UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERIA

PROGRAMA DE ESTUDIO DE INGENIERIA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Ampliación del servicio de agua potable e instalación de alcantarillado en la localidad de Cochapampa – Sorochuco – Celendín – Cajamarca

LINEA DE INVESTIGACIÓN: INGENIERIA CIVIL SUB LÍNEA DE INVESTIGACIÓN: SANEAMIENTO

Autores:

Sevilla Tasilla, Christian Paulo Oribe Quiñones, Adela Marisol

Jurado Evaluador:

Presidente: López Carranza, Rubén Atilio

Secretario: Panduro Alvarado, Elka

Vocal: Perrigo Sarmiento, Felix Gilberto

Asesor:

Vertiz Malabrigo, Manuel Alberto

Código Orcid: <u>https://orcid.org/0000-0001-9168-8258</u>

TRUJILLO - PERU - 2023

Fecha de Sustentación: 2023/11/24

UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERIA

PROGRAMA DE ESTUDIO DE INGENIERIA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Ampliación del servicio de agua potable e instalación de alcantarillado en la localidad de Cochapampa – Sorochuco – Celendín – Cajamarca

LINEA DE INVESTIGACIÓN: INGENIERIA CIVIL SUB LÍNEA DE INVESTIGACIÓN: SANEAMIENTO

Autores:

Sevilla Tasilla, Christian Paulo Oribe Quiñones, Adela Marisol

Jurado Evaluador:

Presidente: López Carranza, Rubén Atilio

Secretario: Panduro Alvarado, Elka

Vocal: Perrigo Sarmiento, Felix Gilberto

Asesor:

Vertiz Malabrigo, Manuel Alberto

Código Orcid: https://orcid.org/0000-0001-9168-8258

TRUJILLO - PERU - 2023

Fecha de Sustentación: 2023/11/24

Ampliación del servicio de agua potable e instalación de alcantarillado en la localidad de Cochapampa – Sorochuco – Celendín – Cajamarca

INFORME DE ORIGINALIDAD

9_%

11%

3_%

4%

INDICE DE SIMILITUD

FUENTES DE INTERNET

PUBLICACIONES

TRABAJOS DEL ESTUDIANTE

FUENTES PRIMARIAS				
1	www.investinperu.pe Fuente de Internet	3%		
2	repositorio.uap.edu.pe Fuente de Internet	2%		
3	1library.co Fuente de Internet	2%		
4	renati.sunedu.gob.pe	2%		

Excluir citas Activo

Excluir coincidencias < 2%

Excluir bibliografía Activo

DECLARACIÓN DE ORIGINALIDAD

Yo, Vertiz Malabrigo, Manuel Alberto, docente del Programa de Estudio de ingeniería Civil de la Universidad Privada Antenor Orrego, asesor de la tesis de investigación titulada "Ampliación del servicio de agua potable e instalación de alcantarillado en la localidad de Cochapampa – Sorochuco – Celendín – Cajamarca", del (los) autor (es) Sevilla Tasilla, Christian Paulo y Oribe Quiñones, Adela Marisol, dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación del 9%. Así lo consigna el reporte de similitud emitido por el software turnitin el día 09 de noviembre del 2023.
- He revisado con detalle dicho reporte de la tesis "Ampliación del servicio de agua potable e instalación de alcantarillado en la localidad de Cochapampa - Sorochuco - Celendín - Cajamarca", y no se advierte indicios de plagio.
- Las citas a otros autores y sus respectivas referencias cumplen con las normas establecidas por la Universidad.

Ciudad y fecha: Trujillo, 20 de noviembre del 2023

Sevilla Tasilla, Christian Paulo

DNI: 43722707

Oribe Quiñones, Adela Marisol

DNI: 41738013

Vertiz Malabrigo Manuel

DNI: 18112316

ORCID: https://orcid.org/0000-0001-9168-8258

DEDICATORIA

El presente trabajo de tesis está dedicado:

A dios, por darme la fortaleza para seguir adelante

A mi esposa Cynthia, por ser el pilar en este
proceso, quien siempre me apoyo y confió
incondicionalmente en mi

A mis padres que también fueron parte fundamental en mi vida

A mis hijos, que son la mayor motivación para nunca rendirme y poder concluir mis estudios logrando poder ser ejemplo para ellos

Br. Sevilla Tasilla, Christian Paulo

DEDICATORIA

Dedico mi tesis a todas aquellas personas que han sido parte de mi vida y que me han brindado su apoyo incondicional, especialmente a mi madre y hermanos, pues sin ellos no lo habría logrado, porque siempre me han motivado a seguir adelante en cada uno de mis proyectos y metas, y han sido una pieza fundamental en mi formación académica y personal.

Br. Oribe Quiñones, Adela Marisol

AGRADECIMIENTO

El principal agradecimiento a dios por bendecirme cada día, por guiarme en el camino de lo prudente y darme la sabiduría para ser mejor cada día

Al mismo tiempo agradezco a la Universidad Privada Antenor Orrego, que en sus aulas logre mi formación profesional

Agradezco a los docentes de la Facultad de Ingeniería, por haber compartido sus conocimientos a lo largo de la preparación profesional

Lo mismo un agradecimiento a mi asesor: el ingeniero Vertiz Malabrigo, Manuel Alberto, quien nos ha guiado, con su dirección, conocimiento y rectitud poder lograr concluir con el desarrollo de la presente tesis

Br. Sevilla Tasilla, Christian Paulo

En primer lugar, quiero agradecer a dios, quien ha sido mi fuerza y mi guía en todo momento, y ha hecho posible que pueda culminar con éxito este proyecto.

Quiero expresar mi gratitud a mi madre, hermanos, familiares y amigos que estuvieron a mi lado durante todo este proceso, brindándome su apoyo emocional y alentándome a continuar cuando las cosas se ponían difíciles.

También quiero agradecer a mi tutor, quien dedicó su tiempo y conocimientos para guiarme en este proceso y siempre estuvo dispuesto a aclarar mis dudas y orientarme en el camino correcto.

También quiero dar las gracias a mis profesores, compañeros de clase, por compartir sus experiencias y conocimientos conmigo, y por hacer de esta etapa una experiencia enriquecedora y llena de aprendizaje.

Br. Oribe Quiñones, Adela Marisol

RESUMEN

El estudio de esta investigación se ha generado en 3 partes, un estudio previo

de conceptos y teoría, la segunda parte de un proceso de recopilación de datos

de manera de trabajo de campo y el tercero punto fue de una manera de

interpretación de resultado como un trabajo de gabinete y tomando las

decisiones importantes con un previo estudio anteriormente.

Este estudio tiene como principal objetivo el poder mejorar la calidad de servicios

básicos ya que en la zona donde se realizará la investigación no cuentan con un

buen sistema privando a la población de satisfacer sus necesidades más

elementales.

Si hablamos de manera metodológica, se dice que esta investigación se realizó

de manera: aplicada, descriptiva y de diseño no experimental ya que para la

recolección de los datos se utilizaron 3 métodos: técnicas de observación directa.

análisis documental y ensayos de laboratorio.

Finalizamos realizando el diseño de todas las partes o componentes del sistema

de agua potable y de los biodigestores en el sistema de alcantarillado de la

localidad estudiada, fundamentado en perspectivas técnicas y lógicas junto con

estándares aceptables por parte de la ingeniería, garantizando así un

funcionamiento óptico, eficaz y eficiente para los pobladores de las zonas.

Palabras Claves: estudio – datos – interpretación – gabinete – elementales

vi

ABSTRACT

The study of this research has been generated in 3 parts, a previous study of

concepts and theory, the second part of a data collection process in a field work

manner and the third point was in a way of interpreting the results as a desk job

and making important decisions with a prior study.

The main objective of this study is to improve the quality of services basics since

in the area where the research will be carried out, they do not have a good

system, depriving the population of satisfying their most basic needs.

If we speak methodologically, it is said that this research was carried out in an

applied, descriptive and non-experimental design since 3 methods were used to

collect the data: direct observation techniques, documentary analysis and

laboratory tests.

We conclude by carrying out the design of all the parts or components of the

drinking water system and the biodigesters in the sewage system of the studied

locality, based on technical and logical perspectives along with acceptable

engineering standards, thus guaranteeing optical operation, effective and

efficient for the residents of the areas.

Keywords: study – data – interpretation – office – elementary

vii

PRESENTACION

SEÑORES MIEMBROS DEL JURADO:

Dando conformidad y cumplimiento de los requisitos establecidos en el Reglamento de grados y títulos de la Universidad Privada Antenor Orrego y el Reglamento interno de la facultad de ingeniería para obtener el título profesional de ingeniero civil, ponemos a su disposición la presente tesis titulada:

Ampliación del servicio de agua potable e instalación de alcantarillado en la localidad de Cochapampa – Sorochuco – Celendín – Cajamarca

El contenido del presente trabajo ha sido desarrollado tomándose en cuenta los conocimientos adquiridos durante nuestra formación profesional, apoyándonos en la información de otras investigaciones, y además con el asesoramiento del Ing. Vertiz Malabrigo, Manuel Alberto

Consideramos señores miembros del jurado que con sus observaciones y recomendaciones este trabajo pueda mejorarse y contribuir a la difusión de la investigación de nuestra universidad.

INDICE DE CONTENIDO

D	edicato	ria	i
A	gradeci	miento	iii
R	esumei	n	iv
Α	bstract		٧
Р	resenta	ición	vi
ĺn	dice o t	tabla de contenidos	vii
ĺn	dice de	tablas	viii
ĺn	dice de	e figuras	Х
l.	INTF	RODUCCIÓN	1
	1.1.	Realidad Problemática	1
	1.2.	Objetivos	2
	1.3.	Justificación del estudio	2
II.	MAF	RCO REFERENCIAL	3
	2.1.	Antecedentes	3
	2.2.	Marco Teórico	4
	2.3.	Marco Conceptual	6
	2.4.	Variables e Indicadores	8
III.	Meto	odología Empleada	10
	3.1.	Tipo de investigación	10
	3.2.	Población y muestreo del estudio	10
	3.3.	Diseño de la investigación	10
	3.4.	Instrumentos y técnicas de investigación	11
	3.5.	Procesamiento y análisis de los datos recolectados	12
I۷	/. Pres	entación de resultados	13
V	. Disc	usión de resultados	85
С	onclusi	ones	87
R	ecomei	ndaciones	89
	R	eferencias Bibliográficas	91
	L	Anexos	93

INDICE DE TABLAS

TABLA 1: Operacionalización de variables: dependiente e independiente	ć
TABLA 2: Rutas de Acceso a la Localidad Cochapampa	13
TABLA 3: Ubicación de calicatas	15
TABLA 4: Perfiles estratigráficos	16
TABLA 5: Resumen de las condiciones de cimentación	18
TABLA 6: Valores para diseño sísmico de las estructuras	21
TABLA 7: Análisis granulométrico – Limites de consistencia	22
TABLA 8: Análisis granulométrico – Limites de consistencia	23
TABLA 9: Análisis granulométrico – Limites de consistencia	24
TABLA 10: Análisis granulométrico – Limites de consistencia	25
TABLA 11: Análisis granulométrico – Limites de consistencia	26
TABLA 12: Análisis granulométrico – Limites de consistencia	27
TABLA 13: Perfil estratigráfico	28
TABLA 14: Perfil estratigráfico	29
TABLA 15: Perfil estratigráfico	30
TABLA 16: Perfil estratigráfico	31
TABLA 17: Perfil estratigráfico	32
TABLA 18: Perfil estratigráfico	33
TABLA 19: Clasificación del test de percolación	34
TABLA 20: Ubicación del test de percolación N°1	35
TABLA 21: Resultados del test de percolación	36
TABLA 22: Clasificación del terreno	36
TABLA 23: Ubicación del test de percolación N°2	36
TABLA 24: Resultados del test de percolación	37
TABLA 25: Clasificación del terreno	37
TABLA 26: Ubicación del test de percolación N°3	38
TABLA 27: Resultados del test de percolación	38
TABLA 28: Clasificación del terreno	38
TABLA 29: Resumen de los test de percolación	39
TABLA 30: Test de percolación – M1	40
TABLA 31: Test de percolación – M2	41
TABLA 32: Test de percolación – M3	42
TABLA 33: Cuadro de BM"s	44

TABLA 34: Levantamiento topográfico	48
TABLA 35: Levantamiento topográfico	49
TABLA 36: Levantamiento topográfico	50
TABLA 37: Levantamiento topográfico	51
TABLA 38: Levantamiento topográfico	52
TABLA 39: Levantamiento topográfico	53
TABLA 40: Tasa de crecimiento	56
TABLA 41: Población actual	57
TABLA 42: Población de diseño	58
TABLA 43: Tramo de la línea de conducción y presiones	60
TABLA 44: Resultado general	60
TABLA 45: Caudal en los nudos	62
TABLA 46: Resultados de las presiones	64
TABLA 47: Diámetros y velocidades	66
TABLA 48: Verificación de marcas	70
TABLA 49: Aforo de fuentes de agua	73
TABLA 50: Aforo de manantial campanilla	76
TABLA 51: Oferta de agua del manantial durante el año	77
TABLA 52: Consumo promedio diario anual para cada comunidad	77
TABLA 53: Consumo máximo diario para cada comunidad	78
TABLA 54: Captación Proyectada	79
TABLA 55: Válvulas de purga	80
TABLA 56: Válvulas de control	81
TABLA 57: Cámaras rompe presión T – 7	81
TABLA 58: Cámaras rompe presión T – 6	82
TABLA 59: Cuadro de Brechas	83

INDICE DE FIGURAS

FIGURA 1: Diseño del estudio	11
FIGURA 2: Ficha técnica de BMs	45
FIGURA 3: Ficha técnica de BMs	46
FIGURA 4: Ficha técnica de BMs	47
FIGURA 5: Características del tanque séptico	70
FIGURA 6: Dimensiones de la zanja	72
FIGURA 7: Croquis del sistema de agua potable	84
FIGURA 8: Ubicación de la zona de estudio en la provincia de Celendín	93
FIGURA 9: Certificado de los instrumentos de topografía	94
FIGURA 10: Certificado de los instrumentos de topografía	95

I. INTRODUCCION

1.1. REALIDAD PROBLEMÁTICA

El agua y el saneamiento son uno de los principales motores de la salud pública. Refiriéndome a ellos como «Salud 101»; lo que significa que en cuanto se pueda garantizar el acceso al agua salubre y a instalaciones sanitarias adecuadas para todos, independientemente de la diferencia de sus condiciones de vida, se habrá ganado una importante batalla contra todo tipo de enfermedades.

Es así que en nuestro país dotar de agua potable y saneamiento constituye uno de los desafíos más serios para los gobiernos nacionales, regionales y locales, en ese sentido ya se está optando dar solución mediante programas y proyectos privados o estatales.

En la actualidad el Perú afronta problemas económicos y morales agravados por el contexto mundial de esta pandemia por COVID – 19. Sin dejar de lado la globalización en la cual los mejores ubicados son aquellos que producen valor agregado como los países occidentales, y no solo materia prima como es el caso de la mayoría de países del tercer mundo donde se ubica el Perú.

Dentro de este marco, la peor parte la llevan las ciudades ubicadas en la sierra y selva del Perú que, debido al centralismo imperante en el manejo de la economía y desarrollo del país, se han visto huérfanas de adecuadas políticas de desarrollo sostenido.

Un tema álgido en el Perú es el problema del agua potable, pues alrededor del 22.7% de la población o un poco más de 7 millones de habitantes consume agua no potable, con los riesgos que ello implica. Son 2.5 millones en zonas urbanas y 4.8 millones en zonas rurales que consumen agua no potable proveniente de la red pública, según el Instituto de Economía y Desarrollo Empresarial de la Cámara de Comercio de Lima (CCL). Este problema ocasiona un déficit en higiene personal y de los alimentos, comodidad y enfermedades, y esto último repercute en el desarrollo físico e intelectual de las personas, generando enfermedades diversas.

1.2. ENUNCIADO DEL PROBLEMA

¿Cuáles son los principales aspectos que se debe tener en cuenta en una ampliación del servicio de agua potable e instalación de alcantarillado en la localidad de Cochapampa – Sorochuco– Celendín – Cajamarca?

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

Diseñar los principales aspectos que se deben tener en cuenta en una ampliación del servicio de agua potable e instalación de alcantarillado en la localidad de Cochapampa – Sorochuco– Celendín – Cajamarca

1.3.2. OBJETIVOS ESPECIFICOS

- Elaborar un estudio de mecánica de suelos con la finalidad conocer las características físicas y geológicas
- Efectuar un Levantamiento Topográfico cuyo objetivo es identificar las características naturales y artificiales de la propiedad
- Análisis de los sistemas básicos existentes en la zona de estudio
- Efectuar un diseño bajo normativa tanto para sistema de agua potable y alcantarillado

1.4. JUSTIFICACION DEL ESTUDIO

Justificación Académica: Para poder realizar la propuesta de la presente investigación se utilizarán todos los conocimientos y métodos obtenidos a lo largo de los ciclos académicos donde se aplicarán de manera a como nos indica los reglamentos y manuales.

Justificación Técnica: Como ya mencionado anteriormente, el estudio está determinado a una formulación de propuesta para el abastecimiento de agua potable donde nos regimos de acuerdo al reglamento nacional de edificaciones, sirviéndonos de guía y apoyo para lograr un buen resultado el cual le servirá de mucho a las municipalidades distritales en caso de efectuar un expediente técnico.

Justificación Social: La presente pesquisa, se justifica ya que ayudara a una mejoría en condiciones de costear y adquirir un servicio de agua potable en la población.

II. MARCO REFERENCIAL

2.1. ANTECEDENTES

2.1.1. ANTECEDENTES INTERNACIONALES

(Diaz Delgado, García Pullido & Solís Morelos, 2000), en su investigación llamada: "Abastecimiento de Agua Potable para pequeñas comunidades rurales por medio de un sistema de Colección de Lluvia-Planta potabilizadora" se elaboró con un numero de población acerca de 200 personas del sector más vulnerable, el sector rural de Almoloya de Juárez, que se encuentra en México, para la parte del abastecimiento se tienen en cuenta a los pobladores y su ganado. La idea de esta investigación fue hacer una propuesta para el abastecimiento en base recolectora de las lluvias la cual pretende ser una solución para proveer de este vital líquido a los pobladores.

(Majao Olveras & Moran Parrales, 2021) en su estudio llamado: "DISEÑO DE ALCANTARILLADO SANITARIO DEL SECTOR BUENOS AIRES, CANTÓN PLAYAS, PROVINCIA DEL GUAYAS", donde propone el diseñar un sistema de alcantarillado para el sector en mención con una población de 1500 habitantes ya que este lugar no contaba con servicios básicos, ya que mayormente utilizaban la descarga de aguas servidas de los pozos sépticos o cámaras sépticas. El aporte principal fue el uso de hojas de cálculos y programas para el adecuado diseño.

2.1.2. ANTECEDENTES NACIONALES

(Medina Villanueva, 2017) en su estudio denominado: "Diseño del mejoramiento y ampliación de los sistemas de agua potable y saneamiento del caserío de Plazapampa – sector el Ángulo, Distrito de Salpo, Provincia de Otuzco, Departamento de La Libertad" de la Universidad César Vallejo de Trujillo, se planteó una mejor calidad en el sistema de agua potable ya que el que tenía la localidad no era muy eficiente, era antiguo y deteriorado.

(Saavedra Valladolid, 2018) en su estudio titulado: "Propuesta Técnica Para El Mejoramiento Y Ampliación Del Servicio De Agua Potable En Los Centros Poblados Rurales De Culqui Y Culqui Alto En El Distrito De Paimas, Provincia De Ayabaca – Piura". Donde se propone como objetivo general el analizar de manera

técnica el sistema de agua potable para poder abastecer a los centros poblados en estudios y asi definir todos los parámetros de diseño y el diseño hidráulico y estructural de dicho estudio.

2.1.3. ANTECEDENTES LOCALES

(Llontop Chavesta & Paredes Delgado, 2018) en su estudio titulado:

"Mejoramiento y ampliación de los servicios de agua potable y alcantarillado sanitario para las habilitaciones urbanas Santa Victoria, Sergio Díaz y las Torres de la Molina del Sector Morro Solar bajo de la Ciudad de Jaén, Departamento de Cajamarca". Donde tiene como objetivo general el mejorar la vida de 578 habitantes y 250 viviendas realizando estudios básicos de la ingeniería como el estudio topográfico y el estudio de mecánica de suelos para conocer el terreno en el cual se realizaría el nuevo diseño.

(Barboza & Rivera , 2017) en su investigación titulada "MEJORAMIENTO ,AMPLIACION DEL SERVICIO DE AGUA POTABLE Y CREACION DEL SERVICIO DE SANEAMIENTO BASICO DE LOS CASERIOS ALTO MILAGRO Y ALTO SAN JOSE DISTRITO DE SAN IGNNACIO , PROVINCIA DE SAN IGNACIO - CAJAMARCA-2017" Nos presenta los asentamiento de Alto Milagro y Alto San José en el distrito de San Ignacio y Cajamarca no tienen agua corriente la misma que la suministrada por el agua potable , manantiales, y otras fuentes de agua .El propósito principal de este investigación es sistema de agua potable con simulación hidráulica en programa Watercad controles sanitarios básicos ,se planean sistemas de tratamiento sanitario separados y mantener un servicio regular.

2.2. MARCO TEORICO

Agua

El agua o dihidruro de oxígeno es un líquido incoloro, inodoro e insaboro, esencial para la vida animal y vegetal, solvente universal compuesto molarmente por dos átomos de hidrógeno y uno de oxígeno (Romero, 2009). Su uso es necesario para el consumo humano y se utiliza para beber, preparar alimentos y uso doméstico, principalmente porque ha sido tratado física y químicamente para estar libre de contaminación microbiana. Entre sus procesos se encuentran la adquisición, producción y distribución de agua potable.

Saneamiento básico

Se dice que es fundamental por asistir a todos los procedimientos mínimos que se deben aplicar en cualquier entorno, ya sea urbano o rural, para que las personas que habitan puedan vivir en un ambiente despejado de manera saludable.

Línea de conducción

Es la línea por donde se traslada el agua ya sea por un sistema de gravedad, desde el punto de principio o también llamado, desde la captación hacia lo que sería un reservorio o también llamado tanque, donde se almacena toda el agua, este debe estar en una cota menor al punto de principio antes de cualquier vivienda beneficiaria.

Línea de aducción

Línea que traslada el agua desde el reservorio hasta la distribución a las viviendas, al ser un lugar rural, esta traslación debe ser por la gravedad, ya que necesariamente el reservorio debe estar en una cota más arriba a la población.

Red de distribución

Se le dice así a la línea, que lleva el agua por medio de distintos diámetros de tubería hacia las viviendas de los pobladores que viven en el sector, para los cálculos de estas líneas se deberá tener en cuenta las velocidades y presiones de los caudales

Tipos de aguas

- A. Subterráneas: Este tipo de agua se encuentra en los siguientes lugares: viene de los acuíferos, del subsuelo, pozos someros, manantiales y pozos someros
- B. Superficiales: Este tipo de agua lo encontramos en los siguientes lugares: viene de los lagos, presas, ríos, arroyos y canales, estas aguas se pueden llegar a contaminar por diferentes métodos como: actividades mineras o industriales, presencia de desagües domésticos, etc. En este tipo de agua se debe primero determinar el uso para así tener en cuenta las características de estas mismas.

Periodo de diseño

Según la RNE en el año 2006 nos indica lo siguiente: "Para poblaciones o ciudades, en este caso un caserío ;son diseños para pobladores con necesidades básicas ,fundamentales que mejoren sus factores económicos y sociales, este diseño debe de tener un tiempo establecido de servicio ,el cual se hará las pruebas para que el proyecto a finalizar en su totalidad pueda funcionar al 100%, así también para que el proyectista que realicen este nuevo diseño ,puedan evaluar el mejor diseño, evitando altos costos, ya que según la tasa de crecimiento se pudiera incrementar la población y realizar una segunda o más etapas consecuentemente. Los proyectos que cuenten con un diseño se podrá dar un mejoramiento, por motivos de mantenimiento y/o también ampliación de servicios en asentamientos existentes," (p.114).

Población de diseño

Según Narváez en el año 2005 nos indica: "El Estudio Poblacional es uno de los primeros trabajos que se realizan dentro del diseño del sistema de abastecimiento de agua, y consiste en determinar la variación de crecimiento de la población, existiendo distintos tipos de métodos matemáticos de, así se obtiene la tasa de crecimiento, la cual determina el número de habitantes que se beneficia con el servicio para el Periodo de Diseño. En la actualidad el diseño del caserío de Coimaca cuenta con 27 familias con un promedio de 6 habitantes por familia, haciendo un total de 162 personas. La tasa de crecimiento anual según el último censo de INEI es de 1.79%. Todos los estudios poblacionales se basan en una cierta cantidad de documentos como: censos, encuestas, estudios socioeconómicos, etc." (p.35).

2.3. MARCO CONCEPTUAL

Tubería Principal

Según el RNE en el año 2006 nos indica: "Es el colector que recibe las aguas residuales provenientes de los ramales condominales." (p.80)

Profundidad

Es la desigualdad de nivel entre lo que sería la parte inferior de la tubería y la superficie del terreno

Recubrimiento

Es la desigualdad que existe entre la parte superior de la tubería y el nivel del terreno

Pozos tubulares

Se denominan pozos tubulares a las obras hidráulicas que permiten sacar agua subterránea hasta 20 metros de la superficie, nacidas por su existencia a través de muchos periodos de sequía afectando la calidad de vida de las personas.

Captación:

Esta es la primera etapa del sistema hidráulico e incluye actividades que generan agua para uso residencial. Para determinar que cuenca hidrográfica se utilizara, es importante conocer la naturaleza del agua disponible en la tierra según el ciclo hidrológico.

Caudal máximo diario

Este es el mayor flujo de salida de un solo día, observado durante un periodo de un año, excluyendo los consumos no tradicionales como el consumo por incendio, perdida, etc.

Agua subterránea:

El agua se encuentra bajo tierra y, a menudo, requiere una ardua excavación para extraerla.

Arrastre Hidráulico

Es la tracción para el transporte de aguas residuales y heces sanitarias a pozos de infiltración o fosas sépticas funcionales establecidas.

Caudal:

Cantidad de agua que fluye a través de un segmento seleccionado de una fuente de agua o tubería por unidad de tiempo.

2.4. SISTEMA DE HIPOTESIS

2.4.1. HIPOTESIS

El diseño de los principales aspectos que se deben tener en cuenta en una ampliación del servicio de agua potable e instalación de alcantarillado en la localidad de Cochapampa – Sorochuco– Celendín – Cajamarca ayudaría en generar una habitabilidad óptima y eficiente para todos los pobladores reduciendo las probabilidades de contener enfermedades diarreicas gastrointestinales, y dérmicas en las personas.

2.4.2. VARIABLES

Variable independiente

Características poblacionales y topográficas de la localidad

Variable dependiente

Magnitudes de los sistemas básicos rurales: agua potable y alcantarillado con todos sus componentes.

TABLA 1:Operacionalización de variables: dependiente e independiente

	VA	RIABLES
	Características poblacionales y topográficas de la localidad	Magnitudes de los sistemas básicos rurales: agua potable y alcantarillado con todos sus componentes.
DEFINICION CONCEPTUAL	La topografía es la técnica que consiste en describir y representar en un plano el relieve o la superficie del terreno en estudio Poblacional nos referimos al grupo de personas de un lugar determinado que comparten características	Un sistema de abastecimiento de agua potable, tiene como finalidad primordial, la de entregar a los habitantes de una localidad agua en calidad y cantidad, adecuado para satisfacer las necesidades mediante las dimensiones adecuadas de los sistemas básicos
DIMENSIONES	Longitudinal	Calidad y cantidad do agua
DIMENSIONES	Densidad baja	Calidad y cantidad de agua
INDICADORES	Altura - Longitud - Profundidad	Caudal - Velocidad - Diámetro - Presión -
INDICADORES	Número de viviendas	Pendiente - Perdida de carga
ESCALA DE	KM - M	M3/S - M/S - M.C.A M/KM
MEDICION	HAB	1013/5 - 101/5 - 101.C.A 101/K101
INCTDUMENTOS	Wincha - Teodolito - Mira	AutoCAD - Civil 3d - Normas Técnicas -
INSTRUMENTOS	Censos Nacionales	Excel
	FLIENTE: Flaho	ración Pronia

FUENTE: Elaboración Propia

III. METODOLOGIA EMPLEADA

3.1. TIPO Y NIVEL DEL ESTUDIO

3.1.1. DE ACUERDO A LA ORIENTACION O FINALIDAD

En este estudio, la investigación será APLICADA, es decir, recie este nombre "investigación empírica o practica" ya que busca la utilización o aplicación de conocimientos previos adquiridos, para poder adquirir nuevos, utilizar el conocimiento y los resultados de la investigación conduce a una forma rigurosa, organizada y sistemática de estudiar la realidad.

