UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO DE INGENIERIA INDUSTRIAL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO INDUSTRIAL

Mejoras en el proceso de pilado de arroz para incrementar la productividad de la empresa Indupersa SAC Trujillo 2023

Línea de Investigación: Diseño, manufactura y mecanización Sub línea de Investigación: Gestión empresarial

Autor(es):

Perez Linares, Angelo Wilfredo

Ugás Montoya, Andrea Carolina

Jurado Evaluador:

Presidente : Müller Solón, José Antonio

Secretario : De La Rosa Anhuamán, Filiberto

Vocal : Caballero García, Ana María

Asesor:


Urcia Cruz, Manuel

Código Orcid: http://org/000000182860597

TRUJILLO – PERU 2023

Fecha de sustentación: 2023/12/20

Mejoras en el proceso de pilado de arroz para incrementar la productividad de la empresa Indupersa SAC Trujillo 2023

Declaración de Originalidad

Yo, Manuel Urcia Cruz, docente del Programa de Estudio de Ingeniería Industrial, de la Universidad Privada Antenor Orrego, asesor de la tesis de investigación titulada: "Mejoras en el proceso de pilado de arroz para incrementar la productividad de la empresa Indupersa SAC Trujillo 2023.", autores Perez Linares Angelo Wilfredo y Ugás Montoya Andrea Carolina, dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud de 10 %. Así lo consigna el reporte de similitud emitido por el software Turnitin el 04 de diciembre del 2023
- He revisado con detalle dicho reporte y la tesis y no se advierte indicios de plagio.
- Las citas a otros autores y sus respectivas referencias cumplen con las normas establecidas por la Universidad.

Lugar y fecha: Trujillo, 18 de diciembre del 2023

Urcia Cruz Manuel DNI: 18208167

ORCID http://org/000000182860597

Perez Lindres Angelo Wilfredo

DNI: 70343366

Ugás Montoya Andrea Carolina

DNI: 705486**7**9

UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE INGENIERÍA

PROGRAMA DE ESTUDIO DE INGENIERIA INDUSTRIAL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO INDUSTRIAL

Mejoras en el proceso de pilado de arroz para incrementar la productividad de la empresa Indupersa SAC Trujillo 2023

APROBADO EN CONTENIDO Y ESTILO POR:

Müller Solón, José Antonio N° CIP: 41187 Presidente

De La Rosa Anhuamán, Filiberto N° CIP: 90991 Secretario

Caballero García, Ana María N° CIP: 39288 Vocal

aballeros

Urcia Cruz, Manuel N° CIP: 27703 Asesor de Tesis **DEDICATORIA**

A mi amada abuela,

Por ser quien desde mis primeros pasos en la educación sembró en mí la semilla del esfuerzo y la pasión por aprender. Tus palabras de aliento y sabiduría han guiado cada paso de este camino. Este logro lleva la marca indeleble de tu amor y dedicación.

Angelo Wilfredo Perez Linares

A mi querida madre,

Mi roca inquebrantable a lo largo de estos cinco años de intensa dedicación. Tú has sido mi apoyo emocional, mi ánimo en los momentos difíciles y la fuerza que impulsó mis sueños. Gracias por cada sacrificio, por creer en mí y por ser mi inspiración constante.

Con gratitud y cariño,

Andrea Carolina Ugás Montoya

٧

AGRADECIMIENTOS

En este apartado de gratitud, deseo expresar mi reconocimiento a quienes han sido pilares fundamentales en este viaje maravilloso.

A mis amados padres, cuyo amor incondicional, sacrificio y constante aliento han sido la luz que ha guiado cada paso de mi formación académica. Gracias por su apoyo incondicional, por creer en mí.

A mis queridos hermanos, agradecer su comprensión y paciencia durante los desafíos de estos años de formación. Su respaldo ha sido muy valioso, y cada logro es compartido con ustedes.

