍA**


#### **CLASIFICACIÓN**
















Grava arcillosa, mezcla de grava – arena – arcilla; grava con cierta cantidad apreciable de material fino.

Arena bien graduada, arena con grava, poco o nada de material fino. Amplia variación en tamaños de partículas granulares.

Arena mal graduada, arena con grava y poca presencia de material fino, con diversidad de tamaños de sus partículas.

Material fino sin plasticidad o con plasticidad muy baja.

Arena arcillosa, mezcla de arena – arcilla.

Limo orgánico con presencia de arena muy fina, arena fina limosa o arcillosa o limo arcilloso con ligera plasticidad.
Limo orgánico de plasticidad baja o mediana, arcilla arenosa, arena limosa, arcilla magra.

Limo orgánico y arcilla limosa

Limo inorgánico, suelo fino gravoso o limoso, limo elástico.

Arcilla inorgánica de elevada plasticidad, arcilla gravosa.

Arcilla orgánica de mediana o elevada plasticidad, limo orgánico.

Turba, suelo considerablemente orgánico.

Nota. Fuente: Manual MTC (2013)

**Tabla 6:**CBR según el tipo de suelo y sus usos

| CBR        | CALIDAD                   | usos                  |  |
|------------|---------------------------|-----------------------|--|
| 0% – 3%    | Muy pobre: Turba – Limo   | Subrasante mejorado – |  |
| 070 070    | arcilloso                 | Mejor eliminar        |  |
| 3% – 7%    | Pobre a regular: Areno    | Subrasante            |  |
| 370 - 770  | limoso arcilloso          |                       |  |
| 7% – 20%   | Regular: Areno limoso -   | Sub base              |  |
| 770 – 2070 | Arena fina – Arena gruesa | Sub base              |  |
| 20% – 50%  | Bueno: Grava arenosa –    | Base – Sub base       |  |
|            | Grava – Hormigón          |                       |  |
| > 50%      | Excelente: Afirmado       | Base                  |  |

Nota. Fuente: Reglamento Nacional de Edificaciones CE. 010 Pavimentos Urbanos

#### 2.2.3 Estudio Topográfico

Las investigaciones topográficas se realizan con la finalidad de determinar y conocer la configuración, superficie, forma y posición del terreno a intervenir.

#### 2.2.3.1 Levantamiento Topográfico.

Mediante el estudio y la descripción de la zona o terreno a intervenir, a través de planos, gráficos o representaciones de las superficies, se pueden señalar elementos como buzones, ríos, carreteras, embalses, etc. Asimismo, permite identificar cotas o alturas de valles, cerros o laderas de montañas.

#### 2.2.3.2 Curvas de Nivel.

Es un plano topográfico en la que las curvas de nivel están representadas mediante líneas unidas, estas líneas denotan las diferentes elevaciones que presenta el terreno, de igual manera permiten reconocer las zonas con mayor relieve en el área de estudio.

#### 2.2.4 Estudio de Tránsito

Para realizar un correcto diseño de pavimentación, este debe establecerse de acuerdo a un estudio de tránsito. Esta investigación brindará la información del IMDA, necesaria para tener en cuenta el volumen vehicular diario de todo el año.

La cual servirá para evaluar la demanda en el tiempo de análisis proyectado de las vías para que de esta manera se estime el número total de Ejes Equivalentes de diseño para el pavimento a diseñar.

#### 2.2.4.1 Clasificación por tipo de vehículos.

Para realizar un correcto conteo de la flota vehicular que transitan por la zona dónde se ejecutará el proyecto, se debe conocer la clasificación de cada uno de los tipos de vehículos que existen.

#### 2.2.4.1.1 Vehículos Livianos.

Destinados para transporte de pasajeros y cargas, tales como automóviles, camionetas, combis, microbuses, buses camiones C2 y C3.

#### 2.2.4.1.2 Vehículos Pesados.

Destinados para transporte de cargas, tales como Semitraylers T3S2, T3S3 y Traylers T3 – R2 – S4.

#### 2.2.4.2 Componentes del Estudio de Tránsito

#### 2.2.4.2.1 Conteo Vehicular.

Consiste en contabilizar o aforar el número de vehículos que circulan por una determinada vía con el objetivo de determinar los Factores Equivalentes de Cargas y los Ejes Equivalentes de Cargas (ESAL'S). Disponiendo su flujo por tiempos variados en función a la importancia vial y con la perspectiva de diseñar adecuadamente los espesores de cada una de las capas del pavimento.

# 2.2.4.2.2 Índice Medio Diario (IMD).

Para ello debemos realizar un conteo vehicular en la cual se estipulará los tipos de vehículos y la cantidad de neumáticos que posee por eje. Con el objetivo de realizar una medición durante un periodo establecido, en el transcurso del día para obtener información real.

#### 2.2.4.2.3 Periodo de diseño.

Teniendo en consideración los factores de factibilidad económica, el MTC describe en la siguiente tabla, las consideraciones de acuerdo al tipo de vía.

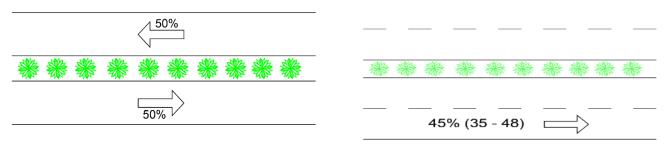
**Tabla7:**Periodo de diseño en base al tipo de vía

| Tipo de vía                                | Periodo de diseño |
|--------------------------------------------|-------------------|
| Urbana con altos volúmenes de tráfico      | 30-50             |
| Interurbana con altos volúmenes de tráfico | 20-50             |
| Pavimentada con altos volúmenes de tráfico | 15-25             |
| Revestida con bajos volúmenes de tráfico   | 10-20             |
| Afirmada                                   | 5-10              |

Nota. Fuente: Manual MTC (2013)

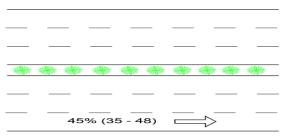
## 2.2.4.2.4 Carril de diseño.

Se expresa como una relación que corresponde al carril que soporta la mayor cantidad de Ejes Equivalentes (EE), dónde el mayor porcentaje de tránsito por dirección se canaliza por ese carril. Para calles y carreteras de dos carriles, el carril de diseño puede ser cualquiera de los dos, mientras que, para calles y carreteras de carriles múltiples, generalmente es el carril externo.


**Tabla 8:**Factores de distribución de carril para determinar el tránsito en el carril de diseño

| N° carriles     | % de camiones en el |  |
|-----------------|---------------------|--|
| (2 direcciones) | carril de diseño    |  |
| 2               | 50%                 |  |
| 4               | 45 (35 – 48)        |  |
| 6 o más         | 40 (25 – 48)        |  |

Nota. Fuente: Manual MTC (2013)


# Figura 1:

Factores de distribución de carril para determinar el tránsito en el carril de diseño



2 carriles en ambos sentidos

4 carriles en ambos sentidos



6 carriles en ambos sentidos

Nota. Fuente: Manual MTC (2013)

#### 2.2.4.2.5 Factor de crecimiento.

Con el fin de realizar una proyección referente al crecimiento vehicular, el manual AASHTO brinda la siguiente fórmula para hallar dicha referencia.

Factor de Crecimiento = 
$$\frac{(1+r)^n - 1}{r}$$

Dónde:

r= tasa de crecimiento según tipo de vehículos

n=periodo de años

# 2.2.4.2.6 Tránsito Proyectado.

Se calcula utilizando el tránsito actual y los índices de crecimiento.

$$Tn = To * (1+r)^n$$

Dónde:

T<sub>n</sub>= tránsito que se ha proyectado

To=tránsito actual

n=periodo de diseño

r=tasa anual de crecimiento

#### 2.2.5 Diseño de Pavimento

Teniendo como referencia la metodología AASHTO 93 y equiparándola a nuestro contexto, se basa en determinar el cálculo del número estructural del pavimento (SN), con ayuda de los datos obtenidos y analizados reemplazándolos en la fórmula propuesta por dicho método, dónde se establece los espesores de las diferentes capas del pavimento.

La metodología AASHTO adjudica dos maneras de diseño, una de ellas es de forma analítica, basada en una fórmula general; y la otra es de una forma gráfica basada en el uso de nomogramas creados empíricamente tras rigurosos ensayos y análisis de los reglamentos AASHTO.

#### 2.2.5.1 Método Analítico.

El método numérico es considerado el más exacto, toma en consideración las distintas posibilidades que puede tener capa del pavimento. (Menéndez, 2016)

$$\log W18 = Z_R S_0 + 9.36 \log(SN + 1) - 0.20 + \frac{\log\left(\frac{PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log(M_R) - 8.07$$

Dónde:

logW<sub>18</sub>= Ejes equivalentes expresados en ejes de 8.2 ton.

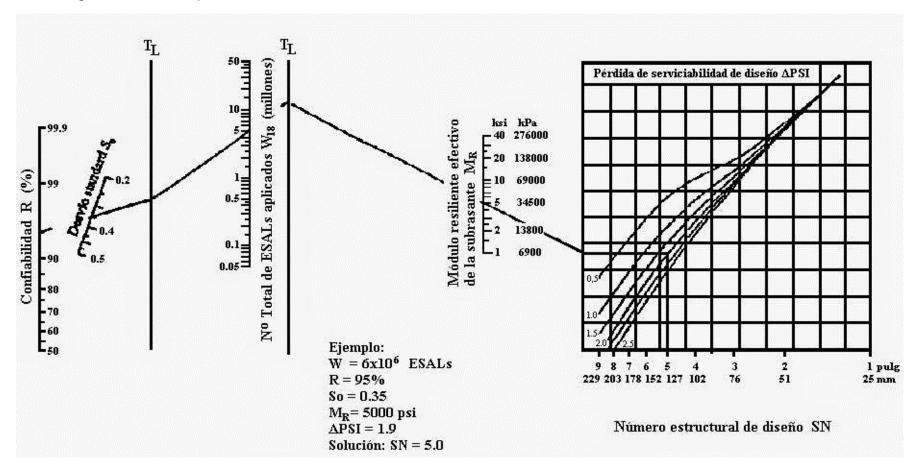
SN= Número estructural

Z<sub>R</sub>= Coeficiente estadístico de desviación estándar normal

S<sub>o</sub>= Desviación estándar de cada una de las variables con pronóstico de tráfico y pronóstico de comportamiento

ΔPSI= Diferencia entre el servicio inicial y el final, prevista en el diseño

M<sub>R</sub>= Módulo de resiliencia de subrasante


#### 2.2.5.2 Método Gráfico.

Asimismo, la norma AASHTO proporciona un método más reducido a través de un monograma en el cual se necesitará ciertos parámetros de diseño para hallar el número estructural. Posteriormente se necesitará conocer el coeficiente de capa, espesor de capa y el coeficiente de drenaje para así decidir

cuáles son los espesores de capas más óptimos para la estructura del pavimento articulado.

Figura 2:

Monograma AASHTO para determinar el número estructural



Nota. Fuente: Guía AASHTO 1993 para diseño de estructuras de pavimentos

#### 2.2.5.2.1 Confiabilidad.

Factor que determina la seguridad de una vía y recoge un valor que garantice su correcto funcionamiento sin presentar fallas de ningún tipo. Define el grado de confianza que amerita la información recopilada para realizar el diseño del pavimento.

Para tal caso se tienen los rangos de confiabilidad que cada diseño requiere, en función a la importancia de las vías a diseñar.

**Tabla 9:**Niveles de confiabilidad recomendados por AASTHO

|                                      | CONFIABILIDAD RECOMENDAD |             |  |
|--------------------------------------|--------------------------|-------------|--|
| TIPO DE VÍA _                        | ZONA URBANA              | ZONA RURAL  |  |
| Autopistas<br>interestatales y otras | 85% - 99.9%              | 80% - 99.9% |  |
| Arterias colectoras                  | 80% - 99%                | 75% - 95%   |  |
| Colectoras                           | 80% - 95%                | 75% - 95%   |  |
| Locales                              | 50% - 80%                | 50% - 80%   |  |

Nota. Fuente: Guía AASHTO 1993 para diseño de estructuras de pavimentos

#### 2.2.5.2.2 Desviación Estándar.

Parámetro que emplea el sistema AASHTO para el hecho de considerar las precauciones de seguridad ante los diferentes sucesos que se puedan presentar, entre las dimensiones diseñadas de capa que tendrá el pavimento y las realmente ejecutadas.

# Tabla 10:

Desviación estándar para pavimentos rígidos y flexibles

| Condiciones de diseño                                           | Desviación estándar     |
|-----------------------------------------------------------------|-------------------------|
| Variación en la predicción del comportamiento del pavimento sin | 0.35 Pavimento Rígido   |
| errores en el tránsito.                                         | 0.45 Pavimento Flexible |
| Variación en la predicción del                                  | 0.40 Pavimento Rígido   |
| comportamiento del pavimento con errores en el tránsito.        | 0.50 Pavimento Flexible |

Nota. Fuente: Guía AASHTO 1993 para diseño de estructuras de pavimentos

# 2.2.5.2.3 Servicialidad (△PSI).

Factor que nos indica la comodidad de la vía con respecto a su utilidad, su rango de medición está entre 5 a 0, lo que indica un nivel óptimo o deplorable respectivamente. (MTC, 2013)

Los valores que se recomienda para el diseño de pavimentación son los que se obtuvieron en el AASTHO Road test:

**Tabla 11:** Índices de servicialidad para pavimentos rígidos y flexibles

| Servicialidad Inicial                          | Servicialidad Final                                    |
|------------------------------------------------|--------------------------------------------------------|
| P₀= 4.5 para pavimentos rígidos                | P <sub>t</sub> = 2.5 para caminos<br>muy importantes   |
| P <sub>0</sub> = 4.2 para pavimentos flexibles | P <sub>t</sub> = 2.0 para caminos<br>de menor tránsito |

Nota. Fuente: Guía AASHTO 1993 para diseño de estructuras de pavimentos

Consecuentemente la pérdida de servicialidad de un pavimento, a un nivel aceptable de servicio de la vía, varía entre 2 a 2.5

#### 2.2.5.2.4 Módulo de Resiliencia (MR).

Es el grado de capacidad que resistirá la subrasante al aplicársele cargas por intermedio de un instrumento hasta tener un asentamiento determinado. El MTC y el Ministerio de Vivienda consideran que el CBR mínimo de la subrasante debe ser del 5%.

Para determinar su valor es necesario aplicar la ecuación de correlación con el CBR de la subrasante.

M<sub>R</sub> (PSI)= 1500 x CBR (Para valores de CBR menores al 7.2%)

M<sub>R</sub> (PSI)= 3000 x CBR (Para valores de CBR entre 7.2% al 20%)

# 2.2.5.2.5 Coeficiente de drenaje (mi).

Representa la correlación que existe entre el módulo resiliente del terreno y su contenido de humedad.

**Tabla 12:**Coeficiente de drenaje en base a la calidad de drenaje

| % DE TIEMPO EN EL QUE EL PAVIMENTO ESTÁ EXPUESTO A NIVELES DE |           |         |          |           |
|---------------------------------------------------------------|-----------|---------|----------|-----------|
| HUMEDAD CERCANO A LA SATURACIÓN                               |           |         |          |           |
| CALIDAD DE                                                    | MENOR QUE | 1% - 5% | 5% - 25% | MAYOR QUE |

| CALIDAD DE | MENOR QUE   | 1% - 5%     | 5% - 25%     | MAYOR QUE |
|------------|-------------|-------------|--------------|-----------|
| DRENAJE    | 1%          | 1 /6 - 3 /6 | 5 /6 - 25 /6 | 25%       |
| EXCELENETE | 1.40 – 1.35 | 1.35 – 1.30 | 1.30 – 1.20  | 1.20      |
| BUENO      | 1.35 – 1.25 | 1.25 – 1.15 | 1.15 – 1.00  | 1.00      |
| REGULAR    | 125 – 1.15  | 1.15 – 1.05 | 1.00 - 0.80  | 0.80      |
| POBRE      | 1.15 – 1.05 | 1.05 - 0.85 | 0.80 - 0.60  | 0.60      |
| MUY POBRE  | 1.05 – 0.95 | 1.95 – 0.75 | 0.75 - 0.40  | 0.40      |

Nota. Fuente: Manual MTC (2013)

#### 2.2.5.2.6 Coeficientes Estructurales.

Los coeficientes estructurales se encargan de determinar la resistencia relativa de cada una de las capas del pavimento como un componente estructural, abarcando tanto sus características físicas como también sus propiedades mecánicas.

**Tabla 13:**Coeficiente Estructural para la Carpeta de Rodadura

| Estabilidad Marshall | Coeficiente Estructural |
|----------------------|-------------------------|
| 5000 Lbs             | 0.33                    |
| 6000 Lbs             | 0.36                    |
| 7000 Lbs             | 0.39                    |
| 8000 Lbs             | 0.41                    |
| 9000 Lbs             | 0.43                    |
| 10000 Lbs            | 0.45                    |

Nota. Fuente: Guía AASHTO 1993 para diseño de estructuras de pavimentos

**Tabla14:**Coeficiente Estructural para la Base

| C.B.R.                        | Coeficiente Estructural |
|-------------------------------|-------------------------|
| Para un valor de CBR del 40%  | 0.11                    |
| Para un valor de CBR del 50%  | 0.12                    |
| Para un valor de CBR del 60%  | 0.125                   |
| Para un valor de CBR del 70%  | 0.13                    |
| Para un valor de CBR del 80%  | 0.13                    |
| Para un valor de CBR del 90%  | 0.14                    |
| Para un valor de CBR del 100% | 0.145                   |

Nota. Fuente: Guía AASHTO 1993 para diseño de estructuras de pavimentos

**Tabla15:**Coeficiente Estructural para la Sub – base

| Valor C.B.R. | Coeficiente Estructural |
|--------------|-------------------------|
| 10%          | 0.08                    |
| 20%          | 0.09                    |
| 30%          | 0.11                    |
| 40%          | 0.12                    |

| 50% | 0.125 |
|-----|-------|
| 60% | 0.13  |

Nota. Fuente: Guía AASHTO 1993 para diseño de estructuras de pavimentos

# 2.2.5.2.7 Espesores de las capas del pavimento.

Luego de determinar el número estructural del pavimento utilizando cualquiera de los dos métodos presentados; el proyectista predetermina el espesor del adoquín de acuerdo al uso y tránsito de la vía de diseño; para luego determinar el espesor de la base aplicando la siguiente fórmula:

$$SN = a1h1 + a2h2D2$$

Dónde:

SN= Número estructural de la vía

a1= Coeficiente estructural de capa de rodadura (adoquín)

a2= Coeficiente estructural de la base

h1= Espesor del adoquín

h2= Espesor de la base

D2= Coeficiente de drenaje

Tabla16:

Uso y resistencia según espesor de adoquín

| Tipo de vía              | Espesor        | Resistencia            |
|--------------------------|----------------|------------------------|
| Veredas                  | 4 cm.          | 320 kg/cm <sup>2</sup> |
| Vías de tránsito liviano | 6 cm.          | 350 kg/cm <sup>2</sup> |
| Vías de tránsito pesado  | 8 cm. – 10 cm. | 420 kg/cm <sup>2</sup> |

Nota. Fuente: Guía AASHTO 1993 para diseño de estructuras de pavimentos

## 2.3 Marco Conceptual

**Agregado:** es el material granular que se obtiene en los lechos de ríos o en canteras, y es utilizado dentro de la construcción para diferentes procesos.

**Volumen de Tráfico:** Se define como el total de vehículos que transitan por un punto o un determinado carril durante un cierto periodo de tiempo. Se determina con las unidades: vehículo/día; vehículo hora; etc.

**Calzada:** Espacio que está destinado para el tránsito de vehículos, en la mayoría de casos su superficie se encuentra pavimentada, pero también existen superficies acondicionadas con algún otro material de afirmado.

**Carril de diseño:** Conforme a norma C.E. 0.10 (2010), se refiere al carril al que se proyecta el mayor número de cargas por eje.

**ESAL de diseño:** Conforme a la norma C.E. 0.10 (2010) nos dice que es el número de aplicaciones de carga por cada eje Estándar proyectado para un determinado periodo de diseño.

**Módulo Resiliente:** Conforme a la norma C.E. 0.10 (2010) es un criterio referente a la propiedad elástica del suelo.

Vías arteriales: También conocidas como avenidas o corredores viales, su propósito es ayudar al tránsito que se originan en las vías colectoras.

**Vías colectoras:** su función es dirigir el tránsito de las vías locales a las arteriales. Brindan de apoyo para el tránsito de paso, y hacia las propiedades adyacentes.

**Vías locales:** su función principal es proporcionar el ingreso a los predios o lotes. Se permite el tránsito de vehículos únicamente ligeros ya que en su mayoría está diseñado para el tránsito de personas.

**Pavimento:** Conforme al MTC (2013) nos dice que es una combinación de capas que están construidas sobre un material denominado subrasante; y sirve para el mejor traslado de los vehículos por las vías.

**Sub rasante:** superficie sobre la cual se apoya la estructura del pavimento, esta puede ser natural o estabilizada.

**Superficie de Rodadura:** Es la capa de un pavimento que brinda una superficie uniforme y estable, con una textura y color conveniente para un mejor desplazamiento de vehículos y personas.

**CBR:** Valor numérico que representa la capacidad portante o nivel de resistencia que tiene un suelo, este se puede medir a través de la penetración de cargas en una determinada muestra de suelo.

# 2.4 Sistema de Hipótesis

# 2.4.1 Independiente

Diseño estructural del pavimento articulado para la avenida Progreso de la localidad de Chicama.

**Tabla 17:**Operacionalización de variable independiente

| VARIABLE<br>///DEPENDIENTE | DEFINICION<br>CONCEPTUAL                                    | DIMENSIONES            | INDICADORES                                   | ESCALA DE<br>MEDICIÓN |
|----------------------------|-------------------------------------------------------------|------------------------|-----------------------------------------------|-----------------------|
|                            | Proceso en el                                               |                        | Distancia                                     | m                     |
|                            | que<br>plasmamos la                                         |                        | Área de estudio                               | m2                    |
|                            | información de<br>la superficie<br>terrestre en un<br>plano | Estudio<br>Topográfico | Ángulos                                       | (°,',")               |
|                            | Estudio de las<br>características<br>físicas y              |                        | Contenido de<br>Humedad                       | %                     |
|                            | mecánicas que                                               | Estudio                | Peso Específico                               | kg/cm3                |
| Diseño estructural         | presenta el<br>suelo en la<br>zona a                        | Geotécnico             | Límites de<br>Consistencia                    | Adimensional          |
| del pavimento              | intervenir                                                  |                        | CBR                                           | %                     |
| articulado para la         | Se tendrá en                                                |                        | TMDA                                          | Veh/año               |
| avenida Progreso           | cuenta el                                                   | Estudio de             | Ejes Equivalentes                             | Adimensional          |
|                            | manual del<br>MTC                                           | Tránsito               | N° de repeticiones<br>de ejes<br>equivalentes | Adimensional          |
|                            | Se tendrá en                                                | Catrollia              | Precipitación                                 | mm                    |
|                            | cuenta las precipitaciones,                                 | Estudio<br>Hidrológico | Morfología del<br>suelo                       | Adimensional          |
|                            | escorrentías y                                              | J                      | Elevación                                     | m                     |

| el perfil                                                                   |                      | Infiltración                         | mm/hora      |
|-----------------------------------------------------------------------------|----------------------|--------------------------------------|--------------|
| topográfico de<br>la zona                                                   |                      | Escorrentía                          | Adimensional |
|                                                                             |                      | Periodo de diseño                    | Años         |
| Son aquellos<br>que                                                         | Davémanton de        | Confiabilidad                        | %            |
| intervendrán en                                                             | Parámetros de        | Serviciabilidad                      | Adimensional |
| la ecuación del<br>diseño                                                   | diseño               | Desviación<br>Estándar total         | Adimensional |
| aleene                                                                      |                      | Módulo Resiliente                    | KSI          |
| Consiste en la<br>determinación                                             |                      | Número<br>Estructural<br>Coeficiente | Adimensional |
| de los<br>espesores de                                                      | Diseño               | Estructural de capa                  | 1/cm         |
| cada capa que<br>conformarán                                                | Estructural          | Coeficiente de<br>Drenaje de capa    | Adimensional |
| los pavimentos                                                              |                      | Espesor de capa                      | pulgadas     |
| Tiene como<br>objetivo<br>eliminar el<br>exceso de agua<br>en la superficie | Diseño de<br>drenaje | Cunetas                              | Adimensional |
| Consiste en                                                                 |                      | Peatones                             | Adimensional |
| informar y crear<br>guías para                                              | Diseño de            | Vehículos                            | Adimensional |
| dirigir a los<br>peatones y<br>conductores                                  | señalización         | Turismo                              | Adimensional |
| Es el cálculo<br>estimado del                                               |                      | Ms Proyect                           | Adimensional |
| costo del<br>proyecto a<br>ejecutar                                         | Presupuesto          | S10                                  | Adimensional |

## III. METODOLOGÍA EMPLEADA

# 3.1 Tipo y nivel de Investigación

De acuerdo a la orientación o finalidad la investigación es orientada y con respecto a la técnica de contrastación es descriptiva.

# 3.2 Población y muestra de Estudio

#### 3.2.1 Población

Red vial urbana que conforma la localidad de Chicama, La Libertad.

#### 3.2.2 Muestra

La Avenida Progreso de la localidad de Chicama, cuyo tramo presenta una magnitud de 3.2 kilómetros.

# 3.3 Diseño de Investigación

El diseño que se utilizó en el presente trabajo de investigación es no experimental, ya que es de carácter descriptivo sin manipular deliberadamente las variables, lo que se ha realizado es observar el contexto natural, para posteriormente analizarlos mediante ensayos de laboratorio hasta llegar a su análisis descriptivo.

## 3.4 Técnicas en Instrumentos de Investigación

En la presente investigación se realizó de manera necesaria el empleo de las técnicas e instrumentos de recolección de información siguientes:

**Tabla18:**Técnicas e instrumentos de recolección de datos

| TÉCNICAS            | INSTRUMENTOS             |
|---------------------|--------------------------|
|                     | Guía de observación      |
|                     | N°01: Levantamiento      |
|                     | Topográfico              |
| Observación Directa | Guía de observación      |
|                     | N°02: Estudio de tráfico |
|                     | Guía de observación      |
|                     | N°03: Estudio de Suelos  |

# Revisión documentaria

Fichas de revisión documentaria

Nota. Fuente: Elaboración Propia

# 3.5 Procesamiento y análisis de datos

La información que se nos presente será procesada y analizada de manera computarizada mediante diferentes softwares de estudio, y de igual forma en gabinete con los cálculos manuales respectivos. De tal manera el procesamiento de esta información nos va a permitir construir la matriz de datos con la que se planteará el diseño estructural de la pavimentación de la avenida Progreso.

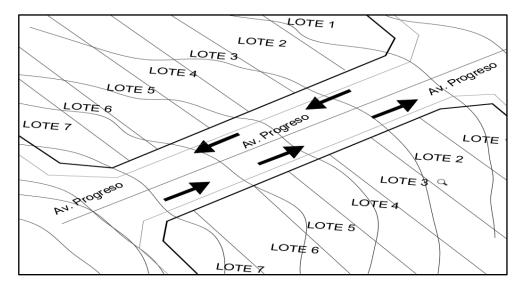
## PRESENTACIÓN DE RESULTADOS

# 4.1 Propuesta de Investigación

Debido a que la avenida Progreso, siendo la vía principal de la localidad de Chicama no presenta ningún sistema de pavimentación, ni un mantenimiento de esta desde hace ya décadas; la presente investigación tiene como finalidad diseñar una nueva estructura mediante un pavimento articulado, que presente los espesores óptimos de cada capa estructural a manera que se exista un buen comportamiento ante las diferentes cargas que serán transmitidas al pavimento durante su tiempo de servicio. Priorizando una propuesta económica, pero a la vez que genere un impacto significativo para la localidad, a fin de que, en un futuro de llevarse a cabo influya de manera positiva en el mejoramiento de la calidad de vida de los pobladores de Chicama.

#### 4.2 Análisis e interpretación de resultados

## 4.2.1 Estudio Topográfico


Para realizar el diseño de pavimentación en la avenida Progreso, primero es necesario obtener la topografía detallada de la zona donde se plantea realizar el proyecto, para esta investigación se utilizó fotogrametría, además del levantamiento usual con la Estación Total, todo ello, con la finalidad de realizar un trabajo más eficiente y elaborado.

Para el levantamiento topográfico se utilizó como puntos de referencia información que se obtuvo de los buzones de la base de datos de la empresa SEDALIB, a partir de ello se empezó el levantamiento topográfico con la Estación Total durante todo el tramo de la avenida Progreso.

Luego de realizar los trabajos en campo, se prosiguió a la siguiente etapa que son los trabajos en gabinete, aquí se exportaron los puntos tomados con la Estación Total en formato CSV al programa Civil 3D. Con el objetivo de complementar la información recopilada se utilizó la superficie y ortofoto obtenidos a través de la fotogrametría. Para finalizar se creó una nueva superficie en la que se tomaron equidistancias de 0.20 m. y 1.00 m. en curvas menores y mayores, respectivamente.

Figura 3:

Curvas de nivel con equidistancia de 0.20 m. y 1.00 m. en civil 3d



Nota. Fuente: Elaboración Propia

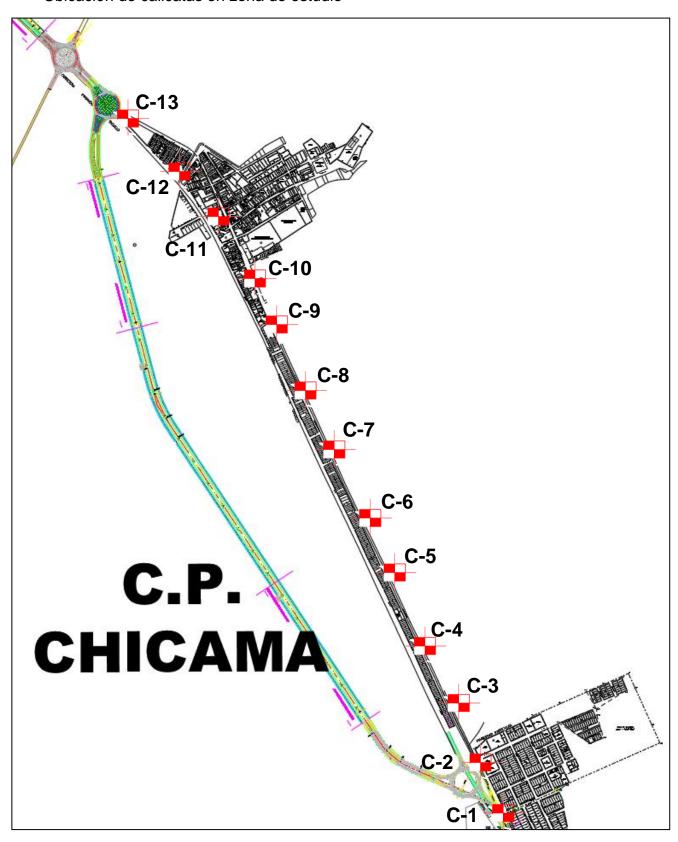
#### 4.2.2 Estudio de Suelos

Estas investigaciones fueron hechas con la finalidad de conocer las propiedades mecánicas que presenta la subrasante en la zona donde se realizará el proyecto de pavimentación. Para ello se realizó un proceso que consta de dos etapas, la primera fue las investigaciones y exploraciones que se hicieron en campo a lo largo de la avenida Progreso y la segunda fueron los diferentes

ensayos que se llevaron a cabo en el laboratorio de Pavimentos y Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

# 4.2.2.1 Investigación de Campo.

Al realizar las investigaciones en la zona de estudio no se encontró presencia de napa freática dentro de la profundidad explorada, de tal manera tampoco se evidenciaron fallas en su estructura geológica.


La investigación de campo consistió en la recolección de muestras de suelo a través de la excavación de calicatas en la zona de estudio con una profundidad de 1.5 metros. De acuerdo a las normativas del Reglamento Nacional de Edificaciones CE 0.10 Pavimentos Urbanos, se realizaron un total de 13 calicatas, considerando el número de calicata cada 1800 m² y los 24,000 m² de área total que comprende la avenida Progreso.

**Tabla 19:**Relación de calicatas exploradas

| Calicata | Muestra | Profundidad | Ubicación |
|----------|---------|-------------|-----------|
| C-1      | M-1     | 1.50 m.     | 0.23 km.  |
| C-2      | M-2     | 1.50 m.     | 0.46 km.  |
| C-3      | M-3     | 1.50 m.     | 0.69 km.  |
| C-4      | M-4     | 1.50 m.     | 0.92 km.  |
| C-5      | M-5     | 1.50 m.     | 1.15 km.  |
| C-6      | M-6     | 1.50 m.     | 1.38 km.  |
| C-7      | M-7     | 1.50 m.     | 1.61 km.  |
| C-8      | M-8     | 1.50 m.     | 1.84 km.  |
| C-9      | M-9     | 1.50 m.     | 2.07 km.  |
| C-10     | M-10    | 1.50 m.     | 2.30 km.  |
| C-11     | M-11    | 1.50 m.     | 2.53 km.  |
| C-12     | M-12    | 1.50 m.     | 2.76 km.  |
| C-13     | M-13    | 1.50 m.     | 3.00 km.  |

Nota. Fuente: Elaboración Propia

**Figura 4:**Ubicación de calicatas en zona de estudio



## 4.2.2.2 Investigación en laboratorio.

Una vez extraídas las muestras necesarias, son llevadas a laboratorio para realizar los ensayos respectivos con los cuales se identificará sus propiedades y clasificará según las normativas establecidas por el MTC.

**Tabla 20:**Ensayos realizados para la subrasante

| Ensayos                              | Norma            |  |
|--------------------------------------|------------------|--|
| Contenido de Humedad                 | NTP 339.127:1998 |  |
| Análisis Granulométrico por Tamizado | NTP 339.132:1998 |  |
| Ensayo de Compactación (Proctor      |                  |  |
| Modificado)                          | NTP 339.142.1999 |  |
| Ensayo California Bearing (CBR)      | NTP 339.145.1999 |  |

Nota. Fuente: Elaboración Propia

# 4.2.2.2.1 Propiedades Físicas

# 4.2.2.2.1.1 Contenido de Humedad (W%).

Para realizar este ensayo se tomó en cuenta las reglamentaciones de la Norma Técnica Peruana (NTP 339.127) y se calculó el porcentaje de agua que contiene el suelo de la avenida Progreso en dónde se realizará la pavimentación, ya que este afecta de manera directa a la resistencia de los finos que se encuentra a nivel de la subrasante.

**Tabla 21:**Contenido de Humedad de la subrasante de cada muestra

| Calianta | Musetre | Contenido de |
|----------|---------|--------------|
| Calicata | Muestra | Humedad (%)  |
| C-1      | M-1     | 7.55         |
| C-2      | M-2     | 7.67         |
| C-3      | M-3     | 7.46         |
| C-4      | M-4     | 7.59         |

| C-5  | M-5  | 7.50 |
|------|------|------|
| C-6  | M-6  | 7.55 |
| C-7  | M-7  | 7.63 |
| C-8  | M-8  | 7.65 |
| C-9  | M-9  | 7.51 |
| C-10 | M-10 | 7.56 |
| C-11 | M-11 | 7.49 |
| C-12 | M-12 | 7.54 |
| C-13 | M-13 | 7.55 |

# 4.2.2.2.1.2 Análisis Granulométrico por Tamizado.

Para realizar este ensayo se tomó en cuenta las reglamentaciones de la Norma Técnica Peruana (NTP 339.132), con la finalidad de conocer la distribución de las partículas que componen el suelo en la localidad de Chicama, de acuerdo a su tamaño, lo que nos indicará qué tipo de suelo es, basándonos de la clasificación que nos proporciona los sistemas AASTHO y SUCS.

Obteniéndose que el material de las 4 muestras evaluadas corresponde a una arena bien graduada, ya que más del 75% pasa la malla del tamiz N°4, y, además, el material presenta escaza cantidad de finos menores al 1% que pasan el tamiz N°200.

**Tabla 22:**Distribución granulométrica y clasificación del Suelo

| Calicata Muestra |                 |        | % Pasa |       | SUCS | AASTHO   |
|------------------|-----------------|--------|--------|-------|------|----------|
| Gantata          | maoona <u>.</u> | Grava  | Arena  | Finos |      | 70.01110 |
| C-1              | M-1             | 22.556 | 77.000 | 0.444 | SW   | A-1-b    |
| C-2              | M-2             | 21.786 | 77.534 | 0.680 | SW   | A-1-b    |
| C-3              | M-3             | 21.989 | 76.956 | 1.055 | SW   | A-1-b    |
| C-4              | M-4             | 20.852 | 79.135 | 0.013 | SW   | A-1-b    |

| C-5  | M-5  | 22.256 | 77.150 | 0.590 | SW | A-1-b |
|------|------|--------|--------|-------|----|-------|
| C-6  | M-6  | 22.156 | 77.000 | 0.840 | SW | A-1-b |
| C-7  | M-7  | 22.581 | 76.975 | 0.444 | SW | A-1-b |
| C-8  | M-8  | 21.806 | 77.444 | 0.710 | SW | A-1-b |
| C-9  | M-9  | 20.849 | 77.852 | 1.299 | SW | A-1-b |
| C-10 | M-10 | 21.320 | 78.336 | 0.344 | SW | A-1-b |
| C-11 | M-11 | 22.982 | 76.787 | 0.231 | SW | A-1-b |
| C-12 | M-12 | 22.300 | 77.447 | 0.253 | SW | A-1-b |
| C-13 | M-13 | 22.656 | 77.100 | 0.244 | SW | A-1-b |

# 4.2.2.2.2 Propiedades Mecánicas

# 4.2.2.2.1 Ensayo de Compactación (Proctor Modificado).

Realizado bajo las normativas de la Norma Técnica Peruana (NTP 339.142), el cual nos permitirá conocer la relación del peso unitario seco y el porcentaje de humedad que presenta el suelo, de la cual resulta la densidad seca máxima (DSM) y el contenido de humedad óptimo (OCH), que se emplearán para hallar el CBR del suelo y determinar el tipo de compactación que necesita el suelo.