3.1.2. DE ACUERDO A LA TECNICA DE CONTRASTACION

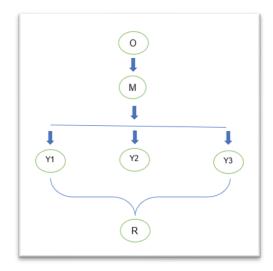
El estudio también tiene un diseño NO EXPERIMENTAL, ya que esta no ejecuta la manipulación de las variables y solo se utiliza la observación

3.2. POBLACION Y MUESTRA

3.2.1. POBLACION

Cuando indicamos la población de un estudio nos referimos al universo, totalidad o conjunto de los elementos sobre lo que se estudia, en este caso nuestra población sería el departamento de Cajamarca

3.2.2. MUESTRA


Cuando hablamos de la muestra de la investigación nos referimos a una parte o subconjunto de elementos que se seleccionan previamente de una población, en este caso tenemos como muestra en la localidad de Cochapampa

3.3. DISEÑO DE LA INVESTIGACION

En este estudio el diseño de contrastación que utilizaremos será de modelo descriptivo, porque asi nos permite el poder describir la situación actual de los sectores en estudio es por eso que el esquema que utilizaremos será de la siguiente manera:

FIGURA 1:

Diseño del estudio

Nota: Observaremos la manera en la que se debe trabajar de manera descriptiva

Fuente: Elaboración Propia

3.4. TECNICA E INSTRUMENTOS

La observación, se utilizará porque es una técnica fiable y que más se adecuada a nuestra investigación puesto que nos permitirá la recolección de información y datos y su posterior análisis, por ello; primero, se empleará en el levantamiento topográfico del área con estación total para obtener los planos de planta, localización, curvas de nivel, topográfico; segundo, en la recolección de muestras en el lugar mediante calicatas y su posterior análisis en el laboratorio, para obtener el Estudio de Mecánica de Suelos y estudio geotécnico del lugar; tercero, en el diseño del proyecto, entre los que se encuentran el número de unidades básicas de saneamiento, el número de buzones y dimensiones, el número de tanques sépticos, longitud y diámetro de las tuberías.

Guía de Observación que concederá tener un registro de las particularidades acerca del diseño del sistema de agua potable y saneamiento rural

Instrumentos utilizados para los cálculos, modelamientos y análisis

- Reglamento Nacional de Edificaciones
- Materia bibliográfica e investigaciones (tesis)
- Reglamento de elaboración de proyectos de agua potable
- Laboratorio de suelos

3.5. PROCESAMIENTO Y ANALISIS DEL ESTUDIO

Procesamiento

En este punto vamos a tener que hacerlo en 3 partes:

La primera parte vendría a ser el recorrido en el terreno, luego pasaríamos a realizar el levantamiento topográfico para poder determinar así las pendientes y desniveles de las localidades en estudio

La segunda parte seria la determinación del estudio de suelos dándonos así las características del suelo tanto física, química y mecánica del terreno obteniendo la capacidad portante del suelo.

Finalmente viene el diseño de los sistemas de manera óptima para los pobladores de los sectores bajo la guía de reglamentos y normas cumpliendo así con todas las condiciones para luego pasar los valores obtenidos a los respectivos softwares tanto de agua potable como de alcantarillado para modelar y validar los datos del diseño.

Análisis de datos

Los resultados que fueron obtenidos bajo todos los estudios básicos de ingeniería serán descritos y analizados para observar el diseño de la contrastación planteada, los mismos valores serán planteados en figuras, planos, tablas y otros, para la interpretación temática y metodológica.

Para poder hacer un análisis concreto de los datos, nos apoyaremos de softwares como:

- **Microsoft Excel**: Se empleará para realizar hojas de cálculos, hacer comparaciones gráficas, etc.
- Microsoft Word: se utilizará para poder armar el informe de la investigación.
- AutoCAD: Se empleará para poder importar la información lograda en campo.
- WaterCAD: Se utilizará para modelar todo lo respectivo a la parte de alcantarillado.

IV. PRESENTACION DE RESULTADOS

4.1. DATOS GENERALES DE LA ZONA DE ESTUDIO

El Caserío de Cochapampa, se ubica con coordenadas UTM 803225.88 m Este y 9233105.07 m Norte, a una altura de 2901 m.s.n.m.

Departamento: Cajamarca.

Provincia: Celendín Distrito: Sorochuco

Caseríos: Cochapampa

El distrito de Sorochuco se encuentra en la provincia de Celendín y está ubicado a 43.7 kilómetros de la Ciudad de Celendín, el acceso es por medio de una trocha Carrozable, la principal vía de acceso a la zona del proyecto, es la ruta que conecta Cajamarca a Celendín. El transporte público hacia Cochapampa es sumamente deficiente, no hay transporte regular. Las Vías de acceso a las localidades de influencia del proyecto se presentan a continuación:

TABLA 2

Rutas de Acceso a la Localidad Cochapampa

De	A	Distancia (Km)	Tipo de Vía	Tiempo (Hrs)
Cajamarca	Celendín	88	Carretera Asfaltada	1.5
Celendín	Sorochuco	25	Trocha Carrozable	1
Sorochuco	Cochapampa	8	Trocha Carrozable	0.3

Fuente: Elaboración Propia

En el Caserío de Cochapampa, donde se ubica el proyecto tiene un clima cálido y templado durante todo el año, variando entre 23° grados y 05° grados centígrados. La poca variación de este clima hacer que en la zona solo se distingan dos estaciones a época de lluvias suelen ser entre los meses de octubre y mayo. Las temperaturas más bajas se registran en las madrugadas de los días de los meses de Julio.

La localidad Cochapampa, cuenta 70 viviendas y 02 instituciones sociales y públicas, estas viviendas son en su mayoría de construcción de tapial, adobe, con techos de teja y muy escasos con material noble.

La nula cobertura del servicio de Salud en los caseríos de influencia se agrava si consideramos el tiempo que se pierde en recorrer la distancia que separa el caserío de Cochapampa hacia el pueblo de Sorochuco, donde mayormente recurren lo lugareños. Otro indicador de la calidad de salud es la deficiencia del saneamiento ambiental que también es inexistente que son atendidos por las postas de salud, siendo las enfermedades más comunes de la zona la neumonía, las enfermedades diarreicas agudas (EDA), infecciones respiratorias agudas (IRA), infecciones urinarias, desnutrición infantil.

Por otro lado, la desnutrición es un problema prevalente en la zona, lo que hace que los niños se encuentren más susceptibles de enfermar por las causas ya mencionadas, y asimismo estas enfermedades los llevan a la desnutrición crónica, cerrándose así un círculo vicioso. Estas enfermedades no solo se presentan en los niños, también se presentan en los adultos, pero en ellos se presentan en los extremos pues va desde una afección leve hasta una severa que necesita hospitalización por la deshidratación.

Sus actividades principales son: la crianza de animales menores en pequeña escala, la agricultura, la crianza en granja. Según encuestas aplicadas a las familias, el ingreso promedio familiar es de S/. 400 al mes. La población se dedica a labores agrícolas, la ocupación principal es en el sector agrario, principalmente en el área de cultivos de maíz, Arveja, Habas, Trigo, Cebada, Papas, entre otros productos. También tiene importancia la actividad pecuaria, cuya producción más destacada es la carne de ave, leche y huevos. Se produce además carne de porcino, vacuno y caprino.

El Caserío de Cochapampa, cuentan con una Institución Educativa que impartan enseñanzas de nivel Primario e Inicial, para recibir el servicio de educación secundaria acuden al Distrito de Sorochuco. En todo el distrito la educación primaria llega a un 85%.

4.2. OBJETIVO 1: ELABORAR UN ESTUDIO DE MECÁNICA DE SUELOS CON LA FINALIDAD CONOCER LAS CARACTERÍSTICAS FÍSICAS Y GEOLÓGICAS

La finalidad del estudio fue poder identificar y conocer el tipo de suelo existente en la zona y en base a ensayos de laboratorio, poder determinar las principales propiedades físico – mecánicas del suelo. El lugar donde se desarrollará el estudio, se ubica en la localidad Cochapampa, distrito de Sorochuco, provincia de Celendín, región de Cajamarca.

Se realizaron seis (06) calicatas o pozo a cielo abierto de profundidad variable entre 1.20 m. a 2.00 m

TABLA 3

Ubicación de calicatas

MUESTRA	ELEMENTO	PROFUNDIDAD	N° MUESTRAS	NIVEL FREATICO
CALICATA 1	CAPTACION	2.00 m.	1	
CALICATA 2	LINEA DE CONDUCCION	1.20 m.	1	
CALICATA 3	RESERVORIO	2.00 m.	1	
CALICATA 4	RED DE DISTRIBUCION	1.20 m.	1	
CALICATA 5	RED DE DISTRIBUCION	1.20 m.	1	
CALICATA 6	RED DE DISTRIBUCION	1.20 m.	1	

Fuente: Elaboración Propia

De las muestras procedentes de la excavación de las calicatas, se realizó ensayos correspondientes para determinar su clasificación (granulometría y Límites de Atterberg), humedad natural, todos estos estudios fueron realizados de acuerdo a normas técnicas tal como se indica a continuación:

- CONTENIDO NATURAL DE HUMEDAD, mediante procedimiento de secado en estufa a la temperatura de 110% C, según norma ASTM D2216.
- ANÁLISIS GRANULOMÉTRICO, por vía húmeda o por lavado con cribado manual, de acorde a la norma ASTM D422
- LIMITES DE ATTERBERG, Límite líquido y Límite plástico, de acorde con la norma ASTM D4318.

- ENSAYOS DE PESO ESPECÍFICO, acorde a la norma ASTM D 854.
- PESO UNITARIO, de suelos cohesivos, acorde con la Norma Técnica Peruana 339.139.
- CLASIFICACION DE SUELOS, en función a la Norma ASTM D2487, que toma como base al Sistema Unificado de Clasificación de Suelos (SUCS).

4.2.1. PERFIL ESTRATIGRAFICO

Se desarrolló en función de las muestras que fueron alcanzadas al laboratorio, finalmente con los resultados de laboratorio, se pudo determinar las principales propiedades físicas del suelo, así como la composición estratigráfica de la zona que se describe a continuación:

TABLA 4

Perfiles estratigráficos

		GRA	NULOME	TRIA		LIMITES CONSISTENCIA		NCIA	w (%)	PESO	PESO VOLUMENTRICO (gr/cm3)	
MUESTRA	DESCRIPCION GRAVA ARENA FINOS SUCS L.L.	L.L.	L.P.	I.P.		FICO	HUMEDO	SECO				
CALICATA N° 01 – CAPTACIÓN.	Suelo color marrón claro, que lo conforma una mezcla de grava de perfil angular y diámetro máximo de 1", arena de grano fino, todo incrustado en una matriz de limo incrgánico ligeramente plástico, consistencia media y poco húmedo. Suelos residual producto de la desintegración del macizo rocoso de origen volcánico.	7.72%	32.22%	60.06%	ML	31.00%	24.00%	7.00%	12.01%	2.68	1.40	1.22
CALICATA N° 02 - LÍNEA DE CONDUCCIÓN.	Suelo color marrón, de granulometria fina, compuesto por arcilla inorgánica medianamente plástica, consistencia alta y ligeramente húmedo, presencia en forma errática de pequeñas cantidades de grava de diámetro promedio 1/2°, cuya distribución no se consideró representativa para fines de clasificación.	0.00%	8.12%	91.88%	CL	37.00%	23.00%	14.00%	18.04%	2.76	1.52	1.37
CALICATA N° 03 - RESERVORIO.	Suelo color marrón claro, que lo conforma una mezcla de grava de perfil angular y diámetro máximo de 1/2", arena de grano fino, todo incrustado en una matriz de limo incrgánico ligeramente plástico, consistencia media y poco húmedo. Suelos residual producto de la desintegración del macizo rocoso de origen volcánico.	3.60%	36.68%	59.72%	ML	32.00%	27.00%	5.00%	12.52%	2.64	1.37	1.21
CALICATA N° 04 - RED DE DISTRIBUCIÓN.	Suelo color marrón oscuro, de granulometria fina, compuesto por arcilla inorgánica medianamente plástica, consistencia alta y ligeramente húmedo, presencia en forma errática de pequeñas cantidades de grava de diámetro promedio 1/2", cuya distribución no se consideró representativa para fines de clasificación.	0.00%	12.35%	87.65%	CL	49.00%	31.00%	18.00%	24.73%	2.79	1.49	1.34
CALICATA Nº 05 - RED DE DISTRIBUCIÓN.	Suelo color marrón claro, de granulometría fina, compuesto por arcilla inorgánica de alta plasticidad, consistencia alta y ligeramente húmedo.	0.00%	5.57%	94.43%	СН	67.00%	29.00%	38.00%	33.49%	2.85	1.56	1.38
CALICATA N° 06 - RED DE DISTRIBUCIÓN.	Suelo color marrón oscuro, de granulometria fina, compuesto por arcilla mosgànica de alta plasticidad, consistencia alta y ligeramente fiumedo.	0.23%	10.57%	89.20%	сн	56.00%	24.00%	32.00%	12.58%	2.86	1.59	1.36

FUENTE: Elaboración Propia

La ubicación de la napa freática es función de la época del año en que se realice la investigación de campo, así como las variaciones naturales de los sistemas de lluvia que abastecen los estratos acuíferos. Por información proporcionada no se encontró la Napa Freática, hasta la máxima profundidad investigada (2.00 m).

4.2.2. ANALISIS DE LA CIMENTACION

De la evaluación geotécnica, se tiene que la estructura a proyectar estará apoyada sobre un suelo relativamente homogéneo de consistencia media y poco húmedo: Entonces, el cálculo de la capacidad admisible, se han realizado para este tipo de suelo uniforme y representativo, identificados

Tipo de Cimentación

Dadas las condiciones de las estructuras a proyectar, es recomendable usar es una fundación directa, compuesta por una losa rígida de concreto armado, que de acuerdo a las condiciones estructurales y de volumen de almacenamiento se realizará un predimensionado teniendo en cuenta las condiciones de servicio y estructurales a las que estarán sometidas estas estructuras.

Parámetros de diseño para la cimentación

El concepto de presión admisible de un terreno no es fácil de precisar ya que está ligada íntimamente con las características de cada terreno, dependerá del tipo de cimentación, que a su vez es consecuente con el terreno y el sistema de estructura sustentante (sustentada por el cimiento) y finalmente del comportamiento del suelo a lo largo del tiempo que es a su vez influenciada por agentes externos naturales y artificiales. Para el tipo de suelo encontrado en la zona de estudio, es posible estimar el valor de la capacidad portante, mediante uso de fórmulas aceptadas por la Mecánica de Suelos y a partir de la experiencia en casos similares al presente por lo que el valor de la presión admisible se calculará empleando el método propuesto por Terzaghi, para el caso de falla local por corte en una cimentación continua y será comparado con la falla del suelo por asentamiento (teoría elástica), y de ambos se seleccionará el menor valor.

Capacidad admisible del suelo

Para las condiciones de cimentación indicadas y para varias dimensiones de cimentación, las capacidades de carga y presión admisible por corte se consideró un Factor de Seguridad igual a 3.0, esto acorde con el ítem N* 3.4 de la Norma E-0.50 Suelos y cimentaciones del Reglamento Nacional de Edificaciones.

TABLA 5

Resumen de las condiciones de cimentación

	CAPTACION	I			
Tipo de Cimentación		ometrí	concreto simple, cuyas a deberán ser determinadas al.		
Parámetros de Diseño de la Cimentación - Profundidad Mínima de Cimentación - Factor de Seguridad por Corte - Máxima distorsión angular	0.80 m. > 3.00 1/500				
Zona o Lugar del Proyecto:	Capacidad Port del suelo de fundación		Estrato de Apoyo		
CALICATA 1 - CAPTACION	0.83 Kg/cm2		Suelo color marrón claro, que lo conforma una mezcla de grava de perfil angular y diámetro máximo de 1", arena de grano fino, todo incrustado en una matriz de limo inorgánico ligeramente plástico, consistencia media y poco húmedo. Suelos residual producto de la desintegración del macizo rocoso de origen volcánico.		
)	RESERVORIO)			
Tipo de Cimentación	Losa continua de cimentación, confinado por medio de una viga de una viga perimetral de concreto armado, en ambos casos, las dimensiones y geometría deberán ser determinadas previo análisis estructural.				
Parámetros de Diseño de la Cimentación - Profundidad Mínima de Cimentación - Factor de Seguridad por Corte - Máxima distorsión angular	0.80 m. > 3.00 1/500				
Zona o Lugar del Proyecto:	Capacidad Portante del Estrato de Apoyo fundación				
CALICATA 3 - RESERVORIO	Suelo color marrón claro, que lo conforma mezcla de grava de perfil angular y diámet máximo de 1/2", arena de grano fino, tod incrustado en una matriz de limo inorgánio ligeramente plástico, consistencia media y húmedo. Suelos residual producto de la desintegración del macizo rocoso de orige volcánico.		de grava de perfil angular y diámetro o de 1/2", arena de grano fino, todo ado en una matriz de limo inorgánico nente plástico, consistencia media y poco lo. Suelos residual producto de la egración del macizo rocoso de origen		

FUENTE: Elaboración Propia

Cálculo de la capacidad portante de un suelo - C1

CLASIFICACIÓN SUCS: ML

ANGULO FRICCION INTERNA.: 29.00 (Ingresar en grados y decimales de grado)

COHESION: 0.12 (Ingresar en Kg/cm2)

PESO UNITARIO: 1.400 (Ingresar en gr/cm3)

PROF. CIMENTACION (em): 80.00 (Ingresar en centímetros)

ANCHO CIMENTACION (cm): 45.00 (Ingresar en centímetros)

FACTORES DE CAPACIDAD DE CARGA

Nc: 18.03

Nq: 7.66

Ny: 3.76

CAPACIDAD PORTANTE (FALLA POR CORTE LOCAL - TEORIA DE TERZAGHI)

$$q'c = 2/3*c'*N'c + g*Df*N'q +0.5*g*B*N'g$$

q'c

2.42 kg/cm2

CAPACIDAD DE CARGA DE DISEÑO (qu)

q'c / 3 (Rango de seguridad).

0.81 Kg/cm2

Capacidad portante (FALLA POR ASENTAMIENTO)

Se propone limitar el asentamiento de la cimentación a 1.50" (3.81 cm.), utilizando la ecuación planteada por Terzaghi y Peck que se presenta a continuación:

$$q_{u} = \frac{S_{i} * E_{s}}{B(1 - \mu^{2})I_{f}}$$

<u>Cálculo de la capacidad portante de un suelo – C3</u>

CLASIFICACIÓN SUCS: ML

ANGULO FRICCION INTERNA.: 28.00 (Ingresar en grados y decimales de grado)

COHESION: 0.13 (Ingresar en Kg/cm2)

PESO UNITARIO: 1.370 (Ingresar en gr/cm3)

PROF. CIMENTACION (em): 80.00 (Ingresar en centímetros)

ANCHO CIMENTACION (cm): 100.00 (Ingresar en centímetros)

FACTORES DE CAPACIDAD DE CARGA

Nc: 17.13

Nq: 7.07

Ny: 3.29

CAPACIDAD PORTANTE (FALLA POR CORTE LOCAL - TEORIA DE TERZAGHI)

$$q'c = 2/3*c'*N'c + g*Df*N'q +0.5*g*B*N'g$$

q'c : 2.48 kg/em2:

CAPACIDAD DE CARGA DE DISEÑO (qu)

q'c / 3 (Rango de seguridad).

0.83 Kg/cm2

Capacidad portante (FALLA POR ASENTAMIENTO)

Se propone limitar el asentamiento de la cimentación a 1.50" (3.81 cm.), utilizando la ecuación planteada por Terzaghi y Peck que se presenta a continuación:

$$q_u = \frac{S_i * E_s}{B(1 - \mu^2)I_f}$$

Q_u = 1.47 Kg/cm2

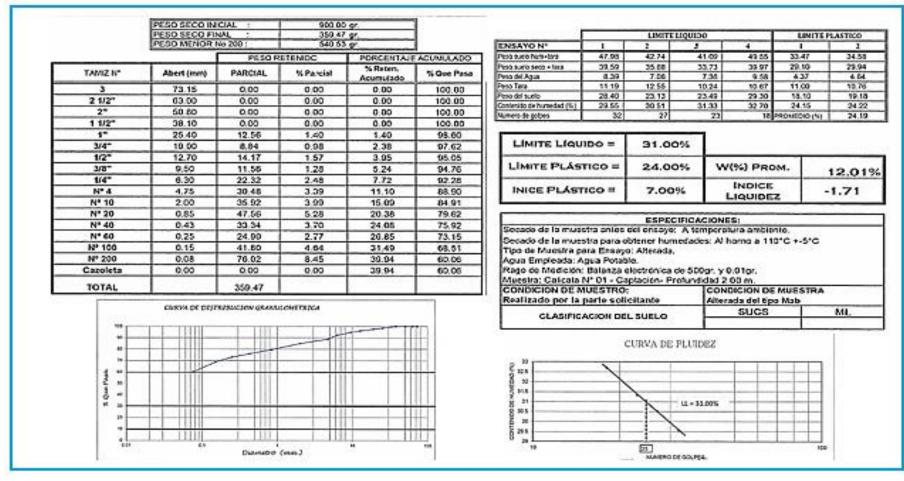
4.2.3. EFECTO DE SISMO

Las vibraciones producidas por un sismo se trasmiten a través de las rocas de la corteza terrestre. En un lugar específico, las vibraciones que llegan al basamento rocoso son a su vez trasmitidas hacia la superficie a través de los suelos existentes en el lugar. Las vibraciones sufren variaciones al ser trasmitidas a lo largo de las trayectorias recorridas, llegando a la superficie con características que dependen no sólo de las que tenían en su origen, sino también de la trayectoria seguida a lo largo de la corteza terrestre y de las propiedades de los suelos que existen en el lugar.

En el presente caso para determinar la sismicidad del lugar se han analizado las aceleraciones procedentes de los mapas de aceleraciones máximas en la roca para periodos de recurrencia sísmica de 30, 50 y 100 años propuestas por Casaverde y Vargas (1980) los que indican que el terreno estudiado se encuentra en una zona de sismicidad alta.

De acuerdo al Reglamento Nacional de construcciones, Noma Técnica de Edificación E.030 — Diseño Sismorresistente, las estructuras se proyectarán en base a las siguientes características:

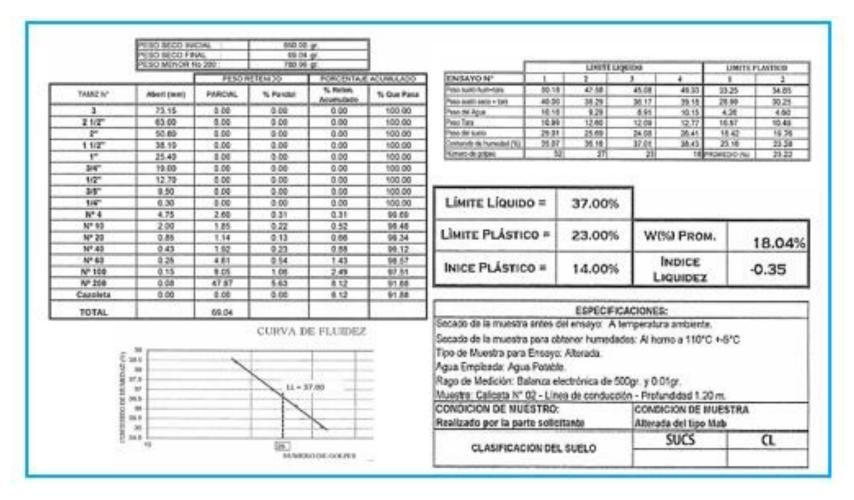
TABLA 6


Valores para diseño sísmico de las estructuras

Parámetro	Valor
Categoría de la edificación	A2 - Edificaciones esenciales
Factor Edificación (U)	1.50
Zona Sismica	2
Factor de Zona (Z)	0.25
Perfil del suelo	Perfil tipo S ₂
Factor del Suelo (S)	1.20
Periodo (Tp)	0.60
Periodo (T _L)	2.00

FUENTE: Elaboración Propia

TABLA 7


Análisis granulométrico – Limites de consistencia

FUENTE: Elaboración Propia

TABLA 8

Análisis granulométrico – Limites de consistencia

FUENTE: Elaboración Propia

TABLA 9

Análisis granulométrico – Limites de consistencia

		D SECO INIC		\$90.00	7		CANADA MARKA	-14	EMITTELIO	UEDO		LIMITER	ASTNE
		D SECO FINA		362,54			ENEAYO Nº		2	1	4		1
	PESE	D MEWOR No	200	537,46	7	a decrease	Proto ducto huminista	\$1.38	50.99	46.72	48.01	33.21	34.74
		Г	FE80 R	ETEMDO	PORCENTA	JE ACUMULADO	Presi sueto seco - tare Presi del Ague	9.12	10.11	7.79	31.95	25.23	25.96
TABAZ Nº	Ab	sert (mm)	PARCIAL	% Percial	% Reten. Acumulado	% Que Pasa	Section 1	12.44	10.00	12.67	\$1.64 27.51	10.15	17.6
3		73.15	0.00	0.00	0.00	100.00	Common de humani (%)	30.71	25.41	30.06	23.18	27.48	27.3
2 1/2"	10 10	63.00	0.00	0.00	0.00	100.00	Street in page	. 18	22	21	200	Id-DOMO	27.4
r	11 1	50.60	0.00	0.00	0.00	100.00							
1 1/2"	- 50	38.10	0.00	0.00	0.00	100.00	Limite Liqui	00 =	32.00%	٦.			
1"		25.40	0.00	0.00	0.00	100.00	- Committee Cross	- 00	300.000	-			
3/4"	- 7	19.00	0.00	0.00	0.00	100.00	LIMITE PLAST	100 =	27.00%	we	Ю Рисом.		2.521
1/2"	- 1	12.70	7.69	0.85	0.85	99.15		-		1	NDICE	-	
3/8"		9.50	11.42	1.27	2.12	97.88	INICE PLASTI	CO #	5.00%		DONDEX	-2.	90
1/4"	- 1 - 8	6.30	13.29	1.48	3.60	95.40					Sections.		
Nº 4		4.75	14.55	1.02	5.22	94.78		CALLES VIEW	SSPECIFIC				
Nº 10	-71 -2	2.00	13.31	1,41	6.70	93.30	Secado de la muest	ra ontes d	el ensayo: A te	mposshus	n ambiento.	100000	
Nº 20		0.85	26.96	3.22	9.92	90.08	Secado de la reuest Tipo de Muestra par			ion: Al hor	ne s 110°C	+-5°C	
Nº 40		0.43	51.88	5.76	15.68	84.32	Agus Empleads: Ag						
Nº 60	- O 1	0.25	65.25	7.25	22.93	77,07	Rago de Medición: I	Dolanza el	ectrinesa de 50	Ogr. y 0.0	Tight.		
Nº 100	1 2	0.15	40.72	4.52	27.46	72.54	ODVIDICION DE M	MATERIA.	ervoris - Profur		CHOM DIE MIL	WATER .	
N° 200		0.08	115,44	12.63	40.28	59.72	Reelizado per la p				a del tipo M		
Cazoleta		0.00	0.00	0.00	40.28	59.72	GLASIFICA		Subject to the subjec	-	SUCS		NL.
TOTAL			362.54							_			
MALLA	NOVE PASA	SUCS	N.	Tamaño máxir	no dal nunio	19.00	1			CIT	RYA DE P	LURORZ.	
1014	94.76	1275		Tarrest Haber	N 40 9400	1930			3				
Nº 10	80.30	% CRAYS	3	50 D60 =	_	TIPO MUESTRA	4 - Maries 144 4	0.0		1			-
840	84.32	% ARENA	30	to D00 -		Ca-	1.			,	X	12 - 32,00%	+
Nº 200	59.72	NENDS	59	72 Di0 =		Cc=	_			-	1		-