Angelo Wilfredo Perez Linares

A mi amada abuela, fuente de sabiduría y ejemplo de dedicación, gracias por sembrar en mí las semillas del esfuerzo y la excelencia desde mi más tierna infancia.

A mis respetados docentes, quienes han compartido y proporcionado sus conocimientos y experiencias, agradezco sus orientaciones y correcciones.

Andrea Carolina Ugás Montoya

RESUMEN

El propósito de esta investigación fue aplicar un plan de mantenimiento y control de capacidad para mejorar la productividad en la empresa Indupersa SAC en Trujillo durante el año 2023, ubicada parada rustica Mz. V lote. 117 A.H. Huanchaquito alto (km. 7 carretera huanchaco espaldas del colegio militar) La Libertad, Trujillo, Perú. El diseño utilizado fue preexperimental explicativo. Las técnicas de recolección de datos incluyeron revisiones documentales de cada proceso y análisis de documentos relacionados con la productividad. Los resultados mostraron que la productividad de la mano de obra alcanzó 354.70 sacos de arroz por colaborador, con una eficiencia de equipos del 58.97% y pérdidas diarias de 200.68 kg. Las mejoras implementadas en la productividad y eficiencia operativa tuvieron un impacto económico positivo, destacándose un aumento de la productividad de la materia prima y la mano de obra en un 6.96% y un 15.87% respectivamente. Además, se logró una significativa reducción del 90.77% en la merma. La investigación resultó estadísticamente significativa con un p-valor de 0.00, indicando un aumento promedio en la productividad después de la implementación, aumentando de aproximadamente 362.73 a 405.27 sacos por trabajador. Asimismo, la propuesta demostró ser viable económicamente, con un beneficio costo de 1.51 y una recuperación de capital en 7 meses.

Palabras clave: Plan de mantenimiento, control de capacidad, productividad, eficiencia global de equipos.

ABSTRACT

The purpose of this research was to apply a maintenance and capacity control plan to improve productivity in the company Indupersa SAC in Trujillo during the year 2023, located parada rustica Mz. V lote. 117 A.H. Huanchaquito alto (km. 7 carretera huanchaco behind the military college) La Libertad, Trujillo, Peru. The design used was pre-experimental explanatory. Data collection techniques included documentary reviews of each process and analysis of documents related to productivity. The results showed that labour productivity reached 354.70 bags of rice per worker, with an equipment efficiency of 58.97% and daily losses of 200.68 kg. The improvements implemented in productivity and operational efficiency had a positive economic impact, with raw material and labour productivity increasing by 6.96% and 15.87% respectively. In addition, a significant reduction of 90.77% in shrinkage was achieved. The research was statistically significant with a p-value of 0.00, indicating an average increase in productivity after implementation, increasing from approximately 362.73 to 405.27 bags per worker. The proposal also proved to be economically viable, with a cost benefit of 1.51 and a capital payback of 7 months.

Keywords: Maintenance plan, capacity control, productivity, overall equipment efficiency.

ÍNDICE

DEDIC	ATOR	IA	V
AGRAD	DECIM	IENTOS	vi
RESUN	⁄ΙΕΝ		vii
ABSTR	ACT		viii
I. IN	ΓROD	UCCIÓN	1
1.1.	Probl	ema de investigación	1
1.2.	Desc	ripción del problema	2
1.3.	Form	ulación del problema	3
1.4.	Objet	ivos:	3
1.4	.1. C	Objetivo general	3
1.4	.2. C	Objetivos específicos	3
1.5.	Justif	icación	3
II. MA	RCO	DE REFERENCIA	4
2.1.	Ante	cedentes	4
2.2.	Marc	o Teórico	13
2.3	3.1. ⊢	lerramientas de calidad	13
2.3	3.2. F	Proceso de mejora	14
2.3	3.3. E	ficiencia global de equipo	15
2.3	3.4. C	Control de proceso:	19
2.3	8.5. Ir	ndicadores de calidad o productividad	21
Prod	uctivid	ad laboral	21
A.	Produ	uctividad Efectiva Total de los Equipos	21
2.3	3.6. C	Control estadístico de procesos,	23
2.3.	Marc	o Conceptual	29
2.4.	Hipót	esis	29
2.5.	Varia	bles	30
III. N	(EOD	OLOGÍA	31
3.1.	Tipo	y nivel de investigación	31
3.2.	Pobla	ación y Muestra	31
3.3.	Diser	ío de investigación	31
3.4.	Técn	icas e Instrumentos de investigación	32