Las muestras analizadas señalan que el suelo no se encuentra saturado, siendo que su humedad natural es menor a la óptima, por lo que se determina realizar una compactación en condiciones normales, sin necesidad de recurrir a otros procedimientos especiales.

#### Tabla 23:

Densidad seca máxima y contenido de humedad óptimo del suelo

| Calicata | Muestra | Ensayo F                     | Proctor    |
|----------|---------|------------------------------|------------|
| Cancata  | Muestra | D.M.S. (gr/cm <sup>3</sup> ) | O.C.H. (%) |
| C-1      | M-1     | 2.0812                       | 6.70       |
| C-2      | M-2     | 2.0830                       | 6.50       |
| C-3      | M-3     | 2.0791                       | 6.65       |
| C-4      | M-4     | 2.0973                       | 6.73       |
| C-5      | M-5     | 2.0845                       | 6.75       |
| C-6      | M-6     | 2.0893                       | 6.82       |
| C-7      | M-7     | 2.0816                       | 6.70       |
| C-8      | M-8     | 2.0824                       | 6.68       |
| C-9      | M-9     | 2.0790                       | 6.75       |
| C-10     | M-10    | 2.0794                       | 6.78       |
| C-11     | M-11    | 2.0818                       | 6.70       |
| C-12     | M-12    | 2.0854                       | 6.55       |
| C-13     | M-13    | 2.0817                       | 6.75       |

# 4.2.2.2.2 Ensayo California Bearing Ratio (CBR).

Realizado bajo los procedimientos establecidos por la Norma Técnica Peruana (NTP 339.145).

El ensayo de CBR es fundamental en un estudio de suelos, debido a que este es quien nos indicará cuál es la resistencia de la subrasante ante las cargas que le serán transmitidas, interviniendo directamente para el diseño de pavimentación articulado que se planea realizar.

**Tabla 24:**Determinación del CBR de diseño

| Calicata | Muestra | CBR (0.1") | CBR (0.2") |
|----------|---------|------------|------------|
| Gancata  | Mucstra | 95% M.D.S. | 95% M.D.S. |
| C-1      | M-1     | 9.786      | 13.256     |
| C-2      | M-2     | 11.524     | 12.524     |
| C-3      | M-3     | 10.786     | 12.650     |
| C-4      | M-4     | 11.326     | 13.107     |
| C-5      | M-5     | 11.452     | 12.752     |
| C-6      | M-6     | 11.364     | 12.500     |
| C-7      | M-7     | 10.985     | 13.125     |
| C-8      | M-8     | 9.926      | 13.078     |
| C-9      | M-9     | 10.452     | 12.542     |
| C-10     | M-10    | 9.867      | 12.763     |
| C-11     | M-11    | 11.550     | 12.645     |
| C-12     | M-12    | 11.345     | 13.365     |
| C-13     | M-13    | 11.265     | 13.149     |

**Tabla 25:**Determinación del CBR de diseño

| Categoría de subrasante                | CBR             |
|----------------------------------------|-----------------|
| S <sub>0</sub> : Subrasante inadecuada | CBR<3%          |
| S <sub>1</sub> : Subrasante pobre      | 3% ≤ CBR < 6%   |
| S <sub>2</sub> : Subrasante regular    | 6% ≤ CBR < 10%  |
| S <sub>3</sub> : Subrasante buena      | 10% ≤ CBR < 20% |
| S <sub>4</sub> : Subrasante muy buena  | 20% ≤ CBR < 30% |
| S₅: Subrasante excelente               | 30% ≤ CBR       |

Nota. Fuente: Reglamento Nacional de Edificaciones CE. 010 Pavimentos Urbanos

Los resultados obtenidos en el ensayo de CBR indican que las muestras analizadas se encuentran en el rango entre 10% ≤ CBR < 20%, lo que según el Reglamento Nacional de Edificaciones CE. 010 Pavimentos Urbanos estaría clasificado como una subrasante buena para el diseño.

Según se indica en el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos – Sección Suelos y Pavimentos, el valor de CBR final será el promedio de todas las muestras analizadas, para aquellos valores que son considerados dentro del mismo rango, de lo contrario se tomaría el CBR más desfavorable.

En el caso de nuestras muestras analizadas, todas corresponden a una subrasante buena, por lo que se tendría que promediar para obtener el CBR de diseño definitivo. De tal manera, el CBR empleado para el diseño del pavimento articulado será:

$$CBR_{DISE\tilde{N}O} = 13\%$$

#### 4.2.3 Estudio de Tránsito

Esta investigación se realizó en dos etapas, la primera en campo en la que se realizó el conteo vehicular de manera directa y la segunda en gabinete en la que se analizaron dichos datos recolectados con la finalidad de conocer el número de ejes equivalentes (ESAL) que se utilizará para el diseño del pavimento.

#### 4.2.3.1 Conteo Vehicular.

La zona de estudio que se tomó como referencia para realizar el conteo vehicular es el colegio Santo Domingo de Guzmán, ubicado en la avenida Progreso de la localidad de Chicama, una ubicación estratégica ya que este tramo de la avenida suele ser el que presenta mayor cantidad de tránsito tanto vehicular como peatonal, siendo esto importante para calcular los esfuerzos máximos que puede alcanzar la subrasante en el diseño que tendrá la vía.

Para ello, el conteo vehicular se realizó durante una semana completa desde el 15 de octubre del 2023 hasta el 22 de octubre del 2023.

**Tabla 26:**Conteo vehicular de Norte – Sur

| Tipo de Vehículos | Días de la semana |      |      |      |      |      |     | Tota  |
|-------------------|-------------------|------|------|------|------|------|-----|-------|
|                   | lun               | mar  | mie  | jue  | vie  | Sáb  | dom | · I   |
| Motocicleta       | 225               | 210  | 224  | 212  | 202  | 170  | 159 | 1402  |
| Mototaxi          | 2056              | 1943 | 1933 | 1916 | 2027 | 1100 | 517 | 11492 |
| Moto-carga        | 26                | 22   | 18   | 18   | 19   | 16   | 14  | 133   |
| Automóvil         | 272               | 266  | 263  | 275  | 283  | 290  | 260 | 1909  |
| Cami Normal       | 63                | 58   | 55   | 66   | 65   | 70   | 56  | 433   |
| oneta<br>Pick up  | 166               | 171  | 177  | 165  | 159  | 155  | 124 | 1117  |
| Combi             | 45                | 35   | 29   | 23   | 37   | 21   | 13  | 203   |
| Micro             | 16                | 18   | 16   | 17   | 18   | 11   | 2   | 98    |

Nota. Fuente: Elaboración Propia

**Tabla 27:**Conteo vehicular de Sur – Norte

| Tipo de Ve  | Días de la semana |      |      |      |      |      |      | Total |       |
|-------------|-------------------|------|------|------|------|------|------|-------|-------|
|             |                   | lun  | mar  | mie  | jue  | vie  | Sáb  | dom   | _     |
| Motocicleta | <b>2</b>          | 203  | 191  | 212  | 203  | 205  | 182  | 146   | 1342  |
| Mototaxi    |                   | 1738 | 1602 | 1789 | 1730 | 1818 | 1068 | 577   | 10322 |
| Moto-carga  |                   | 22   | 14   | 30   | 17   | 23   | 17   | 8     | 131   |

| Autom         | óvil 👩         | 0   | 284 | 272 | 252 | 252 | 279 | 286 | 247 | 1872 |
|---------------|----------------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Cami<br>oneta | Normal <b></b> | 8 8 | 67  | 63  | 60  | 63  | 59  | 65  | 56  | 433  |
| onota         | Pick up        |     | 158 | 159 | 168 | 156 | 149 | 145 | 119 | 1054 |
| Combi         |                |     | 32  | 22  | 26  | 31  | 33  | 18  | 12  | 174  |
| Micro         | <u> </u>       |     | 17  | 18  | 17  | 19  | 19  | 11  | 2   | 103  |

# 4.2.3.2 Índice Medio Diario (IMD).

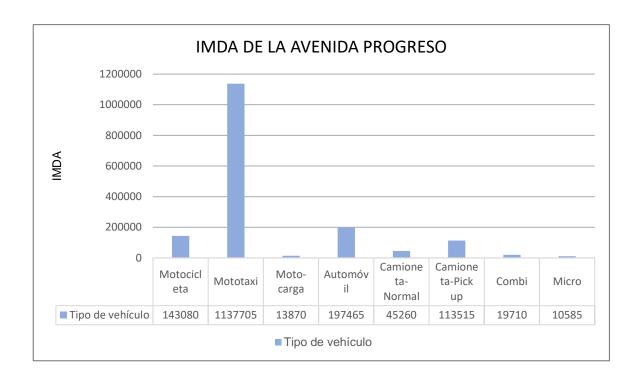
Para calcular el valor del IMD se promediará los resultados del conteo vehicular total de ambos carriles que se hizo en los 7 días de la semana, según el tipo de vehículo.

**Tabla 28:**Determinación del IMD

|                   | Co                         |       |       |      |
|-------------------|----------------------------|-------|-------|------|
| Tipo de Vehículos | Sur-<br>Norte-Sur<br>Norte |       | Total | IMD  |
| Motocicleta       | 1402                       | 1342  | 2744  | 392  |
| Mototaxi          | 11492                      | 10322 | 21814 | 3117 |
| Moto-carga        | 133                        | 131   | 264   | 38   |
| Automóvil         | 1909                       | 1872  | 3781  | 541  |
| Cami Normal       | 433                        | 433   | 866   | 124  |
| oneta<br>Pick up  | 1117                       | 1054  | 2171  | 311  |
| Combi             | 203                        | 174   | 377   | 54   |
| Micro             | 98                         | 103   | 201   | 29   |

# 4.2.3.3 Índice Medio Diario Anual (IMDA).

Para determinar el valor del número de vehículos por año se tiene que multiplicar el IMD por los 365 días que contiene un año entero


**Tabla 29:**Determinación del IMDA

| Tipo        | de Vehícu | ılos     | IMD  | IMDA      |
|-------------|-----------|----------|------|-----------|
| Motocicleta |           | <b>6</b> | 392  | 143,080   |
| Mototaxi    |           |          | 3117 | 1,137,705 |
| Moto-carga  |           |          | 38   | 13,870    |
| Automóvil   |           | 00       | 541  | 197,465   |
| Camioneta   | Normal    | S A B    | 124  | 45,260    |
|             | Pick up   |          | 311  | 113,515   |
| Combi       |           |          | 54   | 19,710    |
| Micro       |           | -0-0-    | 29   | 10,585    |

Nota. Fuente: Elaboración Propia

Gráfico 1:

IMDA de la avenida Progreso



Nota. De la gráfica se puede determinar que el tipo de vehículo que más transita por la avenida Progreso es el mototaxi, seguido de la motocicleta. Por el contrario, los microbuses son el tipo de vehículo que menos transita.

# 4.2.3.4 Factor de Crecimiento Vehicular (Fc).

Con la finalidad de diseñar un pavimento articulado capaz de resistir las solicitaciones de cargas más desfavorables, es necesario estimar el crecimiento del tránsito durante el tiempo de vida considerado para el pavimento, el cual se evalúa mediante la tasa con la que crecerá el tránsito en la localidad de Chicama.

El tiempo de servicio para la proyección de la vía estudiada de acuerdo a su función y la transitabilidad en la zona registrada; se consideró una estimación de 20 años de servicio ya que se tomó en cuenta que la vía a pavimentar está clasificada como una "vía pavimentada con altos volúmenes de tráfico", según los criterios que demanda la norma y el reglamento del MTC.

La tasa de crecimiento anual equivale al porcentaje con el cual se estima que crecerán los vehículos dependiendo el tipo que sean, el MTC indica los siguientes valores para ello:

#### Tabla 30:

Índices de crecimiento vehicular

| TASAS DE CRECIMIENTO |          |  |  |  |  |  |
|----------------------|----------|--|--|--|--|--|
| Tipo de vehículo     | Tasa (%) |  |  |  |  |  |
| ripo de verilicato   | Anual    |  |  |  |  |  |
| Vehículos ligeros    | 3.00     |  |  |  |  |  |
| Vehículos pesados    | 4.00     |  |  |  |  |  |

Nota. Fuente: Manual MTC. De acuerdo al conteo vehicular se concluyó que por la avenida Progreso sólo transitan vehículos ligeros.

Entonces:

Factor de Crecimiento = 
$$\frac{(1+3\%)^{20}-1}{3\%}$$

$$Fc = 26.87$$

# 4.2.3.5 Factor vehículo pesado (Fvp).

representa el número de ejes equivalentes de acuerdo al tipo de vehículo pesado y como se distribuye el mismo sobre cada uno de sus ejes; estos ejes son unidades de medida para determinar el grado de desgaste que se produce sobre el pavimento.

Para calcular el factor vehículo pesado se tiene que tomar en cuenta el tipo de pavimento que se diseñará, en el caso de la avenida Progreso se realizará un pavimento articulado, por lo que se tiene:

**Tabla 31:**Relación de carga por eje para determinar Ejes Equivalentes (EE) para pavimentos flexibles y articulados

| Tipo de Eje                                                                | Eje Equivalente (EE <sub>8.2 ton.</sub> ) |
|----------------------------------------------------------------------------|-------------------------------------------|
| Eje Simple de ruedas simples (EEs1)                                        | $EE_{S1} = [P/6.6]^{4.0}$                 |
| Eje Simple de ruedas dobles (EE <sub>S2</sub> )                            | $EE_{S2} = [P/8.2]^{4.0}$                 |
| Eje Tandem (1 eje ruedas dobles + 1 eje rueda simple) (EE <sub>TA2</sub> ) | $EE_{TA1} = [P/14.8]^{4.0}$               |

| Eje Tandem (2 ejes de ruedas dobles)  | $EE_TA2 = [P/15.1]^{4.0}$   |
|---------------------------------------|-----------------------------|
| (EE <sub>TA2</sub> )                  | <b>LL</b> [AZ — [1/13.1]    |
| Eje Tridem (2 ejes ruedas dobles + 1  | $EE_{TR1} = [P/20.7]^{3.9}$ |
| eje rueda simple) (EETR1)             | $\mathbf{LLIRI} = [r/20.7]$ |
| Ejes Tridem (3 ejes de ruedas dobles) | EE-roo - FD/21 013.9        |
| (EE <sub>TR2</sub> )                  | $EETR2 = [P/21.8]^{3.9}$    |
| P= peso real por eje en toneladas     |                             |

Nota. Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos – Sección Suelos y Pavimentos

De acuerdo a las expresiones mostradas en la tabla 28, procedemos a calcular el factor vehículo pesado para pavimento articulado, conforme al tipo de vehículo que se registró durante el conteo vehícular.

**Tabla 32:**Eje Equivalente según tipo de vehículo para pavimentos articulados

|              | MOTOCICLETA           |                       | МОТО                  | OTAXI                 | MOTO-CARGA            |                       |
|--------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Eje          | E1                    | E2                    | E1                    | E2                    | E1                    | E2                    |
| Carga (ton)  | 0.09                  | 0.09                  | 0.10                  | 0.14                  | 0.18                  | 0.26                  |
| Tipo de Eje  | Simple                | Simple                | Simple                | Simple                | Simple                | Simple                |
| Tipo de      | Rueda                 | Rueda                 | Rueda                 | Rueda                 | Rueda                 | Rueda                 |
| Rueda        | Simple                | Simple                | Simple                | Simple                | Simple                | Simple                |
| E.E.         | 3.46*10 <sup>-8</sup> | 3.46*10 <sup>-8</sup> | 5.27*10 <sup>-8</sup> | 2.02*10 <sup>-7</sup> | 5.53*10 <sup>-7</sup> | 2.41*10 <sup>-6</sup> |
| Factor Total | 6.92*10 <sup>-8</sup> |                       | 2.55*10 <sup>-7</sup> |                       | 2.96*10 <sup>-6</sup> |                       |

Nota. Fuente: Elaboración Propia

**Tabla 33:**Eje Equivalente según tipo de vehículo para pavimentos articulados

|               | AUTOMÓVIL |         | CAMIC   | ONETA   | PICK UP |         |  |
|---------------|-----------|---------|---------|---------|---------|---------|--|
| Eje           | E1        | E2      | E1      | E2      | E1      | E2      |  |
| Carga (ton)   | 0.75      | 0.75    | 1.05    | 1.05    | 0.9     | 0.9     |  |
| Tipo de Eje   | Simple    | Simple  | Simple  | Simple  | Simple  | Simple  |  |
| Tipo de Rueda | Rueda     | Rueda   | Rueda   | Rueda   | Rueda   | Rueda   |  |
| ripo de Rueda | Simple    | Simple  | Simple  | Simple  | Simple  | Simple  |  |
| E.E.          | 0.00017   | 0.00017 | 0.00064 | 0.00064 | 0.00034 | 0.00034 |  |
| Factor Total  | 0.00034   |         | 0.00128 |         | 0.00064 |         |  |

**Tabla 34:**Eje Equivalente según tipo de vehículo para pavimentos articulados

|               | CO      | MBI     | MICRO  |        |  |
|---------------|---------|---------|--------|--------|--|
| Eje           | E1      | E1 E2   |        | E2     |  |
| Carga (ton)   | 1.00    | 1.00    | 3.05   | 3.05   |  |
| Tipo de Eje   | Simple  | Simple  | Simple | Simple |  |
| Tipo de Rueda | Rueda   | Rueda   | Rueda  | Rueda  |  |
| Tipo de Nueda | Simple  | Simple  | Simple | Simple |  |
| E.E.          | 0.00053 | 0.00053 | 0.0456 | 0.0456 |  |
| Factor Total  | 0.00    | )106    | 0.0    | 912    |  |

Nota. Fuente: Elaboración Propia

# 4.2.3.6 Factor de distribución direccional ( $F_d$ ) y Factor de distribución carril ( $F_c$ ).

De acuerdo a las características que presenta la calzada de diseño se obtienen los valores correspondientes para el F<sub>d</sub> y F<sub>c</sub>.

**Tabla 35:**Factor de distribución Direccional y Factor de distribución Carril

| Número de<br>calzadas | Número de<br>sentidos | Número de<br>carriles por<br>sentido | Factor<br>Direccional<br>(F <sub>d</sub> ) | Factor<br>Carril (F <sub>c</sub> ) | Factor Ponderado para carril de diseño F <sub>d</sub> * F <sub>c</sub> |
|-----------------------|-----------------------|--------------------------------------|--------------------------------------------|------------------------------------|------------------------------------------------------------------------|
|                       | 1 sentido             | 1                                    | 1.00                                       | 1.00                               | 1.00                                                                   |
| 1 calzada             | 1 sentido             | 2                                    | 1.00                                       | 0.80                               | 0.80                                                                   |
| (para IMDA            | 1 sentido             | 3                                    | 1.00                                       | 0.60                               | 0.60                                                                   |
| total de la           | 1 sentido             | 4                                    | 1.00                                       | 0.50                               | 0.50                                                                   |
| calzada)              | 2 sentidos            | 1                                    | 0.50                                       | 1.00                               | 0.50                                                                   |
|                       | 2 sentidos            | 2                                    | 0.50                                       | 0.80                               | 0.40                                                                   |
| 2 calzadas            | 2 sentidos            | 1                                    | 0.50                                       | 1.00                               | 0.50                                                                   |
| con<br>separador      | 2 sentidos            | 2                                    | 0.50                                       | 0.80                               | 0.40                                                                   |
| central (para         | 2 sentidos            | 3                                    | 0.50                                       | 0.60                               | 0.30                                                                   |
| IMDA total            |                       |                                      |                                            |                                    |                                                                        |
| de la<br>calzada)     | 2 sentidos            | 4                                    | 0.50                                       | 0.50                               | 0.25                                                                   |

Nota. Fuente: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos – Sección Suelos y Pavimentos

La avenida Progreso consta sólo de una calzada la cual tiene 1 carril por sentido; siguiendo estas características de la vía a diseñar, y conforme a lo establecido por el Manual de Carreteras, Suelos, Geología, Geotecnia y

Pavimentos – Sección Suelos y Pavimentos el factor direccional a emplear es de 0.50 y el factor carril será 1.00, obteniendo de esta manera un factor ponderado para el carril de diseño de 0.50, que será empleado para calcular el ESAL de diseño para la avenida Progreso.

## 4.2.3.7 Factor de ajuste por presión de neumáticos (Fp).

En un diseño de pavimentación también se tiene que tener en cuenta el efecto de deterioro que causan los neumáticos de los vehículos sobre la carpeta de rodadura.

Teniendo en cuenta las características que se obtuvo en el estudio de tránsito se considerará un factor de ajuste igual a 1 para la avenida Progreso.

#### 4.2.3.8 Cálculo de ESAL de diseño.

El ESAL de diseño representa la cantidad total de ejes equivalentes a 8.2 toneladas de cada tipo de vehículo durante todo el año, considerando los cálculos ya realizados de estimación del crecimiento del tránsito vehícular en la zona, factor de vehículo pesado, factor direccional, factor carril, factor de presión neumática y el IMDA.

El ESAL de diseño se determina por medio de la siguiente fórmula:

$$N_{rep} \ de \ EE_{8.2 \ ton} = \sum [IMDA * F_{ca} * F_{d} * F_{c} * F_{vp} * F_{p}]$$

#### Tabla 36:

Cálculo de ESAL para diseño de pavimento articulado

| Tipo de Vehículos |               | Co      | Total |      |      |                 |      |           |
|-------------------|---------------|---------|-------|------|------|-----------------|------|-----------|
|                   |               | IMDA    | Fca   | Fd   | Fc   | F <sub>vp</sub> | Fp   |           |
| Motocio           | cleta         | 143080  | 26.87 | 0.50 | 1.00 | 0.0001          | 1.00 | 192,23    |
| Mototaxi          |               | 1137705 | 26.87 | 0.50 | 1.00 | 0.0001          | 1.00 | 1,528,51  |
| Moto-ca           | arga          | 13870   | 26.87 | 0.50 | 1.00 | 0.0001          | 1.00 | 18,63     |
| Automó            | óvil <b>6</b> | 197465  | 26.87 | 0.50 | 1.00 | 0.00034         | 1.00 | 902,00    |
| Camio             | Normal        | 45260   | 26.87 | 0.50 | 1.00 | 0.00128         | 1.00 | 778,33    |
| neta              | Pick up       | 113515  | 26.87 | 0.50 | 1.00 | 0.00064         | 1.00 | 976,05    |
| Combi             |               | 19710   | 26.87 | 0.50 | 1.00 | 0.00106         | 1.00 | 280,69    |
| Micro             | -0-0-         | 10585   | 26.87 | 0.50 | 1.00 | 0.0912          | 1.00 | 12,969,50 |
|                   |               |         |       |      |      |                 | Σ    | 17,645.94 |

De acuerdo a las exploraciones llevadas a cabo en la zona y al estudio de tránsito realizado se clasificó el tipo de vía urbana a la que pertenece la avenida Progreso según la norma CE.010 Pavimentos Urbanos, la cual establece criterios mínimos para el ESAL de diseño de acuerdo al tipo de vía.

**Tabla37:**Clasificación de Vía Urbana según EALs

| Clase de Vía | EALs <sup>a</sup><br>(millones) | Nivel de<br>Confiab. <sup>b</sup> (%) | Factor de<br>Confiab. (F <sub>r</sub> ) | EALs de<br>diseñoª<br>(millones) |
|--------------|---------------------------------|---------------------------------------|-----------------------------------------|----------------------------------|
| Expresas     | 7,5                             | 90                                    | 3,775                                   | 28,4                             |
| Arteriales   | 2,8                             | 85                                    | 2,929                                   | 8,3                              |
| Colectoras   | 1,3                             | 80                                    | 2,390                                   | 3,0                              |
| Locales      | 0,43                            | 75                                    | 2,010                                   | 0,84                             |

Nota. Fuente: Reglamento Nacional de Edificaciones CE. 010 Pavimentos Urbanos

Por lo tanto, debido a que el ESAL obtenido en el estudio de tránsito es menor al recomendado por el Reglamento Nacional de Edificaciones CE. 010 Pavimentos Urbanos, el ESAL que se utilizará para el diseño del pavimento articulado de la avenida Progreso será:

$$ESAL_{dise\tilde{n}o} = 840,000.00$$

#### 4.2.4 Diseño de pavimento

Para comenzar a diseñar y emplear las fórmulas y monogramas brindados por el método AASHTO 93, primero se realizaron estudios previos en los que se determinó parámetros fundamentales que influyen directamente sobre la funcionalidad del pavimento a diseñar, tal es el caso del ESAL obtenido del estudio de tránsito y el CBR conseguido de los ensayos de mecánica de suelos. Asimismo, también es esencial determinar aquellos parámetros que indican cual será el comportamiento del pavimento durante el periodo para el cual ha sido diseñado.

#### 4.2.4.1 Tipo de Vía.

La avenida Progreso por sus características de tránsito y desarrollo urbanístico es una vía local, con la cual de desarrollará el diseño estructural del proyecto.

#### 4.2.4.2 Confiabilidad (R).

Para asignar este valor de diseño se tomó en cuenta el tipo de vía que es la avenida Progreso, y de acuerdo a las especificaciones de la guía AASHTO se consideró el nivel de confiabilidad recomendable para el diseño. El nivel de confiabilidad es fundamental, ya que determina la seguridad y funcionamiento que tendrá la vía, sin que presente fallas de ningún tipo.

Para tal caso, se determinó que la avenida Progreso corresponde a una vía local, por las características que esta presenta; el tráfico, la transitabilidad de personas y la función que cumple, asignándole de esta manera un 75% de confiabilidad para el diseño estructural.

$$R(\%) = 75\%$$

# 4.2.4.3 Desviación Estándar Normal (Z<sub>r</sub>).

Según la guía AASHTO, este valor es la representación del nivel de confiabilidad, debido a que esta última no puede ser reemplazada de manera directa en la ecuación de diseño AASHTO, para ello se utiliza la siguiente tabla:

**Tabla 38:**Desviación estándar normal según nivel de confiabilidad

|                   | Desviación Estándar      |  |  |  |
|-------------------|--------------------------|--|--|--|
| Confiabilidad (%) | Normal (Z <sub>r</sub> ) |  |  |  |
| 50                | 0.000                    |  |  |  |
| 60                | -0.253                   |  |  |  |
| 70                | -0.524                   |  |  |  |
| 75                | -0.674                   |  |  |  |
| 80                | -0.841                   |  |  |  |
| 85                | -1.037                   |  |  |  |
| 90                | -1.282                   |  |  |  |
| 91                | -1.340                   |  |  |  |
| 92                | -1.405                   |  |  |  |
| 93                | -1.476                   |  |  |  |
| 94                | -1.555                   |  |  |  |
| 95                | -1.645                   |  |  |  |

Nota. Fuente: Guía AASHTO para Diseño Estructural de Pavimentos

De acuerdo a que el nivel de confiabilidad asignado para avenida Progreso fue de 75% por ser clasificada como una vía local; según la guía AASHTO le corresponde una desviación estándar normal de -0.674, valor que será utilizado para el diseño del pavimento articulado.

$$Z_r = -0.674$$

### 4.2.4.4 Desviación Estándar (S<sub>o</sub>).

Para asignar el valor de desviación estándar en nuestro diseño se tomó como referencia las directrices del Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos, que indican que para el caso de pavimentos articulados se debe considerar una desviación estándar de 0.45 para el diseño estructural.

$$S_0 = 0.45$$

## 4.2.4.5 Servicialidad (△PSI).

Para hallar el diferencial entre los índices de servicialidad inicial y final que tendrá nuestro pavimento, nos guiamos del Reglamento Nacional de Edificaciones CE.010 Pavimento Urbanos. Sabiendo ya que la avenida Progreso a diseñar pertenece a una vía local y se utilizará un sistema articulado elegimos los valores asignados para estos casos.

## 4.2.4.6 Índice de Servicialidad Inicial (Pi).

Se establece como la comodidad original del pavimento inmediatamente después de su construcción o rehabilitación. Tal como se mostró en la tabla N°11el valor asignado para pavimentos articulados y el cual se empleará en el diseño es 4,20.

$$P_i = 4.2$$

## 4.2.4.7 Índice de Servicialidad Final (Pt).

Hace referencia a la condición de la carpeta de rodadura que ya no cumple con las expectativas de comodidad y seguridad que son exigidas por el usuario y corresponde al valor más bajo antes de su reconstrucción o rehabilitación. El índice de servicialidad final que se asignará a la avenida Progreso por ser clasificada como una vía local es 2,00; la cual se empleará para su diseño estructural.

$$Pt_{via\ local} = 2,00$$

Con los valores obtenidos, se reemplazarán los datos para obtener el diferencial de Índice de Servicialidad:

$$\Delta PSI = P_i - P_t$$

$$\Delta PSI = 4,20 - 2,00$$

$$\Delta PSI = 2,20$$

## 4.2.4.8 Módulo de Resiliencia (MR).

Según el Reglamento Nacional de Edificaciones CE.010 Pavimentos Urbanos, es aquel parámetro que representa la rigidez de la subrasante en base al CBR que obtuvimos en nuestro estudio de mecánica de suelos.

Conforme a nuestros ensayos realizados en laboratorios, obtuvimos un valor de CBR por cada muestra experimentada, obteniendo así 4 resultados, los cuales se promediaron para tener el CBR de diseño definitivo, el cual fue 12%.

Reemplazando este valor en la expresión general de la Guía AASHTO resultaría:

$$M_r(psi) = 2555 \times CBR^{0.65}$$
 $M_r = 2555 \times (13)^{0.65}$ 
 $M_r = 13,534.87 \text{ PSI}$ 

**Tabla39:**Clasificación del CBR y Módulo Resiliente de la subrasante

| Clasificación | CBR (%)        | Módulo Resiliente                        |
|---------------|----------------|------------------------------------------|
| Excelente     | CBR ≥ 17%      | M <sub>r</sub> ≥ 25,000 PSI              |
| Bueno         | 8% < CBR < 17% | 12,000 PSI < M <sub>r</sub> < 25,000 PSI |
| Regular       | 3% < CBR < 8%  | 4,500 PSI < M <sub>r</sub> < 12,000 PSI  |
| Pobre         | CBR ≤ 3%       | $M_r \le 4,500 \text{ PSI}$              |

Nota. Fuente: Reglamento Nacional de Edificaciones CE. 010 Pavimentos Urbanos

De acuerdo a nuestro CBR obtenido en el estudio de Mecánica de suelos, el valor del módulo de resiliencia hallado se encuentra dentro de sus rangos admitidos por el Reglamento Nacional de Edificaciones CE. 010 Pavimentos

Urbanos, lo cual según la tabla N°34, indica que la subrasante de estudio está clasificada como una subrasante buena.

## 4.2.4.9 Número Estructural (SN).

Para su cálculo se utilizó los parámetros anteriormente determinados y se procedió a realizar tanto de forma analítica como también mediante el programa PavimR, con la finalidad de obtener el valor más exacto.

Este valor representa el espesor total que tendrá nuestro pavimento articulado, el cual luego dividiremos para obtener el espesor de cada capa.

Resumen de parámetros a utilizar:

**W**<sub>18</sub>: : 840,000.00

**R (%)** : 75%

**Z**r : -0.674

**S**<sub>o</sub> : 0.45

 $\Delta$ **PSI** : 2.20

**M**<sub>R</sub> : 13,534.87

#### 4.2.4.9.1 Método Analítico.

Este método es considerado el más exacto, para ello reemplazaremos los valores de cada parámetro en la fórmula dada.

$$\log W18 = Z_R S_0 + 9.36 \log(SN + 1) - 0.20 + \frac{\log\left(\frac{PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log(M_R) - 8.07$$

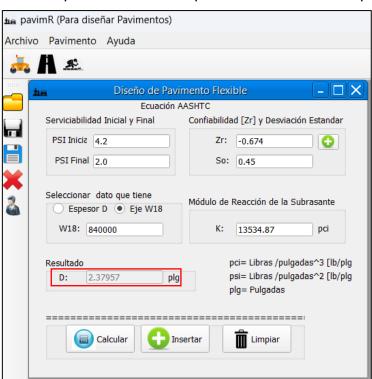
Para nuestro caso, la fórmula analítica para hallar el número estructural la separaremos en Ecuación I y Ecuación II, donde realizaremos tanteos para el valor del SN requerido, de tal manera que ambas ecuaciones se aproximen entre sí.

$$\log W18 - Z_R S_O + 0.20 + 8.07$$
 ...... Ecuación I 
$$\log (840000.00) - (-0.674) * (0.45) + 0.20 + 8.07 = 14.4975793$$

Con la finalidad de que ambas ecuaciones sean equivalentes, después de realizar algunos tanteos se asignó al SN un valor de **2.3796**, el cual es el más exacto para la proximidad entre ecuaciones.

$$9.36 \log (SN+1) + \frac{\log \left(\frac{PSI}{4.2-1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log (M_R) \ .....$$
 Ecuación II

$$9.36 \log(2.4253+1) + \frac{\log\left(\frac{2.20}{4.2-1.5}\right)}{0.40 + \frac{1094}{(2.4253+1)^{5.19}}} + 2.32 \log(13534.87) = 14.4976062$$


Luego de resolver la ecuación AASTHO concluimos que el valor del Número Estructural requerido según el método analítico es **2.3796.** 

## 4.2.4.9.2 Método Computarizado.

Otro método eficaz y muy exacto para determinar el número estructural que tendrá nuestro pavimento es mediante el programa PavimR, el cual está computarizado para calcular el SN de manera instantánea utilizando los mismos parámetros de diseño anteriormente asignados.

Figura 5:

Número Estructural para el diseño del pavimento mediante el programa PavimR



Nota. Fuente: Programa PavimR

Luego de digitalizar todos los datos en el programa PavimR obtenemos que el valor del Número Estructural requerido según el método computarizado es **2.37957** 

Entonces, el valor del Número Estructural a utilizar para el diseño del pavimento articulado de la avenida Progreso será de 2.3796, debido a que para ambos métodos se obtuvo el mismo valor, lo cual indica que el resultado es el correcto.

$$SN = 2.3796$$

## 4.2.5 Espesores de las capas del Pavimento.

El número estructural calculado anteriormente representa el espesor de los adoquines y de la base granular que componen el pavimento. Este SN tendrá que ser disgregado para formar dichas capas. Para el espesor de la capa de arena colocada debajo de los adoquines, se considerará 4cm, valor recomendado por la guía ASSHTO para Pavimentos Articulados.

**Tabla 40:**Espesores mínimos para capa de rodadura y base, en función del ESAL

| Cargas Equivalentes   | Espesor Mínimo (cm) |               |  |  |
|-----------------------|---------------------|---------------|--|--|
| (ESALs)               | Carpeta de Rodadura | Base Granular |  |  |
| Menos de 50,000       | 2,5                 | 10,0          |  |  |
| 50,000 - 15,000       | 5,0                 | 10,0          |  |  |
| 150,000 - 500,000     | 6,25                | 10,0          |  |  |
| 500,000 - 2,000,000   | 7,5                 | 15,0          |  |  |
| 2,000,000 - 7,000,000 | 8,75                | 15,0          |  |  |
| Más de 7,000,000      | 10,0                | 15,0          |  |  |

Nota. Fuente: Guía AASHTO 1993 para diseño de estructuras de pavimentos

## 4.2.5.1 Espesor del Adoquín (h<sub>1</sub>).

Para determinar el espesor del adoquín que se utilizará en la avenida Progreso nos guiamos del Reglamento Nacional de Edificaciones CE.010 Pavimentos Urbanos, el cual brinda ciertos requisitos y criterios a la hora de escoger el tipo de adoquín a emplear.

Tabla 41:

Tipo de adoquín según su uso

| TIPO | USO                                                                                 |
|------|-------------------------------------------------------------------------------------|
| I    | Adoquines para pavimentos de uso peatonal                                           |
| II   | Adoquines para pavimentos de tránsito vehicular ligero                              |
| III  | Adoquines para pavimentos de tránsito pesado, patios industriales y de contenedores |

Nota. Fuente: Reglamento Nacional de Edificaciones CE. 010 Pavimentos Urbanos

Tabla 42:

Tipo de adoquín según su espesor y resistencia a la compresión

| Tipo     | Espesor (mm) | Promedio (MPa) | Mínimo (MPa) |
|----------|--------------|----------------|--------------|
| TIPO I   | 40           | 31             | 28           |
| TIPOT    | 60           | 31             | 28           |
| TIPO II  | 60           | 41             | 37           |
| TIFOTI   | 80           | 37             | 33           |
| TIPO III | 100          | 35             | 32           |
| TIFOIII  | ≥80          | 55             | 50           |

Nota. Fuente: Reglamento Nacional de Edificaciones CE. 010 Pavimentos Urbanos

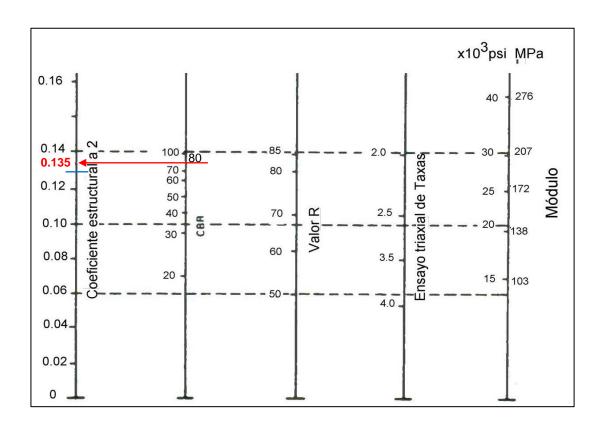
De acuerdo al estudio de tránsito que se realizó en la avenida Progreso pudimos ver que el tránsito vehicular es ligero, y el ESAL de diseño es

relativamente bajo; por lo que según requisitos brindados por el Reglamento Nacional de Edificaciones CE. 010 Pavimentos Urbanos, el tipo de adoquín a utilizar en el diseño de pavimentación será el tipo II con un espesor de **8 cm** y una resistencia a la compresión promedio de 37 MPa.

#### 4.2.5.2 Coeficientes estructurales.

Debemos determinar el coeficiente estructural para cada del pavimento estructural, el cual servirá para reemplazar en la fórmula de diseño de espesores.