TABLA 10

Análisis granulométrico – Limites de consistencia

	PESO SECO A			60 gr.	1			LIMITELE	DUNDO		LIMITER	LASTICO
	PESO MENOR			54	ł	ENSAYO N°	1 1	1	3	4	1	1
	PESO MENOR	-		15 gr.		Peso suelo hum-tara	44.55	43.75	45.11	52.09	34,45	33.46
		PESO	RETEMOO	PORCENTAL	CONTINUES	Paso suelo saus + tars	33.41	33.48	34.06	38.62	29.05	28,45
THREE	Abet (mm)	PARCAL	% Parcial	% Reten. Acumulado	% Que Pasa	Peto del Agua Peso Tara	11,17	10.30	11.05	11.47	5.35 11.92	5.01
3	73.15	0.00	0.00	0.00	100.00	Pero del suelli	23.31	21.15	22.42	26.78	17.13	15.90
217	63.00	0.00	0.00	0.00	100.00	Controls to humostat (No.)	47.92	48.67	69.28	50.31	31.25	21.48
7	50.80	0.00	0.00	0.00	100.00	Número de grigos	32	27	23		HOWEDIG (%)	31.37
11/2"	38.10	0.00	0.00	0.00	100.00							
1"	25.40	0.00	0.00	0.00	100.00	Limite Liquit	- 00	49.00%	7			
34"	19.00	0.00	0.00	0.00	100.00	Loan Lize	-	329,GG	_			
17	12.70	0.00	0.00	0.00	100.00	LIMITE PLAST	co=	31,00%	We	W PROM	. 2	4.73%
34"	9.50	0.00	0.00	0.00	100.00	INICE PLASTI	- 00	18,00%		NDICE		.35
14"	6.30	0.00	0.00	0.00	100.00	Miles L'Exesti	V-40.	10.00%	Li	QUIDEX	-0	
Nº 4	4.35	4.85	0.52	0.52	99.45			EMPECIFIC	ACIONES			-
Nº 10	2.00	2.47	0.27	0.79	90.21	Secado de la muestr		of energy At	perraper adult	a worksense.		
Nº 20	0.85	1.16	0.13	0.92	99.08	Tipo de Musetra par			des: Al hor	no a 110°C	+-510	
Nº 40	0.43	1.18	0.13	1.05	98.95	Agua Empleada: Ag	us Potatile	W				
10" 60	0.25	1.99	0.22	1,27	98.73	Rage de Medición: 6 Muestra: Galceta M	04 - Red	de distribució	oogr. y o.o m - Profun	dded 1.20	m.	
Nº 100	0.15	6.91	0.77	2.04	97.96	CONDICION DE MA				CHON DE M		
Nº 200	0.08	92.79	10.31	12.35	87.65	Bealizado por la pe				SUCS		CL.
Carpleta	0.00	0.00	0.00	12.35	87.85	GLASIFIGA	CHOM DIEL	suelo				777
TOTAL		111.15								CLIEVA D	K PLANUKS	
MAGA	SAME PAGA III	168	6 1	de ed incret		10 mm	8 -		1			
N.4.	10-10		191	safio máximo dal su	77		8			1		
10'10	921	5/980A	110	D66 =	_	A ALTERAÇA	8 ***			1	12.4-88.000	7/15
N°200	6.6	12100	10.36	DM+			1		_		1	

TABLA 11

Análisis granulométrico – Limites de consistencia

	Section 201	SECO WICH		800.80				101		LIMOTE	LIBRIDO		Linera	PLASTICO
		SECO FINA MENOR No		64.55 795.45		-	E	NSAYO N°	-	LIMITE	Tránico	1		-
	B. 200	F C	the commence of		Owner, and the last	_				-	-	4	1	2
	_	-	PESO PE	ENDO.	THE RESERVE	SALKETWOO		eso suelo hum-lara	50.08	41,47	47.10	The second second	33.74	34.4
TAMEN"	Aber	1 (mm)	PARCIAL	%-Parcial	% Fiston. Accomplise	1 - N. Orac		ne suelo seco + tara	35.09	28,08	32.60		28.74	29.5
1	7.	1.15	0:00	0.00	0.00	100.0	on III	no ôi Aqua	14.99	12.49	14,50		5.00	4.9
210"	_	1.00	0.00	0.00	0.00	100.	ne l	no Tara	12.30	10.26	11,06	The second second	11.58	12.4
7	_	0.80	8.00	0.00	0.00	100.0	on E	no del suelo	22.79	18.72	21,52		17.16	17.
110"		1.10	8.00	0.00	0.00	100.0	-	orlendo de hunedad (%)	85.81	66.75	67.37	68.46	29,15	22
4*	_	5.40	0.00	0.00	0.00	100	tioned b	ineo de gobes	33	27	27	18	PHONEDIO (%)	29.
34"		0.00	0:00	0.00	0.00	100.0	00							
1/2"	10	270	0.00	0.00	0.00	100.0	00	700	2010					
24"	9	50	0.00	0.00	0.00	100.0	00	LIMITEL	Javipo.	= 67	.00%			
1/4"	. 6	30	0.00	0.00	0.00	100.0	00	t la come de	· Karman			Contraction of		
Nº 4	- 4	75	0.00	0.00	0.00	100.	00	Liberts P	LAUTICO	29	.00%	WOO PE	HOM.	33,45
Mº 10	2	00	1.29	0.16	0.15	99.5	16	INICE PL	Auron	. 20	00%	INDIC	E .	0.12
M° 22	0	.85	1.17	0.15	0.3/1	99.5	10	process r s	- ALWEST CO.	. 30	,uorie	Liquip	ecz.	0.12
Nº 40	. 0	43	1.31	0.16	0.47	99.5	13				-		7.7	
AP 60	. 0	25	1.99	0.25	0.72	99.2	8.	Married Street, Street	-		PECIFICAC			
N* 500	. 0	.15	2.01	0.25	0.97	99.0	10	Secado de la Secado de la						
Nº 200		06	36.78	4.60	5.57	94.6	13	Tipo da Mues				C.Al norto a	1100-00	
Caroleta	. 0	00	8.00	0.00	5,57	94.6	(3)	Agua Emplea	ide: Agua F	Portatione.				
TOTAL	1.00	200	44.55				-	Rago de Med					J22020	
POTAL		_	44,33			_		Moestra Cali CONDSCION					DE MUESTRA	
5001-19	SINKS	420	7 17				0.00	Realizado po				Alterada del I		
	NOVE MAN	SUCT	DI	Tamalie makin	diam'r.	48		_		OEL SUEL		SUC		CH
17.4	100.00	200	0.00	renes incom	1,000,0000	-63	_		er sustant	Per son				
1.0	25/34	YORKA	000	Dil =	-	THO MIESTRA	ATEM	6						
re	953	SARRA	19	D30 =		Cen	_							
W 200	14.0	17101	960	D18 =	-	0.4	_	7						

TABLA 12

Análisis granulométrico – Limites de consistencia

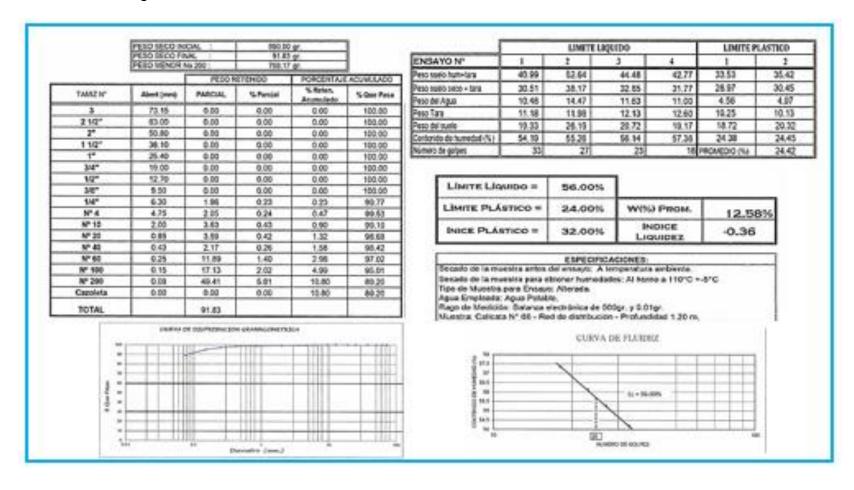


TABLA 13

Perfil estratigráfico

CLASIFICAC	ION	CONT.	LIMIT	ES DE CONSIST	ENCIA	Newspapers and the second
SUCS	GRAFICO	HUMED	LL	LP	IP	DESCRIPCION DEL SUELO
ML		12.01%	31.00%	24.00%	7,00%	Suelo color marrón claro, que lo conforma una mezcla de gravo de perfit angular y diámetro máximo de 1°, arena de grano fino, todo incrustado en una matriz de limo inorgánico ligeramente plástico, consistencia media y poco húmedo. Suelos residual producto de la desintegración del macizo rocos de origen volcánico
		rroceso de exca de campo, fue				vel freutice contratado por la parte solicitante

TABLA 14

Perfil estratigráfico

CLASIFICACIO	ON	CONT.	LIMIT	ES DE CONSIST	ENCIA	DESCRIPCION DEL SUELO
	GRAFICO	HUMED	LL	LP	IP	DESCRIPCION DEL SUELO
CL		18.04%	37.00%	23.00%	14.00%	Suelo color marrón, de gramulometria fina, compuesto por arcilla inorgânica medianamente plástica, consistencia alta y ligeramente húmedo, presencia en forma errática de pequeñas cantidades de grava de diámetro promedio 1/2", cuya distribución no se consideró representativa para fines de clasificación.
	durante et p	1.20 m. Foceso de exca de campo, fue				rel freatico contratado por la parte solicitante

TABLA 15

Perfil estratigráfico

	_ ·					
CLASIFICAC		CONT.		ES DE CONSIST		DESCRIPCION DEL SUELO
SUCS	GRAFICO	HUMED	LL	L.P	IP	
ML		12.52%	32.00%	27.00%	5.00%	Suelo color marrón claro, que lo conforma una mezcla de grava de perfil angular y diámetro máximo de 1/2", arena de grano fino, todo incrustado en una matriz de limo inorgánico ligeramente plástico, consistencia media y poco húmedo. Suelos residual producto de la desintegración del macizo rocoso de origen volcánico
OBSERV		proceso de exca s de campo, fue				vel freatico contratado por la parte solicitante

TABLA 16

Perfil estratigráfico

CLASIFICACI	ion I	CONT.	LIMIT	ES DE CONSIST	ENCIA	
	GRAFICO	HUMED	LL	LP	IP.	DESCRIPCION DEL SUELO
CL		24.73%	49.00%	31.00%	18.00%	Sucto color marrón oscuro, de granulometria fina, compoesto por arcilla inorgánica medianamente plástica, consistencia alta y ligeramente húmedo, presencia en forma errática de pequeñas cantidades de grava de diámetro promedio 1/2", cuya distribución no se consideró representativa para fines de clasificación.
	Durante el p	1.20 m. proceso de exca de campo, fue				vel freatico contratado por la parte solicitante

TABLA 17

Perfil estratigráfico

,						
CLASIFICAC		CONT.		ES DE CONSIST	IENCIA	DESCRIPCION DEL SUELO
SUCS	GRAFICO	HUMED	LL	LP	IP	
СН		33.49%	67.00%	29.00%	38.00%	Suelo color marrón claro, de granulometria fina, compuesto por areilla inorgánica de alta plasticidad, consistencia alta y ligeramente húmedo.
OBSERV	ACIONES: Durante el p	1.20 m. 2.00 m.	vación de cal	icatas, no se e	ncontrú el niv	rel freatico
	Los trabajos	de campo, fue	ron realizado	s por persona	l profesional e	contratado por la parte solicitante

TABLA 18

Perfil estratigráfico

CLASIFICA	CION	CONT.	LIMIT	ES DE CONSIST	ENCIA	DESCRIPCION DEL SUELO
SUCS	GRAFICO	HUMED	LL	LP	IP	DESCRIPCION DEL SCELO
СН		12.58%	56.C0%	24.00%	32.00%	Suelo color marrón escuro, de granulometría fina, compuesto por arcilla inorgánica de alta plasticidad, consistencia alta y tigeramente húmedo.
OBSER	VACIONES: Durante el p Los trabajos	noceso de excu s de campo, fue	vación de cali ron realizado	catas, no se e. s por persona	ncontró el nic l profesional c	vel freatico contratado por la parte solicitante

4.2.4. TEST DE PERCOLACION

Los efluentes de los sistemas de unidades básicas de saneamiento con arrastre hidráulico no poseen las cualidades físico-químicas u organolépticas para ser descargados directamente a un cuerpo receptor. Para disminuir el riesgo de contaminación y daño a la salud pública se utiliza como tratamiento complementario las zanjas o pozos de percolación.

Por ello, para el presente estudio, es necesario realizar la prueba de percolación para determinar la permeabilidad del suelo de la localidad en mención.

La localidad de Cochapampa se encuentra ubicado en:

Departamento: Cajamarca

Provincia: Celendín Distrito: Sorochuco

Localidad: Cochapampa

La altitud promedio de la Localidad es de 3208.00 m.s.n.m.

Capacidad de Percolación del Terreno

Para la determinación de la capacidad de percolación del terreno se realizó un test de percolación. En base a los resultados de esta prueba podemos clasificar los terrenos en Rápidos, medios y lentos como se muestra en la siguiente tabla:

TABLA 19

Clasificación del test de percolación

CLASE DE TERRENO	TIEMPO DE INFILTRACIÓN PARA EL DESCENSO DE 1 cm.
Rápidos	de 0 a 4 minutos
Medios	de 4 a 8 minutos
Lentos	de 8 a 12 minutos

FUENTE: Elaboración Propia

Para realizar el ensayo de percolación y determinar el coeficiente de infiltración, se ha utilizado el procedimiento indicado en la Norma Técnica I.S. 020 del Reglamento Nacional de Edificaciones.

Las actividades realizadas durante el test fueron:

Se excavó un agujero cuadrado 0.30 x 0.30, para preparar el agujero para la prueba, se raspó con un cuchillo las paredes del mismo y se añadió 5 cm. de grava fina al fondo del agujero.

Posteriormente se procedió a llenar el agujero con agua limpia hasta una altura de 0.30 m. sobre la capa de grava.

Para tomar el test de percolación se midió en un periodo de 4 horas cada 30 minutos el descenso producido por la infiltración en el terreno.

Para la determinación el tiempo de descenso se consideró el periodo de 30 minutos en el que el descenso es el más desfavorable, siendo generalmente el último período el escogido.

En algunos terrenos, los primeros 15 cm. de agua se filtraron en menos de 30 minutos. En estos casos el tiempo entre mediciones fue de 10 minutos y la duración de la prueba una hora.

El resultado del Test se presenta a continuación en donde, luego de realizada la excavación, según la Norma IS 020, se procedió a la saturación del suelo por un periodo de 24 horas, obteniendo los siguientes resultados:

TEST DE PERCOLACION N°1

TABLA 20Ubicación del test de percolación N°1

COORDENADAS (m.)							
ESTE NORTE COTA							
803526	9232971	2842					

FUENTE: Elaboración Propia

Tras 24 horas de haber realizado la saturación del suelo no se encontró agua en el hoyo de la prueba, entonces, se añadió agua a un nivel 25cm sobre la capa de grava y empleando un punto de referencia se realizó la medición del descenso del nivel de agua

TABLA 21Resultados del test de percolación

REGISTRO DE DESCENSO TRA EXPAN		NOCTORNO DE	RESULTADOS				
TIEMPO ENTRE LECTURAS	30	Min.	DIFERENCIA DE ALTURAS EN 30 MINUTOS	3.8	cm.		
ALTURA DE AGUA INICIAL	25	cm.	TIEMPO DE INFILTRACIÓN PARA EL DESCENSO DE 1CM.	7.89	Min/em.		
ALTURA DE AGUA FINAL	21.2	cm.	COEFICIENTE DE INFILTRACIÓN "R"	46.81	L/m2/dia		
TASA	DE INEI	LTRACION	7.89 Min/cm		\neg		

TABLA 22

Clasificación del terreno

CLASE DE TERRENO	TIEMPO DE INFILTRACIÓN PARA EL DESCENSO DE 1 cm.	
Rápidos	de 0 a 4 minutos	
Medios	de 4 a 8 minutos	X
Lentos	de 8 a 12 minutos	

FUENTE: Elaboración Propia

TEST DE PERCOLACION N°2

TABLA 23

Ubicación del test de percolación N°2

COORDENADAS (m.)				
ESTE NORTE COTA				
803111	9232427	3010		

Tras 24 horas de haber realizado la saturación del suelo no se encontró agua en el hoyo de la prueba, entonces, se añadió agua a un nivel 25cm sobre la capa de grava y empleando un punto de referencia se realizó la medición del descenso del nivel de agua

TABLA 24Resultados del test de percolación

REGISTRO DE DESCENSO TRAS PERIODO NOCTURNO DE EXPANSIÓN		RESULTADO	<u>) S</u>		
TIEMPO ENTRE LECTURAS	30	Min.	DIFERENCIA DE ALTURAS EN 30 NINUTOS	3.78	ст.
ALTURA DE AGUA INICIAL	25	cm.	TIEMPO DE INFILTRACIÓN PARA EL DESCENSO DE 10M.	7.94	Min/cm.
ALTURA DE AGUA FINAL	21.22	om,	COEFICIENTE DE INFILTRACIÓN "R"	46.59	L/m2/d/a

TASA DE INFILTRACION 7.94 Min/cm

FUENTE: Elaboración Propia

TABLA 25

Clasificación del terreno

CLASE DE TERRENO	TIEMPO DE INFILTRACIÓN PARA EL DESCENSO DE 1 cm.	
Rápidos	de 0 a 4 minutos	
Medios	de 4 a 8 minutos	X
Lentos	de 8 a 12 minutos	

TEST DE PERCOLACION N°3

TABLA 26

Ubicación del test de percolación N°3

COORDENADAS (m.)				
ESTE NORTE COTA				
803329	9232975	2895		

FUENTE: Elaboración Propia

Tras 24 horas de haber realizado la saturación del suelo no se encontró agua en el hoyo de la prueba, entonces, se añadió agua a un nivel 25cm sobre la capa de grava y empleando un punto de referencia se realizó la medición del descenso del nivel de agua

TABLA 27

Resultados del test de percolación

REGISTRO DE DESCENSO TRAS PERIODO NOCTURNO DE EXPANSIÓN		RESULTADOS			
TIEMPO ENTRE LECTURAS	30	Min.	DIFERENCIA DE ALTURAS EN 30 MINUTOS	3.79	¢m.
ALTURA DE AGUA INICIAL	25	cm.	TIEMPO DE INFILTRACIÓN PARA EL DESCENSO DE 1CM.	7.92	Min/cm.
ALTURA DE AGUA FINAL	21.21	om.	COEFICIENTE DE INFILTRACIÓN "R"	45.68	L/m2/dla
TASA DE INFILTRACIO			7.92 Min/o	m	

FUENTE: Elaboración Propia

TABLA 28

Clasificación del terreno

CLASE DE TERRENO	TIEMPO DE INFILTRACIÓN PARA EL DESCENSO DE 1 cm.	
Rápidos	de 0 a 4 minutos	
Medios	de 4 a 8 minutos	X
Lentos	de 8 a 12 minutos	

De los 3 ensayos que se realizaron, se debe elegir el resultado más desfavorable

TABLA 29Resumen de los test de percolación

RESUMEN		
N° DE ENSAYO	INFILTRACIÓN (min/cm)	
01	7.89	
02	7.94	
03	7.92	
INFILTRACION FINAL	7.94	

TABLA 30

Test de percolación – M1

COORDENADAS DE UBIC ENSAYO:					M.S.N.M. 2842	
RESPONSABLE DE ENSAYO:		803526		3232371	N° DE ENSAYO: 1	
PROFUNDIDAD DEL ENSAYO "H"	0.8	м		PROFUNDIDAD DEL NIVEL FREÁTICO	NO SE ENCONTRO	М

II. DATOS DE CAMPO

DESCRIPCIÓN DEL ESCENARIO

TRAS 24 HORAS DE HABER REALIZADO LA SATURACIÓN DEL SUELO NO SE ENCONTRO IAQUA EN EL HOYO DE LA PRUEBA, ENTONCES, SE AÑADIO AGUA A UN NIVEL 250M SOBRE LA CAPA DE GRAVA Y EMPLEANDO UN PUNTO DE REFERENCIA SE REALIZÓ LA MEDICIÓN DEL DESCENSO DEL NIVEL DE AQUA

REGISTRO DE DESCENSO TRAS PERIODO NOCTURNO DE EXPANSIÓN			
TIEMPO ENTRE LECTURAS	30	Min.	
ALTURA DE AGUA INICIAL	25	cm.	
ALTURA DE AGUA FINAL	21.4	cm.	

RESULTADOS				
DIFERENCIA DE ALTURAS EN 30 MINUTOS	3.6	cm.		
TIEMPO DE INFILTRACIÓN PARA EL DESCENSO DE 1CM.	8.33	Win/cm.		
COEFICIENTE DE INFILTRACIÓN TR*	44.88	Um2ldia		

TABLA 31 Test de percolación – M2

COORDENADAS DE UBICACIÓN DEL ENSAYO:			E NORTE 11 9232427	M.S. 30	
RESPONSABLE DE ENSAYO:				N" DE ENSAYO:	2
PROFUNDIDAD DEL ENSAYO "H"	0.8	м	PROFUNDIDAD DE FREÁTICO		М
		11.	TOS DE CAMPO		

DESCRIPCIÓN DEL ESCENARIO

TRAS 24 HORAS DE HABER REALIZADO LA SATURACIÓN DEL SUELO NO SE ENCONTRO IAGUA EN EL HOYO DE LA PRUESA, ENTONCES, SE AÑADIO AGUA A UN NIVEL 250M SOBRE LA CAPA DE GRAVA Y EMPLEANDO UN PUNTO DE REFERENCIA SE REALIZÓ LA MEDICIÓN DEL DESCENSO DEL NIVEL DE AGUA


REGISTRO DE DESCENSO TRAS PERIODO NOCTURNO DE EXPANSIÓN									
TIEMPO ENTRE LECTURAS	30	Mn.							
ALTURA DE AGUA INICIAL	25	cm.							
ALTURA DE AGUA FINAL	21.2	cm.							

RESUL	RESULTADOS										
DIFERENCIA DE ALTURAS EN 30 MINUTOS	38	cn.									
TIEMPO DE IMPILTRACIÓN PARA EL DESCENSO DE 1CM.	7.89	Mislen.									
COEFICIENTE DE INFILTRACIÓN	46.81	Um2/dia									

TABLA 32Test de percolación – M3

COORDENADAS DE UBIC	ACIÓN DEL	E9	TE	NORTE	M.S.	KLM.			
ENSAYO:		803	329	9232975	2895				
RESPONSABLE DE					N° DE	3			
ENSAYO:					ENSAYO:	J			
PROFUNDIDAD DEL	0.8	м		PROFUNDIDAD DEL NIVEL	NO SE	М			
ENSAYO "H"	0.0	"		FREÁTICO	ENCONTRO	nı .			
			ATOS DE CAI						
DESCRIPCIÓN DEL ESCENARIO									
				NOONTRO AGUA EN EL HOYO (
ANALIO NGUA A UN NIVEL Z	DOM SORKE DA		A T EMPLEARUU (SO DEL NIVEL D) UN PUNTO DE REFERENCIA SE 15 AGUA	: REHLIZO LA ME	DIGION DEL			
		DEGGE	TOO DEL TETEL	N. Christo					
REGISTRO DE DESCENSO TA	AS PERIODO N	OCTURNO DE		BEAU.	T1000				
EXPA	NSIÓN			RESUL	IAUVS				
TIEMPO ENTRE LECTURAS	30	Mn.		DIFERENÇIA DE ALTURAS EN	3.8	cn.			
HERPO ENTRE DEGIGRAS	20	MILL		30 MINUTOS	3.0	CH.			
LITHER BE JOHN BOWN				TIEMPO DE INFILTRACIÓN PARA	7.00				
ALTURA DE AGUA INICIAL	25	cm.		EL DESCENSO DE 10M.	7.89	Mis/cm.			
				COEFICIENTE DE INFILTRACIÓN					
ALTURA DE AGUA FINAL	21.2	cm.		"R"	46.81	Uni2/dia			

4.3. OBJETIVO 2: EFECTUAR UN LEVANTAMIENTO TOPOGRÁFICO CUYO OBJETIVO ES IDENTIFICAR LAS CARACTERÍSTICAS NATURALES Y ARTIFICIALES DE LA PROPIEDAD

El presente trabajo desarrolla un Estudio Topográfico con alcances y procedimientos Geodésicos en el Distrito de Sorochuco, provincia de Celendín región Cajamarca.

El Estudio consta de una red de alineamientos que forman una Poligonal Abierta de cuarto orden de precisión, que ofrece un procedimiento exacto para el enlace de datos de control de posición, al sistema UNIVERSAL TRANSVERSAL MERCATOR (U.T.M.), el cual rige los sistemas de coordenadas, en la mayoría de los países del mundo, incluido el Perú.

4.3.1. TRABAJO DE CAMPO

Se realizó el reconocimiento del terreno para ver sus características más resaltantes y la posterior ubicación de los vértices de dicha Poligonal.

Posteriormente se realizó la medición de ángulos Horizontales, Verticales y Distancias, para lo cual utilizamos la Estación Total.

Se efectuó apoyado en la Estación Total marca Leica, con precisión al segundo, mediante observaciones a los prismas ubicados en cada vértice de dicha Poligonal; obteniéndose ángulos Internos (Horizontales), y ángulos Directos (Verticales).

Se efectuó la medición de los lados de la Poligonal apoyados en el Distanciómetro de la Estación Total cuya precisión es de 0.001 mts. Así mismo se realizó el respectivo levantamiento Taquimétrico para obtener los detalles del terreno en cuestión; se ha dejado BM's a lo largo del levantamiento topográfico para su posterior replanteo.

4.3.2. TRABAJO DE GABINETE

Consta de las siguientes etapas:

- Ordenamiento de datos y comprobaciones generales de libretas de campo.
- Cálculo de la poligonal de apoyo; lados y ángulos.
- Calculo de Coordenadas Topográficas.
- Calculo de cotas de las estacas de la poligonal de apoyo.
- Cálculo de las cotas taquimétricas.
- Dibujo de planos

Equipo, instrumentación y herramientas

Para realizar el presente Levantamiento Topográfico fue necesario tener en cuenta lo siguiente:

Fueron necesario la utilizaron de los siguientes instrumentos, equipos y materiales Una Estación Total marca Leica TS06 Power 5 segundos.

Un G.P.S. Map 60CSx Garmin.

Una Brújula.

Cuatro bastones portan prisma.

Wincha de Lona de 50 mts. Y Wincha de 5 metros.

Libreta de campo.

Estacas de madera, fierros, etc.

Pintura esmalte.

Levantamiento topográfico

Para la Elaboración de los planos topográficos nos hemos apoyado en la utilización del programa Autodesk Civil 3D 2016, con el cual se elaboran los planos a curvas de nivel. Asimismo, utilizaremos el Programa SIG (GIS).