3.	.5. Procesamiento y análisis de datos	33
IV.	PRESENTACIÓN DE RESULTADOS	35
	.1. Resultados del objetivo 1: "Realizar un diagnóstico de la situado no relación a la productividad de la empresa Indupersa SAC."	
	.2. Resultados del objetivo 2: "Propuesta de mejora en los proces roductivos <i>en la empresa Indupersa SAC"</i>	
	.3. Resultados del objetivo 3 "Evaluar y determinar el aspecto téc conómico de la mejora de la productividad de la empresa Indupersa	•
4.	.4. Evaluación económica	171
4.	.5. Docimasia de la hipótesis	173
٧.	DISCUSIÓN DE RESULTADOS	175
_	.1. Discusión del resultado del primer objetivo: "Realizar un Diagn nejora actual con relación a la productividad de la empresa Indupers	
_	.2. Discusión del resultado del segundo objetivo: "Aplicar el plan d nantenimiento y control de capacidad en la empresa Indupersa SAC	
as	.3. Discusión del resultado del tercer objetivo: "Evaluar y determin specto técnico y económico de la mejora de la productividad de la endupersa SAC"	empresa
VI.	CONCLUSIONES	183
VII.	RECOMENDACIONES	185
Refe	erencias	186
Ane	exos	189

ÍNDICE DE TABLAS

Tabla 1 Indicadores para obtener el tiempo productivo neto	19
Tabla 3 Operacionalización de las variables	30
Tabla 4 Técnicas e instrumentos de recolección de datos	32
Tabla 3 Métodos de análisis de datos	33
Tabla 5 Máquinas y/o equipos de la empresa	36
Tabla 6 Especificaciones técnicas Maquinas pre limpia Agromay	
Tabla 7 Especificaciones técnicas Maquinas Descascaradora Hongjia	
Tabla 8 E Especificaciones técnicas Pulidora de agua wintonic	37
Nota: se extrajo de la revisión de las máquinas en el mantenimiento. Tabla 9	
Especificaciones técnicas Pulidoras de piedra Zaccaria	37
Tabla 10 Especificaciones técnicas elevadoras chenliangji	38
Tabla 11 Especificaciones técnicas Mesa Paddy Zaccaria	39
Tabla 12 Especificaciones técnicas Clasificadoras wintonic	39
Tabla 13 Especificaciones técnicas selectora GROTECH	40
Tabla 14 Especificaciones técnicas Balanza	40
Tabla 15 Producción en 2022	
Tabla 16 Cantidad y costos por Hilo en 2022	44
Tabla 17 Cantidad y costos por sacos en 2022	
Tabla 18 Maquinas empleadas para producción	45
Tabla 19 Costos de mantenimiento:	46
Tabla 20 Historial de fallos	48
Tabla 21 Costos de mantenimiento inicial	50
Tabla 22 Análisis de Pareto para la selección de máquinas críticas	51
Tabla 23 Remuneraciones mensuales	53
Tabla 24 Costo por tiempo de parada al mes	53
Tabla 25 Eficiencia, mermas y pérdidas económicas	54
Tabla 26 Tiempos al año en las máquinas empleadas en la situación actual	59
Tabla 27 Indicadores de TPM en la situación actual	60
Tabla 28 Evaluación de los indicadores en la situación inicial	
Tabla 29 Tiempo de funcionamiento después de la última reparación por máque	uina.
Tabla 30 Simulación del comportamiento de fallo de la Mesa Paddy Zaccaria	67
Tabla 31 Simulación del comportamiento de fallo de la maquina Pre limpia	
Agromay 1	
Tabla 32 Simulación del comportamiento de fallo de la maquina Clasificadora	1.71
Tabla 33 Simulación del comportamiento de fallo de la maquina Pre limpia	
Agromay 1	
Tabla 34 Simulación del comportamiento de fallo de la Selectora GROTECH	75
Tabla 35 Simulación del comportamiento de fallo de la maquina Pre limpia	
Agromay 1	77