## 4.2.5.2.1 Coeficiente Estructural de la Carpeta de Rodadura (a1).


Debido a que el tránsito vehicular en la zona de estudio es ligero se optó por utilizar adoquines tipo II de 8 cm con una resistencia a la compresión de 350 kg/cm2, la cual según la tabla N°13 corresponde un coeficiente estructural de diseño de **0.41** 

## 4.2.5.2.2 Coeficiente Estructural de la base (a2).

Para calcular el coeficiente estructural de la capa base empleamos la equivalencia CBR – Coeficiente Estructural, que brinda la Guía AASHTO, la cual se muestra a continuación:

Figura 6:

Correlación CBR – Coeficiente Estructural para la capa de la base



Nota. Fuente: Guía AASHTO 1993 para diseño de estructuras de pavimentos

Para el diseño del pavimento articulado de la avenida Progreso se tomó como CBR de la base un valor de 80%, de acuerdo a las características que encontró en el estudio de suelos y a las reglamentaciones dadas en la Norma Técnica, obteniendo así de acuerdo a la correlación hecha un coeficiente estructural de diseño de **0.135** 

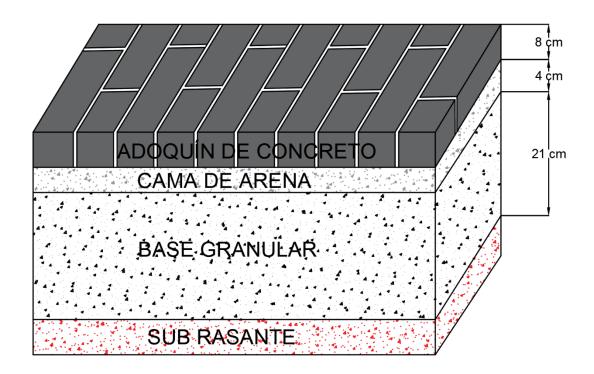
## 4.2.5.3 Coeficiente de drenaje (D<sub>2</sub>).

Debido a que la calidad de drenaje del suelo de la localidad de Chicama es buena y el porcentaje de tiempo anual en que la estructura del pavimento estará expuesta a niveles cercanos a la saturación se considera mayor al 25%, establecemos de acuerdo al Reglamento Nacional de Edificaciones CE0.10 Pavimentos Urbanos, que el coeficiente de drenaje para el diseño de nuestro pavimento articulado será 1.

Resumen de parámetros a utilizar en la ecuación que determina los espesores para cada capa:

$$SN = 2.3796$$
 $a_1 = 0.41$ 
 $a_2 = 0.135$ 
 $h_1 = 8 \text{ cm.} = 3.15$ 
 $D_2 = 1$ 

**Entonces:** 


$$SN = a_1 * h_1 + a_2 * h_2 * D_2$$
  
 $2.3796 = 0.41 * 3.15 + 0.135 * h_2 * 1$   
 $h_2 = 8.06" = 20.40 \ cm. \approx 21 \ cm.$   
 $h_2 = 21 \ cm.$ 

El resultado del espesor para el diseño de la base granular es de 8.06"; el cual cumple con las especificaciones que recomienda la Guía de Diseño para estructuras de pavimentos; es por ello que si tomamos tal valor; así lo indica la AASHTO en la sección de espesores mínimos sugeridos para base granular.

De este modo obtenemos los espesores para cada capa de diseño del pavimento articulado, siguiendo normas técnicas y criterios normativos, que verifican que el diseño es el correcto y puede ser considerado como una propuesta a realizar dentro de un proyecto en la localidad de Chicama.

Figura 7:

Configuración Estructural para pavimento articulado de la avenida Progreso



Nota. Fuente: Elaboración Propia

## 4.2.6 Estudio Hidrológico.

Para obtener esta data histórica se utilizó la web del SENAMHI de la estación pluviométrica Laredo, que se encuentra localizada dentro del departamento de La Libertad, ya que es la más cercana a nuestra zona de estudio, además de poseer la misma altitud de 65 m.s.n.m.

## Tabla 43:

Datos históricos pluviométricos

Se presenta la data histórica a continuación:

| AÑO  | ENE | FEB  | MAR  | ABR | MAY | JUN | JUL | AGO | SET | ОСТ | NOV | DIC | ANUAL |
|------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| 1998 | 5.7 | 10.9 | 4.3  | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 10.9  |
| 1999 | 2.4 | 4.5  | 0.0  | 0.6 | 0.7 | 0.0 | 0.0 | 0.0 | 1.9 | 0.0 | 0.0 | 1.7 | 4.5   |
| 2000 | 0.9 | 1.1  | 2.6  | 1.8 | 3.9 | 1.2 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 3.9   |
| 2001 | 2.2 | 1.8  | 2.0  | 1.5 | 0.0 | 0.7 | 0.4 | 0.4 | 0.0 | 0.0 | 1.0 | 0.5 | 2.2   |
| 2002 | 0.0 | 3.5  | 0.6  | 0.1 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 0.2 | 3.5   |
| 2003 | 2.3 | 3.2  | 0.0  | 2.4 | 0.4 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 1.2 | 3.2   |
| 2004 | 1.9 | 3.1  | 1.0  | 0.4 | 0.6 | 0.0 | 0.0 | 0.0 | 1.2 | 0.3 | 0.0 | 8.0 | 3.1   |
| 2005 | 8.0 | 2.6  | 1.9  | 0.0 | 0.4 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.6   |
| 2006 | 0.2 | 3.2  | 2.3  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.9 | 3.2   |
| 2007 | 0.0 | 0.9  | 1.6  | 0.6 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 | 1.6   |
| 2008 | 0.4 | 2.5  | 2.1  | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 2.5   |
| 2009 | 2.3 | 3.8  | 3.1  | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.6 | 3.8   |
| 2010 | 0.0 | 1.7  | 1.5  | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 1.7   |
| 2011 | 2.1 | 2.7  | 2.2  | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.9 | 1.2 | 2.7   |
| 2012 | 0.6 | 0.0  | 1.1  | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 1.7 | 1.7   |
| 2013 | 1.5 | 4.1  | 5.3  | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | *   | 5.3   |
| 2014 | 0.5 | 0.0  | 0.7  | *   | 0.1 | 0.0 | *   | 0.0 | 0.1 | 0.0 | 0.0 | 0.6 | 0.7   |
| 2015 | 0.1 | 2.2  | .4   | 0.0 | 0.0 | 00  | 0.0 | 0.0 | 0.0 | *   | 0.7 | 1.1 | 3.4   |
| 2016 | 0.0 | 8.5  | 0.7  | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.5   |
| 2017 | 0.0 | 4.6  | 27.2 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27.2  |
| 2018 | 1.1 | 2.2  | 0.0  | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 2.5 | 2.5   |
| 2019 | 1.8 | 0.6  | 7.9  | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3 | 0.0 | 0.0 | 3.6 | 7.9   |
| MAX  | 5.7 | 10.9 | 27.2 | 2.4 | 3.9 | 1.2 | 0.4 | 0.4 | 2.3 | 0.3 | 3.4 | 3.6 | 27.2  |

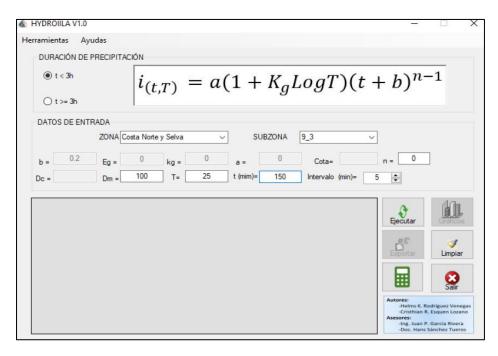
Nota. Fuente: Servicio Nacional de Meteorología e Hidrología – SENAMHI

Luego que descargamos la data histórica pluviométrica del SENAMHI aplicaremos métodos probabilísticos y determinar cuál es el que más se adapta de acuerdo a las distribuciones estadísticas tales como: Normal, Log Normal 2 parámetros, Log Normal 3 parámetros, Gamma 2 parámetros, Gamma 3 parámetros, Log Pearson tipo III, Gumbel y Log Gumbel. En este caso se utilizarán los métodos de bondad de ajuste de Chi Cuadro o Kolmorov-Smirnov,

conforme nos indican las reglamentaciones del Manual de Hidrología, Hidráulica y Drenaje del Ministerio de Transportes y Comunicaciones.

No obstante, la data histórica que se registró por el fenómeno del niño altera en gran medida el análisis, es por ello que se optó utilizar la precipitación de 27.2 mm como la precipitación máxima en 24 horas, que fue producida el mes de marzo durante la llegada del fenómeno del niño costero en el año 2017, para realizar los cálculos hidrológicos que se presentarán a continuación.

## 4.2.6.1 Curva Intensidad Duración Frecuencia (IDF).


Para determinar el IDF es importante conocer cuál es el comportamiento de la lluvia, debido a que es un factor imprescindible saber cuál es su desarrollo, debido a que no es lo mismo declarar que los 27.2 mm de precipitación seleccionados se acumularon en un lapso de 2 horas a declarar que la misma precipitación se acumuló en un periodo de 20 horas.

En estos dos casos, siempre es el primero el que provoca las inundaciones, es decir las lluvias de corta duración son las que originan las inundaciones en las vías de tránsito, y debido a que Chicama presenta estas torrenciales lluvias en los meses de verano, es en la que desarrollaremos el estudio hidrológico presente. En conclusión, trabajaremos un análisis en base a la data de que la precipitación registrada de 27.2 mm se acumuló en un periodo de 2 horas y media.

Para obtener la curva IDF, se utilizó el método ILLA SENAMHI UNI, la cual cuenta de dos fórmulas para calcular la intensidad, y están en función de parámetros como duración, frecuencia, tiempo de retorno, entre otros. La primera hace referencia a las lluvias menores a 3 horas de duración y la segunda referencia a aquellas que duran entre 3 y 24 horas. De acuerdo a nuestro análisis previo determinamos una precipitación para un periodo de lluvia menor a 3 horas.

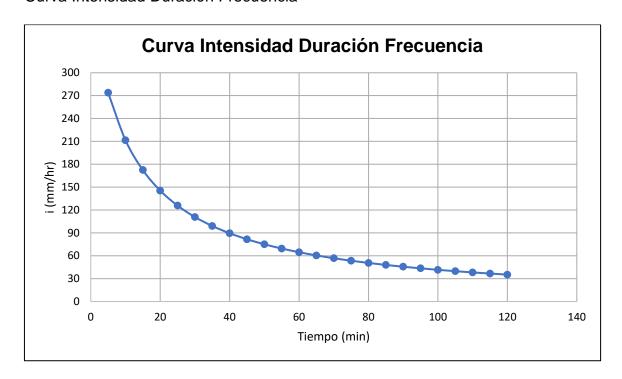
Para nuestro análisis utilizamos el software HYDROILLA, para obtener la curva IDF de manera casi automática, la cual utilizaremos por bloques alternos cada 5 minutos y de esta manera la adaptaremos a nuestra precipitación de 27.2 mm más representativa.

Figura 8:
Cálculo de IDF computarizado



Nota. Fuente: Interfaz Software HydroIILA V1.0

Luego de ello, obtenemos las intensidades cada 5 minutos, ya que así se determinó al momento de seleccionar los parámetros en el software, además de obtener la columna Altura de Precipitación en mm con la cual construiremos el hietograma de precipitación.

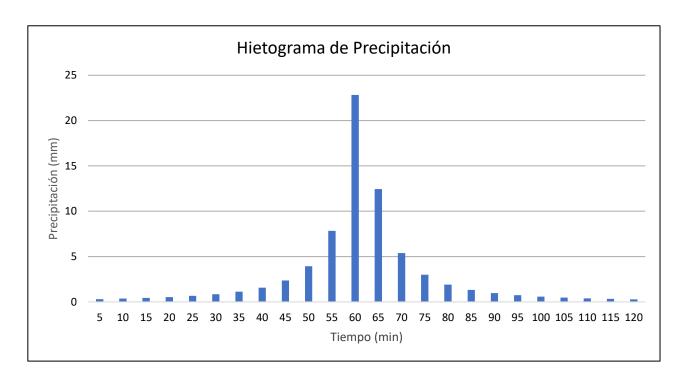

**Tabla 44:**Intensidad y altura de precipitación cada 5 minutos

| n | t (min) | i (mm/hr) | p (mm) | pi-pi (mm) | Int. Par. | Alt Prec. |
|---|---------|-----------|--------|------------|-----------|-----------|
| 1 | 5       | 273.84    | 22.82  | 22.82      | 273.84    | 0.30      |
| 2 | 10      | 211.60    | 35.27  | 12.45      | 149.37    | 0.36      |
| 3 | 15      | 172.42    | 43.10  | 7.83       | 94.01     | 0.43      |
| 4 | 20      | 145.48    | 48.49  | 5.39       | 64.71     | 0.52      |
| 5 | 25      | 125.82    | 52.42  | 3.93       | 47.21     | 0.66      |
| 6 | 30      | 110.84    | 55.42  | 3.00       | 36.00     | 0.84      |
| 7 | 35      | 99.05     | 57.78  | 2.36       | 28.30     | 1.12      |
| 8 | 40      | 89.52     | 59.68  | 1.90       | 22.83     | 1.57      |
| 9 | 45      | 81.67     | 61.25  | 1.57       | 18.88     | 2.36      |

| 10 | 50  | 75.08 | 62.57 | 1.32 | 15.85 | 3.93  |
|----|-----|-------|-------|------|-------|-------|
| 11 | 55  | 69.48 | 63.69 | 1.12 | 13.46 | 7.83  |
| 12 | 60  | 64.66 | 64.66 | 0.97 | 11.60 | 22.82 |
| 13 | 65  | 60.46 | 65.50 | 0.84 | 10.03 | 12.45 |
| 14 | 70  | 56.77 | 66.23 | 0.73 | 8.80  | 5.39  |
| 15 | 75  | 53.51 | 66.89 | 0.66 | 7.87  | 3.00  |
| 16 | 80  | 5.60  | 67.47 | 0.58 | 6.93  | 1.90  |
| 17 | 85  | 47.99 | 67.99 | 0.52 | 6.23  | 1.32  |
| 18 | 90  | 45.64 | 68.46 | 0.47 | 5.64  | 0.87  |
| 19 | 95  | 43.51 | 68.89 | 0.43 | 5.11  | 0.73  |
| 20 | 100 | 41.56 | 69.27 | 0.38 | 4.62  | 0.58  |
| 21 | 105 | 39.79 | 69.63 | 0.36 | 4.32  | 0.47  |
| 22 | 110 | 38.16 | 69.96 | 0.33 | 3.91  | 0.38  |
| 23 | 115 | 36.66 | 70.26 | 0.30 | 3.56  | 0.33  |
| 24 | 120 | 35.27 | 70.53 | 0.27 | 3.29  | 027   |
|    |     |       |       |      |       |       |

Nota. Fuente: Interfaz Software HydroIILA V1.0

**Gráfico 2:**Curva Intensidad Duración Frecuencia




De la gráfica obtenida se muestra las intensidades cada 5 minutos durante un periodo de 2 horas, para un periodo de retorno de 25 años, determinado de acuerdo a las reglamentaciones del Manual de Hidrología y Meteorología. Sin embargo, la curva generada no nos servirá para nuestro análisis como cantidad, pero sí como forma.

### 4.2.6.2 Hietograma.

En la gráfica del hietograma se muestra el comportamiento de la precipitación, es decir, para la precipitación de 28.74 mm/hr que se produjo en las 2 horas y media (150 min) le correspondería 71.85 mm de precipitación acumulada, la cual no sirve para nuestro análisis, de tal modo los 27.2 mm de precipitación deerminado anteriormente, serán adaptados a la curva IDF generada.

**Gráfico 3:**Hietograma de Precipitación



Nota. Fuente: Elaboración Propia

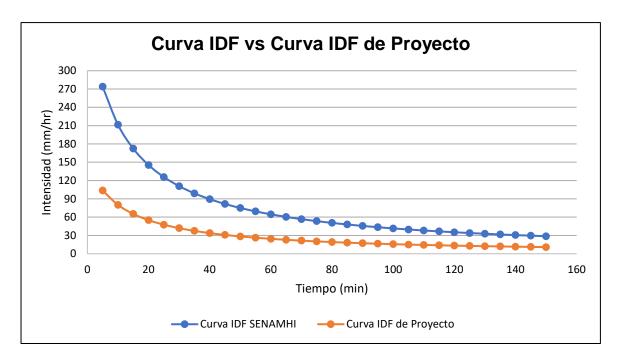
## 4.2.6.3 Curva IDF de Proyecto.

Para realizar la curva IDF real para el análisis hidrológico del proyecto de adaptó los 27.2 mm de precipitación a una nueva curva IDF en la cual se

convertirá a intensidad, para ello se dividió los 27.2 mm entre las 2 horas y media obteniendo un valor de 10.88 mm/hr de intensidad.

Posteriormente calculamos un factor para obtener cada intensidad de la curva IDF generada anteriormente, para ello dividimos los 10.88 mm/hr convertidos a intensidad, entre los 28.74 mm/hr obtenidos de la curva IDF, obteniendo un factor de 0.3786; factor que se multiplicó por cada valor de intensidad de la curva IDF de cada 5 minutos para obtener así la curva IDF real de proyecto, de la cual también se tendrá el hietograma real de proyecto, que nos representará el comportamiento de la precipitación más representativa de los 27.2 mm; lo cual nos ayudará para realizar el diseño del sistema de drenaje pluvial urbano para la avenida Progreso.

**Tabla 45:**Datos de intensidad de proyecto adaptados


| Tiempo (min) | Intensidad (mm/hr) | Intensidad de<br>Proyecto (mm/hr) |
|--------------|--------------------|-----------------------------------|
| 5            | 273.84             | 103.67                            |
| 10           | 211.60             | 80.10                             |
| 15           | 172.42             | 65.27                             |
| 20           | 145.48             | 55.07                             |
| 25           | 125.82             | 47.63                             |
| 30           | 110.84             | 41.96                             |
| 35           | 99.05              | 37.50                             |
| 40           | 89.52              | 33.89                             |
| 45           | 81.67              | 30.92                             |
| 50           | 75.08              | 28.42                             |
| 55           | 69.48              | 26.30                             |
| 60           | 64.66              | 24.48                             |
| 65           | 60.46              | 22.89                             |
| 70           | 56.77              | 21.49                             |
| 75           | 53.51              | 20.26                             |
| 80           | 5.60               | 19.16                             |

| 90       45.64       17.28         95       43.51       16.47         100       41.56       15.73         105       39.79       15.06         110       38.16       14.45         115       36.66       13.88         120       35.27       13.35         125       33.98       12.86         130       32.78       12.41         135       31.67       11.99         140       30.63       11.60         145       29.65       11.22         150       28.74       10.88 | 85  | 47.99 | 18.17 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-------|
| 100       41.56       15.73         105       39.79       15.06         110       38.16       14.45         115       36.66       13.88         120       35.27       13.35         125       33.98       12.86         130       32.78       12.41         135       31.67       11.99         140       30.63       11.60         145       29.65       11.22                                                                                                           | 90  | 45.64 | 17.28 |
| 105       39.79       15.06         110       38.16       14.45         115       36.66       13.88         120       35.27       13.35         125       33.98       12.86         130       32.78       12.41         135       31.67       11.99         140       30.63       11.60         145       29.65       11.22                                                                                                                                               | 95  | 43.51 | 16.47 |
| 110       38.16       14.45         115       36.66       13.88         120       35.27       13.35         125       33.98       12.86         130       32.78       12.41         135       31.67       11.99         140       30.63       11.60         145       29.65       11.22                                                                                                                                                                                   | 100 | 41.56 | 15.73 |
| 115       36.66       13.88         120       35.27       13.35         125       33.98       12.86         130       32.78       12.41         135       31.67       11.99         140       30.63       11.60         145       29.65       11.22                                                                                                                                                                                                                       | 105 | 39.79 | 15.06 |
| 120       35.27       13.35         125       33.98       12.86         130       32.78       12.41         135       31.67       11.99         140       30.63       11.60         145       29.65       11.22                                                                                                                                                                                                                                                           | 110 | 38.16 | 14.45 |
| 125       33.98       12.86         130       32.78       12.41         135       31.67       11.99         140       30.63       11.60         145       29.65       11.22                                                                                                                                                                                                                                                                                               | 115 | 36.66 | 13.88 |
| 130       32.78       12.41         135       31.67       11.99         140       30.63       11.60         145       29.65       11.22                                                                                                                                                                                                                                                                                                                                   | 120 | 35.27 | 13.35 |
| 13531.6711.9914030.6311.6014529.6511.22                                                                                                                                                                                                                                                                                                                                                                                                                                   | 125 | 33.98 | 12.86 |
| 14030.6311.6014529.6511.22                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130 | 32.78 | 12.41 |
| 145 29.65 11.22                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135 | 31.67 | 11.99 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140 | 30.63 | 11.60 |
| 150 28.74 10.88                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 145 | 29.65 | 11.22 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150 | 28.74 | 10.88 |

Obtenida la tabla con los nuevos valores de Intensidad de Proyecto, graficamos la nueva curva IDF, la cual servirá para realizar el análisis y elaborar el hietograma de proyecto, el cual permitirá conocer el comportamiento de los 27.2 mm de precipitación durante su periodo de duración.

### Gráfico 4:

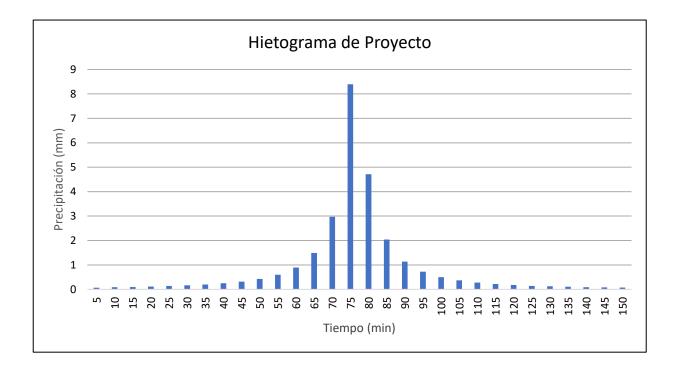
Comparación de curvas IDF – IDF de Proyecto



## 4.2.6.4 Hietograma de Proyecto.

A partir de los nuevos valores de intensidad graficados en la curva IDF de proyecto, se procede a construir el nuevo hietograma de proyecto con los siguientes valores:

- ☐ **Tiempo (min):** siendo el mismo que se obtuvo en la tabla N°39
- ☐ Intensidad (mm/hr): siendo los mismos valores obtenidos en la tabla N°39
- ☐ **Precipitación (mm):** Que se obtuvo como el resultado del producto de la columna tiempo (hrs) por la columna intensidad (mm/hr).
- ☐ Diferencia de precipitaciones pi-pi (mm): es la resta de la precipitación (mm) menos la precipitación de la fila anterior (mm).
- □ Altura de precipitación (mm): son los datos obtenidos anteriormente, pero distribuidos de forma ascendente, iniciando al final de la tabla (150 minutos), luego al inicio (5 minutos), se continua con el segundo (125 minutos) y posterior a ello el penúltimo (10 minutos), haciendo una especie de ping pong hasta terminar de llenar toda la columna.


#### Tabla 46:

Intensidad y altura de precipitación de proyecto cada 5 minutos

| t (min) | i (mm/hr) | p (mm) | pi-pi (mm) | Altura Prec. |
|---------|-----------|--------|------------|--------------|
| 5       | 103.67    | 8.64   | 8.693      | 0.070        |
| 10      | 80.10     | 13.35  | 4.712      | 0.089        |
| 15      | 65.27     | 16.32  | 2.967      | 0.095        |
| 20      | 55.07     | 18.36  | 2.040      | 0.115        |
| 25      | 47.63     | 19.85  | 1.488      | 0.138        |
| 30      | 41.96     | 20.98  | 1.134      | 0.163        |
| 35      | 37.50     | 21.87  | 0.893      | 0.197        |
| 40      | 33.89     | 22.59  | 0.720      | 0.248        |
| 45      | 30.92     | 23.19  | 0.595      | 0.317        |
| 50      | 28.42     | 23.69  | 0.497      | 0.425        |
| 55      | 26.30     | 24.11  | 0.425      | 0.595        |
| 60      | 24.48     | 24.48  | 0.367      | 0.893        |
| 65      | 22.89     | 24.80  | 0.317      | 1.488        |
| 70      | 21.49     | 25.07  | 0.278      | 2.967        |
| 75      | 20.26     | 25.32  | 0.248      | 8.396        |
| 80      | 19.16     | 25.54  | 0.219      | 4.712        |
| 85      | 18.17     | 25.74  | 0.197      | 2.040        |
| 90      | 17.28     | 25.92  | 0.180      | 1.134        |
| 95      | 16.47     | 26.08  | 0.163      | 0.720        |
| 100     | 15.73     | 26.22  | 0.142      | 0.497        |
| 105     | 15.06     | 26.36  | 0.138      | 0.367        |
| 110     | 14.45     | 26.48  | 0.124      | 0.278        |
| 115     | 13.88     | 26.60  | 0.115      | 0.219        |
| 120     | 13.35     | 26.70  | 0.104      | 0.180        |
| 125     | 12.86     | 26.80  | 0.095      | 0.142        |
| 130     | 12.41     | 26.89  | 0.088      | 0.124        |
| 135     | 11.99     | 26.98  | 0.089      | 0.104        |
| 140     | 11.60     | 27.06  | 0.080      | 0.088        |
| 145     | 11.22     | 27.13  | 0.070      | 0.080        |
| 150     | 10.88     | 27.20  | 0.074      | 0.074        |

En base a los resultados obtenidos en la tabla anterior, graficamos lo que sería el hietograma de proyecto, determinando así el comportamiento de la precipitación acumulada de los 27.2 mm durante el periodo de tiempo de los 150 min. estimados desde un comienzo, el cual será importante para realizar el diseño del drenaje pluvial, necesario para la avenida Progreso.

**Gráfico 5:**Hietograma de Precipitación de proyecto



Nota. Fuente: Elaboración Propia

### 4.2.7 Diseño de Drenaje Pluvial

Para realizar los análisis y cálculos de diseño para elaborar el sistema de drenaje pluvial de la avenida Progreso, se hizo uso del Reglamento Nacional de Edificaciones CE 0.40 Drenaje Pluvial, el cual nos indica los parámetros de diseño y el método correcto a utilizar para su buen funcionamiento

## 4.2.7.1 Vereda y Pista.

Cuando se realice el diseño del pavimento articulado en la avenida Progreso, se preverán pendientes longitudinales (S<sub>i</sub>) y transversales (S<sub>t</sub>), con la finalidad de facilitar la concentración del agua de las lluvias que cae sobre el pavimento, hacia los puntos dónde serán colocados los sumideros de captación.

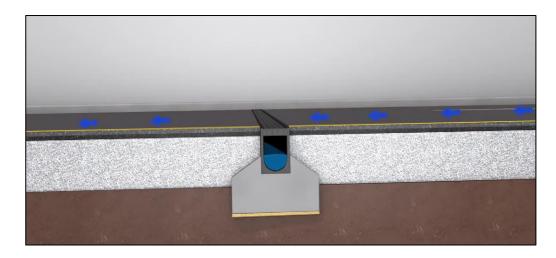
La norma CE 0.40 del reglamento Nacional de Edificaciones señalan algunas pendientes mínimas de drenaje para las diferentes regiones del Perú.

**Tabla 47:**Pendientes mínimas para calzada o pista

| Regiones<br>Geográficas | Pendiente<br>Longitudinal                                  | Pendiente<br>transversal en la<br>pista o calzada | Pendiente<br>transversal en la<br>berma |
|-------------------------|------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|
| Costa                   | $S_1 \ge 0.5\%$                                            | S <sub>t</sub> ≥ 2%                               | S <sub>t</sub> ≥ 2,5%                   |
| Sierra                  | $S_1 \ge 0.5\%$                                            | $S_t \ge 2.5\%$                                   | S <sub>t</sub> ≥ 3%                     |
| Selva                   | $S_l \ge 0.5\%$ (selva baja)<br>$S_l \ge 1\%$ (selva alta) | S <sub>t</sub> ≥ 3%                               | S <sub>t</sub> ≥ 3,5%                   |

Nota. Fuente: Reglamento Nacional de Edificaciones CE. 040 Drenaje Pluvial

#### 4.2.7.2 Sumidero.

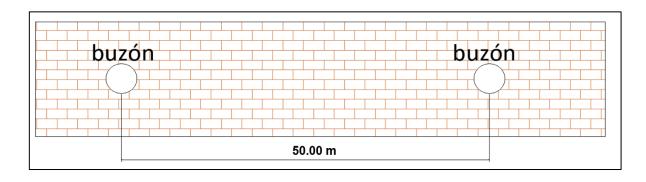

De acuerdo a las condiciones hidráulicas definidas en el estudio hidrológico y la geografía de la zona, determinados el tipo de sumideros que se colocarán en la avenida Progreso.

De acuerdo a ciertos criterios establecidos por el Reglamento Nacional de Edificaciones CE 0.40 Drenaje Pluvial, para el sistema de drenaje de la avenida Progreso se optó por utilizar sumideros de rejillas en calzada, los cuales aprovecharán la pendiente propia de la avenida para aumentar su capacidad de captación. De igual manera se tomó en consideración el sistema de alcantarillado y agua potable que ya existe, para plantear los conductos que se utilizarán la infraestructura de drenaje pluvial.

De acuerdo a la geometría de la zona, y el desarrollo urbanístico de la localidad Chicama se colocarán los sumideros de rejillas en calzada en cada esquina, esto porque la distancia promedio entre esquinas de la avenida es de 50 metros, lo cual está dentro de los parámetros permitidos por la norma CE 0.40. Para su diseño hidráulico se tuvieron igualmente algunas variables como retención de sólidos, altura de diseño de la superficie de agua dentro del sumidero, pendiente propia de los sumideros, coeficiente de rugosidad de la

superficie de los canales de conducción, material, posición en relación al sentido principal de flujo, forma y separación de las rejillas.

Figura 9: Sumidero de rejilla en pista o calzada

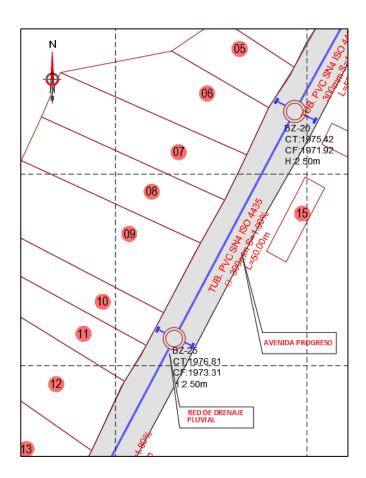



Nota. Los sumideros de rejilla en pista o calzada se encuentran ubicados de manera transversal a la vía, y aprovechan la pendiente de esta para una mayor captación de las aguas de lluvia.

#### 4.2.7.3 Buzones.

En cada esquina de la avenida Progreso se instalará un registro en el cual evacuarán las aguas trasladadas por los sumideros de rejilla que fueron colocados, el diámetro de estos registros está diseñado para permitir el acceso de un personal que se encargará de la limpieza cada cierto periodo, se optó por ubicarlos al centro de la calzada, teniendo en cuenta que las tuberías de agua y desagüe se encuentran en los bordes, se esta manera no habrá inconvenientes a la hora de su colocación.

**Figura 10:**Distanciamiento entre buzones en la avenida Progreso




## 4.2.7.4 Subcolector y colector.

Para el diseño de los colectores pluviales se tomaron en cuenta consideraciones del Reglamento Nacional de Edificaciones, por la cual la tubería tendrá sección circular y su diámetro será de 50 cm; con un tirante del 80% de este, para disponer de un margen de seguridad en caso de obstrucciones o de algún caudal mayor al del diseño. Los canales de conducción hacia los registros serán hechos a base de concreto polimérico, material que garantiza un recorrido constante y sin interrupciones por su superficie, garantizando que la velocidad del flujo no será menor que 0.90 m/s, velocidad con la cual no existirá problemas de sedimentación por algunas partículas de arena o grava que pueden acarrear las aguas de lluvia.

Figura 11:

Buzones y tubería de drenaje pluvial en la avenida Progreso



#### 4.2.7.5 Sistema de evacuación.

Para el sistema de drenaje de la avenida Progreso se diseñó un sistema de evacuación por gravedad, en el cual las aguas de lluvia serán descargadas por el emisor o dren principal hacia el río Chicama, para ello la capacidad de conducción se determinó utilizando la fórmula de Manning.

#### 4.2.8 Señalización Urbana

Una vez que se determinó el sistema de drenaje pluvial y el diseño estructural de la avenida Progreso, el presente trabajo de investigación busca brindar una propuesta para la señalización tanto vertical como horizontal que tendrá la vía local durante todo su recorrido, en el cual se establecerán señalizaciones tanto para conductores como para peatones, este elemento es muy importante para que exista una circulación segura y correcta.

## 4.2.8.1 Propuesta de Señalización Vertical

## 4.2.8.1.1 Señales Restrictivas (SR)

**Tabla 48:**Señalización restrictiva: Límite máximo

| FIGURA               | LUGAR              | CANTIDAD |
|----------------------|--------------------|----------|
|                      | Mercado de Chicama | 1        |
|                      | Colegio Santo      | 1        |
| 20                   | Domingo de Guzmán  | ı        |
| (30)                 | Iglesia de Chicama | 1        |
| km/h                 | Colegio Americana  | 1        |
|                      | Balanza            | 1        |
| Límite de velocidad: | Colegio Adonay     | 1        |
| 30 km                | Puente AA.HH.      | 4        |
| SU KIII              | Libertad           | 1        |

Nota. Fuente: Elaboración Propia

Tabla 49:

Señalización restrictiva: Serie de estacionamiento

| FIGURA                  | LUGAR                                 | CANTIDAD |
|-------------------------|---------------------------------------|----------|
|                         | Mercado de<br>Chicama                 | 1        |
| (E)                     | Iglesia de Chicama                    | 1        |
|                         | Balanza                               | 1        |
| Prohibido<br>estacionar | Complejo deportivo<br>AA.HH. Libertad | 1        |
|                         | Inicio de la avenida<br>Progreso      | 1        |
|                         | Final de la avenida<br>Progreso       | 1        |
|                         | Colegios de la<br>localidad           | 5        |
| Prohibidos camiones     | Balanza                               | 1        |

# 4.2.8.1.2 Señales Preventivas (SP)

**Tabla 50:**Señalización preventiva: Reductor de velocidad

| FIGURA      | LUGAR              | CANTIDAD |  |  |
|-------------|--------------------|----------|--|--|
|             | Mercado de         |          |  |  |
|             | Chicama            | ı        |  |  |
|             | Entrada de Chicama | 1        |  |  |
|             | Iglesia de Chicama | 1        |  |  |
| Reductor de | Jardín de niños    | 1        |  |  |
| velocidad   | Balanza            | 1        |  |  |

Nota. Fuente: Elaboración Propia

## 4.2.8.1.3 Señales Informativas (SI)

Tabla 51: Señalización Informativa en la avenida

| LUGAR                              | CANTIDAD                                                                           |  |  |
|------------------------------------|------------------------------------------------------------------------------------|--|--|
| Colegio Santo                      |                                                                                    |  |  |
| Domingo de                         | 1                                                                                  |  |  |
| Guzmán                             |                                                                                    |  |  |
| Colegio Americana                  | 1                                                                                  |  |  |
| Colegio Adonay                     | 1                                                                                  |  |  |
| Cada cierto tramo<br>de la avenida | 30                                                                                 |  |  |
|                                    | Colegio Santo Domingo de Guzmán Colegio Americana Colegio Adonay Cada cierto tramo |  |  |

# 4.2.8.1.4 Señales Turísticas y de Servicios (STS)

**Tabla 52:**Señalización Turística y de Servicios en la avenida

| FIGURA                                          | LUGAR                     | CANTIDAD |
|-------------------------------------------------|---------------------------|----------|
| Posta medica a la derecha                       | Pueblo de la<br>localidad | 1        |
|                                                 | Pueblo de la<br>localidad | 1        |
| Piscina a la derecha  Restaurante a la  derecha | Iglesia de Chicama        | 1        |

## 4.2.8.2 Propuesta de Señalización Horizontal

## 4.2.8.2.1 Señales de líneas Longitudinales.

Para ello se hará la delimitación entre la calzada y la ciclovía con el fin de que exista seguridad y se prevenga cualquier tipo de accidentes

Figura 12:

Delimitación entre calzada y ciclovía



Nota. Fuente: www.google.com

## 4.2.9 Elaboración del Presupuesto

Una vez determinados los espesores óptimos para cada capa estructural del pavimento articulado, procedemos a realizar el presupuesto general de lo que costará la alternativa propuesta de pavimentación. Para ello, se consideró las características y elementos del diseño geométrico, tales como el área total de veredas, área libre para árboles, área de ciclovías y calzada, área de señalizaciones viales, entre otros.

Para ejecutar el presupuesto de costos unitarios de cada partida, así como también la determinación de precios, se utilizó como referencia partidas de presupuestos reales creados para proyectos de inversión concretos, en alguna zona que posea las mismas características que la avenida Progreso de la localidad de Chicama.