Luego de los trabajos de campo y de gabinete, se obtuvieron los siguientes resultados en las coordenadas de los puntos de control (BM's.), dejados a lo largo del levantamiento topográfico:

TABLA 33

Cuadro de BM"s

CUADRO DE BMS									
DESCRIPCION DE BM COORDENADAS ALTITUD									
BM1	9231852.01m	802739.70m	3148.52m						
BM2	9232210.813m	802943.429m	3039.57m						
BM3	9233104.110m	803260.500m	2899.31m						

FIGURA 2

Ficha técnica de BMs

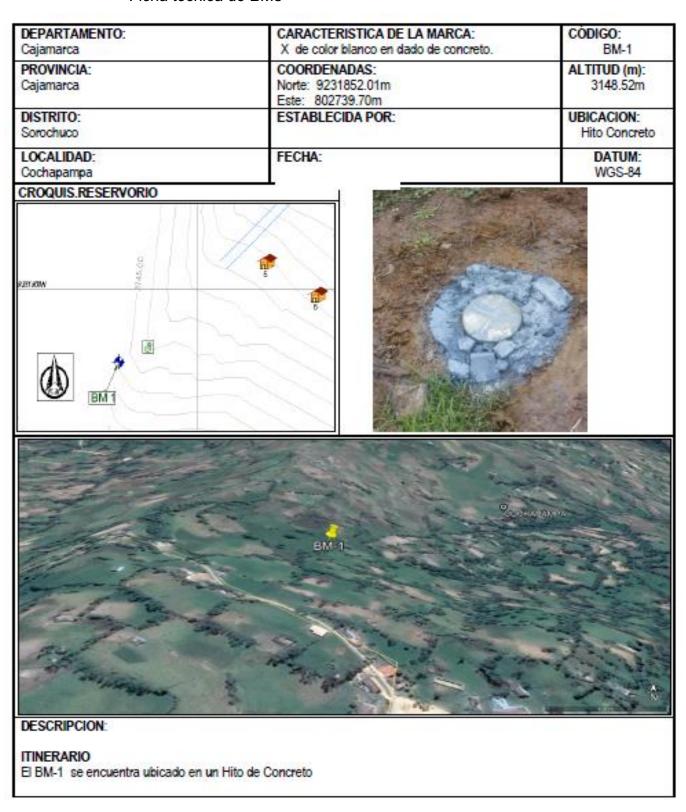


FIGURA 3

Ficha técnica de BMs

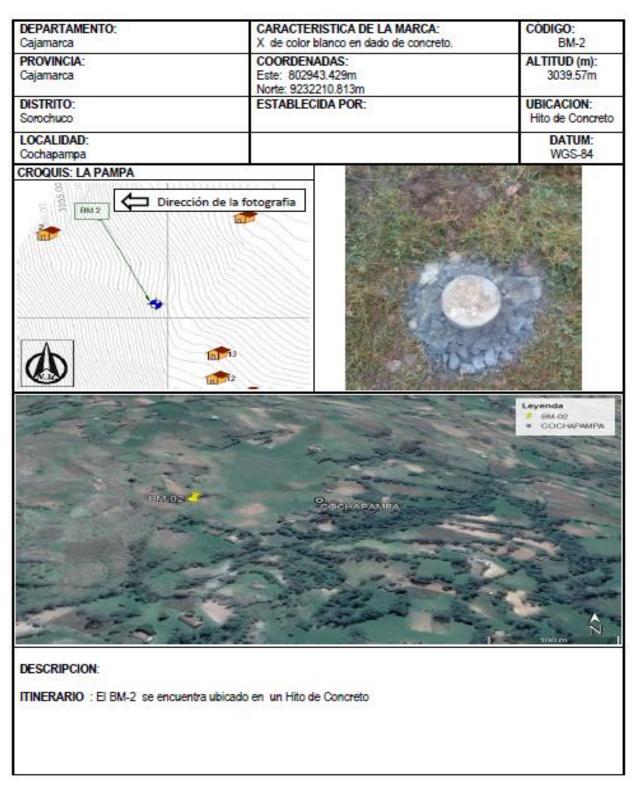


Figura 4

Ficha técnica de BMs

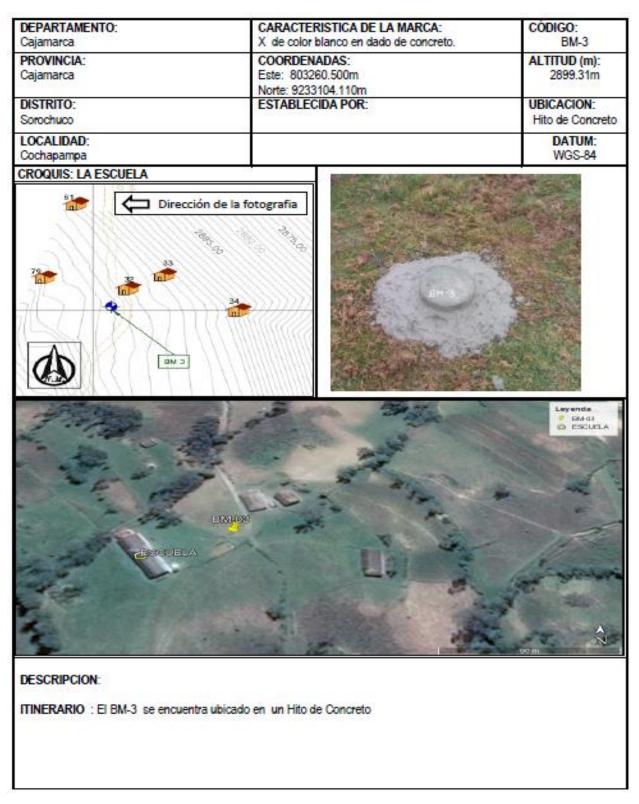


TABLA 34

Levantamiento topográfico

PUNTO	NORTE	ESTE	ELEVACION	DESCRIPCIÓN	46	9231892.99	802874.662	3121.9986	T	90	9232039.74	802974.016	3054.1888	т
1	9231697.79	802702.487	3204.8553	CAP	47	9232035.14	802810.006	3121.2611	T	91	9232041.21	802954.445	3054.7482	т
2	9231699.51	802704.591	3204.6512	CAP	48	9231892.54	802887.379	3119.8735	CASA	92	9232037.63	802955.073	3056.1855	T
3	9231701.67	802702.649	3204.6907	CAP	49	9232001.91	802813.94	3122.9757	Т	93	9232052.62	802954.394	3051.9854	T
4	9231699.85	802700.503	3205.0033	CAP	50	9231973.79	802809.563	3122.5702	T	94	9231834.34	803048.275	3102.4271	T
5	9231710.02	802712.47	3200.4584	T	51	9231957.07	802815.083	3118.8694	T	95	9232159.16	802858.865	3084.6994	E
					52	9231943.72	802823.994	3117.1715	T	96	9232145.44	802853.54	3086,8345	E
6	9231706.04	802718.517	3199.7478	T	53	9231937.81	802833.877	3118.1372	т	97	9231998.52	802796.84	3131.0638	Т
7	9231708.99	802703.814	3203.9875	T	54	9231930.28	802842.857	3119.3961	T	98	9231950.82	802809.104	3121.4618	T
8	9231718.17	802718.564	3195.4802	T	55	9231952.23	802846.499	3111.4604	T	99	9232004.3	802828.83	3117.1994	T
9	9231720.18	802719.631	3194.1067	T	56	9231946.02	802855.827	3112.4607	т	100		802806.899	-	T
10	9231730.18	802735.546	3191.0551	T	57	9232210.81	802943.429	3039.57	BM-02		9232001.04	_	3126.262	
11	9231745.57	802723.748	3186.6239	E	58	9231952.97	802874.168	3104.7548	T	101	9232035.08	802794.849	3129.4185	т
13	9231732.61	802763.002	3192.2154	E	59	9231957.94	802879.77	3101.9937	T	102	9232073.52	802795.609	3123.4578	т
14	9231732.53	802726.754	3188.9925	T	60	9231951.3	802873.474	3105.5357	T	103	9232080.04	802812.931	3114.6261	T
15	9231760.1	802743.209	3179.1777	Ť		9231975.03	802855.67	3104.8778	T	104	9231696.86	802994.651	3167.5607	T
16	9231763.9	802733.137	3178.8491	T	61				T	105	9231706.68	803017.068	3158.2775	T
17	9231766.67	802721.327	3181.7832	Ť	63	9231947.94	802910.885	3101.8922	T	106	9232008.91	802923.81	3070.696	т
18	9231780.55	802726.442	3176.2722	T		9231950.81	802916.419	3099.2307		107	9231992.33	802966.148	3076.8177	T
19	9231779.53	802737.731	3172.3518	CR	64	9231938.35	802907,798	3104.643	T	108	9232015.69	802913.839	3071.3896	T
20	9231798.46	802751.935	3162.882	T	65	9231975.78	802850.714	3106.186	т	109	9232038.84	802932 538	3059.0799	T
21	9231791.53	802741.401	3166.3944	T	66	9231971.89	802859.457	3103.1675	Т	110	9232030.73	802940.282	3060.078	T
22	9231793.89	802733.979	3166.7362	T	67	9231946.57	802933.841	3098.0518	CASA	111	9232049.21	802914.485	3065,3705	Т.
23	9231768.35	802752.813	3177.5515	T	68	9231955.28	802936.561	3095.2708	T					
24	9231841.87	802751.175	3147.0902	T	69	9231958.15	802929.248	3095.019	т	112	9232072.86	802930.639	3055.1022	т
25	9231848.26	802758.8	3143.5462	T	70	9231963.19	802949.361	3091.3194	Т	113	9232061.54	802943.028	3052.7498	т
26	9231852.01	802739.70	3148.52	BM1	71	9231964.63	802935.885	3092.1123	Т	114	9232051.72	802953.677	3052.3532	T
27	9231864.86	802763.62	3139.5905	RES	72	9231977.67	802963.819	3084.6856	CASA	115	9232084.61	802960.309	3048.3385	T
28	9231861.92	802765.946	3139.4046	RES	73	9231981.92	802951.964	3083.1663	T	116	9232089.67	802950.092	3048.1862	T
29	9231863.24	802761.328	3139.8248	RES	74	9231979.37	802958.011	3083.4001	Т	117	9232097.75	802944.444	3048.6259	T
30	9231859.39	802764.419	3139.8793	RES	75	9232000.33	802977.458	3075.8146	T	118	9232128.95	802958.937	3043.8883	T
31	9231886.11	802774.899	3135.286	T	76	9231996.99	802988.649	3074.8441	T	119	9232133.31	802949.813	3044.0981	T
32	9231880.45	802781.066	3134.498	T	77	9232016.24	802995.713	3068.438	T	120	9232122 16	802973.456	3042,4555	T
33	9231891.29	802770.72	3137.1398	Т	78	9232024.05	803002.998	3066.8143	T	121	9232158.54	802948.82	3040.7601	Т
34	9231899.8	802794.798	3130.2878	T	79	9232015.7	803005.237	3068.0576	T	122	9232148.84	802973.629	3040.3361	CAS
35	9231910.6	802787.719	3131.5554	T	80	9232023.98	803007.087	3066.7014	т	123	9232138.34	802993.301	3039.9018	CAS
36	9232011.24	802780.946	3139.3296	E	81	9232030.49	803010.122	3063.4672	CASA					
37	9232011.59	802788.549	3135.3549	E	82	9231972.41	802880.919	3096.6572	Т	124	9232150.03	802960.658	3041.1051	T
38	9231891.17	802800.795	3131.8929	T	83	9231968.83	802886.903	3096.3594	T	125	9232166.85	802961.508	3039.0145	T
39 40	9231899.95	802827.628	3127.5117	T	84	9231977.34	802873.727	3097.9818	Т	126	9232168.23	802974.422	3038.6869	CAS
41	9231902.96 9232105.1	802845.24	3125.0666	CASA	85	9231987.21	802885.626	3091.0414	T	127	9232189.37	802967.619	3035.6767	т
42	9232105.1	802803.286	3116.7/17	CASA	86	9231980.3	802893.675	3089.8248	Т	128	9232183.24	802980.297	3035.7461	Т
43	9231913.29	802841.19	3123.806	T	87	9232053.83	802989.691	3053.8596	CASA	129	9232192.43	802958.871	3035.9744	T
44	9232091.77	802801.182	3120.6241	T	88	9232050.92	802974.165	3050.1477	T	130	9232212.34	802949.343	3036.8014	Т
45	9232069.97	802797.585	3121.8969	T	89	9232045.85	802972.91	3051.5529	Т	131	9232213.3	802956.736	3035.1413	T

TABLA 35

Levantamiento topográfico

132	9232213.97	802963.519	3033.7902	Т	175	9232246.62	803089.811	3018.0294	т	217	9232511.08	803096.631	3006.6803	T
133	9232246.69	802957.729	3033.6138	T	176	9232242.44	803091.582	3018.148	Т	218	9232509.34	803105.863	3005.2109	T
134	9232241.76	802946.452	3038.9314	T	177	9232234.89	803097.771	3018.417	Т	219	9232500.02	803114.316	3004.2152	Т
135	9232244.8	802953.381	3035.6118	T	178	9232221.1	803098.256	3019.3103	CASA	220	9232547.87	803136.064	3001.9943	т
136	9232270.09	802938.702	3035.8798	Т	179	9232228.48	803110.051	3018.8175	CASA	221	9232550.55	803129.442	3002.2239	т
137	9232273.53	802945.102	3032.9675	Т	180	9232249.84	803106.018	3017.9112	CASA	222	9232543.22	803141.131	3001.7337	т
138	9232284.07	802954.261	3029.0076	CASA	181	9232272.27	803101.61	3016.7807	Т	223	9232539.8	803163.973	2999.1672	Т
139	9232307.99	802949.565	3028.7888	T	182	9232270.35	803104.553	3017.2002	Т	224	9232555.04	803158.746	2999.3799	Т
140	9232305.91	802939.402	3030.8831	T	183	9232272.47	803093.833	3015.8202	Т	225	9232552.09	803142.196	3001.0461	Т
141	9232306.48	802932.546	3031.7771	T	184	9232283.62	803094.125	3014.7391	T	226	9232537.13	803182.787	2997.2371	т
142	9232339.26	802943.438	3029.085	Т	185	9232279.88	803100.169	3015.6172	т	227	9232531.07	803179.376	2998.2335	т
143	9232337.43	802927.035	3032.3814	Т	186	9232279.86	803102.798	3016.2373	CASA	228	9232518.65	803196.112	2996.5394	т
144	9232336.91	802937.449	3030.7592	T	187	9232310.71	803093.33	3012.5467	т	229	9232523.34	803193.597	2996.6803	Т
145	9232360.11	802929.122	3033.6546	T	188	9232307.22	803100.862	3013.3637	Т	230	9232503.87	803198.927	2995.2732	т
146	9232354.36	802930.684	3032.9982	Т	189	9232306.91	803106.945	3013.4508	Т	231	9232494.72	803204.397	2994.4718	CASA
147	9232364.2	802939.971	3029.3803	Т	190	9232317.53	803102.023	3012.6071	T	232	9232573.12	803140.99	3000.8427	т
148	9232354.81	802920.812	3036.4981	Т	191	9232323.77	803110.297	3012.5502	CASA	233	9232579.86	803138.022	3001.1372	т
149	9232363.91	802923.613	3034.9347	CASA	192	9232261.86	802993.597	3019.865	т	234	9232582.82	803134.984	3002.7998	CASA
150	9232242.76	802856.547	3071.2845	CASA	193	9232254.42	803003.789	3019.8333	Т	235	9232600.74	803155.756	2997.7936	E
151	9232264.5	802888.431	3056.0407	CASA	194	9232257.92	802998.067	3019.7388	Т	236	9232601.61	803169.583	2992.7231	E
152	9232241.25	802875.544	3063.1194	Т	195	9232291.81	803010.112	3015.4321	Т	237	9232606.54	803142.505	3001.254	E
153	9232235.19	802861.934	3068.6429	Т	196	9232297.54	803002.053	3015.9604	т	238	9232594.44	803174.331	2991.9164	CR
154	9232177.97	802863.696	3078.818	Т	197	9232286.87	803020.296	3015.3072	т	239	9232596.41	803175.045	2991.6108	CR
155	9232161.3	802850.73	3088.417	T	198	9232333.65	803024.168	3013.4031	т	240	9232589.67	803186.765	2988.9346	Т
157	9232148.4	802842.63	3093.5585	T	199	9232339.61	803019.351	3013.6486	Т	241	9232606.92	803182.871	2987.9601	Т
158	9232123.23	802825.94	3104.6895	Т	200	9232329.95	803033.98	3012.9242	Т	242	9232614.42	803174.864	2985.8945	T
159	9232118.56	802837.854	3099.5604	Т	201	9232394.4	803041.733	3011.2123	Т	243	9232631.91	803165.28	2984.6633	Т
160	9232085.08	802826.336	3107.5585	Т	202	9232388.54	803050.549	3009.6759	т	244	9232626.67	803160.132	2985.7916	T
161	9232218.58	802976.089	3030.2039	T	203	9232384.93	803055.226	3008.967	т	245	9232622.88	803156.821	2987.8196	т
162	9232212.14	802982.187	3029.7245	T	204	9232400.24	803036.228	3012.498	Т	246	9232655.41	803124.942	2985.3094	Т
163	9232202.43	802990.885	3030.0165	Т	205	9232405.53	803069.158	3009.2057	Т	247	9232660.26	803129.303	2983.8628	T
164	9232216.61	803004.436	3025.9631	Т	206	9232413.16	803061.107	3011.0218	T	248	9232651.58	803121.453	2987.2405	Т
165	9232210.24	803008.023	3026.2361	Т	207	9232416.68	803054.015	3011.7567	т	249	9232623.55	803137.454	2994.3411	CASA
166	9232202.94	803014.11	3026.8712	T	208	9232414.88	803040.988	3013.8475	CASA	250	9232697.83	803064.164	2980.101	т
167	9232216.22	803041.903	3019.8039	T	209	9232442.11	803079.706	3009.6876	т	251	9232690.52	803058,788	2982.9616	CASA
168	9232225.54	803035.064	3019.3071	Т	210	9232446.87	803074.511	3010.4341	Т	252	9232687.81	803055.764	2983.9117	Т
169	9232208.98	803046.918	3020.6338	Т	211	9232449.9	803067.124	3011.8044	т	253	9232783.58	803131.768	2948.1572	T
170	9232204.26	803050.538	3021.5112	CASA	212	9232432.88	803093.835	3009.3679	CASA	254	9232785.32	803111.733	2952.5764	T
171	9232216.12	803061.744	3019.875	CASA	213	9232444.15	803095.767	3009.1684	CASA	255	9232782.48	803110.471	2953.5161	T
172	9232223.42	803077.916	3018.9598	CASA	214	9232463.75	803098.688	3007.627	Т	256	9232798.78	803117.432	2950.8039	CASA
173	9232226.62	803071.882	3018.6616	т	215	9232471.8	803088.41	3008.7976	Т	257	9232817.11	803125.997	2948.4213	T
174	9232238.31	803067.07	3017.57	т	216	9232475.52	803080.526	3010.4485	T	258	9232818.61	803134.725	2946.7838	

TABLA 36

Levantamiento topográfico

259	9232818.73	803117.163	2949.1033	T	301	9232666.61	803211.451	2959.91	T	343	9233171.92	803234.875	2898.0236	т
260	9232857.9	803118.76	2939.3309	Т	302	9232672.04	803203.359	2959.93	T	344	9233172.13	803229.691	2898.4604	т
261	9233104.110	803260.500	2899.31	BM-03	303	9232659.5	803219.509	2958.8854	T	345	9233177.49	803232.045	2898.1366	CAS
262	9232883.53	803111.537	2938.6644	Т	304	9232655.69	803174.257	2975.8225	т	346	9233095.94	803282.01	2897.0745	т
263	9232866.5	803105.001	2940.3689	T	305	9232664.57	803150.888	2976.8757	T	347	9233099.62	803277.116	2897.3238	т
264	9232900.27	803122.056	2933.3788	T	306	9232784.22	803239.442	2927.1641	T	348	9233102.07	803270.962	2898.2509	T
265	9232897.09	803127.739	2931.6201	T	307	9232804.84	803232.971	2924.6914	Т	349	9233072.55	803267.315	2898.6135	Т
266	9232902.76	803116.325	2933.5856	Т	308	9232806.76	803228.524	2925.0018	T	350	9233068.35	803271.759	2898.2966	Т
267	9232915.2	803135.507	2932.0505	CASA	309	9232804.03	803239.423	2924.2716	т	351	9233075.43	803261.988	2898.9976	Т
268	9232924.59	803144.581	2930.6601	T	310	9232811.85	803242.951	2922.458	Т	352	9233051.1	803262.023	2898.8429	т
269	9232913.95	803132.289	2931.7886	T	311	9232858.66	803244.159	2919.0517	Т	353	9233055.13	803257.751	2899.3837	т
270	9232829.34	803191.298	2932.6827	Т	312	9232858.6	803237.641	2920.3189	T	354	9233058.07	803253.446	2900.0199	т
271	9232833.95	803192.459	2930.7464	T	313	9232859.92	803230.662	2920.728	T	355	9233036.22	803251.586	2900.9611	Т
272	9232823.19	803188.624	2933.9328	CASA	314	9232889.3	803233.707	2918.9888	т	356	9233043.36	803247.306	2901.0702	Т
273	9232807.54	803209.162	2929.9092	T	315	9232891.82	803240.858	2917.6284	T	357	9233038.54	803250.027	2901.1054	T
274	9232802.99	803203.019	2931.7505	Т	316	9232895.02	803249.801	2914.7443	T	358	9233110.61	803286.898	2895.748	T
275	9232800.36	803196.841	2933.588	T	317	9232916.78	803237.785	2913,7708	T	359	9233113.09	803281.981	2896.1534	т
276	9232776.88	803209.81	2931.6507	т	318	9232942.46	803239.77	2909.4936	T	360	9233115.11	803277.667	2896.3976	т
277	9232780.68	803216.195	2930.2693	T	319	9232912.63	803225.001	2918.4504	T	361	9233122.72	803284.894	2895.7681	CAS
278	9232790.03	803224.216	2927.9195	Т	320	9232968.46	803232.734	2910.6352	т	362	9233088.92	803289.829	2896.5926	T
279	9232785.37	803234.902	2927.385	Т	321	9232965.98	803223.863	2912.7353	Т	363	9233098.23	803293.44	2896.237	T
280	9232764.17	803228.815	2931.306	T	322	9232963.92	803215.489	2914.6452	T	364	9233106.62	803294.918	2895.6888	т
281	9232761.93	803234.217	2930.5472	T	323	9232998.21	803239.853	2908.0253	CASA	365	9233085.18	803305.25	2894.8714	т
282	9232797.87	803250.888	2922.4207	CASA	324	9232989.41	803236.415	2908.7076	T	366	9233095.78	803308.751	2894.3301	T
283	9232754.23	803239.865	2929.816	CASA	325	9232996.78	803222.572	2910.9612	т	367	9233105.33	803312.045	2893.5106	T
284	9232759.39	803259.827	2923.2305	T	326	9232993.97	803213.772	2911.6145	т	368	9233098.13	803327.471	2891.4397	т
285	9232744.42	803253.138	2927.4424	T	327	9232991.04	803199.724	2912.9469	Т	369	9233102.15	803327.26	2891.3323	т
286	9232737.04	803253.463	2929.0774	T	328	9233000.79	803186.882	2913.7806	CASA	370	9233089.03	803323.603	2891.8439	т
287	9232743.48	803282.784	2923.3829	т	329	9233048.71	803198.569	2909.4097	Т	371	9233095.96	803329.888	2890.8112	CAS
288	9232736.23	803277.891	2926.1421	Т	330	9233053.63	803196.318	2908.9574	т	372	9232743.12	803146.551	2949.5572	Т
289	9232730.97	803273.216	2928.2867	Т	331	9233051.1	803190.436	2910.3585	T	373	9232736.79	803136.38	2951.9292	т
290	9232733.24	803291.177	2926.7228	T	332	9233061.75	803210.62	2905.7754	T	374	9232920.69	803261.637	2908.8073	т
291	9232727.52	803287.172	2927.7386	Т	333	9233080.09	803213.013	2904.3367	T	375	9232911.62	803263.554	2909.4352	Т
292	9232731.16	803289.298	2927.5299	CASA	334	9233092	803216.852	2903.0868	Т	376	9232905.46	803260.4	2910.7639	т
293	9232737.34	803230.166	2933.8536	Т	335	9233076.15	803243.494	2900.7957	1.E	377	9232919.44	803283.176	2904.4346	т
294	9232741.97	803225.884	2934.2211	T	336	9233111	803229.083	2901.8444	Т	378	9232926.13	803281.821	2905.0608	т
295	9232747.48	803220.787	2934.9414	T	337	9233110.42	803242.19	2901.3726	т	379	9232926.84	803278.693	2905.7589	T
296	9232708.15	803212.297	2945.0183	T	338	9233112.38	803221.061	2901.9393	Т	380	9232930.81	803303.823	2897.4364	T
297	9232715.33	803205.974	2943.7483	т	339	9233137.35	803239.651	2899.7759	T	381	9232942.74	803306.851	2897.7901	т
298	9232704.53	803219.219	2943.9002	Т	340	9233137.95	803232.4	2900.7709	Т	382	9232949.71	803308.671	2897.9428	т
299	9232686.97	803221.742	2948.0998	Т	341	9233138.99	803225.548	2901.5123	Т	383	9232932.82	803329.746	2890.8694	T
300	9232677.59	803221.247	2951.3791	T	342	9233171.07	803240.783	2897.4988	T	384	9232951.28	803326.535	2894.1116	T

TABLA 37

Levantamiento topográfico

385	9232948.56	803330.198	2893.1031	CASA	427	9232993.5	803518.135	2839.7266	T	469	9232846.33	803585.762	2829.021	т
386	9232962.16	803360.368	2891.5135	E	428	9232994.54	803511.093	2839.8698	T	473	9232819.34	803592.325	2829.791	Т
387	9232953.58	803365.944	2889.7804	E	429	9232997	803500.785	2840.2439	T	474	9232815.85	803583.304	2831.7024	Т
388	9232825.6	803265.002	2917.6329	Т	430	9233024.1	803543.544	2839.8978	Т	475	9232820.62	803596.867	2829.4335	Т
389	9232834.22	803259.403	2918.5231	T	431	9233026.14	803538.756	2839.7615	T	476	9232793.15	803596.019	2831.5675	т
390	9232837.78	803254.533	2919.3516	T	432	9233028.79	803530.048	2840.4559	Т	477	9232795.07	803601.4	2830.5829	Ť
391	9232852.77	803283.726	2912.1835	T	433	9233044.63	803547.551	2836.2322	T	478	9232796.93	803604.556	2830.1911	Т
392	9232850.36	803285.365	2912.7571	T	434	9233040.66	803557.148	2839.6032	T	479	9232789.87	803614.181	2828.2718	CAS
393	9232845	803290.273	2910.312	T	435	9233027.17	803490.551	2841.6685	CASA	480	9232785.53	803593.177	2834.2537	CAS
394	9232862.28	803314.425	2903.01	CR	436	9233029.41	803519.784	2840.4296	Ť	481	9232777.81	803611.961	2830.8133	т
395	9232860.88	803313.595	2903.3401	CR	437	9233069.68	803556.206	2834.5693	CASA	482	9232752.21	803632.68	2827.1862	Т
396	9232860.45	803309.599	2905.5526	T	438	9232998.52	803579.192	2838.6263	CASA	483	9232775.41	803608.391	2831.1067	т
397	9232850.73	803318.507	2903.7049	T	439	9232828.2	803401.097	2872.8271	T	484	9232753.78	803637.335	2826.3872	т
398	9232866.12	803345.099	2890.0294	T	440	9232835.61	803399.382	2872.1568	T	485	9232751.48	803629.077	2829.0651	Т
399	9232874.07	803335.447	2894,0056	T	441	9232827.87	803400.337	2873.0908	т	486	9232731.19	803664.007	2823,4073	CAS
400	9232878.69	803331.61	2895.6788	T	442	9232814.07	803407.898	2874.1234	CASA	487	9232721.45	803647.483	2829,7068	T
401	9232882.82	803360.071	2885.6986	т	443	9232843.91	803442.143	2856.5665	Т	488	9232727.36	803657.721	2826.7467	Т
402	9232889.66	803358.994	2885.9872	т	444	9232850.1	803451.851	2852.8237	T	489	9232725.18	803654.707	2826.7725	Т
403	9232873.69	803362.47	2884.7555	T	445	9232852.46	803457.981	2851.3615	T	490	9232684.61	803685.843	2826.5127	т
404	9232892.52	803381.65	2877.2111	T	446	9232835.59	803474.779	2852.9889	Т	491	9232686.2	803689.413	2824.7833	т
405	9232883.18	803383.642	2875,7707	т	447	9232837.57	803482.256	2850.3378	T	492	9232678.12	803686.266	2826.361	T
406	9232909.23	803380.016	2877.5224	T	448	9232832.45	803471.158	2854.5082	T	493	9232662.71	803697.65	2825.9346	T
407	9232894.08	803401.325	2866.9015	T	449	9232822.65	803501.861	2849.9675	Т	494	9232663.4	803701.564	2825.2161	Т
408	9232912.47	803397.937	2868.205	T	450	9232822.53	803504.703	2847.3712	T	495	9232670.91	803702.281	2824.0994	т
409	9232903.94	803401.782	2864.9681	T	451	9232818.97	803500.558	2852.0388	Т	496	9232668.9	803712.967	2820.8234	CAS
410	9232910.19	803430.248	2857.0933	T	452	9232813.71	803508.628	2852.5494	CASA	497	9232914.13	803558.868	2834,9292	CAS
411	9232899.48	803430.189	2858.2101	T	453	9232898.17	803490.173	2843.6915	т	498	9232934.51	803563.425	2834.0177	Т
412	9232918.28	803427.391	2854.8196	T	454	9232905.53	803490.131	2842.6823	T	499	9232910.65	803566.685	2834.2521	Т
413	9232915.06	803445.897	2850.8115	T	455	9232914.75	803493.014	2842.0505	T	500	9232943.88	803586.653	2829.0212	CAS
414	9232919.56	803445.966	2850.7421	т	456	9232887.68	803531.607	2835.0325	T	503	9232999.87	803635.109	2830.2599	Т
415	9232909.39	803447.874	2850.5875	T	457	9232899.09	803537.028	2835.1197	т	504	9232979.97	803631.849	2827.7702	E
416	9232914.5	803464.343	2847.1524	T	458	9232880.27	803527.241	2835.8154	T	505	9232972.85	803627.04	2827.848	E
417	9232907.73	803467.183	2844.8984	T	459	9232887.66	803556.304	2831.7543	T	506	9232964.71	803642.755	2822.8134	Т
418	9232922.46	803461.31	2847.4258	CASA	460	9232875.45	803553.849	2831.9333	т	509	9232944.22	803642.702	2821.2149	T
419	9232947.88	803475.862	2846.8005	T	461	9232866.75	803551.02	2833.3063	Т	510	9232948.16	803630.917	2822.6639	Т
420	9232944.89	803486.076	2844.5135	T	462	9232863.63	803573.736	2830.5994	т	511	9232946.63	803635.29	2822.3464	т
421	9232946.59	803493.964	2843.4174	Т	463	9232857.13	803563.594	2831.4112	T	512	9232923.48	803630.163	2821.9353	CAS
422	9232960.28	803454.857	2848.0094	CASA	464	9232887.21	803574.054	2830.0905	CASA	513	9232921.03	803649.665	2817.3185	CAS
423	9232972.33	803498.691	2840.377	T	465	9232865.99	803573.558	2830.5611	CASA	514	9232922.22	803636.127	2820.5857	T
424	9232971.37	803505.337	2839.7097	T	466	9232846.08	803573.768	2831.2094	CASA	515	9232905.31	803668.476	2812.7279	CAS
425	9232972.79	803490.593	2842.0572	T	467	9232847.23	803592.204	2828.6343	Т	518	9232927.88	803698.726	2804.206	Т
426	9232970.38	803520.219	2839,4906	CASA	468	9232835.41	803597.884	2828.7603	T	519	9232925.96	803695.923	2804.4751	Т