Tabla 36	Simulación del comportamiento de fallo de la maquina Pre limpia	
		.79
Tabla 37	Simulación del comportamiento de fallo de la maquina Pre limpia	
		. 81
	Simulación del comportamiento de fallo de la maquina Pre limpia	
		. 83
	Simulación del comportamiento de fallo de la maquina Pre limpia	
		. 85
	Simulación del comportamiento de fallo de la maquina Pre limpia	
		. 87
	Simulación del comportamiento de fallo de la maquina Pre limpia	0.0
		. 89
	Simulación del comportamiento de fallo de la maquina Pre limpia	0.1
		.91
	Simulación del comportamiento de fallo de la maquina Pre limpia	0.0
	Parámetros por tipo de distribución en cada máquina.	
	Actividades de mantenimiento para la máquina Pre limpia Agromay 1.	
	Actividades de mantenimiento para la máquina Pre limpia Agromay 1.	
	Actividades de mantenimiento para la Clasificadora 1	
	Actividades de mantenimiento para la Pulidora de agua	
	Actividades de mantenimiento para la Selectora GROTECH	
	Actividades de mantenimiento para la Elevador 8	
	Actividades de mantenimiento para la Descascaradora Hongjia 1	
	Actividades de mantenimiento para la Elevador 2	
	Actividades de mantenimiento para la máquina Pre limpia Agromay 2.	
	Actividades de mantenimiento para la Elevador 1.	
	Actividades de mantenimiento para la Pulidora de piedra 2	
	'	
	Actividades de mantenimiento para la máquina Pre limpia Agromay 1.	
	Actividades de mantenimiento para la máquina Pre limpia Agromay 1.	
	Cronograma de aplicación del mantenimiento predictivo Tiempo destinado el mantenimiento predictivo	
	Procedimiento de Planeación y Gestión	
	Procedimiento de comunicación con el cliente	
	Procedimiento de compras	
	Procedimiento de subproceso de recepción e inspección de materia	125
		121
•	Procedimiento de subproceso de pre limpia I	
	Procedimiento de subproceso de pre limpia I	
	Procedimiento de subproceso de pre limpia ir	
	Procedimiento de subproceso de descascarado Procedimiento de subproceso de separación de cáscara	
1 abia 09	Procedimiento de subproceso de pulido	141

Tabla 70 Procedimiento de subproceso de abrillantado	
Tabla 71 Procedimiento de subproceso de clasificación	145
Tabla 72 Procedimiento de subproceso de selección	
Tabla 73 Procedimiento de subproceso de envasado	149
Tabla 74 Procedimiento de subproceso de almacenaje de producto termina	do . 151
Tabla 75 Procedimiento de ventas	153
Tabla 76 Procedimiento de mantenimiento de equipos	155
Tabla 77 Procedimiento de Registros	157
Tabla 78 Producción con la mejora	159
Tabla 79 Cantidad y costos con la mejora por Hilo con la propuesta	159
Tabla 80 Cantidad y costos por sacos con la propuesta	
Tabla 81 Fallos y tiempo de parada después de la mejora	
Tabla 82 Costos de mantenimiento con la propuesta	
Tabla 83 Análisis de Pareto para la selección de máquinas críticas	
Tabla 84 Remuneraciones mensuales	
Tabla 85 Eficiencia, mermas y pérdidas económicas	
Tabla 86 Nuevos tiempos en las máquinas después de la propuesta	
Tabla 87 Indicadores de TPM en la situación después de la propuesta	
Tabla 88 Indicadores en la situación después de la propuesta	
Tabla 89 Variación de los indicadores propuestos	170
Tabla 90 Costos con la mejora	
Tabla 91 Flujo de caja	
Tabla 92 Evaluación económica.	172
Tabla 93 Estadística descriptiva de la productividad	
Tabla 94 Comprobación de la hipótesis	174