**Tabla 53:**Presupuesto General de pavimentación urbana para la avenida Progreso

## PRESUPUESTO GENERAL

OBRA: Pavimentación Urbana de la avenida Progreso - Chicama FECHA: 5/12/2023

EMPRESA: ---

SECTOR: Localidad de Chicama PROVINCIA: Ascope

DEPARTAMENTO: La Libertad DISTRITO: Chicama

CONTRATANTE Municipalidad Distrital de Chicama

| CONTRATANTE | Widilicipalidad Distrital de Cilicarria           |      |          |              |                  |
|-------------|---------------------------------------------------|------|----------|--------------|------------------|
| ĺtem        | Descripción                                       | Und. | Metrado  | Precio S/.   | Parcial S/.      |
| 01          | OBRAS PROVISIONALES                               |      |          |              | \$/.12,300.00    |
| 01.01       | Cartel de obra                                    | und  | 1.00     | \$/.1,200.00 | \$/.1,200.00     |
| 01.02       | Caseta de guardia y almacén                       | und  | 2.00     | \$/.950.00   | \$/.1,900.00     |
| 01.03       | Señalización y seguridad de obra                  | glb  | 1.00     | \$/.9,200.00 | \$/.9,200.00     |
| 02          | OBRAS PRELIMINARES                                |      |          |              | \$/.207,600.00   |
| 02.01       | Limpieza del terreno natural                      | m2   | 24000.00 | \$/.1.44     | \$/.34,560.00    |
| 02.02       | Trazo y replanteo                                 | m2   | 24000.00 | \$/.7.21     | \$/.173,040.00   |
| 03          | MOVIMIENTO DE TIERRAS                             |      |          |              | \$/.227,700.00   |
| 03.01       | Corte en terreno natural a nivel de subrasante    | m3   | 7920.00  | \$/.10.00    | \$/.79,200.00    |
| 03.02       | Eliminación de material excedente                 | m3   | 9900.00  | \$/.15.00    | \$/.148,500.00   |
| 04          | PAVIMENTO ARTICULADO                              |      |          |              | \$/.2,645,400.00 |
| 04.01       | Perfilado compactado y conformación de subrasante | m2   | 24000.00 | \$/.4.90     | \$/.117,600.00   |
| 04.03       | Bae granular compactada E=0.21 m                  | m3   | 5040.00  | \$/.40.50    | \$/.204,120.00   |
| 04.04       | Capa de arena e=0.04 m                            | m3   | 960.00   | \$/.40.50    | \$/.38,880.00    |
| 04.05       | Suministro y colocación de adoquines e=0.08 m     | m2   | 24000.00 | \$/.90.20    | \$/.2,164,800.00 |
| 04.06       | Sellado de juntas con arena fina                  | m2   | 24000.00 | \$/.5.00     | \$/.120,000.00   |
| 05          | SEÑALIZACIÓN Y PINTURA                            |      |          |              | \$/.32,680.00    |
| 05.01       | Delimitación entre ciclovía y vía vehicular       | m    | 6000.00  | \$/.3.80     | \$/.22,800.00    |
| 05.02       | Delimitación de paraderos y otros                 | m    | 2600.00  | \$/.3.80     | \$/.9,880.00     |
|             | COSTO DIRECTO                                     |      |          |              | 3,125,680.00     |
|             | GG Variable (8%)                                  |      |          |              | 250,054.40       |
|             | GG Fijos (3%)                                     |      |          |              | 93,770.40        |
|             | Utilidad (7%)                                     |      |          |              | 156,284.00       |
|             | Sub Total                                         |      |          |              | 3,625,788.80     |
|             | IGV (18%)                                         |      |          |              | 652,641.98       |
|             | TOTAL PRESUPUESTO                                 |      |          |              | 4,278,430.78     |

Nota. Fuente: Programa S10 Presupuestos

### 4.3 Docimasia de Hipótesis

Acorde a la hipótesis que planteamos se determinó el diseño estructural del pavimento articulado de la avenida Progreso, teniendo como referencia los requerimientos normativos del Reglamento Nacional de Edificaciones CE 0.10 Pavimentos Urbanos y CE 0.40 Drenaje Urbano; así como también la guía del Manual AASHTO 93, obteniendo como resultado un sistema impecable de pavimentación tanto estructural como funcional, además de calcular su presupuesto de costo para su construcción.

Concluyendo que un sistema de pavimentación articulado es el idóneo para la zona de estudio, ya que no sólo tendrá un buen comportamiento antes las cargas que se le asignen, brindando seguridad y comodidad para todo aquel que la transite, sino que también impulsará a la localidad a un desarrollo más allá de sólo contar con la infraestructura en sí, ayudará a mejorar la calidad de vida de toda población que habita en Chicama.

#### IV. DISCUSIÓN DE RESULTADOS

| En el estudio de tránsito que se realizó el conteo vehicular con la                |
|------------------------------------------------------------------------------------|
| finalidad de hallar el ESAL de estudio con el cual se determinaría la cantidad de  |
| cargas a la cual estaría expuesta el pavimento, concluyendo que el tránsito en la  |
| avenida Progreso es relativamente bajo, transitando en su totalidad sólo vehículos |
| ligeros, mototaxis en su mayoría, acreditando así según especificaciones del       |
| Reglamento Nacional de Edificaciones CE 0.10 que la avenida Progreso se trata      |
| de una vía local.                                                                  |

Para el estudio de mecánica de suelos se realizaron 4 calicatas estratégicas en toda el área de estudio, se determinó así que el suelo de Chicama es idóneo para ejecutar el proyecto de pavimentación; además de conocer que el CBR de diseño de la subrasante era de 12% en promedio, lo cual según el Reglamento Nacional de Edificaciones CE 0.10, se clasificaba como una subrasante buena, no teniendo la necesidad de quitar o hacer un mejoramiento de la misma.

| <ul> <li>Para realizar el diseño del pavimento articulados se utilizó parámetros</li> </ul> |
|---------------------------------------------------------------------------------------------|
| de guía del Manual AASHTO 93, con el cual se obtuvo un pavimento articulado                 |
| con un adoquín de 6 cm, 4 cm para la cama de arena, y un espesor de base de 7               |
| cm que se cambió a 10 cm, según recomendaciones del Reglamento Nacional de                  |
| Edificaciones Espesores mínimos para la Base.                                               |
| <ul> <li>Además del diseño estructural del pavimento articulado, se realizó el</li> </ul>   |
| sistema de drenaje pluvial, siguiendo los criterios y normativas del Reglamento             |
| Nacional de Edificaciones CE 0.40, en el cual se consideró sumideros de                     |
| captación para las temporadas de lluvia en donde suele llover comúnmente en la              |
| zona, además de calcular los diámetros de las tuberías de conducción y el lugar             |
| en dónde evacuarán estas aguas.                                                             |
| ☐ Para las señalizaciones viales en la avenida, se tomaron en cuenta las                    |
| normas respectivas, y se determinó colocar sistemas de señalización verticales              |
| como letreros según su necesidad e importancia, durante toda la avenida,                    |
| asimismo se colocaron señalizaciones horizontales para delimitar los espacios de            |
| vías y ciclovías, ya que el diseño articulado funcionará como uno solo para toda la         |
| avenida, compartiendo espacio entre transeúntes y conductores.                              |
| <ul> <li>Como parte final de la investigación se realizó el presupuesto general</li> </ul>  |
| que tendría el proyecto de pavimentación, utilizando el programa S10                        |
| Presupuestos para su elaboración, en el cual se realizaron cálculos de metrados,            |
| precios unitarios, y porcentajes de costos; teniendo como resultado un                      |
| presupuesto total de S/.8, 921,418.00 el considera los gastos desde el retiro de la         |
| estructura que se presenta actualmente en la avenida Progreso hasta la                      |
| colocación del nuevo paquete estructural propuesto.                                         |
|                                                                                             |

# V. CONCLUSIONES

| <ul> <li>Los estudios mecánica de suelos realizados en laboratorio</li> </ul>                |
|----------------------------------------------------------------------------------------------|
| determinaron que la subrasante presenta un CBR de 12%, lo cual resulta ser apta              |
| para ser empleada en la construcción del nuevo diseño estructural de la vía, ya              |
| que cumple con los parámetros especificados por el Reglamento Nacional de                    |
| Edificaciones CE 0.10 Pavimentos Urbanos.                                                    |
| ☐ El análisis de tránsito vehicular permitió conocer que los vehículos                       |
| ligeros, especialmente los mototaxis son el tipo de vehículo que circulan con                |
| mayor frecuencia en la avenida Progreso.                                                     |
| Es estudio de tránsito determinó que la carga vehicular de diseño                            |
| (ESAL) a la cual estará sometido el pavimento articulado para un tiempo de                   |
| servicio de 20 años será de 17,645.94 EE.                                                    |
| <ul> <li>Para el diseño estructural del pavimento articulado que tendrá la vía de</li> </ul> |
| la avenida Progreso se tuvo en consideración los requerimientos normativos de                |
| las CE 0.10 Pavimentos Urbanos y se determinó que la estructura de las capas                 |
| estará conformada por un adoquín de 6 cm. (2.36 plg.), una cama de arena de 4                |
| cm. (1.57 plg.), y una base de 10 cm. (4 plg.).                                              |
| Además, se considerará la construcción de obras de arte, como                                |
| sardineles de confinamiento para la estructura del pavimento articulado de                   |
| acuerdo a la geometría de la avenida; así como también canales de drenaje para               |
| aguas pluviales, en los cuales se capte todas estas precipitaciones y se conduzca            |
| hacia el río Chicama con la finalidad de evitar inundaciones o aglomeraciones de             |
| agua estancada en la avenida.                                                                |
| ☐ El costo general del presupuesto que implicaría llevar a cabo el                           |
| proyecto de pavimentación urbana de la avenida Progreso propuesto con un                     |
| pavimento articulado fue de S/. 8,921,418.00 nuevos soles.                                   |
| ☐ Se deduce que el impacto que generaría un diseño de pavimentación                          |
| articulado en la avenida Progreso sería de gran importancia, ya que resaltaría               |
| aspectos económicos, históricos, culturales y sociales en la localidad, lo que               |
| mejoraría el nivel de calidad de vida de los habitantes.                                     |

# VI. RECOMENDACIONES

| ☐ Se recomienda realizar una inspección de calidad de los materiales que                  |
|-------------------------------------------------------------------------------------------|
| serán utilizados en la construcción del pavimento y verificar si cumplen con los          |
| estándares de calidad que demanda la normatividad.                                        |
| Los materiales que se emplearán para el diseño de la vía se tendrán                       |
| que compactar por capas hasta que se logre alcanzar los requerimientos exigidos           |
| por la CE 0.10 Pavimentos Urbanos, acorde con el valor obtenido en los ensayos            |
| de Proctor Modificado.                                                                    |
| ☐ Es importante que la vía del pavimento articulado, cuente con cordones                  |
| de confinamiento laterales en ciertos tramos de acuerdo a la geometría de la              |
| zona, para que así se eviten desplazamientos de los propios adoquines, la                 |
| apertura de las juntas o la dispersión de la base de la cama de arena.                    |
| ☐ Al momento de colocar la cama de arena deben procurar que esta este                     |
| suelta, no debe apisonarse, su altura debe ser mayor a los 4 cm calculados con la         |
| finalidad de que cuando se realice la compactación final junto con los adoquines          |
| se tenga la altura deseada.                                                               |
| <ul> <li>Para la colocación de los adoquines es importante haber realizado los</li> </ul> |
| estudios topográficos, ya que se colocarán hilos para tener un alineamiento               |
| correcto; los adoquines deben ser colocados de manera continua, teniendo en               |
| cuenta que las juntas no deben ser menores a 3mm y no mayores a 5 mm; y                   |
| deben ser ajustados con golpes laterales con un martillo de goma.                         |

## VII. REFERENCIAS BIBLIOGRÁFICAS

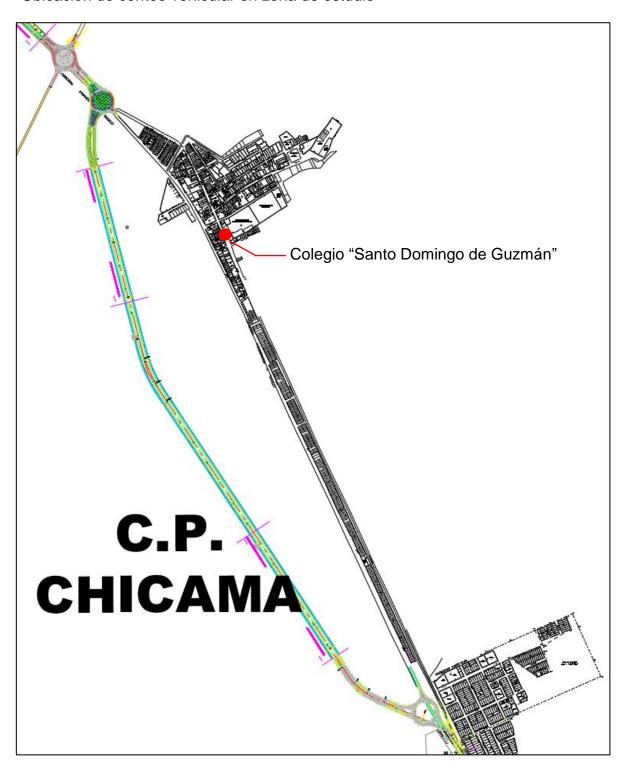
- Becerra Mena, A.G. y Valverde Lujan, E.S. (2022) Diseño estructural del pavimento mediante la metodología AASHTO 93 para la av. Manuel Seoane entre el tramo de la av. Universitaria con la panamericana norte, distrito Guadalupe- Provincia Pacasmayo- La Libertad [Tesis de Título Profesional, Universidad Privada Antenor Orrego].

  https://repositorio.upao.edu.pe/bitstream/20.500.12759/9901/1/REP\_ANDR
  - https://repositorio.upao.edu.pe/bitstream/20.500.12759/9901/1/REP\_ANDR %c3%89S.BECERRA\_ELAINE.VALVERDE\_DISE%c3%91O.ESTRUCTUR AL.DEL.PAVIMENTO.pdf
- Heras Amaya, C.E. y Ramirez Pachamango, E. (2022) Evaluación técnica y económica de propuestas de diseño de pavimentos flexible, rígido y articulado, para el centro poblado de Farias, distrito de Chocope, Provincia de Ascope La Libertad [Tesis de Título Profesional, Universidad Privada Antenor Orrego].
  - http://repositorio.upao.edu.pe/bitstream/20.500.12759/6640/1/REP\_CARLO
    .HERAS\_ENRIQUE.RAMIREZ\_EVALUACION.TECNICA.Y.ECONOMICA
    pages\_deleted.pdf
- Hernández Cepeda, Y. (2018) Pavimentos de adoquines de concreto una solución ambiental en la construcción de infraestructura vial colombiana [Tesis de Título Profesional, Universidad Militar Nueva Granada].

  <a href="https://repository.unimilitar.edu.co/bitstream/handle/10654/17882/Hern%c3">https://repository.unimilitar.edu.co/bitstream/handle/10654/17882/Hern%c3</a>
  <a href="mailto:washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/washing.com/wash
- López Chávez, D.M. y Yañez Tornero, C.E. (2021) Diseño del pavimento articulado para mejorar el uso peatonal en la calle Las Pizzas del distrito de Miraflores Lima 2021 [Tesis de Título Profesional, Universidad César Vallejo].
  - https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/68350/L%c3 %b3pez\_CDM-Ya%c3%b1nez\_TCE-SD.pdf?sequence=1&isAllowed=y
- Menéndez, R. (2016) *Ingeniería de Pavimentos.* Lima Instituto de la Construcción y Gerencia.

- Ministerio de Vivienda, Construcción y Saneamiento. (2010) Lima, Perú https://www.gob.pe/vivienda
- Noir, A. y Luna, I. (2019) *Mejora de la red vial del barrio La Bianca* [Tesis de título Profesional, Universidad tecnológica Nacional].

  <a href="https://ria.utn.edu.ar/xmlui/bitstream/handle/20.500.12272/3608/PROYECT">https://ria.utn.edu.ar/xmlui/bitstream/handle/20.500.12272/3608/PROYECT</a>
  <a href="https://own.edu.ar/xmlui/bitstream/handle/20.500.12272/3608/PROYECT">O%20FINAL%20-%20NOIR-LUNA.pdf?sequence=1&isAllowed=y</a>
- Norma Técnica CE. 010 (2021) Pavimentos Urbanos


  <a href="https://cdn.www.gob.pe/uploads/document/file/2365614/14%20CE.010%20">https://cdn.www.gob.pe/uploads/document/file/2365614/14%20CE.010%20</a>

  PAVIMENTOS%20URBANOS%20DS%20N%C2%B0%200102010.pdf?v=1636051827
- Ramírez Mendoza, A.G. y Salazar Gómez, H.M. (2023) Diseño estructural del pavimento articulado en camino vecinal LI 1099, hacia la campiña de Moche, Distrito de Moche, Provincia de Trujillo, Departamento de La Libertad [Tesis de Título Profesional, Universidad Privada Antenor Orrego]. <a href="https://repositorio.upao.edu.pe/bitstream/20.500.12759/10677/1/REP\_ANTHONY.RAMIREZ\_HORACIO.SALAZAR\_DISE%c3%91O.ESTRUCTURAL.DEL.PAVIMENTO.pdf">https://repositorio.upao.edu.pe/bitstream/20.500.12759/10677/1/REP\_ANTHONY.RAMIREZ\_HORACIO.SALAZAR\_DISE%c3%91O.ESTRUCTURAL.DEL.PAVIMENTO.pdf</a>
- Reglamento Nacional de Edificaciones CE. 0.10 (2021) *Pavimentos Urbanos*<a href="https://www.gob.pe/institucion/vivienda/informes-publicaciones/2309793-reglamento-nacional-de-edificaciones-rne">https://www.gob.pe/institucion/vivienda/informes-publicaciones/2309793-reglamento-nacional-de-edificaciones-rne</a>
- Rondón, H. (2015) *Pavimentos, materiales, construcción y diseño.* Lima: Empresa Editora Macro

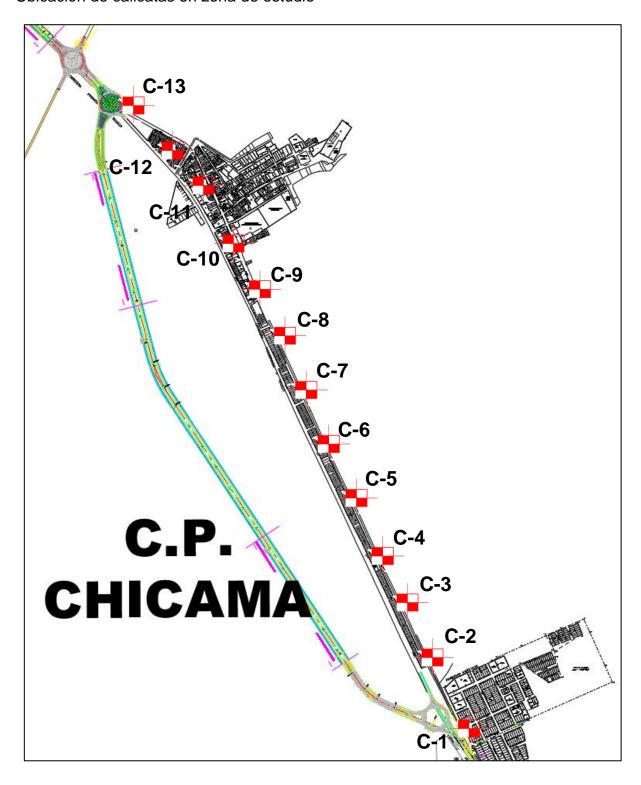
## VIII. ANEXOS

## 8.1 Anexo 1. Conteo vehicular en la zona de estudio

Figura 13:
Ubicación de conteo vehicular en zona de estudio



**Tabla 54:**Conteo vehicular de Norte a Sur


| Tipo de Vehículos  | Días de la semana |      |      |      |      |      | Total |         |
|--------------------|-------------------|------|------|------|------|------|-------|---------|
| ripo de Verilodios | lun               | mar  | mie  | jue  | vie  | Sáb  | dom   | _ IOIAI |
| Motocicleta        | 225               | 210  | 224  | 212  | 202  | 170  | 159   | 1402    |
| Mototaxi           | 2056              | 1943 | 1933 | 1916 | 2027 | 1100 | 517   | 11492   |
| Moto-carga         | 26                | 22   | 18   | 18   | 19   | 16   | 14    | 133     |
| Automóvil          | 272               | 266  | 263  | 275  | 283  | 290  | 260   | 1909    |
| Camion Normal      | 63                | 58   | 55   | 66   | 65   | 70   | 56    | 433     |
| eta<br>Pick up     | 166               | 171  | 177  | 165  | 159  | 155  | 124   | 1117    |
| Combi              | 45                | 35   | 29   | 23   | 37   | 21   | 13    | 203     |
| Micro              | 16                | 18   | 16   | 17   | 18   | 11   | 2     | 98      |

**Tabla 55:**Conteo vehicular de Sur a Norte

| Tipo de Vehículos  | Días de la semana |      |      |      |      |      | Total |       |
|--------------------|-------------------|------|------|------|------|------|-------|-------|
| ripo de veriiculos | lun               | mar  | mie  | jue  | vie  | Sáb  | dom   | _     |
| Motocicleta        | 203               | 191  | 212  | 203  | 205  | 182  | 146   | 1342  |
| Mototaxi           | 1738              | 1602 | 1789 | 1730 | 1818 | 1068 | 577   | 10322 |
| Moto-carga         | 22                | 14   | 30   | 17   | 23   | 17   | 8     | 131   |
| Automóvil          | 284               | 272  | 252  | 252  | 279  | 286  | 247   | 1872  |
| Camion Normal      | 67                | 63   | 60   | 63   | 59   | 65   | 56    | 433   |
| eta<br>Pick up     | 158               | 159  | 168  | 156  | 149  | 145  | 119   | 1054  |
| Combi              | 32                | 22   | 26   | 31   | 33   | 18   | 12    | 174   |
| Micro              | 17                | 18   | 17   | 19   | 19   | 11   | 2     | 103   |

### 8.2 Anexo 2. Ubicación de Calicatas en zona de estudio

Figura 14:
Ubicación de calicatas en zona de estudio



### 8.3 Anexo 3. Perfil Estratigráfico de calicatas

#### Tabla 56:

Perfil estratigráfico de Calicata N°1

# DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

DEPARTAMENTO: La Libertad CALICATA: C – 01

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

COORDENADA UTM: 7°50′41″S 79°08′49″O PROFUNDIDAD: 1.50 m

FECHA: Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | M    | IUESTRI | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|---------|-------|
| (m)         | LSTRATO | GRÁFICO | sucs      | DEL ESTRATO                                                                    | TIPO | N°      | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1       | 0.5 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1       | 1.5 m |

#### Tabla 57:

Perfil estratigráfico de Calicata N°2

# DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

**DEPARTAMENTO:** La Libertad **CALICATA:** C – 02

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

**COORDENADA UTM:** 7°56′41″S 79°14′49″O **PROFUNDIDAD:** 1.50 m

FECHA: Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | M    | IUESTRI | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|---------|-------|
| (m)         | ESTRATO | GRÁFICO | SUCS      | DEL ESTRATO                                                                    | TIPO | N°      | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1       | 0.8 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1       | 1.5 m |

#### Tabla 58:

Perfil estratigráfico de Calicata N°3

# DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

**DEPARTAMENTO:** La Libertad **CALICATA:** C – 03

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

COORDENADA UTM: 8°05′41″S 79°20′49″O PROFUNDIDAD: 1.50 m

FECHA: Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | N    | IUESTR | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|--------|-------|
| (m)         | LSTRATO | GRÁFICO | SUCS      | DEL ESTRATO                                                                    | TIPO | N°     | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1      | 0.6 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1      | 1.5 m |

#### Tabla 59:

Perfil estratigráfico de Calicata N°4

# DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

**DEPARTAMENTO:** La Libertad **CALICATA:** C – 04

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

COORDENADA UTM: 8°13'41"S 79°26'49"O PROFUNDIDAD: 1.50 m

FECHA: Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | M    | IUESTRI | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|---------|-------|
| (m)         | ESTRATO | GRÁFICO | SUCS      | DEL ESTRATO                                                                    | TIPO | N°      | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1       | 0.7 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1       | 1.5 m |

#### Tabla 60:

Perfil estratigráfico de Calicata N°5

# DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

DEPARTAMENTO: La Libertad CALICATA: C – 05

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

COORDENADA UTM: 8°21'41"S 79°34'49"O PROFUNDIDAD: 1.50 m

**FECHA:** Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | N    | IUESTR | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|--------|-------|
| (m)         | ESTRATO | GRÁFICO | sucs      | DEL ESTRATO                                                                    | TIPO | N°     | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1      | 0.8 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1      | 1.5 m |

Tabla 61:

Perfil estratigráfico de Calicata N°6

# DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

DEPARTAMENTO: La Libertad CALICATA: C – 06

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

**COORDENADA UTM:** 8°29'41"S 79°44'49"O **PROFUNDIDAD:** 1.50 m

**FECHA:** Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | N    | IUESTR | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|--------|-------|
| (m)         | ESTRATO | GRÁFICO | sucs      | DEL ESTRATO                                                                    | TIPO | N°     | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1      | 0.6 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1      | 1.5 m |

#### Tabla 62:

Perfil estratigráfico de Calicata N°7

# DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

DEPARTAMENTO: La Libertad CALICATA: C – 07

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

COORDENADA UTM: 8°37′41″S 79°50′49″O PROFUNDIDAD: 1.50 m

**FECHA:** Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | N    | IUESTR | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|--------|-------|
| (m)         | ESTRATO | GRÁFICO | SUCS      | DEL ESTRATO                                                                    | TIPO | N°     | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1      | 0.7 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1      | 1.5 m |

#### Tabla 63:

Perfil estratigráfico de Calicata N°8

### DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

DEPARTAMENTO: La Libertad CALICATA: C – 08

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

COORDENADA UTM: 8°45′41″S 79°58′49″O PROFUNDIDAD: 1.50 m

FECHA: Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | N    | UESTR | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|-------|-------|
| (m)         | ESTRATO | GRÁFICO | sucs      | DEL ESTRATO                                                                    | TIPO | N°    | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1     | 0.9 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1     | 1.5 m |

Tabla 64:

Perfil estratigráfico de Calicata N°9

# DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

DEPARTAMENTO: La Libertad CALICATA: C – 09

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

COORDENADA UTM: 8°53'41"S 80°06'49"O PROFUNDIDAD: 1.50 m

**FECHA:** Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | N    | IUESTR | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|--------|-------|
| (m)         | ESTRATO | GRÁFICO | sucs      | DEL ESTRATO                                                                    | TIPO | N°     | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1      | 0.8 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1      | 1.5 m |

#### Tabla 65:

Perfil estratigráfico de Calicata N°10

# DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

DEPARTAMENTO: La Libertad CALICATA: C – 10

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

**COORDENADA UTM:** 9°01′41″S 80°04′49″O **PROFUNDIDAD:** 1.50 m

**FECHA:** Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | N    | IUESTR | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|--------|-------|
| (m)         | ESTRATO | GRÁFICO | sucs      | DEL ESTRATO                                                                    | TIPO | N°     | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1      | 0.7 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1      | 1.5 m |

#### Tabla 66:

Perfil estratigráfico de Calicata N°11

# DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

DEPARTAMENTO: La Libertad CALICATA: C – 11

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

**COORDENADA UTM:** 9°09′41″S 80°12′49″O **PROFUNDIDAD:** 1.50 m

FECHA: Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | N    | UESTR | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|-------|-------|
| (m)         | ESTRATO | GRÁFICO | sucs      | DEL ESTRATO                                                                    | TIPO | N°    | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1     | 0.6 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1     | 1.5 m |

#### Tabla 67:

Perfil estratigráfico de Calicata N°12

# DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

DEPARTAMENTO: La Libertad CALICATA: C – 12

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

COORDENADA UTM: 9°21′41″S 80°20′49″O PROFUNDIDAD: 1.50 m

FECHA: Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | N    | IUESTR | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|--------|-------|
| (m)         | ESTRATO | GRÁFICO | sucs      | DEL ESTRATO                                                                    | TIPO | N°     | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1      | 0.6 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1      | 1.5 m |

#### Tabla 68:

Perfil estratigráfico de Calicata N°13

## DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD – 2023

UBICACIÓN: Localidad de Chicama PROVINCIA: Ascope

DEPARTAMENTO: La Libertad CALICATA: C – 13

**ELABORADO POR:** Jeferson Garcia Vigo

**TÉCNICA DE INVESTIGACIÓN:** Calicata **DIMENSIONES:** 1.20 m x 1.00 m

COORDENADA UTM: 9°29'41"S 80°28'49"O PROFUNDIDAD: 1.50 m

**FECHA:** Noviembre del 2023

| PROFUNDIDAD | ESTRATO | SÍMBOLO | CLASIFIC. | DESCRIPCIÓN                                                                    | N    | IUESTR | EO    |
|-------------|---------|---------|-----------|--------------------------------------------------------------------------------|------|--------|-------|
| (m)         | ESTRATO | GRÁFICO | sucs      | DEL ESTRATO                                                                    | TIPO | N°     | PROF. |
| 0.00        | 1       |         | GW        | Grava mezclada con tierra, bien compactada, de color oscuro.                   |      | 1      | 0.7 m |
| 1.00        | 2       |         | SW        | Arena gruesa<br>bien<br>graduada,<br>partículas con<br>diferente<br>dimensión. |      | 1      | 1.5 m |

### 8.4 Anexo 4. Certificados de ensayos de Laboratorio de Mecánica de Suelos

Figura 15:
Certificado de ensayo de Contenido de Humedad

| DOCENTE:<br>ENSAYO: | CONTENIZOO                                                                        |                                                                                     | 1                                            |                                      | -                               |                   |                |      |
|---------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------|-------------------|----------------|------|
| ENSAYO:             | CONTENTO                                                                          |                                                                                     | J                                            |                                      | GRUPO N*:                       |                   |                | _    |
|                     |                                                                                   | DAGSMUH 30                                                                          | ]                                            |                                      |                                 |                   |                |      |
| COORDINADOR:        |                                                                                   |                                                                                     | ]                                            |                                      | FECHA:                          | 13                | 07             | 23   |
| Nota:               | Esta hoja será presentadi<br>instrumentos que necesi<br>responsabilidad del estud | a antes de ingresar al labora<br>tarán para el desarrollo del<br>diantes cuidarlos. | atorio y en ella debe<br>mismo. Una vez entr | estar detallado e<br>egado los mater | el ensayo, los<br>iales y/o equ | equipo<br>ipos, e | os e           |      |
|                     | ESTUDIANTE                                                                        | 1D                                                                                  | FIRMA                                        | -                                    | STRO                            | C.U.              | D.N.I.         | CI   |
| Garria              | Jigo Jeferson                                                                     | 000 192194                                                                          | 1.1h                                         | ENTRADA<br>3:∞ pm                    | 4:30 pm                         |                   |                | _    |
| Ourcid C            | ndo referson                                                                      | 000 192174                                                                          | 7975                                         | 3.000                                | 4.50 pm                         |                   |                |      |
|                     |                                                                                   | 1                                                                                   |                                              |                                      |                                 |                   |                |      |
|                     |                                                                                   |                                                                                     |                                              |                                      |                                 |                   |                |      |
|                     |                                                                                   |                                                                                     |                                              |                                      |                                 |                   |                |      |
|                     |                                                                                   |                                                                                     |                                              |                                      |                                 |                   |                |      |
| ENTREGA DE EQ       | versitario; C.B.= Carnet de Bib<br>UIPOS Y/O MATERIALES                           | lioteca                                                                             |                                              |                                      |                                 |                   |                |      |
| CÓDIGO              | UIPOS Y/O MATERIALES                                                              | DESCRIP                                                                             |                                              |                                      |                                 | ď                 | NTIDA          | D    |
|                     | Horno de se                                                                       |                                                                                     |                                              |                                      |                                 | и                 | ANTIDA         | D    |
| CÓDIGO              | Horno de se                                                                       | DESCRIP                                                                             |                                              |                                      |                                 | и                 | ANTIDA         | D    |
| CÓDIGO              | Horno de se<br>Balanza<br>Bandejas d                                              | DESCRIP<br>cado (110°C ± 5°                                                         |                                              |                                      |                                 | ď                 | ANTIDA         | ID.  |
| CÓDIGO              | Horno de se                                                                       | DESCRIP<br>cado (110°C ± 5°                                                         |                                              |                                      |                                 | u                 | ANTIDA         | ID.  |
| CÓDIGO              | Horno de se<br>Balanza<br>Bandejas d                                              | DESCRIP<br>cado (110°C ± 5°                                                         |                                              |                                      |                                 | ď                 | ANTIDA         | ID . |
| CÓDIGO              | Horno de se<br>Balanza<br>Bandejas d                                              | DESCRIP<br>cado (110°C ± 5°                                                         |                                              |                                      |                                 | cu .              | ANTIDA         | LD . |
| CÓDIGO              | Horno de se<br>Balanza<br>Bandejas d                                              | DESCRIP<br>cado (110°C ± 5°                                                         |                                              |                                      |                                 | α                 | ANTID <i>A</i> | ID . |
| CÓDIGO              | Horno de se<br>Balanza<br>Bandejas d                                              | DESCRIP<br>cado (110°C ± 5°<br>e duminio<br>sequidod                                | °c)                                          |                                      |                                 | CA.               | ANTIDA         | ID . |
| CÓDIGO              | Horno de se<br>Balanza<br>Bandejas d                                              | DESCRIP<br>cado (110°C ± 5°<br>e duminio<br>sequidod                                |                                              | ratorio de<br>Inica de suelo         | osiyil                          | c.                | ANTID <i>A</i> | AD   |
| CÓDIGO              | Horno de se<br>Balanza<br>Bandejas d                                              | DESCRIP<br>cado (110°C ± 5°<br>e duminio<br>sequidod                                | IPAO Labo<br>RECII                           | BIDO                                 | osiyii                          | 0                 | ANTIDA         | AD   |
| CÓDIGO              | Horno de se<br>Balanza<br>Bandejas d                                              | DESCRIP<br>cado (110°C ± 5°<br>e duminio<br>sequidod                                | °c)                                          | BIDO                                 | osiyii<br>)                     | C                 | ANTIDA         | AD . |
| CÓDIGO              | Horno de se<br>Balanza<br>Bandejas d                                              | DESCRIP<br>cado (110°C ± 5°<br>e duminio<br>sequidod                                | IPAO Labo<br>RECII                           | BIDO                                 | osiyii<br>)                     | C                 | ANTIDA         | AD . |

Nota. Firmado por jefe de laboratorio de Mecánica de Suelos I y II de la Universidad Privada Antenor Orrego

**Figura 16:**Certificado de ensayo de Granulometría por Tamizado

| DOCENTE:         |                                                          |                                                                                           |                             |                            |           |    |        |      |
|------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|----------------------------|-----------|----|--------|------|
| ENSAYO:          |                                                          |                                                                                           | ]                           |                            | GRUPO N*: |    |        |      |
| Elibrio.         | GRANULOME.                                               | TRÍA                                                                                      | 1                           |                            |           |    |        |      |
|                  |                                                          |                                                                                           | ]                           |                            |           |    |        |      |
| COORDINADOR:     |                                                          |                                                                                           | ]                           |                            | FECHA:    | 15 | 07     | 23   |
| Nota:            |                                                          | da antes de ingresar al labora<br>sitarán para el desarrollo del r<br>udiantes cuidarlos. |                             |                            |           |    |        |      |
|                  | ESTUDIANTE                                               | ID.                                                                                       | FIRMA                       | REG                        | ISTRO     | cu | D.N.I. | CB   |
|                  |                                                          |                                                                                           | list                        | ENTRADA                    | SALIDA    |    | J.M.J. | _    |
| Geneie V         | Jigo Jefason                                             | 000192194                                                                                 | mg .                        | 3;∞ pm                     | 5:30 pm   |    |        |      |
|                  |                                                          |                                                                                           | 11                          |                            |           |    |        |      |
|                  |                                                          |                                                                                           |                             |                            |           |    | _      | _    |
|                  |                                                          |                                                                                           |                             |                            |           |    |        |      |
| C.U.=Carnet Univ | versitario; C.B.= Carnet de Bli                          | blioteca                                                                                  |                             |                            |           |    |        |      |
|                  | versitario; C.B.= Carnet de Bil<br>IUIPOS Y/O MATERIALES | blioteca                                                                                  | ción                        |                            |           | CA | ANTIDA | D    |
| ENTREGA DE EQ    | Balanza elect                                            | <b>DESCRIP</b> O                                                                          | CIÓN                        |                            |           | CA | ANTIDA | ID.  |
| ENTREGA DE EQ    | Balanza elect                                            | DESCRIPC<br>Sirónica<br>aluminio                                                          |                             |                            |           | CA | ANTIDA | ND.  |
| ENTREGA DE EQ    | Balanza dect  Bandeja de  Tomices de                     | DESCRIPC<br>irrónica<br>aluminio<br>malla cuadrada                                        |                             |                            |           | CA | ANTIDA | LD.  |
| ENTREGA DE EQ    | Balanza elect Bandeja de Tomices de Brocha               | DESCRIPCIÓNICA aluminio malla cuadrada secado (110°C 4 1                                  |                             |                            |           | CA | NTIDA  | ND . |
| ENTREGA DE EQ    | Balanza dect  Bandeja de  Tomices de                     | DESCRIPCIÓNICA aluminio malla cuadrada secado (110°C 4 1                                  |                             |                            |           | C  | ANTIDA | ND . |
| ENTREGA DE EQ    | Balanza elect Bandeja de Tomices de Brocha               | DESCRIPCIÓNICO.  alumínio  malla cuadrada  secado (110°C & 1)  sequidad                   | 5°C)                        | rio de<br>rio de cuelos IV |           | CA | ANTIDA | ND.  |
| CÓDIGO           | Balanza elect Bandeja de Tomices de Brocha               | DESCRIPCIÓNICA aluminio malla cuadrada secado (110°C 4 1                                  | 5°C)                        | rin de<br>o de suelos I y  |           | CA | ANTIDA | ND . |
| ENTREGA DE EQ    | Balanza elect Bandeja de Tomices de Brocha               | DESCRIPCIÓNICO.  alumínio  malla cuadrada  secado (110°C & 1)  sequidad                   | Sec)                        | de suelos 1 y              | "         | CA | ANTIDA | ND   |
| CÓDIGO           | Balanza elect Bandeja de Tomices de Brocha               | DESCRIPCIÓNICO.  alumínio  malla cuadrada  secado (110°C & 1)  sequidad                   | C Laborato Mecànice 15 JUL. | 2023                       |           | CA | ANTIDA | ND   |
| CÓDIGO           | Balanza elect Bandeja de Tomices de Brocha               | DESCRIPTION INTO INTO INTO INTO INTO INTO INTO                                            | Sec)                        | 2023                       |           | CA | ANTIDA | ND . |