TABLA 38

Levantamiento topográfico

520	9232919.57	803693.314	2805.4869	CASA	570	9233120.45	803617.163	2831.2068	T	619	9231831.81	802749.22	3150.951	
521	9232905.19	803713.874	2800.13	T	571	9233102.76	803602.174	2834.5007	Т	620	9231808.42	802753.308	3159.0148	
522	9232910.27	803717.014	2798.2891	T	572	9233098.19	803610.8	2832.0151	Т	621	9231818.38	802754.681	3155.1477	
523	9232916.05	803717.436	2799.2477	T	573	9233060.59	803625.668	2823.9897	T	622	9231828.34	802756.054	3151.2805	
525	9232874.36	803764.748	2782.8033	т	574	9233079.46	803637.133	2822.5544	т	623	9231838.3	802757.427	3147.4134	
526	9232870.1	803760.71	2784.9557	Т	575	9233067.4	803584.517	2831.6817	Т	624	9231904.21	802814.816	3127.7273	
527	9232879.4	803779.215	2780.0011	CASA	576	9233064.7	803592.344	2830.4951	Т	625	9231917.25	802828.836	3123.5617	
528	9232863.34	803779.561	2780.7701	T	577	9233020.4	803638.374	2827.0309	T	626	9231912.47	802807.824	3126.2376	
529	9232858.38	803775.785	2781.2947	T	578	9233014.5	803639.787	2827.9235	T	627	9231925.14	802820.851	3122.1874	
530	9232851.21	803782.239	2780.2031	CASA	579	9233025.9	803646.339	2823.3909	Т	628	9231921.64	802799.811	3126.7608	
531	9232985.49	803647.838	2824.999	CASA	580	9233019.03	803664.523	2820.2274	Т	629	9231932.68	802811.902	3121.9661	
533	9232968.83	803672.487	2817.938	T	583	9232608.01	803190.525	2983.1337	Т	630	9231958.96	802857.972	3106.526	
534	9232974.69	803677.402	2817.428	CASA	584	9232617.8	803198.539	2977.3328	T	631	9231965.68	802869.446	3101.5916	
535	9232978.27	803659.271	2821.538	CASA	586	9232637.35	803215.358	2965.7309	T	632	9231989.84	802903.72	3083.4485	
536	9232989.5	803662.235	2822.0646	CASA	587	9232640.6	803208.186	2967.6579	Т	633	9231999.38	802913.765	3077.0723	
537	9232950.41	803713.814	2801.0092	T	589	9232680.46	803211.733	2954.9461	Т	634	9231996.7	802895.03	3084.4908	
538	9232959.47	803724.499	2802.3132	T	590	9232694.3	803212.015	2949.9822	Т	635	9232006.2	802904.434	3077.9402	
539	9232954.91	803709.309	2803.7315	T	591	9232686.47	803204.231	2954.5361	T	636	9231895.71	802857.926	3124.4769	
540	9232965.87	803720.69	2803.63	CASA	592	9232700.9	803205.103	2949.1422	T	637	9231940.91	802890.474	3107.2489	
543	9232930.94	803700.627	2803.2781	Т	594	9232644.92	803200.949	2968.6314	Т	638	9231943.46	802873.151	3109.8548	
544	9232877.68	803748.245	2790.0529	T	596	9232620.96	803189.598	2980.4711	Т	639	9231948.25	802892.179	3103.7139	
546	9232895.45	803777.302	2778.087	T	597	9232625.43	803181.687	2980.491	Т	640	9231942.46	802920.819	3101.3474	
547	9232928.54	803767.917	2783.2022	CASA	599	9232647.46	803195.332	2969.6841	T	641	9232050.11	802810.981	3119.0494	
550	9232888.45	803737.749	2792.3131	T	600	9232568.41	803164.943	2996.8921	т	642	9232065.07	802811.956	3116.8378	
551	9232896.89	803740.318	2791.3776	T	601	9232578.69	803171.293	2994.4042	Т	643	9232094.44	802817.268	3111.3139	
552	9232945.82	803676.645	2812.3172	Т	602	9231742.59	802729.806	3185.6114	Т	644	9232108.83	802821.604	3108.0017	
553	9232953	803681.904	2813.0985	T	603	9231753.25	802731.471	3182.2302	Т	645	9232197.05	802866.382	3075.4263	
554	9233002.12	803632.251	2830.5959	E	604	9231740.23	802737.634	3187.096	T	646	9232218.31	802863.205	3072.0346	
555	9233002.35	803591.227	2837.4602	T	605	9231751.1	802738.555	3183.1368	T	647	9232229.78	802869.375	3067.577	
556	9233012.97	803592.604	2837.3723	т	606	9231772.89	802746.118	3173.7458	Т	648	9232249	802879.84	3060.7598	
557	9232997.31	803591.548	2837.3087	Т	607	9231787.84	802748.503	3168.3139	Т	649	9232256.75	802884.135	3058.4003	
558	9232992.24	803607.571	2834.1759	T	608	9231715.38	802722.963	3196.8502	Т	650	9232180.3	802854.888	3082.9562	
559	9232997.1	803611.816	2834.2137	T	609	9231720.81	802731.737	3193.9527	T	651	9232199.31	802859.047	3077.4954	
560	9232989.34	803604.832	2833.3278	T	610	9231723.78	802714.518	3195.8469	Т	652	9232102.4	802832.682	3103.5594	
562	9232983.64	803626.317	2830.2636	T	611	9231733.22	802720.3	3191.2354	Т	653	9232133.88	802847.345	3093.1974	
563	9232978.58	803621.725	2829.9796	Т	612	9231704.77	802708.53	3202.5548	Т	654	9232135.81	802834.285	3099.124	
564	9232988.1	803630.924	2830.112	Т	613	9231853.82	802761.609	3141.7128	Т	655	9231947.27	802798.82	3128.1951	
565	9233044.13	803639.298	2825.6347	E	614	9231849	802754.559	3144.6684	T	656	9231972.9	802797.83	3129.6295	
566	9233159.07	803636.824	2821.3564	CASA	615	9231856.12	802757.943	3142.2466	Т	657	9232052.52	802796.217	3125.6577	
567	9233151.97	803638.479	2820.21	Т	616	9231801.6	802743.356	3162.5336	Т	658	9232049.84	802981.3	3052.7063	
568	9233022.01	803649.713	2823.6194	CASA	617	9231811.67	802745.311	3158.6727	Т	659	9232563.03	803153.582	2998.7637	
569	9233117.43	803623.368	2828.8902	T	618	9231821.74	802747.265	3154.8119	Т	660	9232574.42	803159.766	2996.4812	

TABLA 39

Levantamiento topográfico

661	9232583.86	803166.297	2994.1988	T	706	9232916.12	803531.155	2837.0626	T
662	9232667.11	803102.891	2984.5268	T	707	9232925.32	803547.29	2835.5402	Т
663	9232678.82	803080.839	2983.7442	Т	708	9232939.2	803575.039	2831.5194	T
664	9232674.15	803104.476	2982.6089	T	709	9233003.7	803526.605	2839.7837	T
665	9232685.99	803084.32	2981.3549	T	710	9233013.9	803535.074	2839.8407	T
666	9232637.23	803139.137	2987.53	T					Т
667	9232641.04	803142.537	2985.5505	т	711	9233005.96	803517.411	2840.0652	_
668	9232647.11	803144.956	2984.2631	T	712	9233017.37	803523.73	2840.2605	Т
669	9232703.24	803181.614	2953.6671	T	713	9233010.05	803553.792	2839.0472	Т
670	9232720.01	803158.997	2952.7982	T	714	9233006.2	803572.51	2838.2537	Т
671	9232715.61	803184.443	2949.2805	Т	715	9233020.39	803559.897	2839.056	Т
672	9232730.32	803163.784	2949.4189	T	716	9233016.68	803576.25	2838.2141	Т
673	9232804.73	803130.731	2947.4705	Т	717	9233052.68	803574.746	2835.0491	т
674	9232763.35	803139.16	2948.8572	T	718	9233056.02	803566.034	2833.9569	Т
675	9232760.29	803128.252	2951.3665	T	719	9233085.08	803593.345	2833.0912	Т
676	9232842.62	803111.082	2944.7361	T	720	9233081.44	803601.572	2831.2551	Т
677	9232837.5	803122.379	2943.8761	T	721	9233133.32	803623.716	2827.9233	T
678	9232724.11	803220.296	2939.6197	т	722	9233146.2	803630.27	2824.6399	T
679	9232719.99	803225.898	2938.8769	T	723	9233128.94	803628.405	2825.9968	
680	9232730.46	803214.586	2939.3449	T					
681	9232835.23	803240.296	2921.3885	T	724	9233140.46	803633.442	2823.1034	T
682	9232833.34	803229.593	2922.8649		725	9232885.63	803752.533	2787.0904	Т
683	9232941.38	803230.824	2913.253	T	726	9232896.82	803725.812	2796.2216	Т
684	9232938.27 9233018.43	803225.205	2909.2326		727	9232906.47	803728.877	2795.3126	Т
686	9233039.8	803225.205	2907.504	T	728	9232935.89	803686.284	2808.3962	Т
687	9233016.51	803214.708	2909.6681	T	729	9232941.97	803691.265	2808.1883	Т
688	9233039.05	803215.644	2907.7218	Ť	732	9232958.41	803654.052	2819.3147	T
689	9233027.33	803238.395	2905.0968	T	733	9232952.11	803665.348	2815,8159	Т
690	9233057.6	803226.261	2906.0891	T	734	9232972.17	803644.123	2824.0313	Т
691	9233075.4	803227.201	2904.6742	T	735	9232965.78	803656.716	2820.387	T
693	9232867.33	803388.889	2874.5661	Т	736	9232959.39	803669.31	2816.7427	T
694	9232851.47	803394.136	2873.3614	т	737	9232948.44	803700.287	2805.9599	Т
695	9232884.41	803435.663	2856.4146	T	738	9233004.87	803620.668	2831.8194	Т
696	9232867.25	803443.757	2854.6192	T	739	9233004.67	803629.521	2829.4252	
699	9232880.68	803426.595	2859.5937	T					
700	9232862.3	803434.369	2858.0801	T	740	9232936.49	803645.023	2819.9161	T
701	9232896.61	803510.869	2838.8574	T	741	9232928.76	803647.344	2818.6173	T
702	9232906.92	803515.021	2838.5851	T	742	9232904.8	803747.218	2789.3337	Т
703	9232889.22	803508.707	2839.7535	T	743	9232912.72	803754.117	2787.2899	T
704	9232845.55	803579.851	2830.752	T	744	9232920.63	803761.017	2785.2461	Т
705	9232833.09	803588.359	2830.0927	T	745	9232876.88	803771.981	2781.4022	T

4.4. OBJETIVO 3: ANÁLISIS DE LOS SISTEMAS BÁSICOS EXISTENTES EN LA ZONA DE ESTUDIO

Análisis del sistema de agua potable

El caserío de Cochapampa, cuentan a la fecha con el servicio de agua potable, construido en su totalidad hace 35 años por CARE PERU. asimismo, la población la localidad Cochapampa aportaron con la adquisición de tubería y la mano de obra no calificada.

En la actualidad el sistema de agua funciona con un servicio restringido de agua potable, que obliga a las familias a almacenar agua, en la mayoría de los casos en recipientes abiertos, exponiendo el líquido a la contaminación, y por ende a la población a sufrir enfermedades gastrointestinales y de otros tipos.

El sistema de agua potable existente es administrado por la localidad, quienes se encargan de realizar el mantenimiento y suministro del sistema de agua el cual es captado de manantial de ladera.

El servicio que brinda a la comunidad no es continuo por lo cual conlleva a la deficiente infraestructura hidráulica y la falta del mismo. solamente hay un promedio de 47 viviendas conectadas al sistema de agua, esto representa el 65.28 % de las viviendas del caserío, en tanto las viviendas restantes tienen que abastecerse de los vecinos y de otras fuentes (acequias, quebradillas); a continuación, se describe las estructuras del sistema.

Captación

Existe una captación en pésimas condiciones, lleva por nombre la Campanilla, esta captación no fue diseñada ni construida técnicamente ni mucho menos cumple con las normas técnicas sanitarias mínimas establecidas en nuestro medio, no cuenta con galería de filtros, ni con cerco perimétrico, esta se encuentra ubicada en las coordenadas; E=802703 y N= 802703, presenta un caudal de aforo de 0.214 lps.

Línea de conducción

Tiene una longitud aproximada de 179.8 M de tubería PVC de 2", parte de esta línea está expuesta (sobre el terreno), la tubería presenta un alto grado de deterioro, observándose roturas, fisuras en la tubería, generando pérdidas de agua en todo su recorrido.

Reservorio

Existe un Reservorio de forma rectangular de 3 m3 de capacidad construido en el año 1985, diseñado para abastecer a una población de 30 viviendas y que actualmente sirve a 47 viviendas, este reservorio presenta un grado de deterioro, asimismo la caja de válvulas presenta deterioro sobre todo en las llaves de control (presentan fugas y corrosión). no presenta tanque clorador por goteo, El cerco perimétrico del reservorio es de alambre de puas, tiene las siguientes medidas; 7.00 m x 7.00 m. de Longitud, este se encuentra totalmente deteriorado, el reservorio se encuentra ubicado en coordenadas; E=802761.788 N=9231860.657.

Red de distribución

La red de distribución fue instalada en el 1985 por lo que se encuentra en mal estado debido a la antigüedad y que por tramos presenta roturas debido a que no cuenta con cámaras rompe presión, además se ha realizado la ampliación de esta red sin ningún criterio técnico y de manera informal a fin de que abastecer a mayor número de viviendas.

Conexiones domiciliarias

Existen 47 conexiones domiciliarias las cuales en su mayoría se encuentran en mal estado, y por el deterioro del tiempo ya se encuentran colapsadas.

Análisis del sistema de saneamiento

Por otro lado, el sistema de saneamiento en el caserío de influencia es nulo es decir no se cuenta con letrinas de arrastre hidráulico, pero si con letrinas de pozo seco ventilado, que se encuentran llenas de excretas, la caseta en mal estado, permitiendo la proliferación de los malos olores y el ingreso de moscas a la caseta, ocasionando olores nauseabundos y deterioros en la infraestructura la cual trae como consecuencia las enfermedades gastro intestinales a la población. La población que influye el proyecto el 50% de la población tiene letrinas de hoyo seco en malas condiciones y el 50% no cuenta con letrinas, realizando sus necesidades al aire libre, convirtiéndose en un foco infeccioso para la transmisión de enfermedades. A la pregunta el estado de su letrina el 100% de la población manifiesta que se encuentra en mal estado, como se muestra en las fotografías.

4.5. OBJETIVO 4: EFECTUAR UN DISEÑO BAJO NORMATIVA TANTO PARA SISTEMA DE AGUA POTABLE Y ALCANTARILLADO

4.5.1. PARAMETROS DE DISEÑO

Periodo de diseño

Para todos los componentes, las normas generales para proyectos de abastecimiento de agua potable en el medio rural del Ministerio de Vivienda Construcción y Saneamiento recomiendan un período de diseño de 20 años.

Tasa de crecimiento

Se ha tenido en cuenta la fuente fehaciente que es el instituto nacional de estadística e informática I.N.E.I donde data que la tasa de crecimiento para el ámbito del distrito de Sorochuco es de -1.93%, por lo que para los cálculos de población futura se adoptara un factor r=0 según RM-192-2018 VIVIENDA, donde indica si el valor es negativo se adoptara una población futura similar a la actual (r=0).

TABLA 40

Tasa de crecimiento

Provincia	Distrito	Censos 2017	2007	Tasa Anual	Tasa a utilizar	De índole
CAJAMARC A	COCHAPAMPA	7352	9113	-1.93%	-1.93%	Distrital

FUENTE: INEI

Dotación de agua para el diseño

De acuerdo a La norma técnica de diseño: opciones tecnológicas, para sistemas de saneamiento en ámbito rural De la RM-192-2018-VIVIENDA, establece que para poblaciones rurales la dotación mínima debe ser 80 l/hab./día. Según esta dotación se calcula los caudales de diseño.

Densidad poblacional

La población entrevistada en su mayoría vive en grupos de 3, 2 y 1 personas, 26%, 23% y 31% respectivamente. La densidad de vivienda calculada se encuentra en un promedio de 2.1 habitantes/vivienda

Población actual

TABLA 41

Población actual

N°	CASERÍO	N° VIVIENDAS	DENS.	N° HAB. ACTUAL
1	COCHAPAMPA	70	2.1	147
TOTAL		70	2.10	147

FUENTE: Elaboración Propia

Población futura

De acuerdo a las Normas Técnicas de Diseño para Proyectos de Abastecimiento de Agua Potable y Saneamiento Rural del Ministerio de Vivienda, para calcular la población futura se empleará la formula aritmética, la cual se describe a continuación:

DONDE:

PF= POBLACIÓN FUTURA

P0 = POBLACIÓN ACTUAL

R = FACTOR DE CRECIMIENTO

T= PERIODO DE DISEÑO

TABLA 42

Población de diseño

N°	CASERÍO	N° VIVIENDAS	DENS.	TASA DE CRECIMIENTO	PERIODO DE DISEÑO	N° HAB. ACTUAL	Nº HAB. A 20 AÑOS
1	COCHAPAMPA	70	2.1	0	20	147	147
	TOTAL	70				147	147

Fuente: Elaboración Propia.

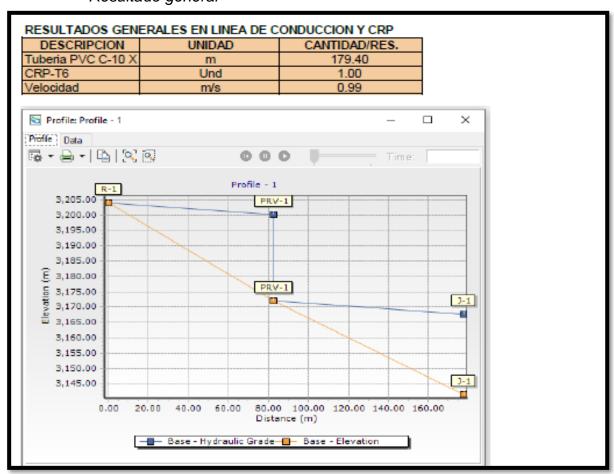
CAUDAL PROMEDIO (Qp) a) Población: Qp = Pob.* Dot./86,400 b) Instituciones Educativas: Qp alum = Pob.* Dot./86,400 Qptotal =	0.136 /s 0.006 /s 0.14 /s
CAUDAL MAXIMO DIARIO (Qmd) R.M. N° 192-2018-VIVIENDA Qmd = 1.30 * Qp	0.180 I/s
QANA = 0.44 I/s QANA > Qmd →	ок
CAUDAL MAXIMO HORARIO (Qmh) R.M. N° 192-2018-VIVIENDA Qmh = 2.0 * Qp	0.28 I/s
VOLUMEN DE ALMACENAMIENTO R.M. N° 192-2018-VIVIENDA V = 25%Qp	3.02 m3
VOLUMEN DE ALMACENAMIENTO ADOPTADO	5.00 m3
TIEMPO DE LLENADO DEL RESERVORIO	7.72 horas

Diseño hidráulico de la línea de conducción

CAUDAL POBLACIONAL

CAUDAL FUBLACIONAL		
Periodo de Diseño	20	años
Coeficiente de Crecimiento Anual	0.000	%
N° de Familias	70	Fam.
Densidad Familiar	2.10	Per.
Población Actual	147	Hab.
Población Futura $P_f = P_o(1 + r.t)$	147	Hab.
N° de Piletas Proyectadas	70	piletas
Dotación It/hab./dia.	80	l/per/día
Coeficiente de Variación Diaria (K1)	1.300	
Coeficiente de Variación Horaria (K2)	2.000	
Caudal Medio (Qp).	0.14	l/seg.
Caudal Máximo Diario (Qmd).	0.18	l/seg.
Caudal Máx. Horario (Qmh).	0.27	l/seg.
Caudal de diseño	1.000	l/seg.
CAUDAL EN INSTITUCION EDUCATIVA PRIMARIA E INICIAL		
Periodo de Diseño	20	años
Coeficiente de Crecimiento Anual	0.000	%
N° de Instituciones Educativas.	1	Fam.
Numero de Alumnos	25	Per.
Población Actual $P_f = P_o(1+r.t)$	25	Hab.
Población Futura	25	Hab.
N° de Piletas Proyectadas	1	piletas
Dotación It/hab./dia.	20	l/per/día
Coeficiente de Variación Diaria (K1)	1.300	spondia.
Coeficiente de Variación Horaria (K2)	2.000	
Caudal Medio (Qp).	0.006	l/seq.
Caudal Máximo Diario (Qmd).	0.008	l/seg.
Caudal Máx. Horario (Qmh).	0.012	l/seg.
CAUDALES DE DISEÑO		
Caudal Medio (Qp).	0.14	l/seg.
Caudal Máximo Diario (Qmd).	0.18	l/seg.
Caudal Máx. Horario (Qmh).	0.28	l/seg.
1 1 1		-

TABLA 43


Tramo de la línea de conducción y presiones

TRAMO	N° DE HABITANTES	GASTOS POR TRAMO	CAUDAL EN LOS NUDOS			
		L/S	NUDO	ALTITUD CAP.	Q EN EL NUDO	Q DE DISEÑO
C-1	172.00	0.18	1.00	3204.00	0.18	0.44
RESULTADOS PRESIONES						
ID	Label	Elevation Reservorio (m)		Pressure (m H2O)		
ID 26.00	Label J-1	3141.50	Hydraulic Grade (m) 3167.72	26.20		
26.00 RESULTADOS DIAM	J-1 ETROS Y VELOCIDADE	3141.50	3167.72	26.20		
26.00 RESULTADOS DIAM Length (Scaled) (m)	J-1 ETROS Y VELOCIDADE Start Node	3141.50 S Stop Node	3167.72 Diameter (in)	26.20 Material	Hazen-Williams C	Velocity (m/s)
26.00 RESULTADOS DIAM	J-1 ETROS Y VELOCIDADE	3141.50	3167.72	26.20	Hazen-Williams C	Velocity (m/s) 0.99
26.00 RESULTADOS DIAM Length (Scaled) (m)	J-1 ETROS Y VELOCIDADE Start Node	3141.50 S Stop Node	3167.72 Diameter (in)	26.20 Material		

FUENTE: Elaboración Propia

TABLA 44

Resultado general

Diseño hidráulico de la línea de distribución

CAUDAL POBLACIONAL		
Periodo de Diseño	20	años
Coeficiente de Crecimiento Anual	0.000	%
N° de Familias	70	Fam.
Densidad Familiar	2.1	Per.
Población Actual	147	Hab.
Población Futura $P_f = P_o(1+r.t)$	147	Hab.
N° de Piletas Proyectadas	70	piletas
Dotación It/hab./dia.	80	Vper/día
Coeficiente de Variación Diaria (K1)	1.300	
Coeficiente de Variación Horaria (K2)	2.000	
Caudal Medio (Qp).	0.14	l/seg.
Caudal Máximo Diario (Qmd).	0.18	l/seg.
Caudal Máx. Horario (Qmh).	0.27	l/seg.
Caudal de diseño	1.000	l/seg.
CAUDAL EN INSTITUCION EDUCATIVA PRIMARIA		
Periodo de Diseño	20	años
Coeficiente de Crecimiento Anual	0.000	%
N° de Instituciones Educativas.	1	Fam.
Numero de Alumnos	25	Per.
Población Actual Población Eutres $P_f = P_o(1 + r.t)$	25	Hab.
Población Futura $P_f = P_o(1+r.t)$	25	Hab.
N° de Piletas Proyectadas	1	piletas
Dotación It/hab /dia	20	Vper/día
Coeficiente de Variación Diaria (K1)	1.300	
Coeficiente de Variación Horaria (K2)	2.000	
Caudal Medio (Qp).	0.006	Vseg.
Caudal Máximo Diario (Qmd).	0.008	Vseg.
Caudal Máx. Horario (Qmh).	0.012	l/seg.
Densidad poblacional	2.10	
Caudal unitario	0.0068	
CAUDALES DE DISEÑO		
Caudal Medio (Qp). Caudal Máximo Diario (Qmd).	0.14 0.18	l/seg. l/seg.
Caudal Máx. Horario (Qmh).	0.18	l/seg.