ÍNDICE DE FIGURAS

Figura 1 Diagrama Causa Efecto1	13
Figura 2 Diagrama de Pareto1	14
Figura 3 Ejemplo de determinar el nivel óptimo2	23
Figura 4 proceso de selección de una carta de control2	25
Figura 5 tipos de variación2	
Figura 6 límites de control con pautas de no aleatoriedad observadas en el gráfico	2
Figura 7 causas especiales que se encuentran en las gráficas de control2	
Figura 8 descontrol de los procesos en las cartas de control	28
Figura 9 Organigrama empresa Indupersa3	35
Figura 10 Análisis de los fallos por cada máquina4	19
Figura 11 Análisis de Pareto para la selección de máquinas críticas5	52
Figura 12 Tiempo de para mensual5	54
Figura 13 Análisis de la capacidad en el desempeño del proceso de pesado en e	ı
mes 15	56
Figura 14 Gráfico de control X – R y prueba de normalidad para el pesado en el	
mes 15	57
Figura 15 Resumen del análisis de la capacidad para el pesado en el mes 15	58
Figura 16 Informe de resultados del análisis de capacidad para el pesado en el	
mes 15	
Figura 17 Identificación del tipo de distribución del comportamiento de fallo de la	
Mesa Paddy Zaccaria	56
Figura 18 Identificación del tipo de distribución del comportamiento de fallo de la	
maquina Pre limpia Agromay 1	58
Figura 19 Identificación del tipo de distribución del comportamiento de fallo de la	7.0
maquina Clasificadora 1	/0
Figura 20 Identificación del tipo de distribución del comportamiento de fallo de la	70
Pulidora de agua	
Figura 21 Identificación del tipo de distribución del comportamiento de fallo de la Selectora GROTECH	
Figura 22 Identificación del tipo de distribución del comportamiento de fallo del	4
Elevador 8	76
Figura 23 Identificación del tipo de distribución del comportamiento de fallo de la	O
Descascaradora Hongjia 1	78
Figura 24 Identificación del tipo de distribución del comportamiento de fallo del	
Elevador 2	30
Figura 25 Identificación del tipo de distribución del comportamiento de fallo de la	-
maquina Pre limpia Agromay 2	32
Figura 26 Identificación del tipo de distribución del comportamiento de fallo del	
Elevador 1	34

•	Identificación del tipo de distribución del comportamiento de fallo de la
	e piedra 286 Identificación del tipo de distribución del comportamiento de fallo de la
_	radora Hongjia 288
Elevador 6	Identificación del tipo de distribución del comportamiento de fallo del 590
	Identificación del tipo de distribución del comportamiento de fallo de la92
-	Análisis de la capacidad en el desempeño del proceso de pesado en el103
_	Gráfico de control X – R y prueba de normalidad para el pesado en el104
Figura 34	Resumen del análisis de la capacidad para el pesado en el mes 1 105 Informe de resultados del análisis de capacidad para el pesado en el
Figura 35	Análisis de la capacidad en el desempeño del proceso de pesado en el107
_	Gráfico de control X – R y prueba de normalidad para el pesado en el108
Figura 37	Resumen del análisis de la capacidad para el pesado en el mes 2 109
_	Informe de resultados del análisis de capacidad para el pesado en el109
Figura 39	Análisis de la capacidad en el desempeño del proceso de pesado en el
Figura 40	Gráfico de control X – R y prueba de normalidad para el pesado en el112
Figura 42	Resumen del análisis de la capacidad para el pesado en el mes 3113 Informe de resultados del análisis de capacidad para el pesado en el
Figura 43	Análisis de la capacidad en el desempeño del proceso de pesado en el
Figura 44	Gráfico de control X – R y prueba de normalidad para el pesado en el116
Figura 46	Resumen del análisis de la capacidad para el pesado en el mes 4117 Informe de resultados del análisis de capacidad para el pesado en el
	Informs del Conshibit Simpoly del process para Pasada
•	Informe del Capability Sixpack del proceso para Pesado118 Informe del Capability Sixpack del proceso para Pesado 2
•	Informe del Capability Sixpack del proceso para Pesado 2
_	Informe del Capability Sixpack del proceso para Pesado 3
Figura 51	Comparación de la capacidad Antes/Después para Pesado vs. Pesado
4	
Figura 52	Procedimiento de Planeación y Gestión126