Nota. Firmado por jefe de laboratorio de Mecánica de Suelos I y II de la Universidad Privada Antenor Orrego

Figura 17: Certificado de ensayo de Proctor Modificado

| DOCENTE:        |                                                      |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |         | _      | _    |
|-----------------|------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------|------|
| ENSAYO:         | NAME OF TAXABLE PARTY.                               |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GRUPO N*: |         |        | _    |
|                 | PROCTOR MO                                           | DIFICADO                                                                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |         |        |      |
| COORDINADOR:    |                                                      |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FECHA:    | 10      | 07     | 23   |
| Nota:           |                                                      | da antes de ingresar al laborat<br>sitarán para el desarrollo del m<br>udiantes cuidarlos. |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |         |        |      |
|                 | ESTUDIANTE                                           | - 10                                                                                       | TIRAAA     | REG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STRO      | <b></b> |        |      |
| 4               | ESTUDIANTE                                           | 1D                                                                                         | FIRMA      | ENTRADA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SALIDA    | C.U.    | D.N.I. | C.B. |
| Garcia Via      | go Jeferson                                          | 000 192194                                                                                 | full       | 9:00 am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1:30 pm   |         |        |      |
|                 |                                                      |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |         |        |      |
|                 |                                                      |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |         |        |      |
|                 |                                                      |                                                                                            | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |         |        | _    |
|                 |                                                      |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | _       |        | _    |
| ENTREGA DE EQUI | POS Y/O MATERIALES                                   |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |         |        |      |
| CÓDIGO          | POS Y/O MATERIALES                                   | DESCRIPC                                                                                   | IÓN        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | ď       | ANTIDA | AD   |
|                 | Tamiz                                                |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | c       | ANTIDA | ND . |
|                 | Tamiz<br>Horno de                                    | DESCRIPC                                                                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | c       | ANTIDA | AD   |
|                 | Tamiz<br>Horno de                                    |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | ď       | ANTIDA | AD . |
|                 | Tamiz<br>Horno de<br>Balanza<br>Probeta              | secado (110°C±51                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | c.      | ANTIDA | AD   |
|                 | Tamiz<br>Horno de<br>Balanza<br>Probeta<br>Piston ma | secado (110°C±51                                                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | c       | ANTIDA | AD   |
|                 | Tamiz Horno de Balanza Probeta Piston ma             | secado (110°C±5                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 0       | ANTIDA | AD   |
|                 | Tamiz Horno de Bolonza Probeta Piston ma Molde 6"    | secado (110°C±5)<br>unual                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | C/      | ANTIDA | AD   |
|                 | Tamiz Horno de Bolonza Probeta Piston ma Molde 6"    | secado (110°C±5)<br>unual<br>e seguridad<br>de aluminio                                    | •‹)        | nrie da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VII.      | CO.     | ANTIDA | AD   |
|                 | Tamiz Horno de Bolonza Probeta Piston ma Molde 6"    | secado (110°C±5)<br>unual<br>e seguridad<br>de aluminio                                    | a Children | (3 Octobrio 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VII.      | 0       | ANTIDA | AD   |
| CÓDIGO          | Tamiz Horno de Bolonza Probeta Piston ma Molde 6"    | secado (110°C±5)<br>unual<br>e seguridad<br>de aluminio                                    | a Children | IDO<br>utili pla<br>utili pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | γII       | c       | ANTIDA | AD   |
| CÓDIGO          | Tamiz Horno de Bolonza Probeta Piston ma Molde 6"    | secado (110°C±5)<br>unual<br>e seguridad<br>de aluminio                                    | a Children | intin the card of | Į II Į    | o o     | ANTIDA | AD   |
| CÓDIGO          | Tamiz Horno de Bolonza Probeta Piston ma Molde 6"    | secado (110°C±5)<br>enual<br>de aluminio                                                   | •‹)        | 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | УП        | 0       | ANTIDA | AD   |

Nota. Firmado por jefe de laboratorio de Mecánica de Suelos I y II de la Universidad Privada Antenor Orrego

Figura 18: Certificado de ensayo de CBR

| DOCENTE:       |                                                                                      |                                                                                   |                                            |                                      |                                |            |               |      |
|----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|--------------------------------|------------|---------------|------|
| ENSAYO:        | [-00/6 \                                                                             |                                                                                   |                                            |                                      | GRUPO N*:                      |            |               |      |
|                | EURIC Colliporala<br>Ensoyo de Re<br>de Calliporala                                  | Bearing Ratio:                                                                    |                                            |                                      |                                |            |               |      |
| COORDINADOR:   |                                                                                      |                                                                                   |                                            |                                      | FECHA:                         | 22         | 07            | 23   |
| Nota:          | Esta hoja será presentada<br>instrumentos que necesita<br>responsabilidad del estudi | antes de ingresar al laborat<br>arán para el desarrollo del m<br>antes cuidarlos. | orio y en ella debe<br>nismo. Una vez entr | estar detallado e<br>egado los mater | l ensayo, los<br>lales y/o equ | equipos, e | os e<br>s     |      |
|                | ESTUDIANTE                                                                           | 1D                                                                                | FIRMA                                      | REGI                                 | SALIDA                         | c.u.       | D.N.I.        | C.B  |
| 0 - 1          | 7                                                                                    | 000 103104                                                                        | 1.11                                       | 3:00 pm                              | 100 March 4, 20 Mar            |            |               |      |
| Garcia Via     | go Jeperson                                                                          | 000 192194                                                                        | 4.4                                        | 3.000                                | 1.007                          |            |               |      |
|                | 11                                                                                   |                                                                                   |                                            |                                      |                                |            |               |      |
| w talle        |                                                                                      |                                                                                   |                                            |                                      |                                |            |               |      |
|                |                                                                                      |                                                                                   |                                            |                                      |                                |            |               |      |
|                |                                                                                      |                                                                                   |                                            |                                      |                                | _          | $\overline{}$ | _    |
|                | ersitario; C.B.= Carnet de Bibli                                                     | oteca                                                                             |                                            |                                      |                                |            |               |      |
|                |                                                                                      | oteca                                                                             | ción                                       |                                      |                                | C          | ANTIDA        | ND.  |
| ENTREGA DE EQU | DIPOS Y/O MATERIALES                                                                 | DESCRIPC                                                                          |                                            |                                      |                                | C          | ANTIDA        | AD   |
| ENTREGA DE EQU | Tamiz Horno de see                                                                   | DESCRIPC                                                                          |                                            |                                      |                                | C          | ANTIDA        | AD   |
| ENTREGA DE EQU | Tamiz Horno de sea                                                                   | DESCRIPC  Cado (110°C ≥ 5°                                                        |                                            |                                      |                                | C          | ANTIDA        | AD.  |
| ENTREGA DE EQU | Tamiz Horno de ser Balanza digi                                                      | DESCRIPC<br>cado (110°C ± 51                                                      |                                            |                                      |                                | C          | ANTIDA        | AD   |
| ENTREGA DE EQU | Jamiz Horno de ser Bolanza digi Probeta Piston monu                                  | DESCRIPC<br>cado (110°C ± 51                                                      |                                            |                                      |                                | C          | ANTIDA        | AD   |
| ENTREGA DE EQU | Tomiz Horno de sea Bolanza digi Probeta Piston monu Moldes                           | DESCRIPC<br><u>cado</u> (110°C ± 5°<br><u>1</u> 1701                              |                                            |                                      |                                | c          | ANTIDA        | AD   |
| ENTREGA DE EQU | Tamiz Horno de see Bolanza digi Probeta Piston monu Moldes Guantes de                | DESCRIPC  cado (110°C ± 5°  dal  seguridad                                        |                                            |                                      |                                | C          | ANTIDA        | AD   |
| ENTREGA DE EQU | Tamiz Horno de ser Balanza digi Probeta Piston manu Moldes Guantes de                | DESCRIPCE  Eado (110°C ± 5°  Italian  Sequidacl  Eduminio                         | °c)                                        |                                      |                                | C          | ANTIDA        | AD . |
| CÓDIGO         | Tamiz Horno de see Bolanza digi Probeta Piston monu Moldes Guantes de                | DESCRIPCE  Eado (110°C ± 5°  Italian  Sequidacl  Eduminio                         | °c)                                        | gratorio de                          | a lull                         | C          | ANTIDA        | AD   |
| ENTREGA DE EQU | Tamiz Horno de ser Balanza digi Probeta Piston manu Moldes Guantes de                | DESCRIPCE  Eado (110°C ± 5°  Italian  Sequidacl  Eduminio                         | PAO Labo                                   | oratorio de<br>ánica de suel<br>BIDC | ostyll                         | C          | ANTIDA        | AD   |
| CÓDIGO         | Tamiz Horno de ser Balanza digi Probeta Piston manu Moldes Guantes de                | DESCRIPCE  Eado (110°C ± 5°  Italian  Sequidacl  Eduminio                         | PAO Labo                                   | UL. 2023                             |                                | C          | ANTIDA        | AD   |
| CÓDIGO         | Tamiz Horno de ser Balanza digi Probeta Piston manu Moldes Guantes de                | DESCRIPCE  Cado (110°C ± 5°C  Ital  Cal  Caluminio  Caclador                      | PAO Labo                                   | UL. ZUZS                             |                                | C          | ANTID         | AD   |

Nota. Firmado por jefe de laboratorio de Mecánica de Suelos I y II de la Universidad Privada Antenor Orrego

### 8.5 Anexo 5. Resultados de ensayos de Laboratorio de Mecánica de Suelos

|        | INFORME DE ENSAYO             | Código  | 192194 |
|--------|-------------------------------|---------|--------|
| TIDAO  | INI ORIVIE DE LINSATO         | Calidad | ۸      |
| SUPAU  | ENSAYO DE CONTENIDO DE HUMDAD | Calluau | ^      |
| CT NO. | NTP 339.127                   | Página  | 1 de 1 |

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural
Muestreado por : Solicitante
Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-1 N° de Muestra : M-1

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1 | MOLDE 2 | MOLDE 3 |
|---------------------------------------------|---------|---------|---------|
| PESO DEL RECIPIENTE (g)                     | 110.2   | 111.2   | 110.5   |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400    | 1405    | 1402    |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1309.5  | 1313.5  | 1311.9  |
| PESO DEL AGUA (g)                           | 90.5    | 91.5    | 90.1    |
| PESO DE MUESTRA SECA (g)                    | 1199.3  | 1202.3  | 1201.4  |
| CONTENIDO DE HUMEDAD (%)                    | 7.55    | 7.61    | 7.5     |
| CONTENIDO DE HUMEDAD<br>PROMEDIO (%)        |         | 7.55    |         |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico. Suelo de color marrón claro, generalmente suelo arenoso.



### **UPAO**

#### **INFORME DE ENSAYO**

Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural
Muestreado por : Solicitante
Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-2 N° de Muestra : M-2

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1 | MOLDE 2   | MOLDE 3 |  |
|---------------------------------------------|---------|-----------|---------|--|
| PESO DEL RECIPIENTE (g)                     | 110.2   | 111.2     | 110.5   |  |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1405    | 1404.3    | 1401    |  |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1307    | 1312.5    | 1314.6  |  |
| PESO DEL AGUA (g)                           | 98      | 91.8      | 86.4    |  |
| PESO DE MUESTRA SECA (g)                    | 1196.8  | 1201.3    | 1204.1  |  |
| CONTENIDO DE HUMEDAD (%)                    | 8.19    | 8.19 7.64 |         |  |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           |         | 7.67      |         |  |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.





Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural
Muestreado por : Solicitante
Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-3 N° de Muestra : M-3

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1 | MOLDE 2 | MOLDE 3 |
|---------------------------------------------|---------|---------|---------|
| PESO DEL RECIPIENTE (g)                     | 110.2   | 111.2   | 110.5   |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400    | 1402    | 1401.5  |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1307.8  | 1310.5  | 1316.5  |
| PESO DEL AGUA (g)                           | 92.2    | 91.5    | 85      |
| PESO DE MUESTRA SECA (g)                    | 1197.6  | 1199.3  | 1206    |
| CONTENIDO DE HUMEDAD (%)                    | 7.7     | 7.05    |         |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           |         | 7.46    |         |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.



### **UPAO**

#### **INFORME DE ENSAYO**

Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-4 N° de Muestra : M-4

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1 | MOLDE 2 | MOLDE 3 |  |
|---------------------------------------------|---------|---------|---------|--|
| PESO DEL RECIPIENTE (g)                     | 110.2   | 111.2   | 110.5   |  |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400    | 1400    | 1400    |  |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1304.2  | 1308.6  | 1314.4  |  |
| PESO DEL AGUA (g)                           | 95.8    | 91.4    | 85.6    |  |
| PESO DE MUESTRA SECA (g)                    | 1194    | 1197.4  | 1203.9  |  |
| CONTENIDO DE HUMEDAD (%)                    | 8.02    | 7.63    | 7.11    |  |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           |         | 7.59    |         |  |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.



### **UPAO**

#### **INFORME DE ENSAYO**

Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural
Muestreado por : Solicitante
Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-5 N° de Muestra : M-5

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1 | MOLDE 2 | MOLDE 3 |  |
|---------------------------------------------|---------|---------|---------|--|
| PESO DEL RECIPIENTE (g)                     | 110.2   | 111.2   | 110.5   |  |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400    | 1400    | 1400    |  |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1302.3  | 1315    | 1312.9  |  |
| PESO DEL AGUA (g)                           | 97.7    | 85      | 87.1    |  |
| PESO DE MUESTRA SECA (g)                    | 1192.1  | 1203.8  | 1202.4  |  |
| CONTENIDO DE HUMEDAD (%)                    | 8.2     | 7.06    | 7.24    |  |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           |         | 7.5     |         |  |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.





Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural
Muestreado por : Solicitante
Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-6 N° de Muestra : M-6

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1 | MOLDE 2 | MOLDE 3 |  |
|---------------------------------------------|---------|---------|---------|--|
| PESO DEL RECIPIENTE (g)                     | 110.2   | 111.2   | 110.5   |  |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400    | 1400    | 1400    |  |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1312.4  | 1310    | 1306    |  |
| PESO DEL AGUA (g)                           | 87.6    | 90      | 94      |  |
| PESO DE MUESTRA SECA (g)                    | 1202.2  | 1198.8  | 1195.5  |  |
| CONTENIDO DE HUMEDAD (%)                    | 7.29    | 7.51    | 7.86    |  |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           |         | 7.55    |         |  |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.





Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural
Muestreado por : Solicitante
Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-7 N° de Muestra : M-7

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1 | MOLDE 2 | MOLDE 3 |
|---------------------------------------------|---------|---------|---------|
| PESO DEL RECIPIENTE (g)                     | 110.2   | 111.2   | 110.5   |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400    | 1400    | 1400    |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1307    | 1308.5  | 1309.5  |
| PESO DEL AGUA (g)                           | 93      | 91.5    | 90.5    |
| PESO DE MUESTRA SECA (g)                    | 1196.8  | 1197.3  | 1199    |
| CONTENIDO DE HUMEDAD (%)                    | 7.77    | 7.64    | 7.55    |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           | 7.65    |         |         |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.



### **UPAO**

#### **INFORME DE ENSAYO**

Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural
Muestreado por : Solicitante
Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-8 N° de Muestra : M-8

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1 | MOLDE 2 | MOLDE 3 |
|---------------------------------------------|---------|---------|---------|
| PESO DEL RECIPIENTE (g)                     | 110.2   | 111.2   | 110.5   |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400    | 1400    | 1400    |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1309.6  | 1305.9  | 1309.6  |
| PESO DEL AGUA (g)                           | 90.4    | 94.1    | 90.4    |
| PESO DE MUESTRA SECA (g)                    | 1199.4  | 1194.7  | 1199.1  |
| CONTENIDO DE HUMEDAD (%)                    | 7.54    | 7.88    | 7.54    |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           | 7.65    |         |         |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.



### **UPAO**

#### **INFORME DE ENSAYO**

Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural
Muestreado por : Solicitante
Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-9 N° de Muestra : M-9

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1           | MOLDE 2 | MOLDE 3 |
|---------------------------------------------|-------------------|---------|---------|
| PESO DEL RECIPIENTE (g)                     | 110.2             | 111.2   | 110.5   |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400              | 1400    | 1400    |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1314.2            | 1308.3  | 1307.5  |
| PESO DEL AGUA (g)                           | 85.8              | 91.7    | 92.5    |
| PESO DE MUESTRA SECA (g)                    | 1204              | 1197.1  | 1197    |
| CONTENIDO DE HUMEDAD (%)                    | 7.13              | 7.66    | 7.73    |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           | DAD PROMEDIO 7.51 |         |         |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.





Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural
Muestreado por : Solicitante
Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-10 N° de Muestra : M-10

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1 | MOLDE 2 | MOLDE 3 |
|---------------------------------------------|---------|---------|---------|
| PESO DEL RECIPIENTE (g)                     | 110.2   | 111.2   | 110.5   |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400    | 1400    | 1400    |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1305.3  | 1312.3  | 1310.4  |
| PESO DEL AGUA (g)                           | 94.7    | 87.7    | 89.6    |
| PESO DE MUESTRA SECA (g)                    | 1195.1  | 1201.1  | 1199.9  |
| CONTENIDO DE HUMEDAD (%)                    | 7.92    | 7.3     | 7.47    |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           | 7.56    |         |         |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.



| <b>UPAO</b> |
|-------------|
|-------------|

Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural
Muestreado por : Solicitante
Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-11 N° de Muestra : M-11

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1 | MOLDE 2 | MOLDE 3 |
|---------------------------------------------|---------|---------|---------|
| PESO DEL RECIPIENTE (g)                     | 110.2   | 111.2   | 110.5   |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400    | 1400    | 1400    |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1314.6  | 1309    | 1307    |
| PESO DEL AGUA (g)                           | 85.4    | 91      | 93      |
| PESO DE MUESTRA SECA (g)                    | 1204.4  | 1197.8  | 1196.5  |
| CONTENIDO DE HUMEDAD (%)                    | 7.09    | 7.6     | 7.77    |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           | 7.49    |         |         |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.



| <b>UPAO</b> |
|-------------|
|-------------|

Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-12 N° de Muestra : M-12

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1 | MOLDE 2 | MOLDE 3 |
|---------------------------------------------|---------|---------|---------|
| PESO DEL RECIPIENTE (g)                     | 110.2   | 111.2   | 110.5   |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400    | 1400    | 1400    |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1304.3  | 1310.4  | 1314.2  |
| PESO DEL AGUA (g)                           | 95.7    | 89.6    | 85.8    |
| PESO DE MUESTRA SECA (g)                    | 1194.1  | 1199.2  | 1203.7  |
| CONTENIDO DE HUMEDAD (%)                    | 8.01    | 7.47    | 7.13    |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           | 7.54    |         |         |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.





Código 192194

Calidad A

Página 1 de 1

ENSAYO DE CONTENIDO DE HUMDAD NTP 339.127

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural
Muestreado por : Solicitante
Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-13 N° de Muestra : M-13

Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m

| N° DE RECIPIENTE                            | MOLDE 1                 | MOLDE 2 | MOLDE 3 |
|---------------------------------------------|-------------------------|---------|---------|
| PESO DEL RECIPIENTE (g)                     | 110.2                   | 111.2   | 110.5   |
| PESO DEL RECIPIENTE + MUESTRA<br>HÚMEDA (g) | 1400                    | 1400    | 1400    |
| PESO DE RECIPIENTE + MUESTRA<br>SECA (g)    | 1306.2                  | 1308.9  | 1313.4  |
| PESO DEL AGUA (g)                           | 93.8                    | 91.1    | 86.6    |
| PESO DE MUESTRA SECA (g)                    | 1196                    | 1197.7  | 1202.9  |
| CONTENIDO DE HUMEDAD (%)                    | 7.84                    | 7.61    | 7.2     |
| CONTENIDO DE HUMEDAD PROMEDIO (%)           | E HUMEDAD PROMEDIO 7.55 |         |         |

#### **Observaciones**

Muestra extraída por el solicitante y llevada al laboratorio de Mecánica de Suelos II de la Universidad Privada Antenor Orrego.

Muestra parcialmente húmeda sin presencia de material orgánico.





ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132 Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

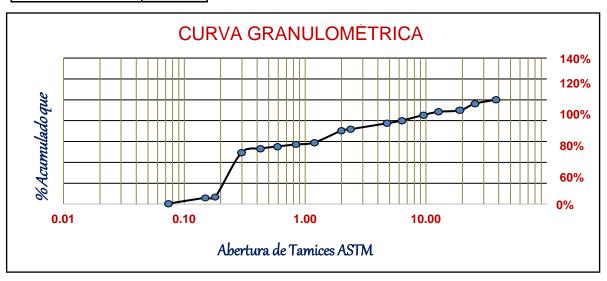
Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante




#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-1 N° de Muestra : M-1

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |                  |        |                     |                   |           |
|-----------------------------------------------|------------------|--------|---------------------|-------------------|-----------|
| Tamiz                                         | <i>A</i> bertura | Masa   | % Retenict/Parcial. | % Receiptean dans | % Quepasa |
| 1 1/2"                                        | 38.100           | 0.00   | 0.00                | 0.00%             | 100.00%   |
| 1"                                            | 25.400           | 37.20  | 3.75%               | 3.75%             | 96.25%    |
| 3/4"                                          | 19.050           | 63.90  | 0.06                | 10.19%            | 89.81%    |
| 1/2"                                          | 12.700           | 13.50  | 1.36%               | 11.56%            | 88.44%    |
| 3/8"                                          | 9.525            | 30.70  | 3.10%               | 14.65%            | 85.35%    |
| 1/4"                                          | 6.350            | 51.90  | 5.23%               | 19.88%            | 80.12%    |
| N°04                                          | 4.760            | 26.50  | 2.67%               | 22.56%            | 77.44%    |
| N°8                                           | 2.380            | 56.20  | 5.67%               | 28.22%            | 71.78%    |
| N°10                                          | 2.000            | 12.60  | 1.27%               | 29.49%            | 70.51%    |
| N°16                                          | 1.190            | 114.65 | 11.56%              | 41.05%            | 58.95%    |
| N°20                                          | 0.840            | 17.50  | 1.76%               | 42.82%            | 57.18%    |
| N°30                                          | 0.590            | 19.50  | 1.97%               | 44.78%            | 55.22%    |
| N°40                                          | 0.426            | 20.10  | 2.03%               | 46.81%            | 53.19%    |
| N°50                                          | 0.297            | 36.90  | 3.72%               | 50.53%            | 49.47%    |
| N°80                                          | 0.180            | 423.60 | 42.71%              | 93.24%            | 6.76%     |
| N°100                                         | 0.149            | 8.10   | 0.82%               | 94.06%            | 5.94%     |
| N°200                                         | 0.074            | 54.50  | 5.50%               | 99.56%            | 0.44%     |
| BASE                                          |                  | 4.40   | 0.44%               | 100.00%           | 0.00%     |
| TOTAL                                         |                  | 991.75 |                     |                   |           |





ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132 Código 192194

Calidad A

Página 1 de 1

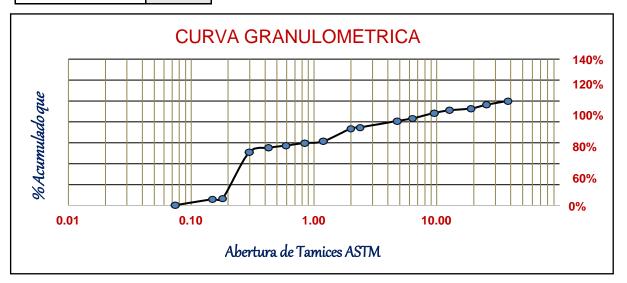
"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad


Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante

### DATOS GENERALES DE LA MUESTRA RECIBIDA

N° de Calicata : C-2 N° de Muestra : M-2

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |                  |        |                    |                     |           |
|-----------------------------------------------|------------------|--------|--------------------|---------------------|-----------|
| Tamiz                                         | <i>A</i> bertura | Massa  | % ReterictPercial. | % Faterind/Acondomb | % Quepasa |
| 1 1/2"                                        | 38.100           | 0.00   | 0.00               | 0.00%               | 100.00%   |
| 1"                                            | 25.400           | 35.20  | 3.65%              | 3.65%               | 96.35%    |
| 3/4"                                          | 19.050           | 34.80  | 0.04               | 7.25%               | 92.75%    |
| 1/2"                                          | 12.700           | 16.30  | 1.69%              | 8.94%               | 91.06%    |
| 3/8"                                          | 9.525            | 24.90  | 2.58%              | 11.52%              | 88.48%    |
| 1/4"                                          | 6.350            | 50.20  | 5.20%              | 16.72%              | 83.28%    |
| N°04                                          | 4.760            | 24.00  | 2.49%              | 19.20%              | 80.80%    |
| N°8                                           | 2.380            | 58.30  | 6.04%              | 25.24%              | 74.76%    |
| N°10                                          | 2.000            | 10.30  | 1.07%              | 26.31%              | 73.69%    |
| N°16                                          | 1.190            | 119.20 | 12.35%             | 38.66%              | 61.34%    |
| N°20                                          | 0.840            | 15.30  | 1.58%              | 40.24%              | 59.76%    |
| N°30                                          | 0.590            | 23.48  | 2.43%              | 42.67%              | 57.33%    |
| N°40                                          | 0.426            | 20.65  | 2.14%              | 44.81%              | 55.19%    |
| N°50                                          | 0.297            | 38.84  | 4.02%              | 48.83%              | 51.17%    |
| N°80                                          | 0.180            | 429.30 | 44.47%             | 93.30%              | 6.70%     |
| N°100                                         | 0.149            | 7.12   | 0.74%              | 94.04%              | 5.96%     |
| N°200                                         | 0.074            | 54.30  | 5.62%              | 99.66%              | 0.34%     |
| BASE                                          |                  | 3.26   | 0.34%              | 100.00%             | 0.00%     |
| TOTAL                                         |                  | 965.45 |                    |                     |           |





ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132 Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

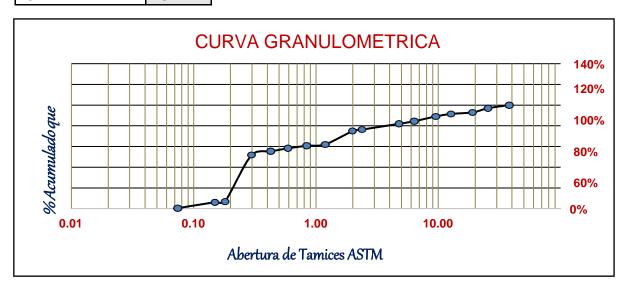
Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural


Muestreado por : Solicitante Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-3 N° de Muestra : M-3

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |                  |        |                    |                     |           |
|-----------------------------------------------|------------------|--------|--------------------|---------------------|-----------|
| Tamiz                                         | <i>A</i> bertura | Massa  | % ReterictPercial. | % Faterind/Acondomb | % Quepasa |
| 1 1/2"                                        | 38.100           | 0.00   | 0.00               | 0.00%               | 100.00%   |
| 1"                                            | 25.400           | 30.25  | 3.11%              | 3.11%               | 96.89%    |
| 3/4"                                          | 19.050           | 38.65  | 0.04               | 7.09%               | 92.91%    |
| 1/2"                                          | 12.700           | 14.26  | 1.47%              | 8.56%               | 91.44%    |
| 3/8"                                          | 9.525            | 23.78  | 2.45%              | 11.01%              | 88.99%    |
| 1/4"                                          | 6.350            | 45.12  | 4.64%              | 15.65%              | 84.35%    |
| N°04                                          | 4.760            | 24.00  | 2.47%              | 18.12%              | 81.88%    |
| N°8                                           | 2.380            | 54.29  | 5.59%              | 23.71%              | 76.29%    |
| N°10                                          | 2.000            | 12.56  | 1.29%              | 25.01%              | 74.99%    |
| N°16                                          | 1.190            | 126.00 | 12.97%             | 37.98%              | 62.02%    |
| N°20                                          | 0.840            | 13.20  | 1.36%              | 39.34%              | 60.66%    |
| N°30                                          | 0.590            | 24.12  | 2.48%              | 41.82%              | 58.18%    |
| N°40                                          | 0.426            | 28.30  | 2.91%              | 44.73%              | 55.27%    |
| N°50                                          | 0.297            | 34.23  | 3.52%              | 48.26%              | 51.74%    |
| N°80                                          | 0.180            | 436.20 | 44.90%             | 93.16%              | 6.84%     |
| N°100                                         | 0.149            | 7.12   | 0.73%              | 93.89%              | 6.11%     |
| N°200                                         | 0.074            | 55.20  | 5.68%              | 99.58%              | 0.42%     |
| BASE                                          |                  | 4.12   | 0.42%              | 100.00%             | 0.00%     |
| TOTAL                                         |                  | 971.4  |                    |                     |           |





### ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132

Código 192194

Calidad A

Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

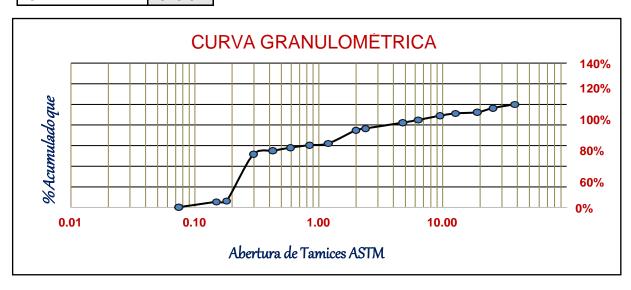
Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural Muestreado por : Solicitante


Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-4 N° de Muestra : M-4

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |          |        |                    |                  |           |  |  |
|-----------------------------------------------|----------|--------|--------------------|------------------|-----------|--|--|
| Tamiz                                         | Abertura | Massa  | % Reterict/Percial | % Retribleandard | % Quepasa |  |  |
| 1 1/2"                                        | 38.100   | 0.00   | 0.00               | 0.00%            | 100.00%   |  |  |
| 1"                                            | 25.400   | 35.20  | 3.60%              | 3.60%            | 96.40%    |  |  |
| 3/4"                                          | 19.050   | 40.20  | 0.04               | 7.70%            | 92.30%    |  |  |
| 1/2"                                          | 12.700   | 10.60  | 1.08%              | 8.79%            | 91.21%    |  |  |
| 3/8"                                          | 9.525    | 21.89  | 2.24%              | 11.02%           | 88.98%    |  |  |
| 1/4"                                          | 6.350    | 40.17  | 4.10%              | 15.13%           | 84.87%    |  |  |
| N°04                                          | 4.760    | 26.00  | 2.66%              | 17.79%           | 82.21%    |  |  |
| N°8                                           | 2.380    | 55.32  | 5.65%              | 23.44%           | 76.56%    |  |  |
| N°10                                          | 2.000    | 14.70  | 1.50%              | 24.94%           | 75.06%    |  |  |
| N°16                                          | 1.190    | 127.60 | 13.04%             | 37.98%           | 62.02%    |  |  |
| N°20                                          | 0.840    | 15.90  | 1.62%              | 39.60%           | 60.40%    |  |  |
| N°30                                          | 0.590    | 23.54  | 2.41%              | 42.01%           | 57.99%    |  |  |
| N°40                                          | 0.426    | 29.60  | 3.02%              | 45.03%           | 54.97%    |  |  |
| N°50                                          | 0.297    | 30.80  | 3.15%              | 48.18%           | 51.82%    |  |  |
| N°80                                          | 0.180    | 445.00 | 45.47%             | 93.65%           | 6.35%     |  |  |
| N°100                                         | 0.149    | 8.65   | 0.88%              | 94.53%           | 5.47%     |  |  |
| N°200                                         | 0.074    | 51.20  | 5.23%              | 99.76%           | 0.24%     |  |  |
| BASE                                          |          | 2.30   | 0.24%              | 100.00%          | 0.00%     |  |  |
| TOTAL                                         |          | 978.67 |                    |                  |           |  |  |





ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132 Código 192194
Calidad A
Página 1 de 1

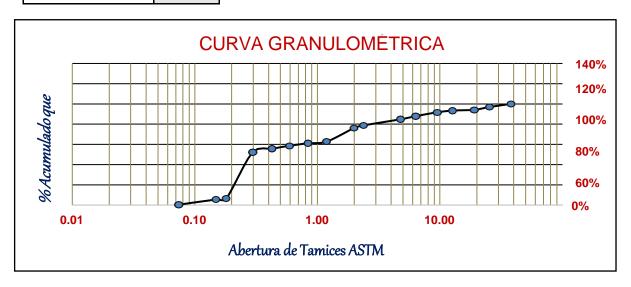
"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad


Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante

#### DATOS GENERALES DE LA MUESTRA RECIBIDA

N° de Calicata : C-5 N° de Muestra : M-5

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |          |        |                    |                     |           |  |  |
|-----------------------------------------------|----------|--------|--------------------|---------------------|-----------|--|--|
| Tamiz                                         | Abertura | Massa  | % ReterictParcial. | % Faterind/Acondomb | % Quepasa |  |  |
| 1 1/2"                                        | 38.100   | 0.00   | 0.00               | 0.00%               | 100.00%   |  |  |
| 1"                                            | 25.400   | 30.00  | 3.13%              | 3.13%               | 96.87%    |  |  |
| 3/4"                                          | 19.050   | 26.30  | 0.03               | 5.87%               | 94.13%    |  |  |
| 1/2"                                          | 12.700   | 7.56   | 0.79%              | 6.65%               | 93.35%    |  |  |
| 3/8"                                          | 9.525    | 15.98  | 1.66%              | 8.32%               | 91.68%    |  |  |
| 1/4"                                          | 6.350    | 36.78  | 3.83%              | 12.15%              | 87.85%    |  |  |
| N°04                                          | 4.760    | 29.80  | 3.10%              | 15.26%              | 84.74%    |  |  |
| N°8                                           | 2.380    | 58.12  | 6.06%              | 21.31%              | 78.69%    |  |  |
| N°10                                          | 2.000    | 23.50  | 2.45%              | 23.76%              | 76.24%    |  |  |
| N°16                                          | 1.190    | 130.40 | 13.59%             | 37.35%              | 62.65%    |  |  |
| N°20                                          | 0.840    | 15.70  | 1.64%              | 38.98%              | 61.02%    |  |  |
| N°30                                          | 0.590    | 23.60  | 2.46%              | 41.44%              | 58.56%    |  |  |
| N°40                                          | 0.426    | 27.80  | 2.90%              | 44.34%              | 55.66%    |  |  |
| N°50                                          | 0.297    | 31.80  | 3.31%              | 47.65%              | 52.35%    |  |  |
| N°80                                          | 0.180    | 442.70 | 46.13%             | 93.78%              | 6.22%     |  |  |
| N°100                                         | 0.149    | 7.84   | 0.82%              | 94.59%              | 5.41%     |  |  |
| N°200                                         | 0.074    | 48.30  | 5.03%              | 99.62%              | 0.38%     |  |  |
| BASE                                          |          | 3.60   | 0.38%              | 100.00%             | 0.00%     |  |  |
| TOTAL                                         |          | 959.78 |                    |                     |           |  |  |





ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132 Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

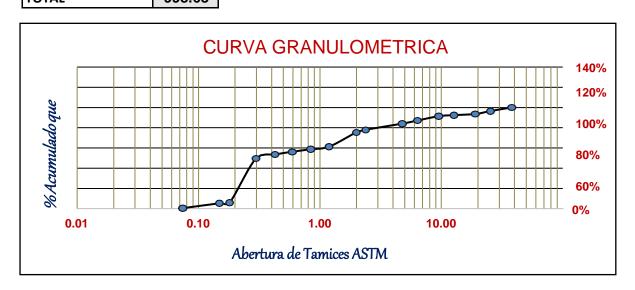
Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante




#### DATOS GENERALES DE LA MUESTRA RECIBIDA

N° de Calicata : C-6 N° de Muestra : M-6

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |                  |        |                    |                  |           |  |  |
|-----------------------------------------------|------------------|--------|--------------------|------------------|-----------|--|--|
| Tamiz                                         | <i>A</i> bertura | Masa   | % ReteriobParcial. | % Retail/Aundarb | % Quepasa |  |  |
| 1 1/2"                                        | 38.100           | 0.00   | 0.00               | 0.00%            | 100.00%   |  |  |
| 1"                                            | 25.400           | 35.20  | 3.52%              | 3.52%            | 96.48%    |  |  |
| 3/4"                                          | 19.050           | 29.70  | 0.03               | 6.50%            | 93.50%    |  |  |
| 1/2"                                          | 12.700           | 10.54  | 1.06%              | 7.55%            | 92.45%    |  |  |
| 3/8"                                          | 9.525            | 10.87  | 1.09%              | 8.64%            | 91.36%    |  |  |
| 1/4"                                          | 6.350            | 42.60  | 4.27%              | 12.91%           | 87.09%    |  |  |
| N°04                                          | 4.760            | 30.70  | 3.07%              | 15.98%           | 84.02%    |  |  |
| N°8                                           | 2.380            | 60.90  | 6.10%              | 22.08%           | 77.92%    |  |  |
| N°10                                          | 2.000            | 23.80  | 2.38%              | 24.46%           | 75.54%    |  |  |
| N°16                                          | 1.190            | 142.80 | 14.30%             | 38.76%           | 61.24%    |  |  |
| N°20                                          | 0.840            | 25.90  | 2.59%              | 41.36%           | 58.64%    |  |  |
| N°30                                          | 0.590            | 24.24  | 2.43%              | 43.78%           | 56.22%    |  |  |
| N°40                                          | 0.426            | 26.91  | 2.69%              | 46.48%           | 53.52%    |  |  |
| N°50                                          | 0.297            | 38.74  | 3.88%              | 50.36%           | 49.64%    |  |  |
| N°80                                          | 0.180            | 438.20 | 43.88%             | 94.23%           | 5.77%     |  |  |
| N°100                                         | 0.149            | 5.63   | 0.56%              | 94.80%           | 5.20%     |  |  |
| N°200                                         | 0.074            | 47.30  | 4.74%              | 99.53%           | 0.47%     |  |  |
| BASE                                          |                  | 4.65   | 0.47%              | 100.00%          | 0.00%     |  |  |
| TOTAL                                         |                  | 998.68 | <u> </u>           |                  | <u> </u>  |  |  |





ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132 Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