RESUMEN DE TUBERIAS RED DE DISTRIBUCION CAMARAS ROMPE			
PRESION Tuberia 3/4" PVC-10 1462.40			
Tuberia 1" PVC-10	1705.85	m	
Tuberia 1.5" PVC-10	498.21	m	
CRP -T-07	10.00	Und	

TABLA 45

Caudal en los nudos

TRAMO	N° DE HABITANTES	GASTOS POR TRAMO		CAUDAL EN	LOS NUDOS	
		L/S	NUDO	AL TITUD	QENEL NUDO	Q DE DISEÑO
R -1	0.00	0.0000	1.00	3127.00	0.00	0.01
12	0.00	0.0000	2.00	3128.00	0.01	0.01
23	1.00	0.0143	3.00	3119.00	0.01	0.01
1-4	0.00	0.0000	4.00	3114.00	0.01	0.01
45	1.00	0.0143	5.00	3116.00	0.01	0.01
48	0.00	0.0000	6.00	3108.00	0.00	0.01
67	0.00	0.0000	7.00	3088.00	0.00	0.01
78	0.00	0.0000	8.00	3067.00	0.01	0.01
89	1.00	0.0143	9.00	3071.00	0.01	0.01
810	1.00	0.0143	10.00	3056.00	0.01	0.01
111	0.00	0.0000	11.00	3123.00	0.01	0.01
1112	1.00	0.0143	12.00	3123.00	0.01	0.01
11-13	0.00	0.0000	13.00	3111.00	0.00	0.01
1314	0.00	0.0000	14.00	3101.00	0.00	0.01
1415	0.00	0.0000	15.00	3097.00	0.01	0.01
1516	1.00	0.0143	16.00	3098.00	0.01	0.01
1517	0.00	0.0000	17.00	3082.00	0.01	0.01
1718	1.00	0.0143	18.00	3084.00	0.01	0.01
1719	1.00	0.0143	19.00	3063.00	0.01	0.01
1320	0.00	0.0000	20.00	3096.00	0.00	0.01
20-21	0.00	0.0000	21.00	3075.00	0.00	0.01
2122	0.00	0.0000	22.00	3060.00	0.01	0.01
2223	1.00	0.0143	23.00	3053.00	0.01	0.01
2224	0.00	0.0000	24.00	3048.00	0.00	0.01
2425	0.00	0.0000	25.00	3042.00	0.01	0.01
2526	1.00	0.0143	26.00	3039.00	0.01	0.01
25-27	0.00	0.0000	27.00	3041.00	0.01	0.01
2728	1.00	0.0143	28.00	3040.00	0.01	0.01
2729	0.00	0.0000	29.00	3038.00	0.01	0.01
2930	1.00	0.0143	30.00	3038.00	0.01	0.01
2931	0.00	0.0000	31.00	3036.00	0.00	0.01
3132	0.00	0.0000	32.00	3035.00	0.00	0.01
3233	0.00	0.0000	33.00	3032.00	0.01	0.01
3334	1.00	0.0143	34.00	3029.00	0.01	0.01
3335	1.00	0.0143	35.00	3033.00	0.01	0.01
31-36	0.00	0.0000	36.00	3029.00	0.00	0.01
3637	0.00	0.0000	37.00	3026.00	0.00	0.01
3738	0.00	0.0000	38.00	3019.00	0.01	0.01
3839	1.00	0.0143	39.00	3021.00	0.01	0.01
38-40	0.00	0.0000	40.00	3019.00	0.01	0.01
4041	1.00	0.0143	41.00	3019.00	0.01	0.01
40-42	0.00	0.0000	42.00	3018.00	0.01	0.01
42-43	1.00	0.0143	43.00	3018.00	0.01	0.01
42-44	0.00	0.0000	44.00	3018.00	0.01	0.01
44-45	1.00	0.0143	45.00	3019.00	0.01	0.01
44-46	0.00	0.0000	46.00	3018.00	0.01	0.01
46- 4 7	1.00	0.0143	47.00	3018.00	0.01	0.01
46-48	0.00	0.0000	48.00	3017.00	0.01	0.01
48-49	1.00	0.0143	49.00	3017.00	0.01	0.01
3650	0.00	0.0000	50.00	3018.00	0.00	0.01
50-51	0.00	0.0000	51.00	3015.00	0.01	0.01
5152	1.00	0.0143	52.00	3016.00	0.01	0.01
5153	0.00	0.0000	53.00	3013.00	0.01	0.01
5354	1.00	0.0143	54.00	3012.00	0.01	0.01
5055	0.00	0.0000	55.00	3010.00	0.01	0.01
5556	1.00	0.0143	56.00	3013.00	0.01	0.01
55-57	0.00	0.0000	57.00	3010.00	0.01	0.01
5758	1.00	0.0143	58.00	3009.00	0.01	0.01
5759	0.00	0.0000	59.00	3010.00	0.01	0.01
59-60	1.00	0.0143	60.00	3009.00	0.01	0.01
5961	0.00	0.0000	61.00	3005.00	0.00	0.01
61-62	0.00	0.0000	62.00	2999.00	0.00	0.01
6263	0.00	0.0000	63.00	2996.00	0.01	0.01
63-64	1.00	0.0143	64.00	2994.00	0.01	0.01
62-65	0.00	0.0000	65.00	2997.00	0.01	0.01
65-66	1.00	0.0143	66.00	3002.00	0.01	0.01
65-67	0.00	0.0000	67.00	2987.00	0.00	0.01
67-68	0.00	0.0000	68.00	2985.00	0.00	0.01
68-69	1.00	0.0143	69.00	2994.00	0.01	0.01
6870	1.00	0.0143	70.00			0.01
				2982.00	0.01	
67-71	0.00	0.0000	71.00	2949.00	0.00	0.01
71-72	0.00	0.0000	72.00	2948.00	0.00	0.01
72-73	0.00	0.0000	73.00	2947.00	0.01	0.01

	1.00	0.0110	10.00	2021.00	0.01	0.01
77-79	0.00	0.0000	79.00	2932.00	0.01	0.01
79-80	1.00 0.00	0.0143 0.0000	80.00 81.00	2929.00 2931.00	0.01 0.01	0.01
79-81 81-82	1.00	0.0000	81.00 82.00	2932.00	0.01	0.01
81-83	0.00	0.0000	83.00	2925.00	0.01	0.01
83-84	1.00	0.0143	84.00	2922.00	0.01	0.01
83-85	0.00	0.0000	85.00	2921.00	0.00	0.01
85-86	0.00	0.0000	86.00	2917.00	0.01	0.01
86-87	1.00	0.0143	87.00	2893.00	0.01	0.01
86-88	0.00 1.00	0.0000 0.0143	88.00	2911.00 2908.00	0.01 0.01	0.01 0.01
88-89 88-90	0.00	0.0000	89.00 90.00	2911.00	0.01	0.01
90-91	1.00	0.0143	91.00	2913.00	0.01	0.01
90-92	0.00	0.0000	92.00	2909.00	0.00	0.01
92-93	0.00	0.0000	93.00	2909.00	0.00	0.01
93-94	0.00	0.0000	94.00	2897.00	0.01	0.01
94-95	1.00	0.0143	95.00	2890.00	0.01	0.01
94-96 92-97	1.00 0.00	0.0143 0.0000	96.00 97.00	2895.00 2909.00	0.01 0.01	0.01 0.01
97-98	1.00	0.0116	98.00	2900.00	0.01	0.01
9799	1.00	0.0143	99.00	2898.00	0.01	0.01
85-100	0.00	0.0000	100.00	2875.00	0.01	0.01
100-101	1.00	0.0143	101.00	2874.00	0.01	0.01
100-102	0.00	0.0000	102.00	2858.00	0.00	0.01
102-103	0.00	0.0000	103.00	2852.00	0.01	0.01
103-104 102-105	1.00 0.00	0.0143 0.0000	104.00 105.00	2852.00 2845.00	0.01 0.01	0.01 0.01
105-106	1.00	0.0143	108.00	2847.00	0.01	0.01
105-107	0.00	0.0000	107.00	2842.00	0.00	0.01
107-108	0.00	0.0000	108.00	2837.00	0.01	0.01
108-109	1.00	0.0143	109.00	2829.00	0.01	0.01
108-110	0.00	0.0000	110.00	2835.00	0.01	0.01
110-111 110-112	1.00 0.00	0.0143 0.0000	111.00 112.00	2834.00 2831.00	0.01	0.01
112-113	1.00	0.0000	113.00	2830.00	0.01	0.01
112-114	0.00	0.0000	114.00	2831.00	0.01	0.01
114-115	1.00	0.0143	115.00	2830.00	0.01	0.01
114-116	0.00	0.0000	116.00	2830.00	0.01	0.01
116-117	1.00	0.0143	117.00	2831.00	0.01	0.01
116-118	0.00	0.0000	118.00	2829.00	0.00	0.01
118-119	0.00 1.00	0.0000 0.0143	119.00 120.00	2829.00 2834.00	0.01 0.01	0.01 0.01
119-120 119-121	0.00	0.0000	121.00	2830.00	0.01	0.01
121-122	1.00	0.0143	122.00	2828.00	0.01	0.01
121-123	0.00	0.0000	123.00	2826.00	0.01	0.01
123-124	1.00	0.0143	124.00	2823.00	0.01	0.01
123-125	1.00	0.0143	125.00	2820.00	0.01	0.01
107-126	0.00	0.0000	126.00	2842.00	0.01	0.01
126-127 126-128	1.00 0.00	0.0143 0.0000	127.00 128.00	2848.00 2839.00	0.01 0.01	0.01 0.01
128-129	1.00	0.0143	129.00	2839.00	0.01	0.01
128-130	0.00	0.0000	130.00	2839.00	0.01	0.01
130-131	1.00	0.0143	131.00	2841.00	0.01	0.01
130-132	0.00	0.0000	132.00	2839.00	0.00	0.01
132-133	0.00	0.0000	133.00	2833.00	0.01	0.01
133-134	1.00	0.0143	134.00	2834.00	0.01	0.01
133-135	1.00	0.0143	135.00	2821.00	0.01	0.01
132-138	0.00	0.0000	136.00	2837.00	0.01	0.01
138-137	1.00	0.0143	137.00	2838.00	0.01	0.01
136-138	0.00	0.0000	138.00	2832.00	0.01 0.01	0.01
138-139 138-140	1.00 0.00	0.0143 0.0000	139.00 140.00	2823.00 2825.00	0.01	0.01
138-140	1.00	0.0000	140.00	2825.00	0.01	0.01
140-141	0.00	0.0143	141.00	2823.00	0.01	0.01
142-143	1.00	0.0000	143.00	2822.00	0.01	0.01
142-144	0.00	0.0000	144.00	2821.00	0.01	0.01
144-145	1.00	0.0143	145.00	2821.00	0.01	0.01
144-146	0.00	0.0000	146.00	2820.00	0.01	0.01
146-147	0.00	0.0000	147.00	2821.00	0.01	0.01
146-148	1.00	0.0143	148.00	2821.00	0.01	0.01
147-149	1.00	0.0143	149.00	2817.00	0.01	0.01
149-150	1.00	0.0143	150.00	2812.00	0.01	0.01
146-100	0.00	0.0000	151.00	2817.00	0.01	0.01
146-151	0.00			2047.00	0.01	0.01
148-151 151-152	1.00	0.0143	152.00	2817.00		
146-151 151-152 151-153	1.00 0.00	0.0000	153.00	2806.00	0.01	0.01
146-151 151-152 151-153 153-154	1.00 0.00 1.00	0.0000 0.0143	153.00 154.00	2806.00 2803.00	0.01 0.01	0.01 0.01
148-151 151-152 151-153 153-154 153-155	1.00 0.00 1.00 0.00	0.0000 0.0143 0.0000	153.00 154.00 155.00	2806.00 2803.00 2804.00	0.01 0.01 0.01	0.01 0.01 0.01
148-151 151-152 151-153 153-154 153-155 155-156	1.00 0.00 1.00 0.00 1.00	0.0000 0.0143 0.0000 0.0143	153.00 154.00 155.00 156.00	2806.00 2803.00 2804.00 2805.00	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01
146-151 151-152 151-153 153-154 153-155 155-156 155-157	1.00 0.00 1.00 0.00 1.00 0.00	0.0000 0.0143 0.0000 0.0143 0.0000	153.00 154.00 155.00 156.00 157.00	2808.00 2803.00 2804.00 2805.00 2791.00	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01
148-151 151-152 151-153 153-154 153-155 155-156 155-157 157-158	1.00 0.00 1.00 0.00 1.00 0.00 1.00	0.0000 0.0143 0.0000 0.0143 0.0000 0.0143	153.00 154.00 155.00 156.00 157.00 158.00	2806.00 2803.00 2804.00 2805.00 2791.00 2783.00	0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01
148-151 151-152 151-153 153-154 153-155 155-156 155-157 157-158 157-159	1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00	0.0000 0.0143 0.0000 0.0143 0.0000 0.0143 0.0000	153.00 154.00 155.00 156.00 157.00 158.00 159.00	2806.00 2803.00 2804.00 2805.00 2791.00 2783.00 2782.00	0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01 0.01
148-151 151-152 151-153 153-154 153-155 155-156 155-157 157-158	1.00 0.00 1.00 0.00 1.00 0.00 1.00	0.0000 0.0143 0.0000 0.0143 0.0000 0.0143	153.00 154.00 155.00 156.00 157.00 158.00	2806.00 2803.00 2804.00 2805.00 2791.00 2783.00	0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01

TABLA 46

Resultados de las presiones

	RE	SULTADOS PRESIO	NES	
ID	Label	Elevation (m)	Hydraulic Grade (m)	Pressure (m H2O
26.00	J-1	3127.00	3137.13	10.10
27.00	J-2	3128.00	3137.10	9.10
28.00	J-3	3119.00	3137.02	18.00
29.00	J-4	3114.00	3136.92	22.90
30.00	J-5	3116.00	3136.90	20.90
31.00	J-6	3108.00	3136.90	28.80
32.00	J-7	3088.00	3095.99	8.00
33.00	J-8	3067.00	3095.97	28.90
34.00	J-9	3071.00	3095.96	24.90
35.00	J-10	3056.00	3095.94	39.90
36.00	J-11	3123.00	3136.22	13.20
37.00	J-12	3123.00	3136.19	13.20
38.00	J-13	3111.00	3134.42	23.40
39.00	J-14	3101.00	3134.22	33.20
40.00	J-15	3097.00	3134.20	37.10
41.00	J-16	3098.00	3134.20	36.10
42.00	J-17	3082.00	3094.98	13.00
43.00	J-18	3084.00	3094.97	11.00
44.00	J-19	3063.00	3094.91	31.80
45.00	J-20	3096.00	3132.86	36.80
46.00	J-21	3075.00	3081.40	6.40
47.00	J-22	3060.00	3080.12	20.10
48.00	J-23	3053.00	3080.08	27.00
49.00	J-24	3048.00	3077.98	29.90
50.00	J-25	3042.00	3076.08	34.00
51.00	J-25 J-26	3039.00	3076.05	37.00
52.00	J-20 J-27	3041.00	3075.75	34.70
52.00	J-27 J-28	3041.00	3075.75	34.70
54.00	J-28 J-29	3040.00	3075.02	36.90
				36.90
55.00 56.00	J-30 J-31	3038.00 3036.00	3075.01 3074.62	38.50
57.00	J-31 J-32	3035.00	3074.60	39.50
58.00	J-32 J-33	3035.00	3074.00	42.50
60.00	J-35	3032.00	3074.50	41.40
61.00	J-36	3029.00	3073.58	44.50
62.00	J-37	3026.00	3073.39	47.30
63.00	J-38	3019.00	3025.77	6.80
64.00	J-39	3020.00	3025.76	5.70
65.00	J-40	3019.00	3025.70	6.70
66.00	J-41	3019.00	3025.70	6.70
67.00	J-42	3018.00	3025.65	7.60
68.00	J-43	3018.00	3025.65	7.60
69.00	J-44	3018.00	3025.63	7.60
70.00	J-45	3019.00	3025.62	6.60
71.00	J-46	3018.00	3025.62	7.60
72.00	J-47	3018.00	3025.62	7.60
75.00	J-50	3024.00	3072.01	47.90
76.00	J-51	3025.00	3071.90	46.80
77.00	J-52	3029.00	3071.89	42.80
78.00	J-53	3028.00	3071.84	43.70
79.00	J-54	3024.00	3071.81	47.70
80.00	J-55	3010.00	3046.93	36.90
81.00	J-56	3013.00	3046.91	33.80
82.00	J-57	3010.00	3041.87	31.80
83.00	J-58	3009.00	3041.84	32.80
84.00	J-59	3010.00	3039.11	29.10
85.00	J-60	3009.00	3039.09	30.00
86.00	J-61	3005.00	3029.44	24.40
87.00	J-62	2999.00	3019.52	20.50
88.00	J-63	2996.00	3019.32	23.30
89.00	J-64	2994.00	3019.29	25.20
90.00	J-65	2997.00	3017.71	20.70
91.00	J-66	3002.00	3017.69	15.70
92.00	J-67	2987.00	3011.58	24.50
93.00	J-68	2985.00	3011.54	26.50
94.00	J-69	2994.00	3011.53	17.50
95.00	J-70	2982.00	3011.45	29.40
96.00	J-71	2949.00	2964.74	15.70
97.00	J-72	2948.00	2964.55	16.50
98.00	J-73	2947.00	2964.50	17.50
99.00	J-74	2950.00	2964.49	14.50
100.00	J-75	2936.00	2964.22	28.20
101.00	J-75	2932.00	2964.18	32.10
102.00	J-77	2934.00	2959.41	25.40
103.00	J-77	2927.00	2959.41	32.30
104.00	J-79 J-80	2932.00	2957.78	25.70
105.00		2929.00	2957.77	28.70
105.00			0050.00	05.00
106.00	J-81	2931.00	2956.98	25.90
			2956.98 2956.91 2953.87	25.90 24.90 28.80

400.00	104	2000.00	0050.05	24.00
109.00	J-84 J-85	2922.00	2953.85	31.80
110.00 111.00	J-85 J-86	2921.00 2917.00	2950.69 2950.50	29.60 33.40
112.00	J-87	2899.00	2950.40	51.30
113.00	J-88	2911.00	2950.26	39.20
115.00	J-90	2911.00	2950.25	39.20
116.00	J-91	2913.00	2950.22	37.10
117.00	J-92	2909.00	2950.23	41.10
118.00	J-93	2909.00	2950.22	41.10
119.00	J-94	2897.00	2907.93	10.90
120.00	J-95	2891.00	2907.88	16.80
121.00	J-96	2895.00	2907.91	12.90
122.00	J-97	2909.00	2950.21	41.10
124.00	J-99	2898.00	2950.16	52.10
125.00	J-100	2875.00	2885.03	10.00
126.00	J-101	2874.00	2884.96	10.90
127.00	J-102	2858.00	2882.25	24.20
128.00	J-103	2852.00	2882.06	30.00
129.00	J-104	2852.00	2882.00	29.90
130.00	J-105	2845.00	2880.41	35.30
131.00	J-106	2847.00	2880.39	33.30
132.00	J-107	2842.00	2878.98	36.90
133.00	J-108	2837.00	2878.43	41.40
135.00	J-110	2835.00	2878.22 2878.19	43.10
136.00 137.00	J-111 J-112	2834.00 2831.00	2878.19	44.10 46.80
139.00	J-112 J-114	2831.00	2877.76	46.70
140.00	J-115	2830.00	2877.75	47.70
141.00	J-116	2830.00	2877.67	47.60
142.00	J-117	2831.00	2877.67	46.60
143.00	J-118	2829.00	2877.63	48.50
144.00	J-119	2829.00	2877.42	48.30
145.00	J-120	2834.00	2877.41	43.30
146.00	J-121	2830.00	2877.42	47.30
147.00	J-122	2828.00	2877.41	49.30
148.00	J-123	2824.50	2829.95	5.40
149.00	J-124	2823.00	2829.94	6.90
150.00	J-125	2820.00	2829.87	9.90
151.00	J-126	2842.00	2878.12	36.00
152.00	J-127	2848.00	2878.08	30.00
153.00	J-128	2839.00	2877.67	38.60
154.00	J-129	2839.00	2877.66	38.60
155.00	J-130	2839.00	2876.74	37.70
156.00	J-131	2841.00	2876.69	35.60
157.00	J-132	2839.00	2876.51	37.40
158.00	J-133	2833.00	2876.48	43.40
159.00	J-134	2834.00	2876.48	42.40
160.00	J-135	2828.00	2876.36	48.30
161.00	J-136	2837.00	2875.90	38.80
162.00	J-137	2838.00	2875.90	37.80
163.00	J-138	2831.00	2836.64	5.60
164.00	J-139	2823.00	2836.60	13.60
165.00	J-140	2825.00	2836.38	11.40
166.00	J-141	2825.00	2836.37	11.30
167.00 169.00	J-142	2823.00	2836.32	13.30
169.00	J-144 J-145	2821.00 2821.00	2836.28 2836.27	15.30 15.20
170.00	J-145 J-146	2821.00 2820.00	2836.27	15.20
172.00	J-140 J-147	2821.00	2836.20	15.20
173.00	J-148	2821.00	2836.20	15.20
174.00	J-149	2817.00	2836.21	19.20
175.00	J-150	2812.00	2836.20	24.20
176.00		2817.00	2836.23	19.20
	J-151		2836.21	19.20
177.00				30.00
177.00 178.00	J-152	2817.00	2836.02	
178.00	J-152 J-153		2836.02 2836.02	
	J-152	2817.00 2806.00	2836.02 2836.02 2836.00	33.00 31.90
178.00 179.00	J-152 J-153 J-154	2817.00 2806.00 2803.00	2836.02	33.00
178.00 179.00 180.00	J-152 J-153 J-154 J-155	2817.00 2806.00 2803.00 2804.00	2836.02 2836.00	33.00 31.90
178.00 179.00 180.00 181.00	J-152 J-153 J-154 J-155 J-156	2817.00 2806.00 2803.00 2804.00 2805.00	2836.02 2836.00 2835.99	33.00 31.90 30.90
178.00 179.00 180.00 181.00 182.00	J-152 J-153 J-154 J-156 J-156 J-157	2817.00 2806.00 2803.00 2804.00 2805.00 2791.00	2836.02 2836.00 2835.99 2802.90	33.00 31.90 30.90 11.90
178.00 179.00 180.00 181.00 182.00 183.00	J-152 J-153 J-154 J-155 J-156 J-157 J-158	2817.00 2806.00 2803.00 2804.00 2805.00 2791.00 2783.00	2836.02 2836.00 2835.99 2802.90 2802.86	33.00 31.90 30.90 11.90 19.80
178.00 179.00 180.00 181.00 182.00 183.00 184.00	J-152 J-153 J-154 J-155 J-156 J-157 J-158 J-158 J-159	2817.00 2806.00 2803.00 2804.00 2805.00 2791.00 2783.00 2782.00	2836.02 2836.00 2835.99 2802.90 2802.86 2802.87	33.00 31.90 30.90 11.90 19.80 20.80

FUENTE: Elaboración Propia

TABLA 47

Diámetros y velocidades

		RESULTADOS DIA	METROS Y VELO	CIDADES		
ength (Scaled) (m)	Stop Node	Start Node	Diameter (in)	Hazen-Williams C	Material	Velocity (m/s
57.74	J-1	R-1	1.50	150.00	PVC	1.34
171.54	J-4	J-1	1.00	150.00	PVC	0.14
31.57	J-6	J-4	1.00	150.00	PVC	0.10
72.74	J-8	J-7	1.00	150.00	PVC	0.08
20.56 42.10	J-11 J-13	J-1 J-11	1.50 1.50	150.00 150.00	PVC PVC	1.26 1.24
75.08	J-13	J-13	0.80	150.00	PVC	0.19
11.70	J-15	J-14	0.80	150.00	PVC	0.15
40.07	J-20	J-13	1.50	150.00	PVC	1.18
33.87	J-22	J-21	1.50	150.00	PVC	1.16
58.22	J-24	J-22	1.50	150.00	PVC	1.14
52.27	J-25	J-24	1.50	150.00	PVC	1.13
9.31	J-27	J-25	1.50	150.00	PVC	1.11
21.40	J-29	J-27	1.50	150.00	PVC	1.10
11.99	J-31	J-29	1.50	150.00	PVC	1.08
33.07	J-32	J-31	0.80	150.00	PVC	0.09
70.85	J-33	J-32	0.80	150.00	PVC	0.06
33.26	J-36	J-31	1.50	150.00	PVC PVC	1.04
23.86 15.19	J-37 J-40	J-36 J-38	0.80	150.00 150.00	PVC	0.34 0.25
19.27	J-42	J-40	0.80	150.00	PVC	0.25
17.89	J-44	J-42	0.80	150.00	PVC	0.12
13.71	J-46	J-44	0.80	150.00	PVC	0.08
61.41	J-50	J-36	1.50	150.00	PVC	0.94
89.72	J-51	J-50	0.80	150.00	PVC	0.12
148.11	J-55	J-50	1.00	150.00	PVC	2.02
31.02	J-57	J-55	1.00	150.00	PVC	1.98
17.50	J-59	J-57	1.00	150.00	PVC	1.94
63.90	J-61	J-59	1.00	150.00	PVC	1.90
66.82	J-62	J-61	1.00	150.00	PVC	1.88
12.94	J-65	J-62	1.00	150.00	PVC	1.82
45.66	J-67	J-65	1.00	150.00	PVC	1.78
44.20	J-68	J-67	0.80	150.00 150.00	PVC	0.09
100.50	J-72	J-71 J-72	0.80		PVC PVC	0.15 0.12
40.89	J-73			150.00		
49.40	J-77	J-71	1.00	150.00	PVC	1.58
15.82 8.10	J-79 J-81	J-77 J-79	1.00	150.00 150.00	PVC PVC	1.54 1.50
33.37	J-83	J-81	1.00	150.00	PVC	1.46
35.77	J-85	J-83	1.00	150.00	PVC	1.42
58.48	J-86	J-85	1.00	150.00	PVC	0.24
107.24	J-88	J-86	1.00	150.00	PVC	0.20
4.85	J-90	J-88	1.00	150.00	PVC	0.18
14.76	J-92	J-90	1.00	150.00	PVC	0.14
10.61 59.00	J-93 J-97	J-92 J-92	0.80	150.00 150.00	PVC PVC	0.12 0.06
48.37	J-102	J-100	1.00	150.00	PVC	1.12
35.38	J-105	J-102	1.00	150.00	PVC	1.07
29.43	J-107	J-105	1.00	150.00	PVC	1.03
33.48	J-108	J-107	0.80	150.00	PVC	0.49
14.64	J-110	J-108	0.80	150.00	PVC	0.46
30.60	J-112	J-110	0.80	150.00	PVC	0.40
13.27 12.74	J-114 J-116	J-112 J-114	0.80	150.00 150.00	PVC	0.37 0.31
9.31	J-118	J-116	0.80	150.00	PVC	0.25
59.36	J-119	J-118	0.80	150.00	PVC	0.22
3.62	J-121	J-119	0.80	150.00	PVC	0.15
36.72	J-126	J-107	1.00	150.00	PVC	0.69
21.52	J-128	J-126	1.00	150.00	PVC	0.65
50.26	J-130	J-128	1.00	150.00	PVC	0.61
13.57 48.61	J-132 J-136	J-130 J-132	1.00 1.00	150.00 150.00	PVC	0.57 0.49
29.18	J-130 J-140	J-132 J-138	1.00	150.00	PVC	0.49
8.40	J-142	J-140	1.00	150.00	PVC	0.37
4.88	J-144	J-142	1.00	150.00	PVC	0.36
4.99	J-146	J-144	1.00	150.00	PVC	0.32
33.24	J-147	J-146	0.80	150.00	PVC	0.12
10.56 36.27	J-151 J-153	J-148 J-151	1.00	150.00	PVC PVC	0.22
5.88	J-155	J-151 J-153	0.80	150.00 150.00	PVC	0.28 0.22
38.05	J-155 J-154	J-153 J-153	0.80	150.00	PVC	0.03
37.93	J-159	J-157	0.80	150.00	PVC	0.09
22.67	J-149	J-147	0.80	150.00	PVC	0.06
24.38	J-150	J-149	0.80	150.00	PVC	0.03
47.23	J-133	J-132	0.80	150.00	PVC	0.09
15.90	J-134	J-133	0.80	150.00	PVC	0.03
34.90 24.93	PRV-1 J-7	J-6 PRV-1	1.00 1.00	150.00 150.00	PVC PVC	0.08
12.30	PRV-2	J-15	0.80	150.00	PVC	0.09
29.18	J-17	PRV-2	0.80	150.00	PVC	0.09
30.74	PRV-3	J-20	1.50	150.00	PVC	1.17
15.51	J-21	PRV-3	1.50	150.00	PVC	1.17
3.29	PRV-4	J-37	0.80	150.00	PVC	0.31
33.76	J-38	PRV-4	0.80	150.00	PVC	0.31
33.49 58.87	PRV-5 J-71	J-87 PRV-5	1.00	150.00 150.00	PVC PVC	1.70 1.70
120.57	J-/1 PRV-6	J-85	1.00 1.00	150.00	PVC	1.70
32.14	J-100	9RV-6	1.00	150.00	PVC	1.17
7.88	PRV-7	J-121	0.80	150.00	PVC	0.09
71.95	J-123	PRV-7	0.80	150.00	PVC	0.09
2.75	PRV-8	J-136	1.00	150.00	PVC	0.45
33.32	J-138	PRV-8	1.00	150.00	PVC	0.45
3.78	PRV-9	J-155	0.80	150.00	PVC	0.15
52.62	J-157	PRV-9	0.80	150.00	PVC	0.15
2.76	PRV-10	J-93	0.80	150.00 150.00	PVC PVC	0.09
95.31	J-94	PRV-10	0.80			

Diseño del volumen del reservorio

1.- AMBITO GEOGRAFICO DEL PROYECTO

Sierra.

2.- PERIODOS DE DISEÑO

20 años.

3.- POBLACION DE DISEÑO

R.M. Nº 192-2018-VIVIENDA

Método aritmético: Pd = Pi *(1+r*t/100)

Población inicial (Pi):

Número de viviendas

Densidad Poblacional (según Padrón de Beneficiarios)

Población inicial (actual)

	70	
	2.10	
	147	
•		

Tasa de crecimiento poblacional anual (r):

Período de diseño (t):

0.00
20

TASA DE CRECIMIENTO DE LA POBLACION DISTRITAL RURAL				
AMBITO	2007	2017	TASA CRECIM	
SOROCHUCO	9,113	7,352	-1.93%	

Fuente: Censo Nacional de Población y Vivienda 2007 y 2017. INEL

Población de diseño (Pd): 147 hab

4.- DOTACION

a) Vivienda

R.M. Nº 192-2018-VIVIENDA

Ambito: Sierra, con arrastre hidráulico:

80	l/h/d
80	MINO

b) Instituciones Educativas:

Educación primaria e inferior (sin residencia) Educación secundaria y superior (sin residencia) 20 It/alumno/dia 25 It/alumno/dia

alumnos alumnos alumnos

alumnos alumnos

COCHAPAMPA	Inicial	11
	Primaria	14
	TOTAL	25

Secundaria	
 TOTAL	0

Fuente: ESCALE MINEDU, Pob. Escolar año 2018

5.- CAUDAL PROMEDIO (Qp)

a) Población: Qp = Pob.* Dot./86,400

b) Instituciones Educativas: Qp alum = Pob.* Dot/86,400 Qptotal =

	0.138	l/s
	0.008	l/s
ı	0.14	l/s

6.- CAUDAL MAXIMO DIARIO (Qmd)

R.M. Nº 192-2018-VIVIENDA

Qmd = 1.30 * Qp

0.180	W.
0.180	IJ:

oĸ

QANA = 0.44 l/s QANA > Qmd

7.- CAUDAL MAXIMO HORARIO (Qmh)

R.M. N° 192-2018-VIVIENDA Qmh = 2.0 * Qp

0.28 I/s

8.- VOLUMEN DE ALMACENAMIENTO

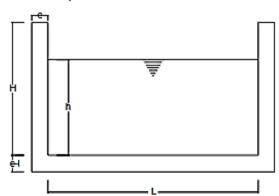
R.M. N° 192-2018-VIVIENDA V = 25%Qp

3.02	m3

9.- VOLUMEN DE ALMACENAMIENTO ADOPTADO

5.00 m3

7.72


10.- TIEMPO DE LLENADO DEL RESERVORIO


11.- DIMENSIONAMIENTO DE RESERVORIO

Capacidad Requerida Longitud (L) Ancho (A) Altura del Líquido (h) Borde Libre (BL)

Altura Total del Reservorio (H) Volumen de líquido Total

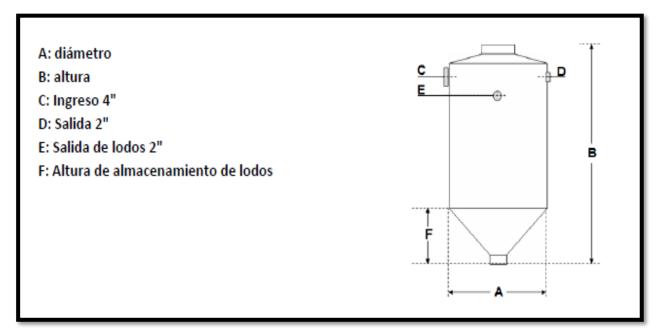
5.00
2.1
2.1
1.23
0.45
1.68
5

horas

NOTA: Para la localidad de Cochapampa se proyecta la construccion de un reservorio de 5.00 m3.

Diseño de la zanja de percolación Tanque Séptico

Cálculo para verificar el volumen del tanque séptico mejorado


VIVIENDAS		1	
Región		Sierra	l
Periodo de retención		2	dias
Dotacion		80	I/hab.d
Densidad		2.1	hab/viv
Consumo total		168	I/dia
Solo inodoro + lavadero multiuso		340	I/dia
Considerando que se baje la palanca 5 veces por cada integrante de la familia y un volumen de tanque de 4.8 lt ademas un uso en el lavado de ropa y cocina de 220 l(100 lt en lavado de ropa y 120 en cocina)			_
% de contribución al desague		202%	
Caudal de Aporte Unitario de AR	Qa=D*Cd	161.9047619	I/hab.d
Periodo de Retención	Pr=1.5-0.3*log(P*Qa)	17.77	horas
Volumen requerido de Sedimentación	Vs=10^-3(P*Qa)*Pr	0.25	m³
Volumen de Digestión y Almacenamiento de Lodos	VI=70*10^-3*P*N	0.15	m³
Volumen Requerido de tanque séptico mejorado		0.40	m³
Capacidad de Tanque Septico Mejorado seleccionado		600-750	I

DATOS TANQUE SEPTICO MEJORADO

Temperatura Promedio		30.0	°C
Tiempo de Remocion de Lodos	N	1	vez / año
Altura Total de Tanque Septico Mejorado	В	1.65	m
Diametro	Α	0.9	m
Volumen de Cono		0.19	m³
Area de Tanque Septico Mejorado	Ar	0.64	m²

FIGURA 5

Características del tanque séptico

FUENTE: Elaboracion Propia

TABLA 48

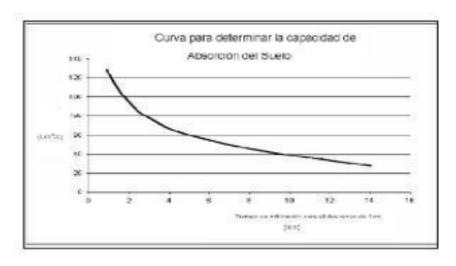
Verificación de marcas

DIMENSIONES (METROS)						
Capacidad	А	В	С	D	E	F
600 I.	0.90	1.65	0.25	0.35	0.48	0.32
1,300 l.	1.20	1.97	0.25	0.35	0.48	0.45
3,000 l.	2.00	2.15	0.25	0.40	0.62	0.73
7,000 l.	2.42	2.65	0.35	0.45	0.77	1.16

Zanjas de percolación

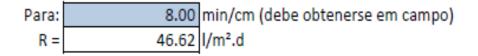
Considerando que las zanjas de percolación reciben todas las aguas residuales de la vivienda se tiene:

Región: Sierra


1 Gasto de Agua residual generado por la cantidad de habitantes

	1 Vivienda	5 Viviendas	
N° DE HAB/VIV =	5	25	
consumo	80	80	I/hab.d
Q (I/d) =	400	2000	
Porcentaje contribución:	80%	80%	
Contribución desague (I/d)	320	1600	

Coeficiente de ingreso 2.1


FIGURA 5

Curva de absorción

FUENTE: Elaboración Propia

Del Gráfico y con la tasa de infiltración conocida de los test de percolación realizados en el terreno

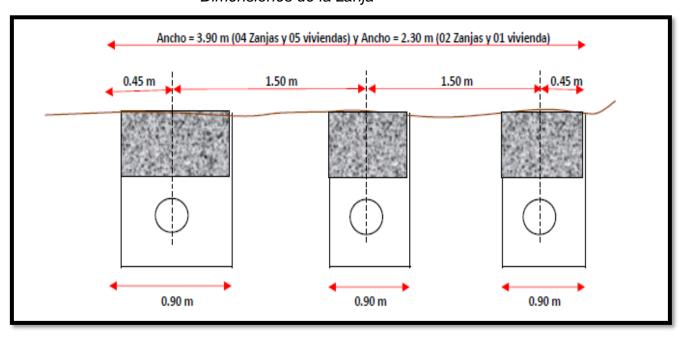
Area de absorción requerida

	1 Vivienda		5 Viviendas	
A=		Q/F	₹	
A=	6.86		34.32	m²

Longitud de Zanjas

Ancho de la zanja = Longitud requerida = N° zanjas = L/cada zanja=

1 Vivienda	5 Viviendas	
0.80	0.90	m
8.58	38.14	m
2	4	
4.29	9.53	Ī


Según la Norma IS 020 del RNE, Ancho: 0.45 m - 0.90 m

Area de terreno Requerido

	1 Vivienda	5 Viviendas	
Ar=	Ancho*L/ca	m²	
Ar=	9.87	37.18	m²

FIGURA 6

Dimensiones de la zanja

FUENTE: Elaboración Propia

Según la Norma IS 020 del RNE, la profundidad de zanja mínima es de 0.60 m, procurando tener una separación mínima entre el fondo de la zanja y el nivel freático de 2m.

TABLA 49

Aforo de fuentes de agua

TIPO DE FUENTE	Ladera	
CONDICION	Mal estado	
DENOMINACION	La Campanilla	
UBICACIÓN		
Lugar	La Campanilla	
Comunidad	La Ocsha	AUBERCONDUCTION POR OR O
Distrito	Sorochuco	AUMEN CONDUCTION
Provincia	Celendin	
Departamento	Cajamarca	
COORDENADAS		-1010000000
Norte	9231695	
Este	802703	+ +
ALTITUD	3206	TALLY COMP.
METODO DE AFORO	Volumétrico	VALV. COMP. CANASTILIA DE PVC D.
Nº DE TUB. DE INGRESO A LA	1"	
CAPTACIÓN	1	

ENSAYO Nº	VOLUMEN (It)	TIEMPO (seg)	CAUDAL (It/seg)	CAUDAL PROMEDIO (It/seg)	CAUDAL DE PRODUCCIÓN DE LA FUENTE (lt/seg)	
	4	79	0.050			
Tub. de ingreso 1	4	77	0.051	0.05		
	4	78	0.051			
	4	52	0.076		1	
Tub. de ingreso 2	4	49	0.081	0.078	0.214	
	4	51	0.079			
	4	46	0.086		1	
Tub. de ingreso 3	4	45	0.088	0.086		
	4	46	0.086			
OBSERVACIONES : Captacion de Ladera en mal estado y tuberias deterioradas.						

FUENTE: Elaboración Propia

4.5.2. ESTUDIO HIDROLOGICO

El objetivo del estudio, es proporcionar los elementos de juicio hidrológicos necesarios, para la toma de decisiones para el mejor aprovechamiento de los recursos hídricos de la fuente de agua "Campanilla", el cual abastecerá al caserío Cochapampa, por contar con el suficiente caudal para abastecer a la población de esta localidad.

El Manantial Campanilla, se ubica con coordenadas UTM 802704 m Este y 9231699 m Norte, a una altura de 3204 m.s.n.m.

El agua potable es aquella que al consumirla no daña el organismo del ser humano ni daña los materiales a ser usados en la construcción del sistema. Los requerimientos básicos para que el agua sea potable, son:

- Estar libre de organismos patógenos causantes de enfermedades.
- No contener compuestos que tengan un efecto adverso, agudo o crónico sobre la salud humana.
- Ser aceptablemente clara (por ejemplo: baja turbidez, poco color, etc.).
- Que no contenga compuestos que causen sabor y olor desagradables.
- Que no cause corrosión o incrustaciones en el sistema de abastecimiento de agua, y que no manche la ropa lavada con ella.
- No salina.

En cada país existen reglamentos en los que se consideran los límites de tolerancia en los requisitos que debe satisfacer una fuente. Con la finalidad de conocer la calidad de agua de la fuente que se pretende utilizar se deben realizar los análisis físico, químico y bacteriológico.

La opinión de la población sobre la calidad de agua que se consume en los caseríos, es desfavorable, los cuales en su mayoría manifiestan que las enfermedades que más se presentan en esta zona es producto de la mala calidad del agua que se consume.

Las enfermedades más comunes que se presentan en el caserío son las diarreicas y respiratorias agudas.

Parte de la precipitación en la cuenca se infiltra en el suelo hasta la zona de saturación, formando así las aguas subterráneas. La explotación de éstas dependerá de las características hidrológicas y de la formación geológica del acuífero.

La captación de aguas superficiales se realizará a través de manantiales con captaciones de Ladera y concentrado así la localidad de Cochapampa contará con una fuente de abastecimiento de agua potable del manantial de nombre "Campanilla".

Se tomaron muestras para sus respectivos ensayos determinando la calidad de ellas mediante análisis físico, químico y análisis bacteriológico del agua realizado en el Laboratorio Regional del Agua acreditado por el organismo peruano de Acreditación INACAL-DA con registro N° LE-084

Se ha realizado los aforos en la captación denominada campanilla, dichos aforos se efectuaron en temporada crítica de rendimientos que corresponde a los meses de estiaje y lluvias, con la finalidad de conocer los caudales mínimos y máximos. El valor del caudal mínimo que se ha registrado es mayor que el consumo máximo diario (Qmd) y cubre la demanda de agua de la población futura.

Es necesario medir la cantidad de agua de la fuente, para saber la cantidad de población para la que puede alcanzar. El aforo es la operación de medición del volumen de agua en un tiempo determinado. Esto es, el caudal que pasa por una sección de un curso de agua. El valor del caudal mínimo debe ser mayor que el consumo máximo diario con la finalidad de cubrir la demanda de agua de la población futura. Lo ideal sería que los aforos se efectúen en las temporadas críticas de los meses de estiaje (los meses secos) y de lluvias, para conocer caudales mínimos y máximos.

Existen varios métodos para determinar el caudal de agua y los más utilizados en los proyectos en zonas rurales son los métodos volumétricos y de velocidad - área.

El primero es utilizado para calcular caudales hasta con un máximo de 10 lts./seg. y el segundo para caudales mayores a 10 lts./seg.

Para nuestro caso utilizamos el método volumétrico, el método consiste en tomar el tiempo que demora en llenarse un recipiente de volumen conocido. Posteriormente se divide el volumen en litros entre el tiempo promedio en segundos, obteniéndose el caudal en lts. /seg.

El método requiere de:

- Depósito (balde) de volumen conocido (10 y 4L) en el cual se colecta el agua.
- Cronómetro para medir el tiempo de llenado del depósito.
- Repetir 3 veces el procedimiento y promediar para asegurar mayor exactitud.

El procedimiento de cálculo consiste en dividir el volumen de agua recogido en el depósito por el tiempo (en segundos) que demoró en llenarse. El resultado expresa el caudal medido en litros por segundo.

$$Caudal\left(Q\right) = \frac{Volumen\ del\ Balde(lts)}{Tiempo\ que\ demoro\ en\ llenarse\ (seg)} = lps$$

Los manantiales aforados en el mes de agosto presentan un caudal de 0.214 l/s, la población manifiesta que el caudales en épocas de lluvia se incrementa en un 30%. En el cuadro siguiente se muestran el manantial, el nombre de la fuente y su respectiva ubicación con coordenadas.

TABLA 50 *Aforo de manantial campanilla*

CUADRO DE CAPTACIONES							
CASERIO	MANANTIAL	CONDICION	COORDENADAS AFOROS CONDICION				
			ESTE	NORTE	M.S.N.M	CAUDAL	METODO
Cochapampa	Campanilla	Mal Estado	802704	9231699	3204	0.214	Volumétrico

Presentamos los caudales durante los doce meses del año en el siguiente cuadro.

TABLA 51

Oferta de agua del manantial durante el año

	OFERTA DE AGUA DURANTE EL AÑO (LPS).
Abril	0.2782
Mayo	0.2782
Junio	0.214
Julio	0.214
Agosto	0.214
Septiembre	0.214
Octubre	0.214
Noviembre	0.214
Diciembre	0.214
Enero	0.2782
Febrero	0.2782
Marzo	0.2782
Abril	0.2782

FUENTE: Elaboración Propia

TABLA 52

Consumo promedio diario anual para cada comunidad.

CASERIO	POBLACIÓN FUTURA (Hab)	DOTACIÓN (l/hab/día)	NO PROMEDIO RIO (L/S)
Cochapampa	147	80	0.14
Total		80	0.14

El consumo máximo diario se define como el día de máximo consumo de una serie de registros observados durante los 365 días del año; mientras que el consumo máximo horario, se define como la hora de máximo consumo del día de máximo consumo.

Para el consumo máximo diario (Qmd) se considerará entre el 150% y 200% del consumo promedio diario anual (Qm).

Los coeficientes recomendados y más utilizados son del 130% para el consumo máximo diario (Qmd) y del 200%, para el consumo máximo horario (Qmh).

TABLA 53

Consumo máximo diario para cada comunidad

CASERIO	CONSUMO PROMEDIO DIARIO (L/S) Qm	CONSUMO MAXIMO DIARIO (L/S) 1.3 X Qm	CONSUMO MAXIMO HORARIO(L/S) 2.0 X Qm
Cochapampa	0.14	0.18	0.28
Total	0.14	0.18	0.28

4.5.3. DESCRIPCION TECNICA DE LOS SISTEMAS

A. Sistema de agua potable

Captación tipo C – 1:

Se proyecta la Construcción de 01 captación tipo C-1, el cual será de concreto armado f'c=210kg/cm2, según detalles del plano respectivo, la captación tendrá una tapa sanitaria metálica, estará pintada, se proyecta la construcción de cerco perimétrico con malla olímpica.

TABLA 54

Captación Proyectada

		UBICA	UBICACIÓN		CAUDAL	
N°	NOMBRE	ESTE	NORTE	CAUDAL DE AFORO	POR EL ALA.	QMD
1	La Campanilla	802703	9231695	0.214	0.44	0.18

FUENTE: Elaboración Propia

Línea de conducción

La Línea de conducción para este caserío, será tubería PVC NTP 339.002 DN 1", la cual tiene una longitud total de 179.40 ml.

Reservorio rectangular apoyado

Se proyecta la construcción de 01 Reservorio rectangular, de 05 m³ de capacidad, de concreto armado f'c=210kg/cm2, con dimensiones internas de 2.10 m x 2.10 m x 1.68 m, esta estructura estará protegida por un cerco perimétrico de malla olímpica, los detalles se aprecian en los planos respectivos, esta estructura se proyecta en las siguientes coordenadas UTM E=802761.788; N=9231860.657.

Como sistema de cloración se instalará un tanque de 600 litros de capacidad que estará protegido con una estructura de malla olímpica.

Red de distribución de agua potable

Se plantea la construcción de la red de distribución 5943.97 m, con TUBERÍA PVC:

 SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC NTP 339.002 DN 1 1/2"= 498.21 M.

- SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC NTP 339.002 DN 1"= 1705.85 M.
- SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC NTP 339.002 DN 3/4"= 1462.4 M.
- SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC NTP 339.002 DN 1/2"=
 2277.51 M

El cual hará su recorrido hasta el punto para la conexión domiciliaria.

Válvulas de purga

Se proyecta la construcción de 04 Válvulas de purga ubicados en los puntos muertos de la red de distribución, esta estructura será de concreto armado. Esta estructura irá debidamente pintada.

TABLA 55 Válvulas de purga

N°	TRAMO	COTA	ESTE	NORTE
VP-01	RED DE DISTRIBUCIÓN	2821	803706.48	9232677.46
VP-02	RED DE DISTRIBUCIÓN	2784	803763.01	9232922.92
VP-03	RED DE DISTRIBUCIÓN	2822	803631.61	9233145.33
VP-04	RED DE DISTRIBUCIÓN	2898	803234.1	9233167.7

Fuente: Elaboración Propia

Conexiones domiciliarias de agua potable

Se proyecta la instalación de un total de 72 conexiones domiciliarias de ½".

Las instalaciones constarán de caja prefabricada fc= 140 kg/cm2 de 0.50 x 0.30 x0.35 m. y marco y tapa termoplástica de 0.20 x 0.30 m, estarán ubicadas lo más cerca a cada una de las viviendas. El detalle de la conexión domiciliaria se aprecia en el plano

Lavadero multiusos

Se construirán 70 lavaderos Multiusos ubicados lo más cercano a la vivienda en, esta estructura será de concreto armado F´c = 175 Kg/cm², tal como se muestran en los planos

Válvulas de control

Se construirán 02 Válvulas de control ubicados en las intersecciones de la red de distribución, esta estructura será de concreto armado. Esta estructura irá debidamente pintada.

TABLA 56

Válvulas de control

N°	TRAMO	COTA	ESTE	NORTE	
VC-01	RED DE DISTRIBUCIÓN	3029	802986.77	9232211.34	
VC-02	RED DE DISTRIBUCIÓN	2921	803240.52	9232834.57	

Fuente: Elaboración Propia

<u>Cámara rompe presión Tipo – 7</u>

Se construirán 10 cámaras rompe presión tipo 7 ubicados en la red de distribución, esta estructura será de concreto armado F´c = 175 Kg/cm², según el detalle indicado en el plano respectivo.

TABLA 57Cámaras rompe presión T – 7

N°	TRAMO	COTA	ESTE	NORTE
CRP -01	RED DE DISTRIBUCIÓN	3396	802837.29	9232137.08
CRP -02	RED DE DISTRIBUCIÓN	3095	802934.78	9231956.32
CRP -03	RED DE DISTRIBUCIÓN	3082	802900.84	9231992.35
CRP -04	RED DE DISTRIBUCIÓN	3026	803008.71	9232210.33
CRP -05	RED DE DISTRIBUCIÓN	2972	803198.37	9232636.93
CRP -06	RED DE DISTRIBUCIÓN	2887	803354.77	9232873.99
CRP -07	RED DE DISTRIBUCIÓN	2830	803611.25	9232779.66
CRP -08	RED DE DISTRIBUCIÓN	2837	803587.86	9233004.03
CRP -09	RED DE DISTRIBUCIÓN	2803	803704.2	9232929.77
CRP -10	RED DE DISTRIBUCIÓN	2908	803354.77	9232873.99

Fuente: Elaboración Propia

Cámara rompe presión Tipo 6

Se construirán 01 cámara rompe presión tipo 6 ubicados en la línea de conducción, esta estructura será de concreto armado F´c = 175 Kg/cm², según el detalle indicado en el plano

TABLA 58

Cámaras rompe presión T – 6

N°	TRAMO	COTA	ESTE	NORTE	
CRP -01	LÍNEA DE CONDUCCIÓN	3172	802737.71	9231779.51	

Fuente: Elaboración Propia

B. UNIDADES BASICAS DE SANEAMIENTO

Construcción de ambientes sanitarios con arrastre hidráulico

Teniendo en cuenta el análisis de los criterios de evaluación de la normatividad vigente, como características del centro poblado, se ha seleccionado la disposición de excretas mediante Unidad Básica de Saneamiento (UBS) con arrastre hidráulico.

Además, considerando las vías de acceso al centro poblado y las canteras existentes más cercanas se ha visto por conveniente que el material de las casetas sea de ladrillo.

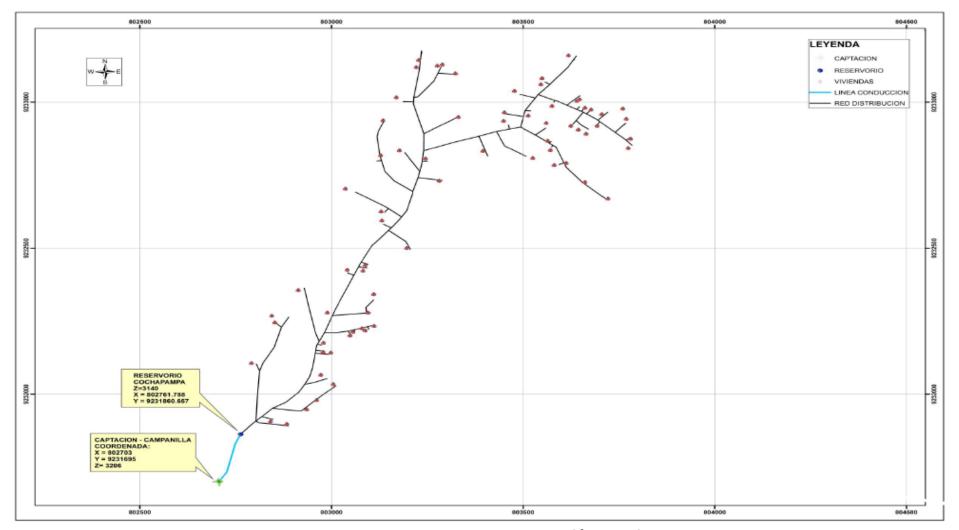
En las viviendas se construirán un total de 70 módulos sanitarios con Biodigestores.

Caseta de ladrillo

La caseta es una infraestructura construida en ladrillo, la misma que cuenta con un inodoro, un lavatorio y una ducha, y cuyas características son las siguientes:

- Las dimensiones internas son de 1,60 m x 1,60 m, y su altura interior de 2,15 m.
- El material para la construcción de la caseta será de material noble con cimientos de concreto corrido C:H 1:10+30% PG, el sobrecimiento de concreto armado C:H 1:10+30% PM. Asimismo, contará con columnas de concreto armado f'c=175 kg/cm2 de 0,125 x 0,15m con tarrajeo frotachado e=1,5cm.

- Las paredes son de albañilería con ladrillo sólido artesanal y en la parte interior esta tarrajeado; el tarrajeo en la zona de la ducha y el lavatorio es pulido e impermeabilizado.
- La puerta de ingreso es de 0,75 x 2,00 m.
- En la parte frontal se ubica una ventana de policarbonato.
- En uno de los lados de la caseta se ubica el lavadero multiusos con su respectiva vereda de protección de 1,00 m de ancho.
- Las veredas que protegen la caseta son de 0,30 m de ancho, a excepción de la vereda donde se ubica el lavadero multiusos indicado en el párrafo anterior.
- La cobertura consta de una estructura de madera tornillo con correas de 2"x1,5" y 2"x3", sobre la cual se colocará planchas de calaminas galvanizadas onduladas de 0,30 mm de espesor a fin de garantizar la durabilidad ante las condiciones climáticas. La cobertura se encuentra inclinada con una pendiente de 14% para evacuar las aguas de lluvia que se presentan en la zona.


TABLA 59

Cuadro de Brechas.

	Población del Ámbito de Influencia								
	147 habitantes								
	Agua				Alcantarillado y otras formas de disposición sanitarias de excretas				
Centro Poblado/ Localidad	% Cobertura (con acceso)	Con acceso	Brecha Cobertura	Por atender con Pl	Brecha Calidad de agua	% Cobertura (con acceso)	Con acceso	Brecha Cobertura	Por atender con PI
COCHAPAMPA	65.28%	Conexiones en Buen Estado + CMA * Dp1 = 0+ 45.71*2.10 = 96	CNA * Dp = 24.28 *2.10 = 51	CMA*DP +CNA*DP = 0+147 = 147	-viviendas rurales con cloro residual menor al limite Permisible (0.5 MGL/L	0.00%	DSE en Buen Estado + CMDSE * Dp = 0+0*2.10 = 0	CNDSE* Dp = 70 *2.10 = 147	CMDSE*DP +CNDSE*DP = 0+147 = 147
TOTAL	65.28%	96	51	147	70	0.00%	0	147	147

FIGURA 7

Croquis del sistema de agua potable

V. DISCUSION DE RESULTADOS

- La topografía presenta pendientes de 3.9% a 33%, su suelo es accidentado, ofrece una serie de cerros pequeños y lomas de poca altura, planicies y pampas más o menos extensas. Cochapampa está situada en la región naturales: quechua (2300-3500 msnm) con accidentes geográficos pues éstas fluctúan entre los 2860-3100 msnm. El terreno de la zona presenta una topografía accidentada, se aprecian declives accidentados sus rasantes superficiales; se observa un suelo del tipo Grava limosa y arcillosa
- La localidad Cochapampa, cuenta 70 viviendas y 02 instituciones sociales y públicas, estas viviendas son en su mayoría de construcción de tapial, adobe, con techos de teja y muy escasos con material noble.
- Para todos los componentes, las normas generales para proyectos de abastecimiento de agua potable en el medio rural del Ministerio de Vivienda Construcción y Saneamiento recomiendan un período de diseño de 20 años.
- estadística e informática I.N.E.I donde data que la tasa de crecimiento para el ámbito del distrito de Sorochuco es de -1.93%, por lo que para los cálculos de población futura se adoptara un factor r=0 según RM-192-2018 VIVIENDA, donde indica si el valor es negativo se adoptara una población futura similar a la actual (r=0).