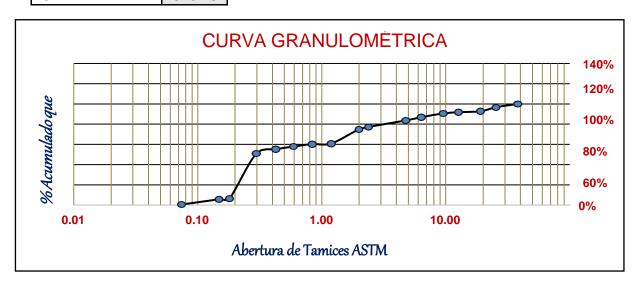
Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural


Muestreado por : Solicitante Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-7 N° de Muestra : M-7

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |          |        |                    |                     |           |  |  |
|-----------------------------------------------|----------|--------|--------------------|---------------------|-----------|--|--|
| Tamiz                                         | Abertura | Masa   | % ReterictPercial. | % Faterind/Acondomb | % Quepasa |  |  |
| 1 1/2"                                        | 38.100   | 0.00   | 0.00               | 0.00%               | 100.00%   |  |  |
| 1"                                            | 25.400   | 32.60  | 3.35%              | 3.35%               | 96.65%    |  |  |
| 3/4"                                          | 19.050   | 38.95  | 0.04               | 7.35%               | 92.65%    |  |  |
| 1/2"                                          | 12.700   | 8.45   | 0.87%              | 8.22%               | 91.78%    |  |  |
| 3/8"                                          | 9.525    | 12.40  | 1.27%              | 9.49%               | 90.51%    |  |  |
| 1/4"                                          | 6.350    | 35.90  | 3.69%              | 13.18%              | 86.82%    |  |  |
| N°04                                          | 4.760    | 31.24  | 3.21%              | 16.38%              | 83.62%    |  |  |
| N°8                                           | 2.380    | 62.74  | 6.44%              | 22.83%              | 77.17%    |  |  |
| N°10                                          | 2.000    | 21.56  | 2.21%              | 25.04%              | 74.96%    |  |  |
| N°16                                          | 1.190    | 138.40 | 14.21%             | 39.26%              | 60.74%    |  |  |
| N°20                                          | 0.840    | 4.89   | 0.50%              | 39.76%              | 60.24%    |  |  |
| N°30                                          | 0.590    | 23.98  | 2.46%              | 42.22%              | 57.78%    |  |  |
| N°40                                          | 0.426    | 25.78  | 2.65%              | 44.87%              | 55.13%    |  |  |
| N°50                                          | 0.297    | 39.45  | 4.05%              | 48.92%              | 51.08%    |  |  |
| N°80                                          | 0.180    | 435.90 | 44.77%             | 93.69%              | 6.31%     |  |  |
| N°100                                         | 0.149    | 6.87   | 0.71%              | 94.39%              | 5.61%     |  |  |
| N°200                                         | 0.074    | 49.60  | 5.09%              | 99.48%              | 0.52%     |  |  |
| BASE                                          |          | 5.02   | 0.52%              | 100.00%             | 0.00%     |  |  |
| TOTAL                                         |          | 973.73 |                    |                     |           |  |  |





ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132 Código 192194

Calidad A

Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

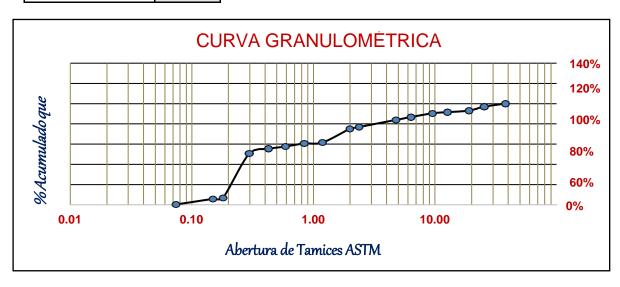
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural

Muestreado por : Solicitante Ensayado por : Solicitante




#### DATOS GENERALES DE LA MUESTRA RECIBIDA

N° de Calicata : C-8 N° de Muestra : M-8

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |          |        |                     |                    |           |  |  |  |
|-----------------------------------------------|----------|--------|---------------------|--------------------|-----------|--|--|--|
| Tamiz                                         | Abertura | Masa   | % Reterict/Parcial. | % Retrint/Acundant | % Quepasa |  |  |  |
| 1 1/2"                                        | 38.100   | 0.00   | 0.00                | 0.00%              | 100.00%   |  |  |  |
| 1"                                            | 25.400   | 30.25  | 3.03%               | 3.03%              | 96.97%    |  |  |  |
| 3/4"                                          | 19.050   | 39.00  | 0.04                | 6.93%              | 93.07%    |  |  |  |
| 1/2"                                          | 12.700   | 15.20  | 1.52%               | 8.45%              | 91.55%    |  |  |  |
| 3/8"                                          | 9.525    | 11.74  | 1.17%               | 9.62%              | 90.38%    |  |  |  |
| 1/4"                                          | 6.350    | 36.95  | 3.70%               | 13.32%             | 86.68%    |  |  |  |
| N°04                                          | 4.760    | 28.56  | 2.86%               | 16.17%             | 83.83%    |  |  |  |
| N°8                                           | 2.380    | 69.32  | 6.93%               | 23.11%             | 76.89%    |  |  |  |
| N°10                                          | 2.000    | 17.84  | 1.78%               | 24.89%             | 75.11%    |  |  |  |
| N°16                                          | 1.190    | 135.69 | 13.57%              | 38.47%             | 61.53%    |  |  |  |
| N°20                                          | 0.840    | 9.68   | 0.97%               | 39.43%             | 60.57%    |  |  |  |
| N°30                                          | 0.590    | 29.68  | 2.97%               | 42.40%             | 57.60%    |  |  |  |
| N°40                                          | 0.426    | 23.45  | 2.35%               | 44.75%             | 55.25%    |  |  |  |
| N°50                                          | 0.297    | 45.23  | 4.52%               | 49.27%             | 50.73%    |  |  |  |
| N°80                                          | 0.180    | 440.00 | 44.01%              | 93.29%             | 6.71%     |  |  |  |
| N°100                                         | 0.149    | 9.68   | 0.97%               | 94.25%             | 5.75%     |  |  |  |
| N°200                                         | 0.074    | 54.80  | 5.48%               | 99.73%             | 0.27%     |  |  |  |
| BASE                                          |          | 2.65   | 0.27%               | 100.00%            | 0.00%     |  |  |  |
| TOTAL                                         |          | 999.72 |                     |                    |           |  |  |  |



#### **INFORME DE ENSAYO**

ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132 Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

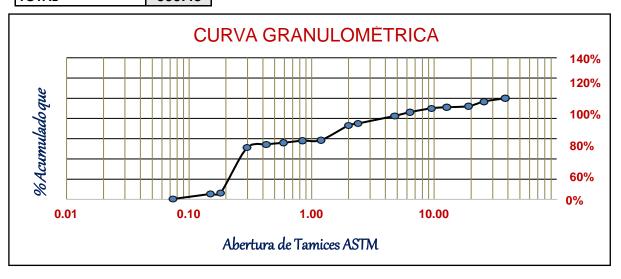
Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante




#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-9 N° de Muestra : M-9

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |                  |        |                    |                    |           |  |  |
|-----------------------------------------------|------------------|--------|--------------------|--------------------|-----------|--|--|
| Tamiz                                         | <i>A</i> bertura | Masa   | % ReterictPercial. | % Retrint/Acundumb | % Quepasa |  |  |
| 1 1/2"                                        | 38.100           | 0.00   | 0.00               | 0.00%              | 100.00%   |  |  |
| 1"                                            | 25.400           | 33.45  | 3.35%              | 3.35%              | 96.65%    |  |  |
| 3/4"                                          | 19.050           | 45.36  | 0.05               | 7.89%              | 92.11%    |  |  |
| 1/2"                                          | 12.700           | 10.25  | 1.03%              | 8.91%              | 91.09%    |  |  |
| 3/8"                                          | 9.525            | 10.80  | 1.08%              | 9.99%              | 90.01%    |  |  |
| 1/4"                                          | 6.350            | 37.89  | 3.79%              | 13.78%             | 86.22%    |  |  |
| N°04                                          | 4.760            | 36.98  | 3.70%              | 17.48%             | 82.52%    |  |  |
| N°8                                           | 2.380            | 75.30  | 7.53%              | 25.02%             | 74.98%    |  |  |
| N°10                                          | 2.000            | 18.20  | 1.82%              | 26.84%             | 73.16%    |  |  |
| N°16                                          | 1.190            | 145.90 | 14.60%             | 41.44%             | 58.56%    |  |  |
| N°20                                          | 0.840            | 5.65   | 0.57%              | 42.00%             | 58.00%    |  |  |
| N°30                                          | 0.590            | 20.70  | 2.07%              | 44.07%             | 55.93%    |  |  |
| N°40                                          | 0.426            | 15.90  | 1.59%              | 45.66%             | 54.34%    |  |  |
| N°50                                          | 0.297            | 31.40  | 3.14%              | 48.81%             | 51.19%    |  |  |
| N°80                                          | 0.180            | 450.30 | 45.06%             | 93.86%             | 6.14%     |  |  |
| N°100                                         | 0.149            | 9.00   | 0.90%              | 94.76%             | 5.24%     |  |  |
| N°200                                         | 0.074            | 48.70  | 4.87%              | 99.63%             | 0.37%     |  |  |
| BASE                                          |                  | 3.65   | 0.37%              | 100.00%            | 0.00%     |  |  |
| TOTAL                                         | _                | 999.43 |                    |                    |           |  |  |





## ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132

Código 192194

Calidad A

Página 1 de 1

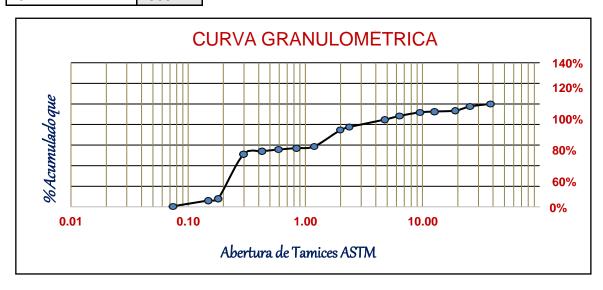
"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad


Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante

### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-10 N° de Muestra : M-10

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |          |        |                    |                    |           |  |  |
|-----------------------------------------------|----------|--------|--------------------|--------------------|-----------|--|--|
| Tamiz                                         | Abertura | Massa  | % ReterictPercial. | % Retrint/Acundant | % Quepasa |  |  |
| 1 1/2"                                        | 38.100   | 0.00   | 0.00               | 0.00%              | 100.00%   |  |  |
| 1"                                            | 25.400   | 25.20  | 2.55%              | 2.55%              | 97.45%    |  |  |
| 3/4"                                          | 19.050   | 39.60  | 0.04               | 6.55%              | 93.45%    |  |  |
| 1/2"                                          | 12.700   | 8.70   | 0.88%              | 7.43%              | 92.57%    |  |  |
| 3/8"                                          | 9.525    | 8.40   | 0.85%              | 8.28%              | 91.72%    |  |  |
| 1/4"                                          | 6.350    | 34.12  | 3.45%              | 11.73%             | 88.27%    |  |  |
| N°04                                          | 4.760    | 35.24  | 3.56%              | 15.29%             | 84.71%    |  |  |
| N°8                                           | 2.380    | 70.98  | 7.17%              | 22.46%             | 77.54%    |  |  |
| N°10                                          | 2.000    | 26.87  | 2.72%              | 25.18%             | 74.82%    |  |  |
| N°16                                          | 1.190    | 160.30 | 16.20%             | 41.38%             | 58.62%    |  |  |
| N°20                                          | 0.840    | 15.60  | 1.58%              | 42.96%             | 57.04%    |  |  |
| N°30                                          | 0.590    | 14.20  | 1.44%              | 44.39%             | 55.61%    |  |  |
| N°40                                          | 0.426    | 16.30  | 1.65%              | 46.04%             | 53.96%    |  |  |
| N°50                                          | 0.297    | 25.98  | 2.63%              | 48.66%             | 51.34%    |  |  |
| N°80                                          | 0.180    | 430.20 | 43.48%             | 92.14%             | 7.86%     |  |  |
| N°100                                         | 0.149    | 16.87  | 1.71%              | 93.85%             | 6.15%     |  |  |
| N°200                                         | 0.074    | 56.30  | 5.69%              | 99.54%             | 0.46%     |  |  |
| BASE                                          |          | 4.56   | 0.46%              | 100.00%            | 0.00%     |  |  |
| TOTAL                                         |          |        |                    |                    |           |  |  |





ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132 Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

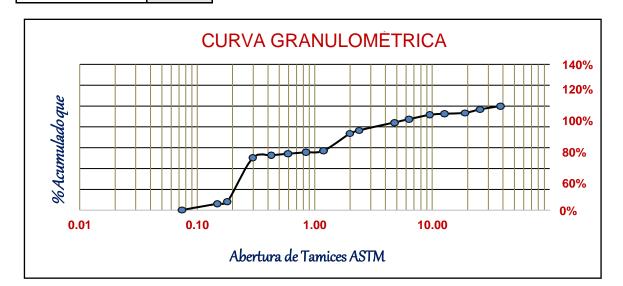
Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural


Muestreado por : Solicitante Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-11 N° de Muestra : M-11

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |          |        |                    |                     |           |  |  |
|-----------------------------------------------|----------|--------|--------------------|---------------------|-----------|--|--|
| Tamiz                                         | Abertura | Massa  | % ReterictPercial. | % Faterind/Acondomb | % Quepasa |  |  |
| 1 1/2"                                        | 38.100   | 0.00   | 0.00               | 0.00%               | 100.00%   |  |  |
| 1"                                            | 25.400   | 32.80  | 3.29%              | 3.29%               | 96.71%    |  |  |
| 3/4"                                          | 19.050   | 32.90  | 0.03               | 6.58%               | 93.42%    |  |  |
| 1/2"                                          | 12.700   | 9.00   | 0.90%              | 7.48%               | 92.52%    |  |  |
| 3/8"                                          | 9.525    | 10.23  | 1.02%              | 8.51%               | 91.49%    |  |  |
| 1/4"                                          | 6.350    | 41.20  | 4.13%              | 12.64%              | 87.36%    |  |  |
| N°04                                          | 4.760    | 31.60  | 3.17%              | 15.80%              | 84.20%    |  |  |
| N°8                                           | 2.380    | 75.80  | 7.59%              | 23.40%              | 76.60%    |  |  |
| N°10                                          | 2.000    | 28.70  | 2.88%              | 26.27%              | 73.73%    |  |  |
| N°16                                          | 1.190    | 165.90 | 16.62%             | 42.89%              | 57.11%    |  |  |
| N°20                                          | 0.840    | 15.84  | 1.59%              | 44.48%              | 55.52%    |  |  |
| N°30                                          | 0.590    | 13.56  | 1.36%              | 45.84%              | 54.16%    |  |  |
| N°40                                          | 0.426    | 15.48  | 1.55%              | 47.39%              | 52.61%    |  |  |
| N°50                                          | 0.297    | 21.31  | 2.13%              | 49.52%              | 50.48%    |  |  |
| N°80                                          | 0.180    | 424.58 | 42.53%             | 92.06%              | 7.94%     |  |  |
| N°100                                         | 0.149    | 17.56  | 1.76%              | 93.82%              | 6.18%     |  |  |
| N°200                                         | 0.074    | 60.28  | 6.04%              | 99.85%              | 0.15%     |  |  |
| BASE                                          |          | 1.45   | 0.15%              | 100.00%             | 0.00%     |  |  |
| TOTAL                                         | _        | 998.19 |                    |                     |           |  |  |



#### **INFORME DE ENSAYO**

ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132 Código 192194

Calidad A

Página 1 de 1

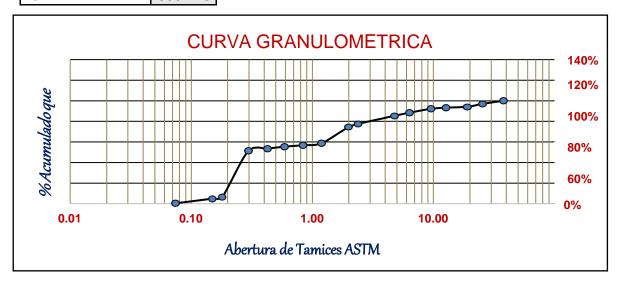
"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad


Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-12 N° de Muestra : M-12

Clasificación estratigráfica: Arena bien graduada con presencia de grava

|               | TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |        |                     |                   |           |  |  |  |
|---------------|-----------------------------------------------|--------|---------------------|-------------------|-----------|--|--|--|
| Tamiz         | Abertura                                      | Massa  | % Reterict/Parcial. | % Retail/Acondumb | % Quepasa |  |  |  |
| 1 1/2"        | 38.100                                        | 0.00   | 0.00                | 0.00%             | 100.00%   |  |  |  |
| 1"            | 25.400                                        | 30.87  | 3.09%               | 3.09%             | 96.91%    |  |  |  |
| 3/4"          | 19.050                                        | 27.90  | 0.03                | 5.88%             | 94.12%    |  |  |  |
| 1/2"          | 12.700                                        | 8.51   | 0.85%               | 6.73%             | 93.27%    |  |  |  |
| 3/8"          | 9.525                                         | 11.11  | 1.11%               | 7.85%             | 92.15%    |  |  |  |
| 1/4"          | 6.350                                         | 37.85  | 3.79%               | 11.63%            | 88.37%    |  |  |  |
| N°04          | 4.760                                         | 30.26  | 3.03%               | 14.66%            | 85.34%    |  |  |  |
| N°8           | 2.380                                         | 78.67  | 7.87%               | 22.53%            | 77.47%    |  |  |  |
| N°10          | 2.000                                         | 27.46  | 2.75%               | 25.28%            | 74.72%    |  |  |  |
| N°16          | 1.190                                         | 160.29 | 16.04%              | 41.32%            | 58.68%    |  |  |  |
| N°20          | 0.840                                         | 18.75  | 1.88%               | 43.20%            | 56.80%    |  |  |  |
| N°30          | 0.590                                         | 14.30  | 1.43%               | 44.63%            | 55.37%    |  |  |  |
| N°40          | 0.426                                         | 18.26  | 1.83%               | 46.46%            | 53.54%    |  |  |  |
| N°50          | 0.297                                         | 20.36  | 2.04%               | 48.50%            | 51.50%    |  |  |  |
| N°80          | 0.180                                         | 450.20 | 45.06%              | 93.55%            | 6.45%     |  |  |  |
| N°100         | 0.149                                         | 16.00  | 1.60%               | 95.15%            | 4.85%     |  |  |  |
| N°200         | 0.074                                         | 45.23  | 4.53%               | 99.68%            | 0.32%     |  |  |  |
| BASE          |                                               | 3.20   | 0.32%               | 100.00%           | 0.00%     |  |  |  |
| TOTAL 999.213 |                                               |        |                     |                   |           |  |  |  |





Proyecto

#### **INFORME DE ENSAYO**

ENSAYO DE GRANULOMETRÍA POR TAMIZADO NTP 339.132 Código 192194

Calidad A

Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

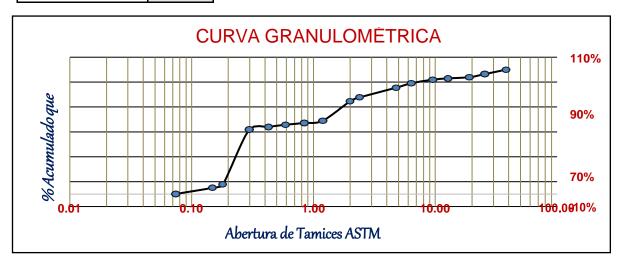
: PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante




#### DATOS GENERALES DE LA MUESTRA RECIBIDA

N° de Calicata : C-13 N° de Muestra : M-13

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| TABLA DE ANÁLISIS GRANULOMÉTRICO POR TAMIZADO |          |        |                    |                     |           |  |  |
|-----------------------------------------------|----------|--------|--------------------|---------------------|-----------|--|--|
| Tamiz                                         | Abertura | Massa  | % ReterictPercial. | % Faterind/Acondomb | % Quepasa |  |  |
| 1 1/2"                                        | 38.100   | 0.00   | 0.00               | 0.00%               | 100.00%   |  |  |
| 1"                                            | 25.400   | 35.28  | 3.56%              | 3.56%               | 96.44%    |  |  |
| 3/4"                                          | 19.050   | 25.00  | 0.03               | 6.08%               | 93.92%    |  |  |
| 1/2"                                          | 12.700   | 9.20   | 0.93%              | 7.01%               | 92.99%    |  |  |
| 3/8"                                          | 9.525    | 10.28  | 1.04%              | 8.04%               | 91.96%    |  |  |
| 1/4"                                          | 6.350    | 28.45  | 2.87%              | 10.91%              | 89.09%    |  |  |
| N°04                                          | 4.760    | 35.60  | 3.59%              | 14.50%              | 85.50%    |  |  |
| N°8                                           | 2.380    | 77.77  | 7.84%              | 22.34%              | 77.66%    |  |  |
| N°10                                          | 2.000    | 29.87  | 3.01%              | 25.36%              | 74.64%    |  |  |
| N°16                                          | 1.190    | 155.55 | 15.69%             | 41.04%              | 58.96%    |  |  |
| N°20                                          | 0.840    | 18.19  | 1.83%              | 42.87%              | 57.13%    |  |  |
| N°30                                          | 0.590    | 13.45  | 1.36%              | 44.23%              | 55.77%    |  |  |
| N°40                                          | 0.426    | 17.52  | 1.77%              | 46.00%              | 54.00%    |  |  |
| N°50                                          | 0.297    | 21.21  | 2.14%              | 48.14%              | 51.86%    |  |  |
| N°80                                          | 0.180    | 438.56 | 44.22%             | 92.36%              | 7.64%     |  |  |
| N°100                                         | 0.149    | 25.32  | 2.55%              | 94.91%              | 5.09%     |  |  |
| N°200                                         | 0.074    | 49.25  | 4.97%              | 99.88%              | 0.12%     |  |  |
| BASE                                          |          | 1.21   | 0.12%              | 100.00%             | 0.00%     |  |  |
| TOTAL                                         |          | 991.71 |                    |                     |           |  |  |



#### **INFORME DE ENSAYO**

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142 Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

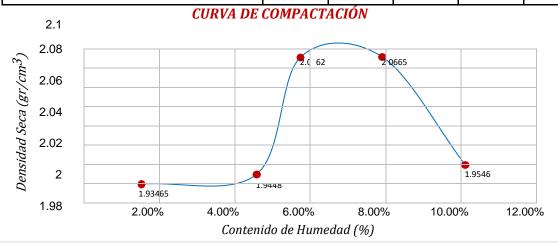
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural

Muestreado por : Solicitante Ensayado por : Solicitante


#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-1 N° de Muestra : M-1

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |        |  |  |  |  |
|---------------------------------------|-------|-------|-------|-------|--------|--|--|--|--|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5      |  |  |  |  |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8   |  |  |  |  |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3  |  |  |  |  |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6  |  |  |  |  |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8  |  |  |  |  |
| CONTENIDO DE HUMEDAD                  | 1.83% | 4.88% | 6.05% | 8.22% | 10.42% |  |  |  |  |

| DETERMINACIÓN DE DENSIDAD SECA    |          |          |          |         |         |  |  |  |  |
|-----------------------------------|----------|----------|----------|---------|---------|--|--|--|--|
| N° DE PRUEBA                      | 1        | 2        | 3        | 4       | 5       |  |  |  |  |
| N° DE CAPAS                       | 5        | 5        | 5        | 5       | 5       |  |  |  |  |
| N° DE GOLPES POR CAPA             | 56       | 56       | 56       | 56      | 56      |  |  |  |  |
| PESO DEL MODEL VACÍO              | 6212.7   | 6212.7   | 6212.7   | 6212.7  | 6212.7  |  |  |  |  |
| VOLÚMEN DEL MOLDE                 | 2124     | 2124     | 2124     | 2124    | 2124    |  |  |  |  |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1  | 10545.2  | 10866.7  | 10955.6 | 10563.2 |  |  |  |  |
| PESO DEL SUELO COMPACTADO         | 4184.4   | 4332.5   | 4654     | 4742.9  | 4350.5  |  |  |  |  |
| DENSIDAD HÚMEDAD                  | 1.970056 | 2.039783 | 2.191149 | 2.23642 | 2.15825 |  |  |  |  |
| DENSIDAD SECA                     | 1.93465  | 1.9448   | 2.0662   | 2.0665  | 1.9546  |  |  |  |  |





## ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142

Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

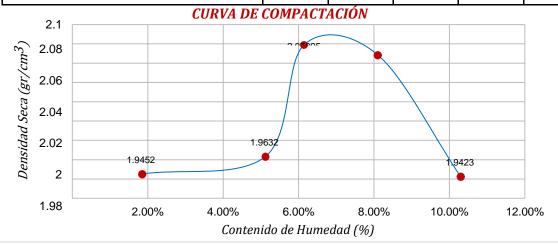
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural

Muestreado por : Solicitante Ensayado por : Solicitante




N° de Calicata : C-2 N° de Muestra : M-2

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |        |  |  |  |  |
|---------------------------------------|-------|-------|-------|-------|--------|--|--|--|--|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5      |  |  |  |  |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8   |  |  |  |  |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3  |  |  |  |  |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6  |  |  |  |  |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8  |  |  |  |  |
| CONTENIDO DE HUMEDAD                  | 1.85% | 5.12% | 6.14% | 8.10% | 10.30% |  |  |  |  |

| DETERMINACIÓN DE DENSIDAD SECA    |          |          |          |         |                     |  |  |  |  |
|-----------------------------------|----------|----------|----------|---------|---------------------|--|--|--|--|
| N° DE PRUEBA                      | 1        | 2        | 3        | 4       | 5                   |  |  |  |  |
| N° DE CAPAS                       | 5        | 5        | 5        | 5       | 5                   |  |  |  |  |
| N° DE GOLPES POR CAPA             | 56       | 56       | 56       | 56      | 56                  |  |  |  |  |
| PESO DEL MODEL VACÍO              | 6212.7   | 6212.7   | 6212.7   | 6212.7  | 6212.7              |  |  |  |  |
| VOLÚMEN DEL MOLDE                 | 2124     | 2124     | 2124     | 2124    | 2124                |  |  |  |  |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1  | 10545.2  | 10866.7  | 10955.6 | 10563.2             |  |  |  |  |
| PESO DEL SUELO COMPACTADO         | 4184.4   | 4332.5   | 4654     | 4742.9  | 4350.5              |  |  |  |  |
| DENSIDAD HÚMEDAD                  | 1.970056 | 2.039783 | 2.191149 | 2.23642 | 2.15825             |  |  |  |  |
| DENSIDAD SECA                     | 1.94521  | 1.96325  | 2.07895  | 2.06854 | 1.94 <sub>236</sub> |  |  |  |  |



## **INFORME DE ENSAYO**

## ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142

Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

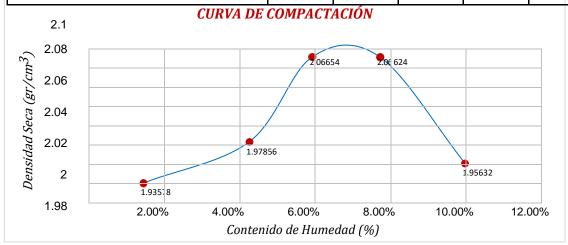
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural

Muestreado por : Solicitante Ensayado por : Solicitante


### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-3 N° de Muestra : M-3

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |        |  |  |
|---------------------------------------|-------|-------|-------|-------|--------|--|--|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5      |  |  |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8   |  |  |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3  |  |  |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6  |  |  |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8  |  |  |
| CONTENIDO DE HUMEDAD                  | 1.75% | 4.56% | 6.23% | 8.03% | 10.28% |  |  |

| DETERMINACIÓN DE DENSIDAD SECA    |          |          |          |         |         |  |  |  |
|-----------------------------------|----------|----------|----------|---------|---------|--|--|--|
| N° DE PRUEBA                      | 1        | 2        | 3        | 4       | 5       |  |  |  |
| N° DE CAPAS                       | 5        | 5        | 5        | 5       | 5       |  |  |  |
| N° DE GOLPES POR CAPA             | 56       | 56       | 56       | 56      | 56      |  |  |  |
| PESO DEL MODEL VACÍO              | 6212.7   | 6212.7   | 6212.7   | 6212.7  | 6212.7  |  |  |  |
| VOLÚMEN DEL MOLDE                 | 2124     | 2124     | 2124     | 2124    | 2124    |  |  |  |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1  | 10545.2  | 10866.7  | 10955.6 | 10563.2 |  |  |  |
| PESO DEL SUELO COMPACTADO         | 4184.4   | 4332.5   | 4654     | 4742.9  | 4350.5  |  |  |  |
| DENSIDAD HÚMEDAD                  | 1.970056 | 2.039783 | 2.191149 | 2.23642 | 2.15825 |  |  |  |
| DENSIDAD SECA                     | 1.93578  | 1.97856  | 2.06654  | 2.06624 | 1.95632 |  |  |  |



#### **INFORME DE ENSAYO**

## ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142

Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

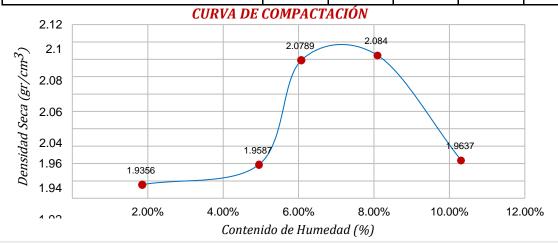
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural Muestreado por : Solicitante

Muestreado por : Solicitante Ensayado por : Solicitante


### DATOS GENERALES DE LA MUESTRA RECIBIDA

N° de Calicata : C-4 N° de Muestra : M-4

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |        |  |  |
|---------------------------------------|-------|-------|-------|-------|--------|--|--|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5      |  |  |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8   |  |  |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3  |  |  |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6  |  |  |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8  |  |  |
| CONTENIDO DE HUMEDAD                  | 1.85% | 4.95% | 6.07% | 8.09% | 10.31% |  |  |

| DETERMINACIÓN DE DENSIDAD SECA    |          |          |          |         |         |  |  |  |
|-----------------------------------|----------|----------|----------|---------|---------|--|--|--|
| N° DE PRUEBA                      | 1        | 2        | 3        | 4       | 5       |  |  |  |
| N° DE CAPAS                       | 5        | 5        | 5        | 5       | 5       |  |  |  |
| N° DE GOLPES POR CAPA             | 56       | 56       | 56       | 56      | 56      |  |  |  |
| PESO DEL MODEL VACÍO              | 6212.7   | 6212.7   | 6212.7   | 6212.7  | 6212.7  |  |  |  |
| VOLÚMEN DEL MOLDE                 | 2124     | 2124     | 2124     | 2124    | 2124    |  |  |  |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1  | 10545.2  | 10866.7  | 10955.6 | 10563.2 |  |  |  |
| PESO DEL SUELO COMPACTADO         | 4184.4   | 4332.5   | 4654     | 4742.9  | 4350.5  |  |  |  |
| DENSIDAD HÚMEDAD                  | 1.970056 | 2.039783 | 2.191149 | 2.23642 | 2.15825 |  |  |  |
| DENSIDAD SECA                     | 1.93568  | 1.95879  | 2.07891  | 2.0847  | 1.96378 |  |  |  |



#### **INFORME DE ENSAYO**

## ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142

Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

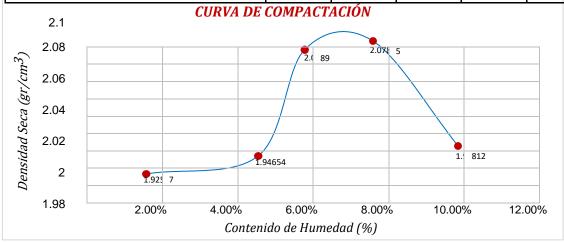
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural

Muestreado por : Solicitante Ensayado por : Solicitante


### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-5 N° de Muestra : M-5

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |        |  |  |
|---------------------------------------|-------|-------|-------|-------|--------|--|--|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5      |  |  |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8   |  |  |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3  |  |  |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6  |  |  |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8  |  |  |
| CONTENIDO DE HUMEDAD                  | 1.88% | 4.85% | 6.08% | 7.89% | 10.15% |  |  |

| DETERMINACIÓN DE DENSIDAD SECA    |          |          |          |         |         |  |  |  |
|-----------------------------------|----------|----------|----------|---------|---------|--|--|--|
| N° DE PRUEBA                      | 1        | 2        | 3        | 4       | 5       |  |  |  |
| N° DE CAPAS                       | 5        | 5        | 5        | 5       | 5       |  |  |  |
| N° DE GOLPES POR CAPA             | 56       | 56       | 56       | 56      | 56      |  |  |  |
| PESO DEL MODEL VACÍO              | 6212.7   | 6212.7   | 6212.7   | 6212.7  | 6212.7  |  |  |  |
| VOLÚMEN DEL MOLDE                 | 2124     | 2124     | 2124     | 2124    | 2124    |  |  |  |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1  | 10545.2  | 10866.7  | 10955.6 | 10563.2 |  |  |  |
| PESO DEL SUELO COMPACTADO         | 4184.4   | 4332.5   | 4654     | 4742.9  | 4350.5  |  |  |  |
| DENSIDAD HÚMEDAD                  | 1.970056 | 2.039783 | 2.191149 | 2.23642 | 2.15825 |  |  |  |
| DENSIDAD SECA                     | 1.92587  | 1.94654  | 2.0689   | 2.07895 | 1.95812 |  |  |  |



#### **INFORME DE ENSAYO**

## ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142

Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

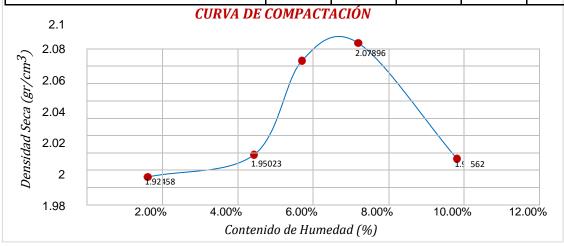
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural Muestreado por : Solicitante

Ensayado por : Solicitante Solicitante


#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-6 N° de Muestra : M-6

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |        |  |  |
|---------------------------------------|-------|-------|-------|-------|--------|--|--|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5      |  |  |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8   |  |  |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3  |  |  |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6  |  |  |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8  |  |  |
| CONTENIDO DE HUMEDAD                  | 1.92% | 4.74% | 6.01% | 7.50% | 10.12% |  |  |

| DETERMINACIÓN DE DENSIDAD SECA    |          |          |          |         |         |  |  |  |
|-----------------------------------|----------|----------|----------|---------|---------|--|--|--|
| N° DE PRUEBA                      | 1        | 2        | 3        | 4       | 5       |  |  |  |
| N° DE CAPAS                       | 5        | 5        | 5        | 5       | 5       |  |  |  |
| N° DE GOLPES POR CAPA             | 56       | 56       | 56       | 56      | 56      |  |  |  |
| PESO DEL MODEL VACÍO              | 6212.7   | 6212.7   | 6212.7   | 6212.7  | 6212.7  |  |  |  |
| VOLÚMEN DEL MOLDE                 | 2124     | 2124     | 2124     | 2124    | 2124    |  |  |  |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1  | 10545.2  | 10866.7  | 10955.6 | 10563.2 |  |  |  |
| PESO DEL SUELO COMPACTADO         | 4184.4   | 4332.5   | 4654     | 4742.9  | 4350.5  |  |  |  |
| DENSIDAD HÚMEDAD                  | 1.970056 | 2.039783 | 2.191149 | 2.23642 | 2.15825 |  |  |  |
| DENSIDAD SECA                     | 1.92458  | 1.95023  | 2.05847  | 2.07896 | 1.94562 |  |  |  |



## **INFORME DE ENSAYO**

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142

Código 192194

Calidad A

Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto: PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

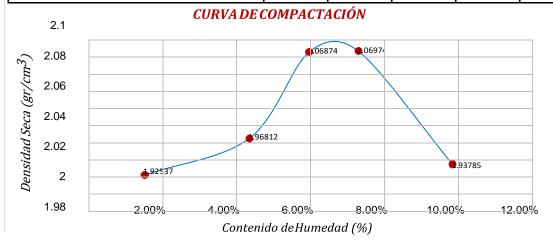
Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural

Muestreado por : Solicitante Ensayado por : Solicitante




#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-7 N° de Muestra : M-7

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |        |  |  |
|---------------------------------------|-------|-------|-------|-------|--------|--|--|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5      |  |  |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8   |  |  |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3  |  |  |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6  |  |  |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8  |  |  |
| CONTENIDO DE HUMEDAD                  | 1.87% | 4.70% | 6.32% | 7.65% | 10.20% |  |  |

| DETERMINACIÓN DE DENSIDAD SECA    |          |          |          |         |         |  |  |  |
|-----------------------------------|----------|----------|----------|---------|---------|--|--|--|
| N° DE PRUEBA                      | 1        | 2        | 3        | 4       | 5       |  |  |  |
| N° DE CAPAS                       | 5        | 5        | 5        | 5       | 5       |  |  |  |
| N° DE GOLPES POR CAPA             | 56       | 56       | 56       | 56      | 56      |  |  |  |
| PESO DEL MODEL VACÍO              | 6212.7   | 6212.7   | 6212.7   | 6212.7  | 6212.7  |  |  |  |
| VOLÚMEN DEL MOLDE                 | 2124     | 2124     | 2124     | 2124    | 2124    |  |  |  |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1  | 10545.2  | 10866.7  | 10955.6 | 10563.2 |  |  |  |
| PESO DEL SUELO COMPACTADO         | 4184.4   | 4332.5   | 4654     | 4742.9  | 4350.5  |  |  |  |
| DENSIDAD HÚMEDAD                  | 1.970056 | 2.039783 | 2.191149 | 2.23642 | 2.15825 |  |  |  |
| DENSIDAD SECA                     | 1.92537  | 1.96812  | 2.06874  | 2.06974 | 1.93785 |  |  |  |





ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142

Código 192194

Calidad A

Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto: PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