- De acuerdo a La norma técnica de diseño: opciones tecnológicas, para sistemas de saneamiento en ámbito rural De la RM-192-2018-VIVIENDA, establece que para poblaciones rurales la dotación mínima debe ser 80 l/hab./día. Según esta dotación se calcula los caudales de diseño.
- De los ensayos del test de percolación que se realizaron, se elige el resultado mas desfavorable, de acuerdo a ello, podemos decir que el terreno presenta una permeabilidad media

RESUMEN			
N° DE ENSAYO	INFILTRACIÓN (min/cm)		
01	7.89		
02	7.94		
03	7.92		
INFILTRACION FINAL	7.94		

CONCLUSIONES

- La Línea de conducción para este caserío, será tubería PVC NTP 339.002 DN
 1", la cual tiene una longitud total de 179.40 ml.
- Se plantea la construcción de la red de distribución 5943.97 m, con TUBERÍA
 PVC:

SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC NTP 339.002 DN 1 1/2"= 498.21 M.

SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC NTP 339.002 DN 1"= 1705.85 M.

SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC NTP 339.002 DN 3/4"= 1462.4 M.

SUMINISTRO E INSTALACIÓN DE TUBERÍA PVC NTP 339.002 DN 1/2"= 2277.51 M

Teniendo en cuenta el análisis de los criterios de evaluación de la normatividad vigente, como características del centro poblado, se ha seleccionado la disposición de excretas mediante Unidad Básica de Saneamiento (UBS) con arrastre hidráulico. Además, considerando las vías de acceso al centro poblado y las canteras existentes más cercanas se ha visto por conveniente que el material de las casetas sea de ladrillo. En las viviendas se construirán un total de 70 módulos sanitarios con Biodigestores.

- El Estudio consta de una red de alineamientos que forman una Poligonal Abierta de cuarto orden de precisión, que ofrece un procedimiento exacto para el enlace de datos de control de posición, al sistema UNIVERSAL TRANSVERSAL MERCATOR (U.T.M.), el cual rige los sistemas de coordenadas, en la mayoría de los países del mundo, incluido el Perú. Se realizó el reconocimiento del terreno para ver sus características más resaltantes y la posterior ubicación de los vértices de dicha Poligonal. Posteriormente se realizó la medición de ángulos Horizontales, Verticales y Distancias, para lo cual utilizamos la Estación Total.
- Se realizaron seis (06) calicatas o pozo a cielo abierto de profundidad variable entre 1.20 m. a 2.00 m. De las muestras procedentes de la excavación de las calicatas, se realizó ensayos correspondientes para determinar su clasificación (granulometría y Límites de Atterberg), humedad natural, todos estos estudios fueron realizados de acuerdo a normas técnicas

RECOMENDACIONES

- En la topografía es necesario ampliar la toma de datos en toda el área de proyecto para que así sea más exacto en el análisis de los datos, en los planos detallar todo lo existente en campo, usar equipos que tengan certificación y que estén en buen estado.
- Se recomienda que se usen otros tipos de equipos sofisticados de mayor tecnología como es el levantamiento topográfico con Gps diferencial y apoyado de un dron especial, se recomienda la recolección de fotografías en las zonas de estudio
- Se recomienda que en el estudio de suelos se tenga un cuidado con el transporte del material a estudiar ya que puede influenciar el contenido de humedad, para así tener datos exactos y poder ser más precisos en el desarrollo del estudio de suelos. Un criterio muy importante es tomar muestras en puntos exactos del estudio, realizar mayores cantidades de calicatas en las zonas donde se hará la planta de tratamiento puesto a que estas están expuestas a cargas admisibles mayores.
- Se recomienda realizar constante mantenimiento en sus redes para reducir el nivel de pérdidas por operación y pérdidas invisibles, para que esto vaya de la mano con una óptima sectorización y evitar distorsiones en el balance volumétrico mensual.

- Los criterios y parámetros serán adquiridos del Reglamento Nacional de Edificaciones (RNE), cualquier parámetro a manejar de normas secundarias deberán ser justificadas.
- Se recomienda que el diagnóstico situacional se ejecute de forma detallada en aspectos de infraestructura y operatividad, anotando las deficiencias en calidad y cobertura, antigüedad, operación, mantenimiento, entre otros, ya que de ello depende el cierre de brechas existentes con el nuevo diseño realizado, asimismo, se debe basar en normas técnicas del Ministerio de Vivienda, Construcción y Saneamiento.

REFERENCIAS BIBLIOGRAFICAS

- Apaza, P. (2015). "Diseño de un sistema de sostenible de agua potable y saneamiento básico". Tesis (Ingeniero Agrícola). Puno, Perú, Universidad Nacional del Altiplano, Facultad de Ingeniería Agrícola
- Diaz, C., García, D. & Solis, C. (2000) "Abastecimiento de agua potable para pequeñas comunidades rurales por medio de un sistema de Colección de Lluvia-Planta potabilizadora. Ciencia ergo-sum, Revista Científica Multidisciplinaria de Prospectiva [en línea]. 7 Julio 2000. Disponible en:

 http://www.redalyc.org/articulo.oa?id=10401806 ISSN: 1405-0269
- Majao, B. & Moran, C. (2021) "Diseño de alcantarillado sanitario del Sector
 Buenos Aires, Cantón Playas, provincia del Guayas".
- Medina, J. (2017) "Diseño del mejoramiento y ampliación de los sistemas de
 agua potable y saneamiento del caserío de Plazapampa El Ángulo, Distrito de
 Salpo, Provincia de Otuzco, Departamento de La Libertad. Tesis. (Título
 profesional en Ingeniería Civil). Trujillo: Universidad César Vallejo.
- EDIFICACIONES (DS N° 011-2006-VIVIENDA). LIMA. Obtenido de https://www3.vivienda.gob.pe/Direcciones/Documentos/RNE_Actualizado_Solo_Saneamiento.pdf

MINISTERIO DE VIVIENDA, C. Y. (2006). REGLAMENTO NACIONAL DE

Ministerio de Vivienda, Construcción y Saneamiento. (2006). Reglamento
 Nacional de Edificaciones. Lima. Obtenido de

https://ww3.vivienda.gob.pe/Direcciones/Documentos/RNE_Actualizado_Solo_San eamiento.pdf

- Montes, C., Bohorquez, J., Borda, S., & Saldarriaga, J. (2016). Criteria of minimum shear stress vs. minimum velocity for selfcleaning sewer pipes design. Procedia Engineering, 69-75.
- ONU. (2015). 17 Objetivos para Transformar Nuestro Mundo. Obtenido de https://www.un.org/sustainabledevelopment/es/
- Organización Panamericana de la Salud. (2004). GUÍA DE DISEÑO PARA

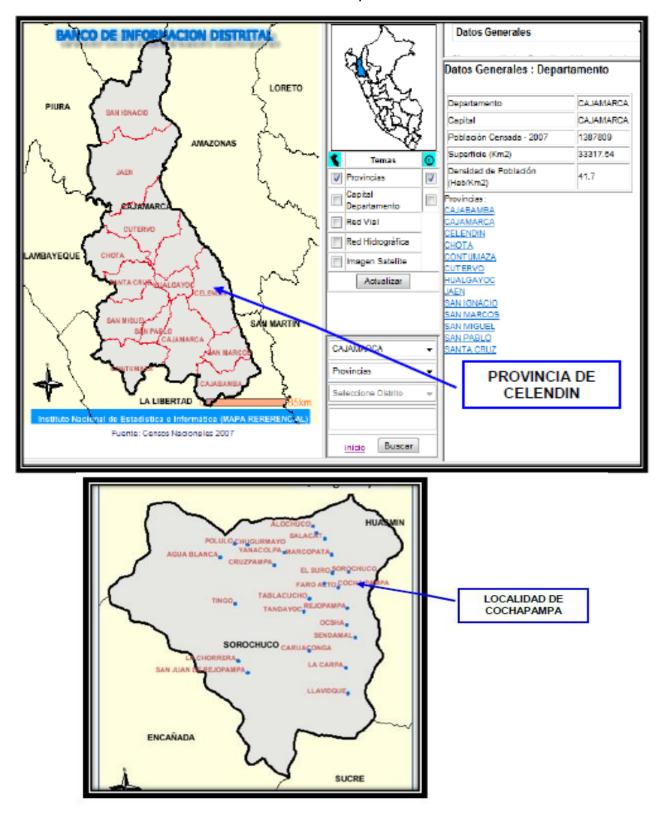
LÍNEAS DE CONDUCCIÓN E IMPULSIÓN DE SISTEMAS DE

ABASTECIMIENTO DE AGUA RURAL. Centro Panamericano de

Ingeniería Sanitaria y Ciencias del Ambiente, Lima. Obtenido de

https://sswm.info/sites/default/files/reference_attachments/TIXE%202004.%20Dise

%C3%B1o%20I%C3%ADneas%20de%20conducci%C3%B3n%20e%20impulsi%C
3%B3n.pdf


- Sanz, N., Gómez, M., Meneses, A. & otros. (2017). Diseño de la ampliación de la red de agua potable y sistema de alcantarillado para la zona alta del Barrio Alto Jordán Comuna 18. [Tesis para optar el título de Ingeniero Civil]. Pontificia Universidad Javeriana, Cali.
- Saavedra, G. (2018). "Propuesta Tecnica para el Mejoramiento y Ampliación del

Servicio de Agua Potable en los centros poblados rurales de Culqui y Culqui Alto en el Dsitrito de Paimas, Provincia de Ayabaca – Piura.

ANEXOS

FIGURA 8

Ubicación de la zona de estudio en la provincia de Celendín

FIGURA 9

Certificado de los instrumentos de topografía

	RAFÍA						
Cliente: Instrumento: Fecha de Calibra Proxima Calibra		TOPODESIA MINING S.A.C ESTACION TOTAL 01/01/2019 01/12/2019		•	DNI / RUC: Marca: Modelo Serie:	2060299053 LEICA TS06 POWE 1350030	
		ESPECIFICACION	IES TÉCNICAS SEGÚN FABR			•	
Precisión del EDI	N .		Compensador centralizado o	de cuadruple e	eje:		15-
0m - 500m : >500m :		2mm + 2ppm	dos ejes: dos ejes:				nación Hz
×soum : Abertura libre del	objetivo:	3mm+ 2ppm 40mm	Resolución nivel electrónico:			Indice verdtal 5"	
Telescopio image		30x	Plomada Optica:				-
Lectura minima		1"/5"	Precisión 1,5mm a 1.5m				
Precisión angular	<u> </u>	5"	Diametro			2,5mm a	1.5m dealtura

			JUSTE DEL EQUIPO				
ERTADO MEI	er e ner eoriibo	DANIEL DE CONTROL	MECÁNICA DEL EG	Numo.		SASE NIN/EL A	NTE
Color Limpleza	BLE DEL EQUIPO OK OK cánico OK	PANEL DE CONTROL Leyenda de teclado OK Condición física OK Funciones de teclado OK		QUIPO OK OK	Nivel esférico Tomilios nive		OK OK
Color Limpleza	OK OK	Leyenda de teclado OK Condición física OK Funciones de teclado OK	Rotación horizontal C Rotación EDM (OK OK	Nivel esférico Tomilios nive	o Häntes Ica/mecänica (OK OK
Color Limpleza	OK OK cánico OK	Leyenda de teclado OK Condición física OK Funciones de teclado OK	Rotación horizontal C Rotación EDM (OK OK TRÔN DE ME	Nivel esférico Tomilios nive Condición fis EDIDAS ANGUI	o Häntes Ica/mecänica (OK OK OK 180* 00' 00
Color Limpleza Estado fisico/med Puntero laser Piomada laser	OK OK OK OK OK OK OK OK	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK	Rotación horizontal C Rotación EDM (PAT Angulo Hz Angulo V	TRÔN DE ME	Nivel esférico Tomilios nive Condición fis EDIDAS ANGUI 00' 00'	Dantes Hantes Hantes Hantes Hantes Hantes Hantes Hantes Hantes Hantes	OK OK OK 180° 00° 00 270° 00° 00
Color Limpleza Estado fisico/med	OK OK OK OK OK OK OK OK	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK	Rotación horizontal C Rotación EDM (PAT Angulo Hz	TRÔN DE ME	Nivel esférico Tomilios nive Condición fis EDIDAS ANGUI	Santes Santes Sica/mecánica (LARES	OK OK OK 180* 00' 00
Color Limpieza Estado fisicolmed Puntero laser Piomada laser Perpendiculari	OK OK carrico OK REVISI OK OK OK dad OK	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK	Rotación horizontal C Rotación EDM (PAT Angulo Hz Angulo V Angulo de elevación	TRÔN DE ME 00° 90° 60°	Nivel esférico Tomilios nive Condición fis EDIDAS ANGUI '00' 00' '00' 00'	Alantes Ica/mecánica (LARES Rot-Der Rot-Der Depresión	180° 00' 00 270° 00' 00
Color Limpleza Estado fisicolmed Puntero laser Piomada laser Perpendiculari	OK DATE OF OK DATE OF COK D	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK	Rotación horizontal C Rotación EDM (PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO	TRON DE ME OU	Nivel esférico Tomilios nive Condición fis EDIDAS ANGUI 00' 00'	ARLES ROI-Der ROI-Der Depresión	0K OK OK 270° 00' 00 120° 00' 00
Color Limpleza Estado fisico/med Puntero laser Piomada laser Perpendiculari VA Angulo Hz	OK ALORES ANGULAR 00° 00° 00°	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK RES INICIALES LEIDOS EN EL II	Rotación horizontal C Rotación EDM PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO 180° 00' 02"	TRÔN DE ME 00° 90° 60° EL INSTR	Nivel esférico Tomilios nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' UMENTO SE E DO, AJUSTADO EFERENCIA EL	ARIES Rot-Der Rot-Der Depresión ENCUENTRA F D Y VERIFICA ESTÁNDAR I	180° 00′ 00 270° 00′ 00 120° 00′ 00 REVISADO, DO, SE TOMO
Color Limpleza Estado fisico/med Puntero laser Plomada laser Perpendiculari V/ Angulo Hz Angulo V	OK O	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK RES INICIALES LEIDOS EN EL II Rot-Der Rot	Rotación horizontal C Rotación EDM PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO 180° 00° 02° 269° 59′ 59′	TRÔN DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123	Nivel esferico Tomilios nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' 00' 00' UMENTO SE E DO, AJUSTAD 3 "OPTICS AND	ARIES Rot-Der Rot-D	180° 00′ 00 270° 00′ 00 120° 00′ 00 REVISADO, DO. S.E. TOMO STRUMENT*,
Color Limpleza Estado fisico/med Puntero laser Plomada laser Perpendiculari V/A Angulo Hz Angulo V Muñones V	OK O	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK RES INICIALES LEIDOS EN EL II Rot-Der Rot Rot	Rotación horizontal C Rotación EDM PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO 180° 00° 02° 269° 59′ 59′ 300° 00° 01°	TRON DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123 POR LA C	Nivel esférico Tomillos nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' UMENTO SE E DO, AJUSTADO EFERENCIA EL SUAL SE GARA	ARES Rot-Der Rot-Der Depresion ENCUENTRA F O Y VERIFICAL ESTANDAR I O OPTICAL IN:	0K 0K 0K 180° 00' 00' 270° 00' 00' 120° 00' 00' REVISADO, DO. SE TOM DE LA NORM STRUMENT',
Color Limpieza Estado fisicolmed Puntero laser Piomada laser Perpendiculari	OK O	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK RES INICIALES LEIDOS EN EL II Rot-Der Rot	Rotación horizontal C Rotación EDM PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO 180° 00° 02° 269° 59′ 59′	TRON DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123 POR LA C	Nivel esferico Tomilios nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' 00' 00' UMENTO SE E DO, AJUSTAD 3 "OPTICS AND	ARES Rot-Der Rot-Der Depresion ENCUENTRA F O Y VERIFICAL ESTANDAR I O OPTICAL IN:	180° 00′ 00′ 00′ 120° 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 0
Color Limpleza Estado fisico/med Puntero laser Plomada laser Perpendiculari V/A Angulo Hz Angulo V Muñones V	OK O	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK RES INICIALES LEIDOS EN EL II Rot-Der Rot Rot	Rotación horizontal C Rotación EDM PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO 180° 00' 02" 269° 59' 59' 300° 00' 01" 179° 59' 58"	TRON DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123 POR LA C	Nivel esferico Tomilios nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' UMENTO SE E DO, AJUSTADO EFERENCIA EL 3 "OPTICS ANE CUAL SE GARA FUNCIONAMIE	ARES Rot-Der Rot-Der Depresion ENCUENTRA F O Y VERIFICAL ESTANDAR I O OPTICAL IN:	180° 00′ 00′ 00′ 120° 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 0
Color Limpleza Estado fisico/med Puntero laser Plomada laser Perpendiculari V/A Angulo Hz Angulo V Muñones V	OK O	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK RES INICIALES LEIDOS EN EL II Rot-Der Rot Rot Rot	Rotación horizontal C Rotación EDM PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO 180° 00' 02" 269° 59' 59' 300° 00' 01" 179° 59' 58"	TRON DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123 POR LA C	Nivel esferico Tomilios nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' UMENTO SE E DO, AJUSTADO EFERENCIA EL 3 "OPTICS ANE CUAL SE GARA FUNCIONAMIE	ARES Rot-Der Rot-Der Depresión ENCUENTRA F D Y VERIFICA ESTÁNDAR I D OPTICAL IN:	180° 00' 00' 00' 120° 00' 00' 00' 00' 00' 00' 00' 00' 00' 0
Color Limpleza Estado fisico/med Puntero laser Plomada laser Perpendiculari V/A Angulo Hz Angulo V Muflones V Muflones Hz	OK O	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK RES INICIALES LEIDOS EN EL II Rot-Der Rot Rot Rot Rot Rot O° 0° 0° 0° 0°	Rotación horizontal C Rotación EDM (PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO 180° 00' 02" 269° 59' 59' 300° 00' 01" 179° 59' 58"	TRON DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123 POR LA C	Nivel esferico Tomilios nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' UMENTO SE E DO, AJUSTADO EFERENCIA EL 3 "OPTICS AND UAL SE GARA FUNCIONAMIE	ARES Rot-Der Rot-Der Depresión ENCUENTRA F D Y VERIFICA ESTÁNDAR I D OPTICAL IN: NITIZA SU CO ENTO.	180° 00' 00' 00' 120° 00' 00' 00' 00' 00' 00' 00' 00' 00' 0
Color Limpleza Estado fisico/med Puntero laser Piomada laser Perpendiculari V/ Angulo Hz Angulo V Muñones V Muñones Hz Angulo Hz	OK O	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK RES INICIALES LEIDOS EN EL II Rot-Der Rot Rot Rot Rot Or 0	Rotación horizontal C Rotación EDM (PAT Anguio Hz Anguio V Anguio de elevación NSTRUMENTO 180° 00° 02° 269° 59′ 59° 300° 00° 01° 179° 59′ 58° R R 10° 02°	TRON DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123 POR LA C	Nivel esferico Tomilios nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' 00' 00' UMENTO SE E DO, AJUSTADO EFERENCIA EL 3 "OPTICS AND CUAL SE GARA FUNCIONAMIE PRECISIO Grados "	ARES Rot-Der Rot-Der Depresión ENCUENTRA F D Y VERIFICA ESTÁNDAR I D OPTICAL INI NITIZA SU CO ENTO. ON ANGULAS Minutos '	180° 00' 00' 00' 120° 00' 00' 00' 00' 00' 00' 00' 00' 00' 0
Color Limpleza Estado físico/med Puntero laser Piomada laser Perpendiculari V/ Angulo Hz Angulo V Muñones V Muñones Hz Angulo Hz Vertical V Muñones V	OK O	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK RES INICIALES LEIDOS EN EL II Rot-Der Rot Rot Rot Rot O° 0 00° 0	Rotación horizontal C Rotación EDM (PAT Anguio Hz Anguio V Anguio de elevación NSTRUMENTO 180° 00° 02° 269° 59′ 59° 300° 00° 01° 179° 59′ 58° R 10° 02° 00° 01°	TRON DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123 POR LA C	Nivel esferico Tomilios nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' UMENTO SE E DO, AJUSTADO EFERENCIA EL 3 "OPTICS AND UAL SE GARA FUNCIONAMIE PRECISIO Grados " 00"	ARES Rot-Der Rot-Der Depresión ENCUENTRA F D Y VERIFICA ESTÁNDAR I O OPTICAL INI INITIZA SU CO ENTO. ON ANGULAS Minutos' 00'	180° 00' 00' 00' 120° 00' 00' 00' 00' 00' 00' 00' 00' 00' 0
Color Limpleza Estado físico/med Puntero laser Piomada laser Perpendiculari V/ Angulo Hz Angulo V Muñones V Muñones Hz Angulo Hz Vertical V Muñones V	OK O	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK RES INICIALES LEIDOS EN EL II Rot-Der Rot Rot Rot Rot O° 0 00° 0	Rotación horizontal C Rotación EDM PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO 180° 00' 02" 269° 59' 59' 59' 300° 00' 01" 179° 59' 58' R O' 02"	TRON DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123 POR LA C	Nivel esferico Tomilios nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' UMENTO SE E DO, AJUSTADO EFERENCIA EL 3 "OPTICS AND UAL SE GARA FUNCIONAMIE PRECISIO Grados " 00"	ARES Rot-Der Rot-Der Depresión ENCUENTRA F D Y VERIFICA ESTÁNDAR I D OPTICAL INI NITIZA SU CO ENTO. ON ANGULAS Minutos' 00'	180° 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 00′ 0
Color Limpleza Estado fisicolmed Puntero laser Piomada laser Perpendiculari V/A Angulo Hz Angulo V Muñones V Muñones Hz Angulo Hz Vertical V Muñones Hz V Muñones Hz	CK OK	Leyenda de teclado OK Condición física OK Funciones de teclado OK ION Doble centro OK Error vertical OK Error horizontal OK Res INICIALES LEIDOS EN EL II Rot	Rotación horizontal Rotación EDM PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO 180° 00° 02° 269° 59′ 59° 300° 00° 01° 179° 59′ 58° R 10° 02° 10° 01° 10° 02° 18TRUMENTO	TRON DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123 POR LA C	Nivel esférico Tomillos nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' UMENTO SE E DO, AJUSTADO EFERENCIA ANG UI 3 "OPTICS ANG UI UIAL SE GARA FUNCIONAMIE PRECISIO 00" 00"	ARES Rot-Der Rot-Der Depresion ENCUENTRA F D Y VERIFICA ESTANDAR I O PTICAL IN ANTIZA SU CO ENTO. ON ANGULAR MINUTOS OO' ANGULAR FI	180° 00' 00' 00' 120° 00' 00' 00' 00' 00' 00' 00' 00' 00' 0
Color Limpleza Estado fisicolmed Puntero laser Piomada laser Perpendiculari VA Angulo Hz Angulo V Muñones V Muñones Hz Vertical V Muñones Hz Vertical V Muñones Hz VA Angulo Hz Vertical V Muñones Hz	CK OK	Leyenda de teclado OK Condición física OK Funciones de teclado OK IÓN Doble centro OK Error vertical OK Error horizontal OK Res INICIALES LEIDOS EN EL II Rot-Der Rot	Rotación horizontal Rotación EDM PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO 180° 00° 02° 269° 59′ 59° 300° 00° 01° 179° 59′ 58° R 0° 02° 0° 01° 0° 01° 0° 01° 180° 00° 01°	TRON DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123 POR LA C	Nivel esférico Tomillos nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' 00' 00' 00' 00' 00' 00' 00' 00' 00'	ANGULAR F	180° 00' 00' 00' 120° 00' 00' 00' 00' 00' 00' 00' 00' 00' 0
Color Limpleza Estado fisico/med Puntero laser Piomada laser Perpendiculari V/A Angulo Hz Angulo V Muflones V Muflones Hz Vertical V Muflones Hz Muflones Hz	CK OK	Leyenda de teclado OK Condición física OK Funciones de teclado OK ION Doble centro OK Error vertical OK Error horizontal OK Res INICIALES LEIDOS EN EL II Rot	Rotación horizontal Rotación EDM PAT Angulo Hz Angulo V Angulo de elevación NSTRUMENTO 180° 00° 02° 269° 59′ 59° 300° 00° 01° 179° 59′ 58° R 10° 02° 10° 01° 10° 02° 18TRUMENTO	TRON DE ME 00° 90° 60° EL INSTR CALIBRAI COMO RE ISO 17123 POR LA C	Nivel esférico Tomillos nive Condición fis EDIDAS ANGUI 00' 00' 00' 00' UMENTO SE E DO, AJUSTADO EFERENCIA ANG UI 3 "OPTICS ANG UI UIAL SE GARA FUNCIONAMIE PRECISIO 00" 00"	ARES Rot-Der Rot-Der Depresion ENCUENTRA F D Y VERIFICA ESTANDAR I O PTICAL IN ANTIZA SU CO ENTO. ON ANGULAR MINUTOS OO' ANGULAR FI	180° 00' 00' 00' 120° 00' 00' 00' 00' 00' 00' 00' 00' 00' 0

FUENTE: Elaboración Propia

FIGURA 9

Certificado de los instrumentos de topografía

Nº Certificado: 000 121

REVISIÓN DE DISTANCIÓMETRO

Distancia inicial (m)	Distancia patrón (m)	Error a Corregir (mm)	Distancia Final (m)	Desviación Final
60,369	60,370	+1	60,369	-1 mm
120,011	120,012	+1	120,011	-1 mm
200,936	200,937	+1	200,936	-1 mm

CONDICIONES AMBIENTALES DE LABORATORIO

Temperatura: 23°C con variación +/- 1°C

Presión atmosférica: 749 mmHg con variación de +/- 0.5 mmHg

Humedad relativa: 67%

OBSERVACIONES: Por medio de la presente certificamos que el producto descrito ha sido verificado y cumple con las específicaciones establecidas por el fabricante detallado en el manual de usuario. Los resultados del presente documento, son validos únicamente para el equipo calibrado y se refleren al momento y condiciones ambientales en que fueron ejecutadas las mediciones.

TRAZABILIDAD DE LA VERIFICACION

Equipo utilizado como patrón:

Set de Colimadores, Marca SANZHUN F420-3; Serie N° JD151731 Teodolito Mecanico WILD-T1A, Serie N°55453. Nivel Automático Leica NAKC, Serie N°568218. Micrómetro de piacas paralelas Sokkia OMS, con Serie N° 7001660.

Colimador SANZHUN F420-3; con Telescopios de 32x cuyo retículo esta enfocado al infinito, el grosor de sus trazos esta dentro de 1°, consta de 03 tubos cada uno con doble retículo en piataforma fija, con distancia de enfoque infinito, distancia focal de 550mm, apertura efectiva de 55mm y 3° de campo de visión, es revisado periodicamente con un Teodolito WILD-T1A precisión 1°, con método de lectura directa-inversa y refrendado con un Nivel Automático Leica Modelo NAK2 de 32x con Micrometro de Placas Paraleias de Precisión 0.5mm nivelación doble de 1km.

NOTA:

- 1.- ANTES DE SALIR DE OFICINA ESTE EQUIPO HA SIDO REVISADO, SE ENCUENTRA EN PERFECTO ESTADO Y FUNCIONAMIENTO.
- 2 EL CLIENTE ES RESPONSABLE DEL TRANSPORTE DEL INSTRUMENTO Y USO DEL CERTIFICADO.
- 3.- AYD TOPOGRAFIA SAC NO SE RESPONSABILIZA DE LOS PERJUICIOS QUE PUEDA OCASIONAR EL USO INADECUADO DEL INSTRUMENTO VERIFICADO

AYD TOPOGRAFIA SA.C

4.- AYD TOPOGRAFIA SAC NO SE RESPONSABILIZA POR POSIBLES DAÑOS CAUSADOS POR MALA MANIPULACION Y/O TRANSPORTE INAPROPIADO DEL INSTRUMENTO. EL CLIENTE ES RESPONSABLE DEL CUIDADO Y USO ADECUADO DEL EQUIPO.

FUENTE: Elaboración Propia

RECORRIDO DE LA

ZONA DE ESTUDIO

PLANOS