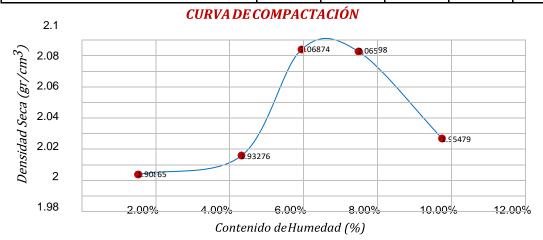
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural

Muestreado por : Solicitante Ensayado por : Solicitante


#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-8 N° de Muestra : M-8

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |        |  |  |
|---------------------------------------|-------|-------|-------|-------|--------|--|--|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5      |  |  |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8   |  |  |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3  |  |  |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6  |  |  |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8  |  |  |
| CONTENIDO DE HUMEDAD                  | 1.88% | 4.68% | 6.30% | 7.85% | 10.11% |  |  |

| DETERMINACIÓN DE DENSIDAD SECA    |          |          |          |         |         |  |  |  |
|-----------------------------------|----------|----------|----------|---------|---------|--|--|--|
| N° DE PRUEBA                      | 1        | 2        | 3        | 4       | 5       |  |  |  |
| N° DE CAPAS                       | 5        | 5        | 5        | 5       | 5       |  |  |  |
| N° DE GOLPES POR CAPA             | 56       | 56       | 56       | 56      | 56      |  |  |  |
| PESO DEL MODEL VACÍO              | 6212.7   | 6212.7   | 6212.7   | 6212.7  | 6212.7  |  |  |  |
| VOLÚMEN DEL MOLDE                 | 2124     | 2124     | 2124     | 2124    | 2124    |  |  |  |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1  | 10545.2  | 10866.7  | 10955.6 | 10563.2 |  |  |  |
| PESO DEL SUELO COMPACTADO         | 4184.4   | 4332.5   | 4654     | 4742.9  | 4350.5  |  |  |  |
| DENSIDAD HÚMEDAD                  | 1.970056 | 2.039783 | 2.191149 | 2.23642 | 2.15825 |  |  |  |
| DENSIDAD SECA                     | 1.90865  | 1.93276  | 2.06874  | 2.06598 | 1.95479 |  |  |  |





ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142

Código 192194

Calidad A

Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto: PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

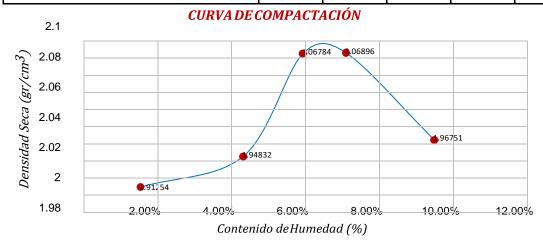
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural

Muestreado por : Solicitante Ensayado por : Solicitante




N° de Calicata : C-9 N° de Muestra : M-9

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |       |
|---------------------------------------|-------|-------|-------|-------|-------|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5     |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8  |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3 |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6 |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8 |
| CONTENIDO DE HUMEDAD                  | 1.89% | 4.67% | 6.28% | 7.45% | 9.84% |

| DETERMINA                         | CIÓN DE DEN | SIDAD SECA |          |         |         |
|-----------------------------------|-------------|------------|----------|---------|---------|
| N° DE PRUEBA                      | 1           | 2          | 3        | 4       | 5       |
| N° DE CAPAS                       | 5           | 5          | 5        | 5       | 5       |
| N° DE GOLPES POR CAPA             | 56          | 56         | 56       | 56      | 56      |
| PESO DEL MODEL VACÍO              | 6212.7      | 6212.7     | 6212.7   | 6212.7  | 6212.7  |
| VOLÚMEN DEL MOLDE                 | 2124        | 2124       | 2124     | 2124    | 2124    |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1     | 10545.2    | 10866.7  | 10955.6 | 10563.2 |
| PESO DEL SUELO COMPACTADO         | 4184.4      | 4332.5     | 4654     | 4742.9  | 4350.5  |
| DENSIDAD HÚMEDAD                  | 1.970056    | 2.039783   | 2.191149 | 2.23642 | 2.15825 |
| DENSIDAD SECA                     | 1.91254     | 1.94832    | 2.06784  | 2.06896 | 1.96751 |



## **INFORME DE ENSAYO**

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142

Código 192194
Calidad A
Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto: PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

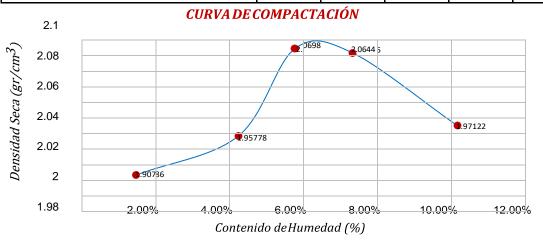
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural

Muestreado por : Solicitante Ensayado por : Solicitante


## DATOS GENERALES DE LA MUESTRA RECIBIDA

N° de Calicata : C-10 N° de Muestra : M-10

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |        |
|---------------------------------------|-------|-------|-------|-------|--------|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5      |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8   |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3  |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6  |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8  |
| CONTENIDO DE HUMEDAD                  | 1.82% | 4.59% | 6.12% | 7.68% | 10.52% |

| DETERMINA                         | CIÓN DE DEN | SIDAD SECA |          |         |         |
|-----------------------------------|-------------|------------|----------|---------|---------|
| N° DE PRUEBA                      | 1           | 2          | 3        | 4       | 5       |
| N° DE CAPAS                       | 5           | 5          | 5        | 5       | 5       |
| N° DE GOLPES POR CAPA             | 56          | 56         | 56       | 56      | 56      |
| PESO DEL MODEL VACÍO              | 6212.7      | 6212.7     | 6212.7   | 6212.7  | 6212.7  |
| VOLÚMEN DEL MOLDE                 | 2124        | 2124       | 2124     | 2124    | 2124    |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1     | 10545.2    | 10866.7  | 10955.6 | 10563.2 |
| PESO DEL SUELO COMPACTADO         | 4184.4      | 4332.5     | 4654     | 4742.9  | 4350.5  |
| DENSIDAD HÚMEDAD                  | 1.970056    | 2.039783   | 2.191149 | 2.23642 | 2.15825 |
| DENSIDAD SECA                     | 1.90786     | 1.95778    | 2.0698   | 2.06445 | 1.97122 |



## **INFORME DE ENSAYO**

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142

Código 192194

Calidad A

Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto: PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

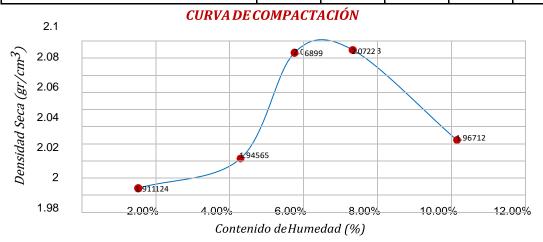
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural

Muestreado por : Solicitante Ensayado por : Solicitante


## **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-11 N° de Muestra : M-11

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |        |
|---------------------------------------|-------|-------|-------|-------|--------|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5      |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8   |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3  |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6  |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8  |
| CONTENIDO DE HUMEDAD                  | 1.88% | 4.65% | 6.11% | 7.69% | 10.51% |

| DETERMINA                         | CIÓN DE DEN | SIDAD SECA |          |         |         |
|-----------------------------------|-------------|------------|----------|---------|---------|
| N° DE PRUEBA                      | 1           | 2          | 3        | 4       | 5       |
| N° DE CAPAS                       | 5           | 5          | 5        | 5       | 5       |
| N° DE GOLPES POR CAPA             | 56          | 56         | 56       | 56      | 56      |
| PESO DEL MODEL VACÍO              | 6212.7      | 6212.7     | 6212.7   | 6212.7  | 6212.7  |
| VOLÚMEN DEL MOLDE                 | 2124        | 2124       | 2124     | 2124    | 2124    |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1     | 10545.2    | 10866.7  | 10955.6 | 10563.2 |
| PESO DEL SUELO COMPACTADO         | 4184.4      | 4332.5     | 4654     | 4742.9  | 4350.5  |
| DENSIDAD HÚMEDAD                  | 1.970056    | 2.039783   | 2.191149 | 2.23642 | 2.15825 |
| DENSIDAD SECA                     | 1.911124    | 1.94565    | 2.06899  | 2.07223 | 1.96712 |



| UPAO | OHEO CONTROL OF THE PARTY OF TH | UPAO |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|

Ca

Código 192194
Calidad A
Página 1 de 1

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

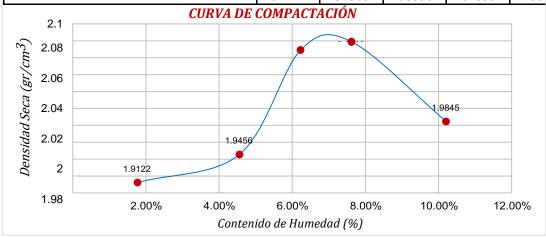
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante




#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-12 N° de Muestra : M-12

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN DE CONTENIDO DE HUMEDAD |       |       |       |       |        |
|---------------------------------------|-------|-------|-------|-------|--------|
| N° DE PRUEBA                          | 1     | 2     | 3     | 4     | 5      |
| PESO DE LA TARA                       | 39.7  | 39.9  | 39.8  | 39.7  | 39.8   |
| PESO DE LA TARA + SUELO HÚMEDO        | 162.1 | 153.7 | 160.8 | 162.4 | 152.3  |
| PESO DE LA TARA + SUELO SECO          | 159.9 | 148.4 | 153.9 | 159.5 | 147.6  |
| PESO DE SUELO SECO                    | 120.2 | 108.5 | 114.1 | 119.8 | 107.8  |
| CONTENIDO DE HUMEDAD                  | 1.77% | 4.56% | 6.23% | 7.62% | 10.21% |

| DETERMINA                         | CIÓN DE DEN | SIDAD SECA |          |         |         |
|-----------------------------------|-------------|------------|----------|---------|---------|
| N° DE PRUEBA                      | 1           | 2          | 3        | 4       | 5       |
| N° DE CAPAS                       | 5           | 5          | 5        | 5       | 5       |
| N° DE GOLPES POR CAPA             | 56          | 56         | 56       | 56      | 56      |
| PESO DEL MODEL VACÍO              | 6212.7      | 6212.7     | 6212.7   | 6212.7  | 6212.7  |
| VOLÚMEN DEL MOLDE                 | 2124        | 2124       | 2124     | 2124    | 2124    |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1     | 10545.2    | 10866.7  | 10955.6 | 10563.2 |
| PESO DEL SUELO COMPACTADO         | 4184.4      | 4332.5     | 4654     | 4742.9  | 4350.5  |
| DENSIDAD HÚMEDAD                  | 1.970056    | 2.039783   | 2.191149 | 2.23642 | 2.15825 |
| DENSIDAD SECA                     | 1.91221     | 1.94565    | 2.06898  | 2.07895 | 1.98452 |



### **INFORME DE ENSAYO**

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO NTP 339.142 Código 192194

Calidad A

Página 1 de 1

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

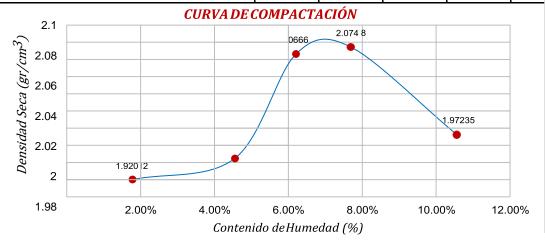
CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

Material : Terreno Natural

Muestreado por : Solicitante Ensayado por : Solicitante


#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-13 N° de Muestra : M-13

Clasificación estratigráfica: Arena bien graduada con presencia de grava

| DETERMINACIÓN                  | I DE CONTENI | DO DE HUME | DAD   |       |        |
|--------------------------------|--------------|------------|-------|-------|--------|
| N° DE PRUEBA                   | 1            | 2          | 3     | 4     | 5      |
| PESO DE LA TARA                | 39.7         | 39.9       | 39.8  | 39.7  | 39.8   |
| PESO DE LA TARA + SUELO HÚMEDO | 162.1        | 153.7      | 160.8 | 162.4 | 152.3  |
| PESO DE LA TARA + SUELO SECO   | 159.9        | 148.4      | 153.9 | 159.5 | 147.6  |
| PESO DE SUELO SECO             | 120.2        | 108.5      | 114.1 | 119.8 | 107.8  |
| CONTENIDO DE HUMEDAD           | 1.78%        | 4.55%      | 6.21% | 7.69% | 10.56% |

| DETERMINA                         | CIÓN DE DEN | SIDAD SECA |          |         |         |
|-----------------------------------|-------------|------------|----------|---------|---------|
| N° DE PRUEBA                      | 1           | 2          | 3        | 4       | 5       |
| N° DE CAPAS                       | 5           | 5          | 5        | 5       | 5       |
| N° DE GOLPES POR CAPA             | 56          | 56         | 56       | 56      | 56      |
| PESO DEL MODEL VACÍO              | 6212.7      | 6212.7     | 6212.7   | 6212.7  | 6212.7  |
| VOLÚMEN DEL MOLDE                 | 2124        | 2124       | 2124     | 2124    | 2124    |
| PESO DEL MOLDE + SUELO COMPACTADO | 10397.1     | 10545.2    | 10866.7  | 10955.6 | 10563.2 |
| PESO DEL SUELO COMPACTADO         | 4184.4      | 4332.5     | 4654     | 4742.9  | 4350.5  |
| DENSIDAD HÚMEDAD                  | 1.970056    | 2.039783   | 2.191149 | 2.23642 | 2.15825 |
| DENSIDAD SECA                     | 1.92012     | 1.94478    | 2.06661  | 2.07448 | 1.97235 |



192194

Α

1 de 2

| Thomas Allen |             |
|--------------|-------------|
| L            | <b>JPAO</b> |

#### **INFORME DE ENSAYO**

ENSAYO CALIFORNIA BEARING RATIO (CBR)

NTP 339.145

Página

Código

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

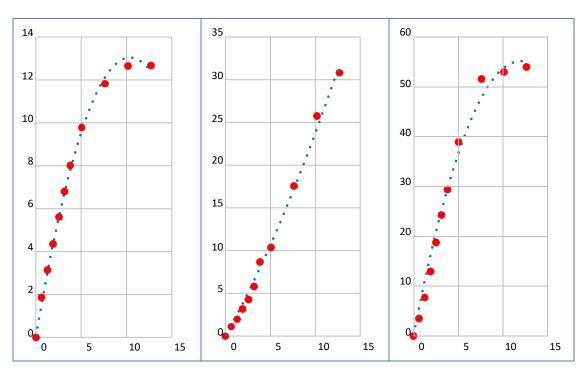
Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-1 N° de Muestra : M-1

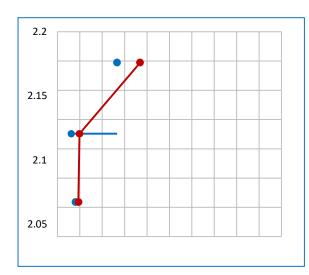
Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m


## **DATOS GENERALES DE LOS MOLDES**

|                                 | MOLDE 1                      | MOLDE 2                      | MOLDE 3                      |
|---------------------------------|------------------------------|------------------------------|------------------------------|
| Descripción                     | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA |
| Profundidad                     | 1.5                          | 1.5                          | 1.5                          |
| Procedimiento                   | NTP 339.145                  | NTP 339.145                  | NTP 339.145                  |
| Metodo                          | ENSAYO DE CBR                | ENSAYO DE CBR                | ENSATO DE CBR                |
| Tipo de Muestra                 | Remoldeado                   | Remoldeado                   | Remodelado                   |
| Límite Líquido                  | 0                            | 0                            | 0                            |
| Límite Plástico                 | 0                            | 0                            | 0                            |
| Peso Suplemento (g)             | 4548.8                       | 4548.8                       | 454.8                        |
| Densidad Máxima Seca (g/cm3)    | 2.08                         | 2.08                         | 2.08                         |
| Óptimo Contenido de Humedad (%) | 6.7                          | 6.7                          | 6.7                          |
| Número de Golpes                | 12                           | 25                           | 56                           |
| Observaciones                   | 0                            | 0                            | 0                            |

#### DATOS DE PENETRACIÓN


|                         | MOLDE 1                |         |                         | MOLDE 2                |         |                         | MOLDE 3                |         |
|-------------------------|------------------------|---------|-------------------------|------------------------|---------|-------------------------|------------------------|---------|
| Penetració<br>n<br>(mm) | Esf. Cort.<br>(kg/Cm2) | CBR (%) | Penetració<br>n<br>(mm) | Esf. Cort.<br>(kg/cm2) | CBR (%) | Penetració<br>n<br>(mm) | Esf. Cort.<br>(kg/cm2) | CBR (%) |
| 0.000                   | 0.002                  | 0.000   | 0.000                   | 0.000                  | 0.000   | 0.000                   | 0.000                  | 0.000   |
| 0.630                   | 1.853                  | 0.000   | 0.630                   | 1.101                  | 0.000   | 0.630                   | 3.519                  | 0.000   |
| 1.270                   | 3.151                  | 0.000   | 1.270                   | 1.946                  | 0.000   | 1.270                   | 7.757                  | 0.000   |
| 1.910                   | 4.350                  | 0.000   | 1.910                   | 3.144                  | 0.000   | 1.910                   | 12.995                 | 0.000   |
| 2.540                   | 5.622                  | 7.996   | 2.540                   | 4.305                  | 6.122   | 2.540                   | 18.742                 | 26.656  |
| 3.170                   | 6.808                  | 0.000   | 3.170                   | 5.814                  | 0.000   | 3.170                   | 24.278                 | 0.000   |
| 3.810                   | 8.026                  | 0.000   | 3.810                   | 8.677                  | 0.000   | 3.810                   | 29.437                 | 0.000   |
| 5.080                   | 9.801                  | 9.293   | 5.080                   | 10.356                 | 9.820   | 5.080                   | 38.958                 | 36.941  |
| 7.620                   | 11.829                 | 0.000   | 7.620                   | 17.577                 | 0.000   | 7.620                   | 51.599                 | 0.000   |
| 10.160                  | 12.667                 | 0.000   | 10.160                  | 25.752                 | 0.000   | 10.160                  | 53.008                 | 0.000   |
| 12.700                  | 12.686                 | 0.000   | 12.700                  | 30.823                 | 0.000   | 12.700                  | 54.015                 | 0.000   |

EC: 12 GOLPES EC: 25 GOLPES EC: 56 GOLPES



## DATOS DE COMPACTACIÓN

|                                      | MOLDE 1   | MOLDE 2   | MOLDE 3   |
|--------------------------------------|-----------|-----------|-----------|
| Peso de suelo humedo + Tara (g)      | 175.900   | 185.300   | 171.000   |
| Peso de suelo seco + Tara (g)        | 166.400   | 175.900   | 161.900   |
| Peso de Tara (g)                     | 39.000    | 40.000    | 39.900    |
| Volumen del Suelo Compactado (cm3)   | 2122.495  | 2303.028  | 2306.981  |
| Contenido de humedad (%)             | 7.457     | 6.917     | 7.459     |
| Peso de molde + Suelo compactado (g) | 11318.400 | 11952.400 | 12841.500 |
| Peso de molde                        | 6964.100  | 6964.100  | 7517.800  |
| Peso de suelo compactado (g)         | 4354.300  | 4988.300  | 5323.700  |
| Densidad humeda (g/cm3)              | 2.052     | 2.166     | 2.308     |
| Densidad seca (g/cm3)                | 1.909     | 2.026     | 2.147     |



#### METODO DE COMPACTACION ASTM D1557

Maxima Densidad Seca (g/cm3):2.147Optimo Contenido de Humedad (%):6.70095% Maxima Densidad Seca (g/cm3):2.040

| CBR al 100% de MDS (0.1"): | 26.658 |
|----------------------------|--------|
| CBR al 100% de MDS (0.2"): | 36.941 |
| CBR al 95% de MDS (0.1"):  | 9.786  |
| CBR al 95% de MDS (0.2"):  | 13.256 |

#### **RESULTADOS:**

 Valor CBR al 100% de MDS:
 36.941

 Valor CBR al 95% de MDS:
 13.256



192194

Α

1 de 2



#### **INFORME DE ENSAYO**

Calidad ENSAYO CALIFORNIA BEARING RATIO (CBR) Página

Código

NTP 339.145

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante Br. Garcia Vigo Jeferson Michel

Ubicación Localidad de Chicama - Ascope - La Libertad

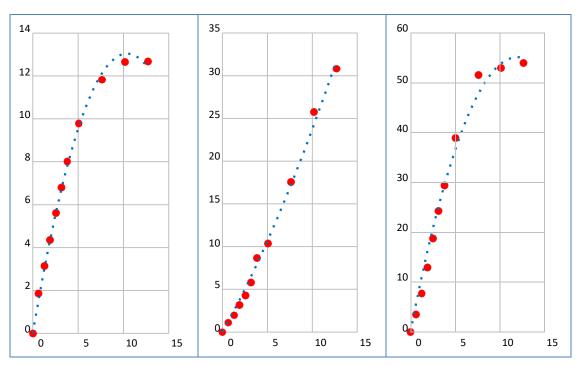
Material Terreno Natural Muestreado por : Solicitante Solicitante Ensayado por

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata C-2 N° de Muestra M-2

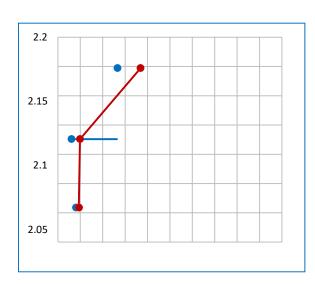
Arena bien graduada con presencia de grava Clasificación estratigráfica:

Profundidad 0.00m a -1.50m


## **DATOS GENERALES DE LOS MOLDES**

|                                 | MOLDE 1                      | MOLDE 2                      | MOLDE 3                      |
|---------------------------------|------------------------------|------------------------------|------------------------------|
| Descripción                     | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA |
| Profundidad                     | 1.5                          | 1.5                          | 1.5                          |
| Procedimiento                   | NTP 339.145                  | NTP 339.145                  | NTP 339.145                  |
| Metodo                          | ENSAYO DE CBR                | ENSAYO DE CBR                | ENSATO DE CBR                |
| Tipo de Muestra                 | Remoldeado                   | Remoldeado                   | Remodelado                   |
| Límite Líquido                  | 0                            | 0                            | 0                            |
| Límite Plástico                 | 0                            | 0                            | 0                            |
| Peso Suplemento (g)             | 4548.8                       | 4548.8                       | 454.8                        |
| Densidad Máxima Seca (g/cm3)    | 2.08                         | 2.08                         | 2.08                         |
| Óptimo Contenido de Humedad (%) | 6.7                          | 6.7                          | 6.7                          |
| Número de Golpes                | 12                           | 25                           | 56                           |
| Observaciones                   | 0                            | 0                            | 0                            |

## **DATOS DE PENETRACIÓN**


|                 | MOLDE 1                |         | MOLDE 2         |                        |         |                 | MOLDE 3                |         |
|-----------------|------------------------|---------|-----------------|------------------------|---------|-----------------|------------------------|---------|
| Penetració<br>n | Esf. Cort.<br>(kg/Cm2) | CBR (%) | Penetració<br>n | Esf. Cort.<br>(kg/cm2) | CBR (%) | Penetració<br>n | Esf. Cort.<br>(kg/cm2) | CBR (%) |
| (mm)            |                        |         | (mm)            |                        |         | (mm)            |                        |         |
| 0.000           | 0.002                  | 0.000   | 0.000           | 0.000                  | 0.000   | 0.000           | 0.000                  | 0.000   |
| 0.630           | 1.853                  | 0.000   | 0.630           | 1.101                  | 0.000   | 0.630           | 3.519                  | 0.000   |
| 1.270           | 3.151                  | 0.000   | 1.270           | 1.946                  | 0.000   | 1.270           | 7.757                  | 0.000   |
| 1.910           | 4.350                  | 0.000   | 1.910           | 3.144                  | 0.000   | 1.910           | 12.995                 | 0.000   |
| 2.540           | 5.622                  | 7.996   | 2.540           | 4.305                  | 6.122   | 2.540           | 18.742                 | 26.656  |
| 3.170           | 6.808                  | 0.000   | 3.170           | 5.814                  | 0.000   | 3.170           | 24.278                 | 0.000   |
| 3.810           | 8.026                  | 0.000   | 3.810           | 8.677                  | 0.000   | 3.810           | 29.437                 | 0.000   |
| 5.080           | 9.801                  | 9.293   | 5.080           | 10.356                 | 9.820   | 5.080           | 38.958                 | 36.941  |
| 7.620           | 11.829                 | 0.000   | 7.620           | 17.577                 | 0.000   | 7.620           | 51.599                 | 0.000   |
| 10.160          | 12.667                 | 0.000   | 10.160          | 25.752                 | 0.000   | 10.160          | 53.008                 | 0.000   |
| 12.700          | 12.686                 | 0.000   | 12.700          | 30.823                 | 0.000   | 12.700          | 54.015                 | 0.000   |

EC: 12 GOLPES EC: 25 GOLPES EC: 56 GOLPES



## **DATOS DE COMPACTACIÓN**

|                                      | MOLDE 1   | MOLDE 2   | MOLDE 3   |
|--------------------------------------|-----------|-----------|-----------|
| Peso de suelo humedo + Tara (g)      | 175.900   | 185.300   | 171.000   |
| Peso de suelo seco + Tara (g)        | 166.400   | 175.900   | 161.900   |
| Peso de Tara (g)                     | 39.000    | 40.000    | 39.900    |
| Volumen del Suelo Compactado (cm3)   | 2122.495  | 2303.028  | 2306.981  |
| Contenido de humedad (%)             | 7.457     | 6.917     | 7.459     |
| Peso de molde + Suelo compactado (g) | 11318.400 | 11952.400 | 12841.500 |
| Peso de molde                        | 6964.100  | 6964.100  | 7517.800  |
| Peso de suelo compactado (g)         | 4354.300  | 4988.300  | 5323.700  |
| Densidad humeda (g/cm3)              | 2.052     | 2.166     | 2.308     |
| Densidad seca (g/cm3)                | 1.909     | 2.026     | 2.147     |



#### METODO DE COMPACTACION ASTM D1557

Maxima Densidad Seca (g/cm3):2.180Optimo Contenido de Humedad (%):6.50095% Maxima Densidad Seca (g/cm3):2.080

| CBR al 100% de MDS (0.1"): | 26.658 |
|----------------------------|--------|
| CBR al 100% de MDS (0.2"): | 36.841 |
| CBR al 95% de MDS (0.1"):  | 11.524 |
| CBR al 95% de MDS (0.2"):  | 12.524 |

#### **RESULTADOS:**

Valor CBR al 100% de MDS: 36.841 Valor CBR al 95% de MDS: 12.524



192194

1 de 2

| STORY AND STORY | ilo sumusos |    |
|-----------------|-------------|----|
|                 | UP          | AO |

Proyecto

#### **INFORME DE ENSAYO**

— Calidad A

Código

Página

ENSAYO CALIFORNIA BEARING RATIO (CBR) NTP 339.145

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

: PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

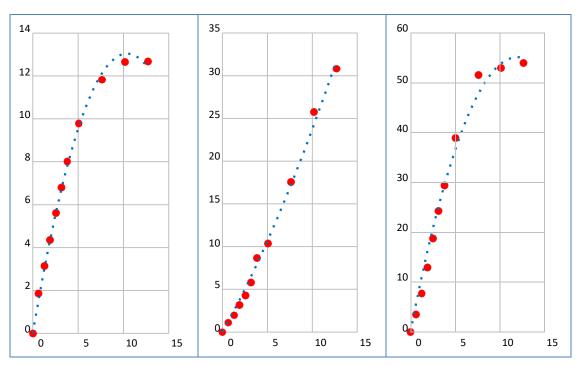
Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-3 N° de Muestra : M-3

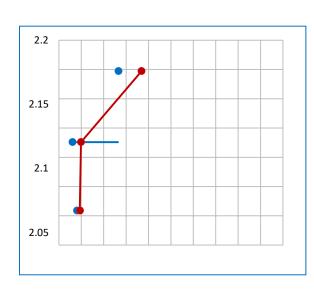
Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m


## **DATOS GENERALES DE LOS MOLDES**

|                                 | MOLDE 1                      | MOLDE 2                      | MOLDE 3                      |
|---------------------------------|------------------------------|------------------------------|------------------------------|
| Descripción                     | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA |
| Profundidad                     | 1.5                          | 1.5                          | 1.5                          |
| Procedimiento                   | NTP 339.145                  | NTP 339.145                  | NTP 339.145                  |
| Metodo                          | ENSAYO DE CBR                | ENSAYO DE CBR                | ENSATO DE CBR                |
| Tipo de Muestra                 | Remoldeado                   | Remoldeado                   | Remodelado                   |
| Límite Líquido                  | 0                            | 0                            | 0                            |
| Límite Plástico                 | 0                            | 0                            | 0                            |
| Peso Suplemento (g)             | 4548.8                       | 4548.8                       | 454.8                        |
| Densidad Máxima Seca (g/cm3)    | 2.08                         | 2.08                         | 2.08                         |
| Óptimo Contenido de Humedad (%) | 6.7                          | 6.7                          | 6.7                          |
| Número de Golpes                | 12                           | 25                           | 56                           |
| Observaciones                   | 0                            | 0                            | 0                            |

#### DATOS DE PENETRACIÓN


|                 | MOLDE 1                |         |                 | MOLDE 2                |         |                 | MOLDE 3                |         |
|-----------------|------------------------|---------|-----------------|------------------------|---------|-----------------|------------------------|---------|
| Penetració<br>n | Esf. Cort.<br>(kg/Cm2) | CBR (%) | Penetració<br>n | Esf. Cort.<br>(kg/cm2) | CBR (%) | Penetració<br>n | Esf. Cort.<br>(kg/cm2) | CBR (%) |
| (mm)            |                        |         | (mm)            |                        |         | (mm)            |                        |         |
| 0.000           | 0.002                  | 0.000   | 0.000           | 0.000                  | 0.000   | 0.000           | 0.000                  | 0.000   |
| 0.630           | 1.853                  | 0.000   | 0.630           | 1.101                  | 0.000   | 0.630           | 3.519                  | 0.000   |
| 1.270           | 3.151                  | 0.000   | 1.270           | 1.946                  | 0.000   | 1.270           | 7.757                  | 0.000   |
| 1.910           | 4.350                  | 0.000   | 1.910           | 3.144                  | 0.000   | 1.910           | 12.995                 | 0.000   |
| 2.540           | 5.622                  | 7.996   | 2.540           | 4.305                  | 6.122   | 2.540           | 18.742                 | 26.656  |
| 3.170           | 6.808                  | 0.000   | 3.170           | 5.814                  | 0.000   | 3.170           | 24.278                 | 0.000   |
| 3.810           | 8.026                  | 0.000   | 3.810           | 8.677                  | 0.000   | 3.810           | 29.437                 | 0.000   |
| 5.080           | 9.801                  | 9.293   | 5.080           | 10.356                 | 9.820   | 5.080           | 38.958                 | 36.941  |
| 7.620           | 11.829                 | 0.000   | 7.620           | 17.577                 | 0.000   | 7.620           | 51.599                 | 0.000   |
| 10.160          | 12.667                 | 0.000   | 10.160          | 25.752                 | 0.000   | 10.160          | 53.008                 | 0.000   |
| 12.700          | 12.686                 | 0.000   | 12.700          | 30.823                 | 0.000   | 12.700          | 54.015                 | 0.000   |

EC: 12 GOLPES EC: 25 GOLPES EC: 56 GOLPES



## **DATOS DE COMPACTACIÓN**

|                                      | MOLDE 1   | MOLDE 2   | MOLDE 3   |
|--------------------------------------|-----------|-----------|-----------|
| Peso de suelo humedo + Tara (g)      | 175.900   | 185.300   | 171.000   |
| Peso de suelo seco + Tara (g)        | 166.400   | 175.900   | 161.900   |
| Peso de Tara (g)                     | 39.000    | 40.000    | 39.900    |
| Volumen del Suelo Compactado (cm3)   | 2122.495  | 2303.028  | 2306.981  |
| Contenido de humedad (%)             | 7.457     | 6.917     | 7.459     |
| Peso de molde + Suelo compactado (g) | 11318.400 | 11952.400 | 12841.500 |
| Peso de molde                        | 6964.100  | 6964.100  | 7517.800  |
| Peso de suelo compactado (g)         | 4354.300  | 4988.300  | 5323.700  |
| Densidad humeda (g/cm3)              | 2.052     | 2.166     | 2.308     |
| Densidad seca (g/cm3)                | 1.909     | 2.026     | 2.147     |



#### **METODO DE COMPACTACION ASTM D1557**

Maxima Densidad Seca (g/cm3): 2.180
Optimo Contenido de Humedad (%): 6.650
95% Maxima Densidad Seca (g/cm3): 2.070

| CBR al 100% de MDS (0.1"): | 26.651 |
|----------------------------|--------|
| CBR al 100% de MDS (0.2"): | 36.782 |
| CBR al 95% de MDS (0.1"):  | 10.786 |
| CBR al 95% de MDS (0.2"):  | 12.650 |

#### **RESULTADOS:**

 Valor CBR al 100% de MDS:
 36.782

 Valor CBR al 95% de MDS:
 12.650



192194

Α

1 de 2

| IPAO |
|------|
| IPAO |

#### **INFORME DE ENSAYO**

ENSAYO CALIFORNIA BEARING RATIO (CBR)

Código

NTP 339.145 Página
"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

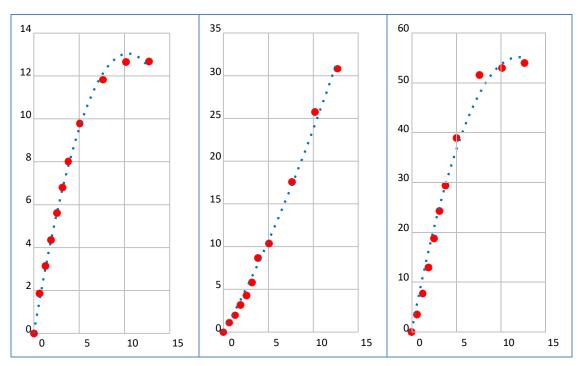
Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-4 N° de Muestra : M-4

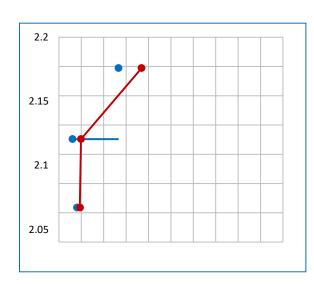
Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m


## **DATOS GENERALES DE LOS MOLDES**

|                                 | MOLDE 1                      | MOLDE 2                      | MOLDE 3                      |
|---------------------------------|------------------------------|------------------------------|------------------------------|
| Descripción                     | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA |
| Profundidad                     | 1.5                          | 1.5                          | 1.5                          |
| Procedimiento                   | NTP 339.145                  | NTP 339.145                  | NTP 339.145                  |
| Metodo                          | ENSAYO DE CBR                | ENSAYO DE CBR                | ENSATO DE CBR                |
| Tipo de Muestra                 | Remoldeado                   | Remoldeado                   | Remodelado                   |
| Límite Líquido                  | 0                            | 0                            | 0                            |
| Límite Plástico                 | 0                            | 0                            | 0                            |
| Peso Suplemento (g)             | 4548.8                       | 4548.8                       | 454.8                        |
| Densidad Máxima Seca (g/cm3)    | 2.08                         | 2.08                         | 2.08                         |
| Óptimo Contenido de Humedad (%) | 6.7                          | 6.7                          | 6.7                          |
| Número de Golpes                | 12                           | 25                           | 56                           |
| Observaciones                   | 0                            | 0                            | 0                            |

## **DATOS DE PENETRACIÓN**


|                 | MOLDE 1                |         |                 | MOLDE 2                |         |                 | MOLDE 3                |         |
|-----------------|------------------------|---------|-----------------|------------------------|---------|-----------------|------------------------|---------|
| Penetració<br>n | Esf. Cort.<br>(kg/Cm2) | CBR (%) | Penetració<br>n | Esf. Cort.<br>(kg/cm2) | CBR (%) | Penetració<br>n | Esf. Cort.<br>(kg/cm2) | CBR (%) |
| (mm)            |                        |         | (mm)            |                        |         | (mm)            |                        |         |
| 0.000           | 0.002                  | 0.000   | 0.000           | 0.000                  | 0.000   | 0.000           | 0.000                  | 0.000   |
| 0.630           | 1.853                  | 0.000   | 0.630           | 1.101                  | 0.000   | 0.630           | 3.519                  | 0.000   |
| 1.270           | 3.151                  | 0.000   | 1.270           | 1.946                  | 0.000   | 1.270           | 7.757                  | 0.000   |
| 1.910           | 4.350                  | 0.000   | 1.910           | 3.144                  | 0.000   | 1.910           | 12.995                 | 0.000   |
| 2.540           | 5.622                  | 7.996   | 2.540           | 4.305                  | 6.122   | 2.540           | 18.742                 | 26.656  |
| 3.170           | 6.808                  | 0.000   | 3.170           | 5.814                  | 0.000   | 3.170           | 24.278                 | 0.000   |
| 3.810           | 8.026                  | 0.000   | 3.810           | 8.677                  | 0.000   | 3.810           | 29.437                 | 0.000   |
| 5.080           | 9.801                  | 9.293   | 5.080           | 10.356                 | 9.820   | 5.080           | 38.958                 | 36.941  |
| 7.620           | 11.829                 | 0.000   | 7.620           | 17.577                 | 0.000   | 7.620           | 51.599                 | 0.000   |
| 10.160          | 12.667                 | 0.000   | 10.160          | 25.752                 | 0.000   | 10.160          | 53.008                 | 0.000   |
| 12.700          | 12.686                 | 0.000   | 12.700          | 30.823                 | 0.000   | 12.700          | 54.015                 | 0.000   |

EC: 12 GOLPES EC: 25 GOLPES EC: 56 GOLPES



## **DATOS DE COMPACTACIÓN**

|                                      | MOLDE 1   | MOLDE 2   | MOLDE 3   |
|--------------------------------------|-----------|-----------|-----------|
| Peso de suelo humedo + Tara (g)      | 175.900   | 185.300   | 171.000   |
| Peso de suelo seco + Tara (g)        | 166.400   | 175.900   | 161.900   |
| Peso de Tara (g)                     | 39.000    | 40.000    | 39.900    |
| Volumen del Suelo Compactado (cm3)   | 2122.495  | 2303.028  | 2306.981  |
| Contenido de humedad (%)             | 7.457     | 6.917     | 7.459     |
| Peso de molde + Suelo compactado (g) | 11318.400 | 11952.400 | 12841.500 |
| Peso de molde                        | 6964.100  | 6964.100  | 7517.800  |
| Peso de suelo compactado (g)         | 4354.300  | 4988.300  | 5323.700  |
| Densidad humeda (g/cm3)              | 2.052     | 2.166     | 2.308     |
| Densidad seca (g/cm3)                | 1.909     | 2.026     | 2.147     |



## METODO DE COMPACTACION ASTM D1557

Maxima Densidad Seca (g/cm3):2.200Optimo Contenido de Humedad (%):6.73095% Maxima Densidad Seca (g/cm3):2.090

| CBR al 100% de MDS (0.1"): | 26.650 |
|----------------------------|--------|
| CBR al 100% de MDS (0.2"): | 36.821 |
| CBR al 95% de MDS (0.1"):  | 11.326 |
| CBR al 95% de MDS (0.2"):  | 13.107 |

## RESULTADOS:

Valor CBR al 100% de MDS: 36.821 Valor CBR al 95% de MDS: 13.107



192194

| UPAO |
|------|
|------|

### **INFORME DE ENSAYO**

ENSAYO CALIFORNIA BEARING RATIO (CBR)

NTP 339.145

Calidad A
Página 1 de 2

Código

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

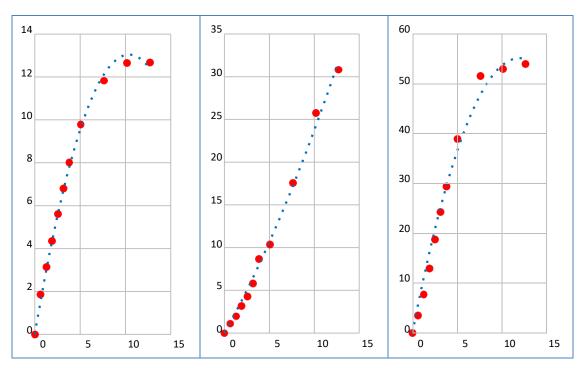
Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-5 N° de Muestra : M-5

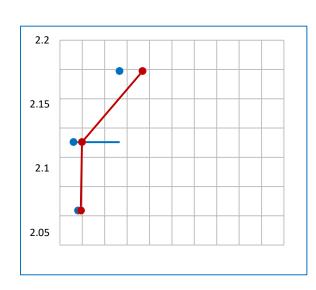
Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m


## **DATOS GENERALES DE LOS MOLDES**

|                                 | MOLDE 1                      | MOLDE 2                      | MOLDE 3                      |
|---------------------------------|------------------------------|------------------------------|------------------------------|
| Descripción                     | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA |
| Profundidad                     | 1.5                          | 1.5                          | 1.5                          |
| Procedimiento                   | NTP 339.145                  | NTP 339.145                  | NTP 339.145                  |
| Metodo                          | ENSAYO DE CBR                | ENSAYO DE CBR                | ENSATO DE CBR                |
| Tipo de Muestra                 | Remoldeado                   | Remoldeado                   | Remodelado                   |
| Límite Líquido                  | 0                            | 0                            | 0                            |
| Límite Plástico                 | 0                            | 0                            | 0                            |
| Peso Suplemento (g)             | 4548.8                       | 4548.8                       | 454.8                        |
| Densidad Máxima Seca (g/cm3)    | 2.08                         | 2.08                         | 2.08                         |
| Óptimo Contenido de Humedad (%) | 6.7                          | 6.7                          | 6.7                          |
| Número de Golpes                | 12                           | 25                           | 56                           |
| Observaciones                   | 0                            | 0                            | 0                            |

## **DATOS DE PENETRACIÓN**


|                 | MOLDE 1                |         |                 | MOLDE 2                |         |                 | MOLDE 3                |         |
|-----------------|------------------------|---------|-----------------|------------------------|---------|-----------------|------------------------|---------|
| Penetració<br>n | Esf. Cort.<br>(kg/Cm2) | CBR (%) | Penetració<br>n | Esf. Cort.<br>(kg/cm2) | CBR (%) | Penetració<br>n | Esf. Cort.<br>(kg/cm2) | CBR (%) |
| (mm)            |                        |         | (mm)            |                        |         | (mm)            |                        |         |
| 0.000           | 0.002                  | 0.000   | 0.000           | 0.000                  | 0.000   | 0.000           | 0.000                  | 0.000   |
| 0.630           | 1.853                  | 0.000   | 0.630           | 1.101                  | 0.000   | 0.630           | 3.519                  | 0.000   |
| 1.270           | 3.151                  | 0.000   | 1.270           | 1.946                  | 0.000   | 1.270           | 7.757                  | 0.000   |
| 1.910           | 4.350                  | 0.000   | 1.910           | 3.144                  | 0.000   | 1.910           | 12.995                 | 0.000   |
| 2.540           | 5.622                  | 7.996   | 2.540           | 4.305                  | 6.122   | 2.540           | 18.742                 | 26.656  |
| 3.170           | 6.808                  | 0.000   | 3.170           | 5.814                  | 0.000   | 3.170           | 24.278                 | 0.000   |
| 3.810           | 8.026                  | 0.000   | 3.810           | 8.677                  | 0.000   | 3.810           | 29.437                 | 0.000   |
| 5.080           | 9.801                  | 9.293   | 5.080           | 10.356                 | 9.820   | 5.080           | 38.958                 | 36.941  |
| 7.620           | 11.829                 | 0.000   | 7.620           | 17.577                 | 0.000   | 7.620           | 51.599                 | 0.000   |
| 10.160          | 12.667                 | 0.000   | 10.160          | 25.752                 | 0.000   | 10.160          | 53.008                 | 0.000   |
| 12.700          | 12.686                 | 0.000   | 12.700          | 30.823                 | 0.000   | 12.700          | 54.015                 | 0.000   |

EC: 12 GOLPES EC: 25 GOLPES EC: 56 GOLPES



## **DATOS DE COMPACTACIÓN**

|                                      | MOLDE 1   | MOLDE 2   | MOLDE 3   |
|--------------------------------------|-----------|-----------|-----------|
| Peso de suelo humedo + Tara (g)      | 175.900   | 185.300   | 171.000   |
| Peso de suelo seco + Tara (g)        | 166.400   | 175.900   | 161.900   |
| Peso de Tara (g)                     | 39.000    | 40.000    | 39.900    |
| Volumen del Suelo Compactado (cm3)   | 2122.495  | 2303.028  | 2306.981  |
| Contenido de humedad (%)             | 7.457     | 6.917     | 7.459     |
| Peso de molde + Suelo compactado (g) | 11318.400 | 11952.400 | 12841.500 |
| Peso de molde                        | 6964.100  | 6964.100  | 7517.800  |
| Peso de suelo compactado (g)         | 4354.300  | 4988.300  | 5323.700  |
| Densidad humeda (g/cm3)              | 2.052     | 2.166     | 2.308     |
| Densidad seca (g/cm3)                | 1.909     | 2.026     | 2.147     |



#### **METODO DE COMPACTACION ASTM D1557**

Maxima Densidad Seca (g/cm3):2.190Optimo Contenido de Humedad (%):6.75095% Maxima Densidad Seca (g/cm3):2.080

| CBR al 100% de MDS (0.1"): | 26.650 |
|----------------------------|--------|
| CBR al 100% de MDS (0.2"): | 36.821 |
| CBR al 95% de MDS (0.1"):  | 11.452 |
| CBR al 95% de MDS (0.2"):  | 12.752 |

#### **RESULTADOS:**

 Valor CBR al 100% de MDS:
 36.821

 Valor CBR al 95% de MDS:
 12.752



| IPAO |
|------|
| IPAO |

ENSAYO CALIFORNIA BEARING RATIO (CBR)
NTP 339.145

Código 192194

Calidad A

Página 1 de 2

"DISEÑO ESTRUCTURAL DEL PAVIMENTO ARTICULADO PARA LA

Proyecto : PAVIMENTACIÓN DE LA AVENIDA PROGRESO DE LA LOCALIDAD DE

CHICAMA, PROVINCIA DE ASCOPE, LA LIBERTAD - 2023

Solicitante : Br. Garcia Vigo Jeferson Michel

Ubicación : Localidad de Chicama - Ascope - La Libertad

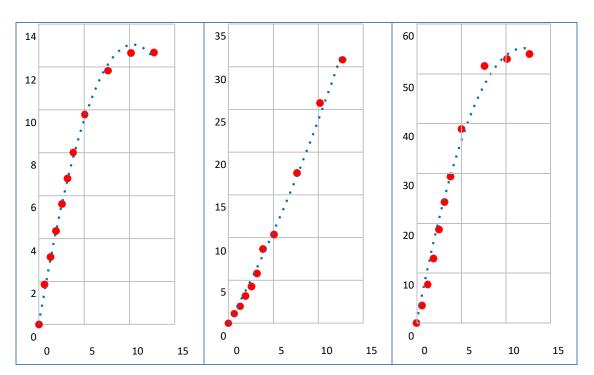
Material : Terreno Natural Muestreado por : Solicitante Ensayado por : Solicitante

#### **DATOS GENERALES DE LA MUESTRA RECIBIDA**

N° de Calicata : C-6 N° de Muestra : M-6

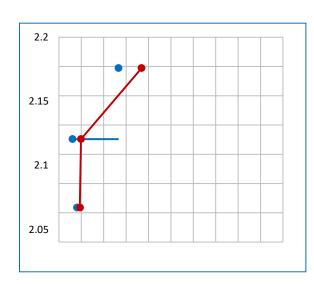
Clasificación estratigráfica: Arena bien graduada con presencia de grava

Profundidad : 0.00m a -1.50m


## **DATOS GENERALES DE LOS MOLDES**

|                                 | MOLDE 1                      | MOLDE 2                      | MOLDE 3                      |  |
|---------------------------------|------------------------------|------------------------------|------------------------------|--|
| Descripción                     | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA | ARENA CON PRESENCIA DE GRAVA |  |
| Profundidad                     | 1.5                          | 1.5                          | 1.5                          |  |
| Procedimiento                   | NTP 339.145                  | NTP 339.145                  | NTP 339.145                  |  |
| Metodo                          | ENSAYO DE CBR                | ENSAYO DE CBR                | ENSATO DE CBR                |  |
| Tipo de Muestra                 | Remoldeado                   | Remoldeado                   | Remodelado                   |  |
| Límite Líquido                  | 0                            | 0                            | 0                            |  |
| Límite Plástico                 | 0                            | 0                            | 0                            |  |
| Peso Suplemento (g)             | 4548.8                       | 4548.8                       | 454.8                        |  |
| Densidad Máxima Seca (g/cm3)    | 2.08                         | 2.08                         | 2.08                         |  |
| Óptimo Contenido de Humedad (%) | 6.7                          | 6.7                          | 6.7                          |  |
| Número de Golpes                | 12                           | 25                           | 56                           |  |
| Observaciones                   | 0                            | 0                            | 0                            |  |

### **DATOS DE PENETRACIÓN**


|                 | MOLDE 1                |         |                 | MOLDE 2                |         |                 | MOLDE 3                |         |
|-----------------|------------------------|---------|-----------------|------------------------|---------|-----------------|------------------------|---------|
| Penetració<br>n | Esf. Cort.<br>(kg/Cm2) | CBR (%) | Penetració<br>n | Esf. Cort.<br>(kg/cm2) | CBR (%) | Penetració<br>n | Esf. Cort.<br>(kg/cm2) | CBR (%) |
| (mm)            | 0.003                  | 0.000   | (mm)            | 0.000                  | 0.000   | (mm)            | 0.000                  | 0.000   |
| 0.000           | 0.002                  | 0.000   | 0.000           | 0.000                  | 0.000   | 0.000           | 0.000                  | 0.000   |
| 0.630           | 1.853                  | 0.000   | 0.630           | 1.101                  | 0.000   | 0.630           | 3.519                  | 0.000   |
| 1.270           | 3.151                  | 0.000   | 1.270           | 1.946                  | 0.000   | 1.270           | 7.757                  | 0.000   |
| 1.910           | 4.350                  | 0.000   | 1.910           | 3.144                  | 0.000   | 1.910           | 12.995                 | 0.000   |
| 2.540           | 5.622                  | 7.996   | 2.540           | 4.305                  | 6.122   | 2.540           | 18.742                 | 26.656  |
| 3.170           | 6.808                  | 0.000   | 3.170           | 5.814                  | 0.000   | 3.170           | 24.278                 | 0.000   |
| 3.810           | 8.026                  | 0.000   | 3.810           | 8.677                  | 0.000   | 3.810           | 29.437                 | 0.000   |
| 5.080           | 9.801                  | 9.293   | 5.080           | 10.356                 | 9.820   | 5.080           | 38.958                 | 36.941  |
| 7.620           | 11.829                 | 0.000   | 7.620           | 17.577                 | 0.000   | 7.620           | 51.599                 | 0.000   |
| 10.160          | 12.667                 | 0.000   | 10.160          | 25.752                 | 0.000   | 10.160          | 53.008                 | 0.000   |
| 12.700          | 12.686                 | 0.000   | 12.700          | 30.823                 | 0.000   | 12.700          | 54.015                 | 0.000   |

EC: 12 GOLPES EC: 25 GOLPES EC: 56 GOLPES



## **DATOS DE COMPACTACIÓN**

|                                      | MOLDE 1   | MOLDE 2   | MOLDE 3   |
|--------------------------------------|-----------|-----------|-----------|
| Peso de suelo humedo + Tara (g)      | 175.900   | 185.300   | 171.000   |
| Peso de suelo seco + Tara (g)        | 166.400   | 175.900   | 161.900   |
| Peso de Tara (g)                     | 39.000    | 40.000    | 39.900    |
| Volumen del Suelo Compactado (cm3)   | 2122.495  | 2303.028  | 2306.981  |
| Contenido de humedad (%)             | 7.457     | 6.917     | 7.459     |
| Peso de molde + Suelo compactado (g) | 11318.400 | 11952.400 | 12841.500 |
| Peso de molde                        | 6964.100  | 6964.100  | 7517.800  |
| Peso de suelo compactado (g)         | 4354.300  | 4988.300  | 5323.700  |
| Densidad humeda (g/cm3)              | 2.052     | 2.166     | 2.308     |
| Densidad seca (g/cm3)                | 1.909     | 2.026     | 2.147     |



#### METODO DE COMPACTACION ASTM D1557

Maxima Densidad Seca (g/cm3):2.190Optimo Contenido de Humedad (%):6.82095% Maxima Densidad Seca (g/cm3):2.080

| CBR al 100% de MDS (0.1"): | 26.502 |
|----------------------------|--------|
| CBR al 100% de MDS (0.2"): | 36.923 |
| CBR al 95% de MDS (0.1"):  | 11.364 |
| CBR al 95% de MDS (0.2"):  | 12.500 |

#### **RESULTADOS:**

Valor CBR al 100% de MDS: 36.923 Valor CBR al 95% de MDS: 12.500

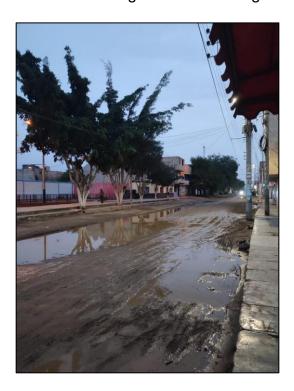


## 8.6 Anexo 6. Panel Fotográfico

☐ Situación actual de la vía

**Figura 19:**Estado actual sin pavimentación de la vía de la avenida Progreso




Nota. Fuente: Elaboración Propia

**Figura 20:**Creación de charcos frente a mercado principal por las lluvias



Nota. Fuente: Elaboración Propia

Figura 21: Creación de charcos frente a colegio "Santo Domingo de Guzmán" por las lluvias



Nota. Fuente: Elaboración Propia

Figura 22:
Creación de charcos frente a iglesia de Chicama por las lluvias



Nota. Fuente: Elaboración Propia

## □ Conteo Vehicular

**Figura 23:**Conteo vehicular frente a colegio "Santo Domingo de Guzmán" de Norte a Sur



Nota. Fuente: Elaboración Propia

Figura 24:

Conteo vehicular frente a colegio "Santo Domingo de Guzmán" de Sur a Norte



Nota. Fuente: Elaboración Propia

# ☐ Estudio Topográfico

Figura 25:

Materiales utilizados para generar el reconocimiento de la vía



Nota. Fuente: Elaboración Propia

Figura 26: Estudio de la zona desde el punto 1.00 km de la avenida



**Figura 27:** Estudio topográfico de la zona





☐ Excavación de Calicatas

**Figura 28:**Materiales a utilizar para exploración de calicatas



**Figura 29:**Delimitación de dimensiones de cada calicata



**Figura 30:** Excavación de calicata 01 y 02 cada 1800 m² en la avenida Progreso



**Figura 31:** Excavación de calicata 03 y 04 cada 1800 m² en la avenida Progreso



**Figura 32:** Excavación de calicata 05 y 06 cada 1800 m² en la avenida Progreso



**Figura 33:** Excavación de calicata 07 y 08 cada 1800 m² en la avenida Progreso



**Figura 34:**Excavación de calicata 09 y 10 cada 1800 m² en la avenida Progreso



## ☐ Ensayos de Laboratorio

# Ensayo de Contenido de Humedad

**Figura 35:**Muestras de suelo obtenido de las calicatas



Nota. Fuente: Elaboración Propia

Figura 36:
Muestras de suelo colocadas en el horno



## Ensayo de Granulometría por Tamizado

Figura 37:
Proceso de tamizado en muestras de suelo



Nota. Fuente: Elaboración Propia

Ensayo de Proctor Modificado

Figura 38:

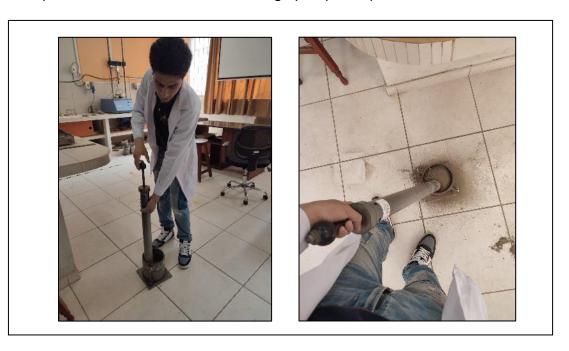
Materiales a utilizar para ensayo de subrasante



Figura 39: Destinación de más de 30 kg de muestra para ensayo de subrasante



Figura 40: Tamizado (3/4") de muestra seca






**Figura 41:** Adición de diferentes porcentajes de agua



**Figura 42:**Compactación de subrasante con 56 golpes por capa



**Figura 43:**Moldes compactados con diferentes porcentajes de humedad



**Figura 44:** Extracción de muestras de cada molde



**Figura 45:**Colocación de muestras extraídas en horno





Ensayo de CBR

**Figura 46:** Adición de porcentaje óptimo de agua



Figura 47: Compactación de subrasante con 12, 25 y 56 golpes por capas



Figura 48:

Muestras de suelo en moldes sumergidos en agua por 4 días

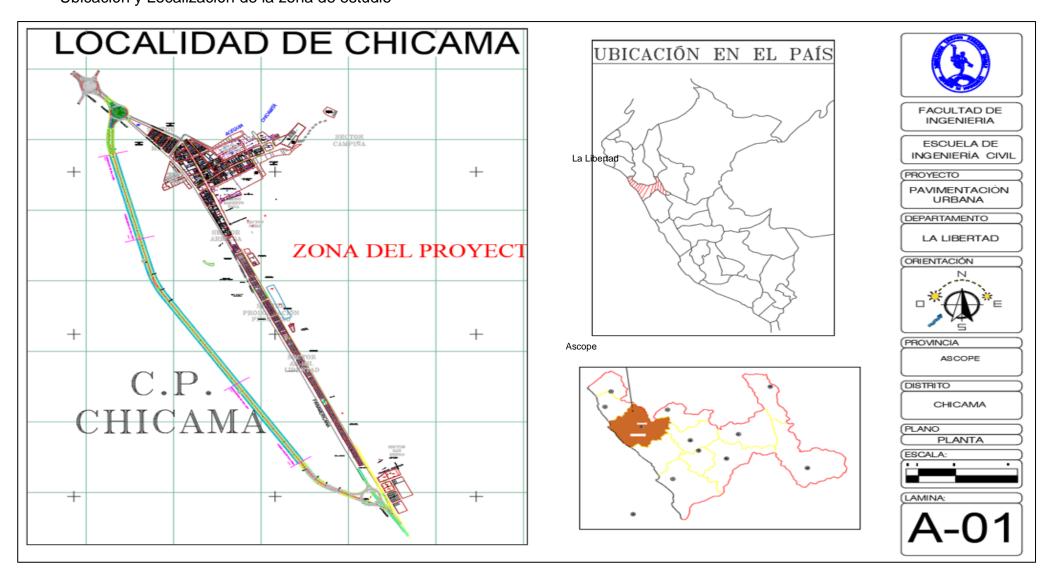


Figura 49: Cargas aplicadas a cada muestra con penetración determinada





**Figura 50:**Registro de datos computarizados






#### 8.7 Anexo 7. Relación de planos

Figura 51:

Ubicación y Localización de la zona de estudio



**Figura 52:**Cartel de obra

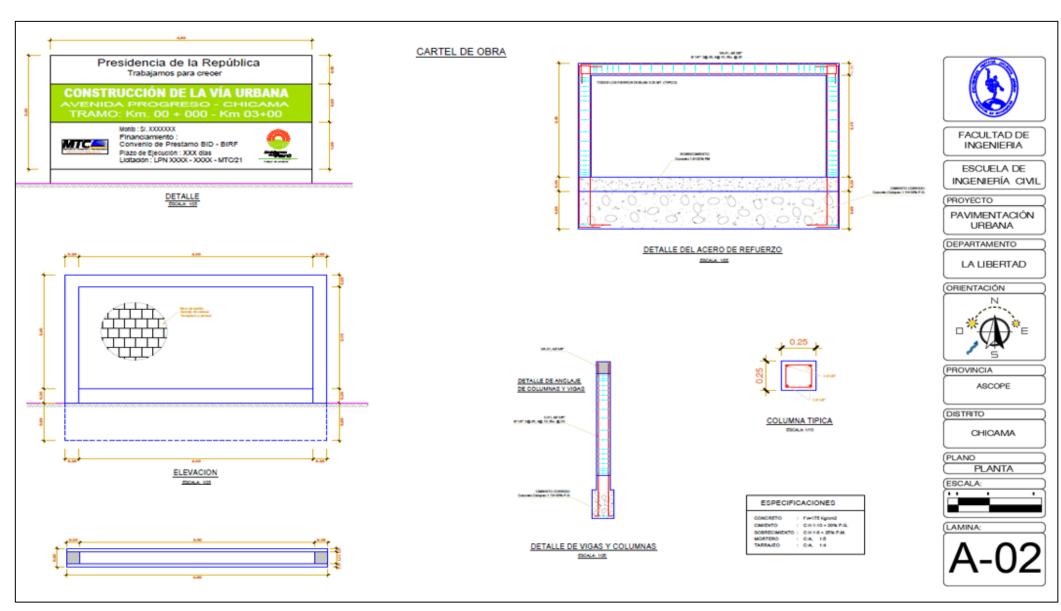



Figura 53: Señales Preventivas

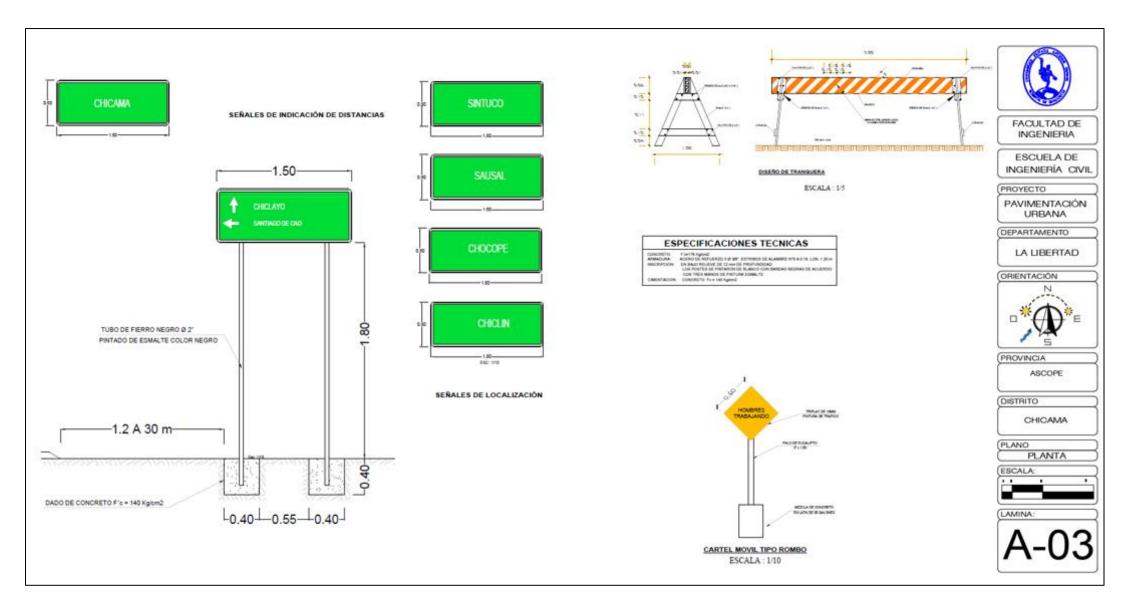
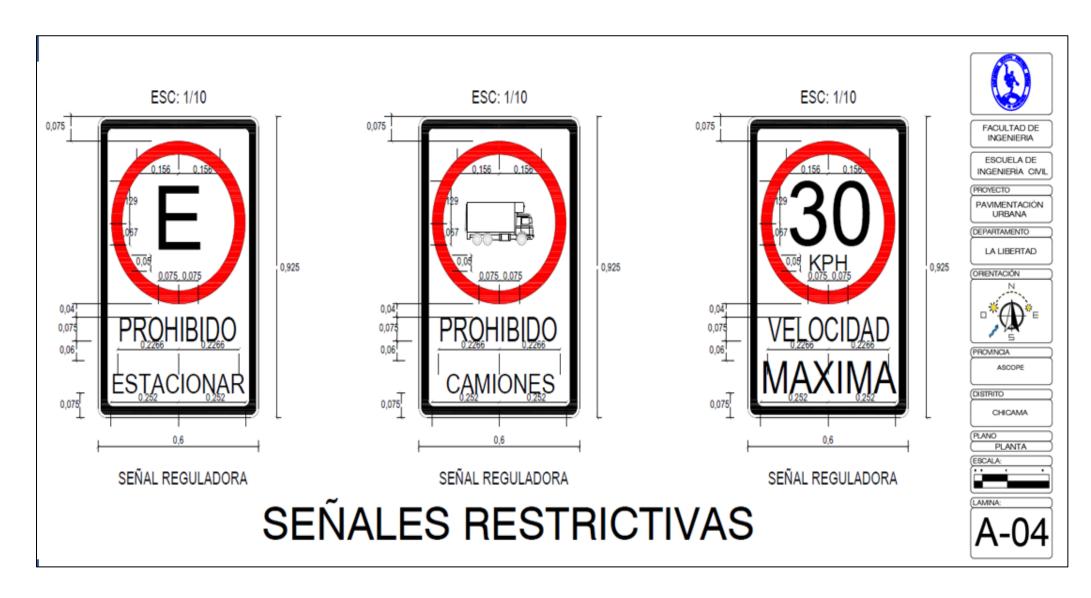




Figura 54: Señales Restrictivas



**Figura 55:**Detalle de buzones y tuberías

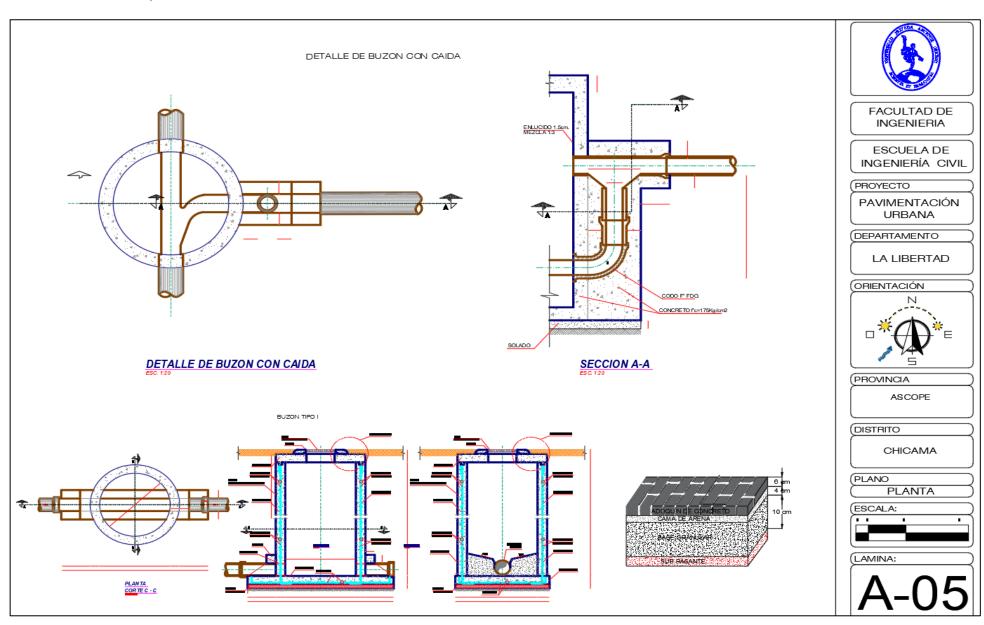



Figura 56:
Corte de vía de la avenida Progreso

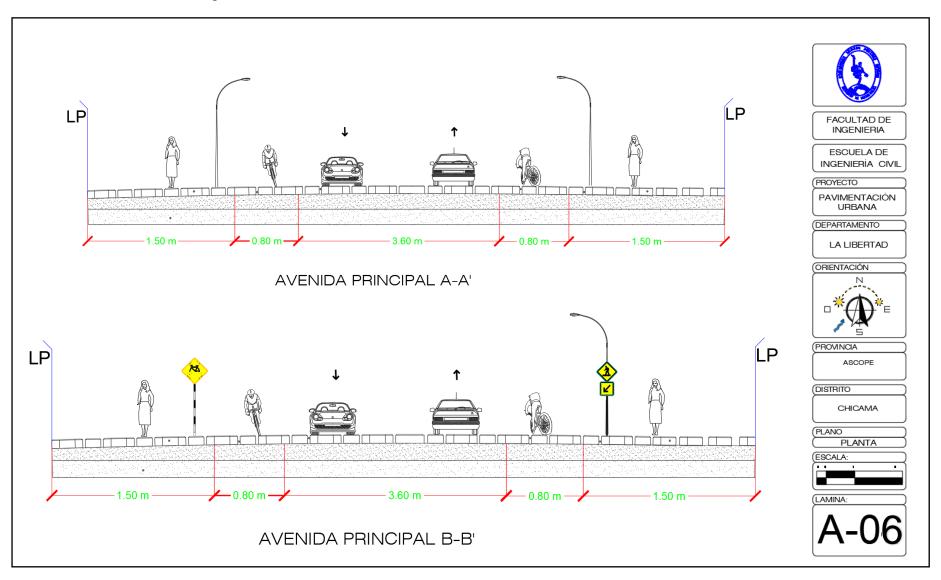
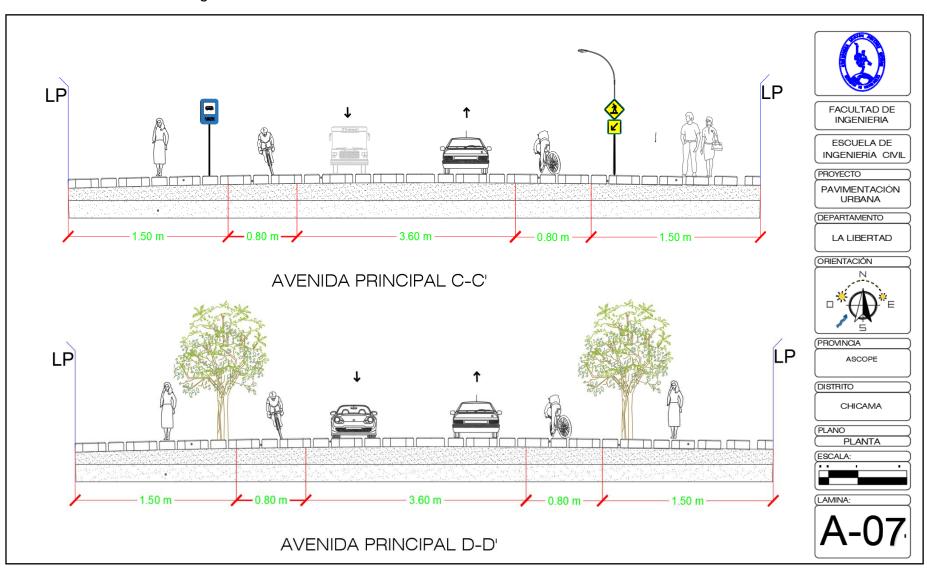
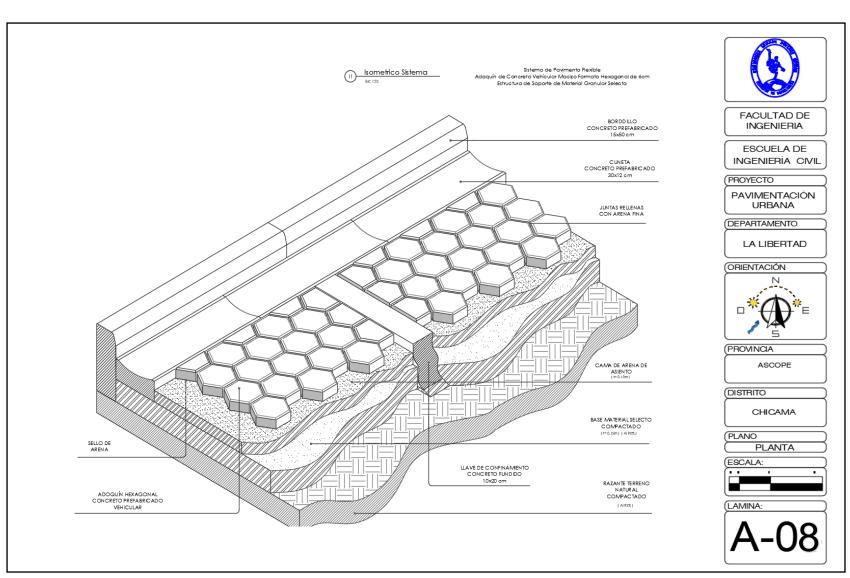





Figura 57:

Corte de vía de la avenida Progreso



**Figura 58:**Buzones y tuberías en tramo de la avenida Progreso



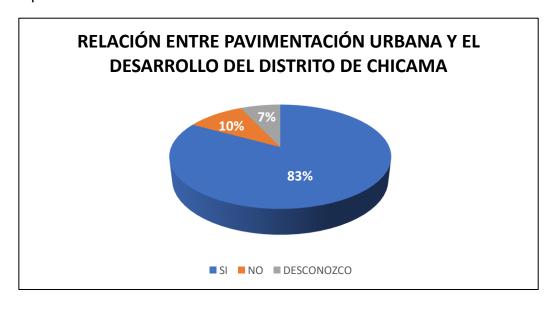
#### 8.8 Anexo 8. Encuestas

Cuestionario aplicado a los pobladores que viven en el distrito de Chicama

#### PREGUNTA 1:

# ¿CONSIDERA QUE EL ACTUAL PROBLEMA DE PAVIMENTACIÓN URBANA HA GENERADO UN RETROCESO ECONÓMICO, AMBIENTAL Y SOCIAL PARA EL DISTRITO DE CHICAMA?

**OBJETIVO:** Determinar si para los propios pobladores la falta de pistas y veredas han generado retraso para el distrito de Chicama.


**Tabla71:**Opinión acerca de la relación Desarrollo / Pavimentación Urbana

| ITEM  | ALTERNATIVA | N. ENCUESTADOS | PORCENTAJE |
|-------|-------------|----------------|------------|
| Α.    | SI          | 25             | 83%        |
| В.    | NO          | 3              | 10%        |
| C.    | DESCONOZCO  | 2              | 7%         |
| TOTAL |             | 30             | 100%       |

Nota. Fuente: Elaboración Propia

#### Gráfico6:

Opinión acerca de la relación Desarrollo / Pavimentación Urbana



# ¿CÓMO CONSIDERARÍA USTED EL TRABAJO QUE REALIZA LA MUNICIPALIDAD DEL DISTRITO EN CUÁNTO A SOLUCIONAR EL PROBLEMA DE PAVIMENTACIÓN URBANA EN LA AVENIDA PROGRESO?

**OBJETIVO:** Determinar qué tan satisfechos están los pobladores en cuánto a las gestiones que viene realizando el organismo municipal del distrito durante todos estos años.

**Tabla72:**Opinión acerca de la gestión hecha por la municipalidad

| ITEM | ALTERNATIVA   | N. ENCUESTADOS | PORCENTAJE |
|------|---------------|----------------|------------|
| Α.   | ADECUADO      | 4              | 13%        |
| В.   | POCO ADECUADO | 10             | 33%        |
| C.   | INADECUADO    | 16             | 54%        |
|      | TOTAL         | 30             | 100%       |

Nota. Fuente: Elaboración Propia

#### Gráfico7:

Opinión acerca de la gestión hecha por la municipalidad



**Figura59:**Encuestas realizadas a los pobladores de Chicama