Figura 53	Procedimiento de comunicación con el cliente	128
Figura 54	Procedimiento de compras	130
Figura 55	Procedimiento de subproceso de recepción e inspección de materia	
prima		132
Figura 56	Procedimiento de subproceso de pre limpia I	134
Figura 57	Procedimiento de subproceso de pre limpia II	136
Figura 58	Procedimiento de subproceso de descascarado	138
Figura 59	Procedimiento de subproceso de separación de cáscara	140
Figura 60	Procedimiento de subproceso de pulido	142
Figura 61	Procedimiento de subproceso de abrillantado	144
Figura 62	Procedimiento de subproceso de clasificación	146
	Procedimiento de subproceso de selección	
Figura 64	Procedimiento de subproceso de envasado	150
Figura 65	Procedimiento de subproceso de almacenaje de producto terminado	152
Figura 66	Procedimiento de ventas	154
	Procedimiento de mantenimiento de equipos	
Figura 68	Procedimiento de Registros	158
Figura 69	Análisis de los fallos por cada máquina después de la mejora	161
Figura 70	Análisis de la comparación de la capacidad Antes/Después del pesa	do
		166
-	Comparación de la capacidad	
Figura 72	Interpretación Minitab 18	168

ÍNDICE DE ANEXOS

Anexo 1 Diagrama Causa Efecto	189
Anexo 2 Producción, comercio y consumo mundial de cereales en millones de	
toneladas (Mt) y porcentaje (%) en 2019.	190
Anexo 3 Evolución de la producción mundial de arroz y tendencias futuras en	
millones de toneladas (Mt)	190
Anexo 4 Proceso para industrializar el arroz	191
Anexo 5 Resultados del arroz industrializado	191
Anexo 6 Evolución de la producción de arroz en el Perú 1950-2016	192
Anexo 7 Evolución de las importaciones de arroz	192
Anexo 8 FODA	193
. Anexo 9 Productividad	194
Anexo 10 Entrevista	195
Anexo 11 Hoja para el registro de la eficacia	196
Anexo 12 Hoja para el registro de la eficiencia	197
Anexo 13 Hoja para el registro de la productividad	198
Anexo 14 Porcentaje de quebrados	199
Anexo 15 Formato de variación de la productividad	200
Anexo 16 Identificación de tiempos de para en la producción de arroz por máqu	ina
	201

I. INTRODUCCIÓN

1.1. Problema de investigación

De acuerdo con Méndez (2020) el consumo mundial de arroz representa un 26% de la producción de cereales, seguido del maíz, con relación a consumo, el 19% de la población mundial consume arroz (ver anexo 2). Los países productores que lideran el mercado de producción y comercialización mundial de arroz son China, India e Indonesia ya que representan el 60% de la producción total. A nivel de Latinoamérica. De acuerdo con el informe, existe un progreso tecnológico en América Latina ya que cada año aumenta a razón de 2.7% los rendimientos desde 1980 a 2018 ya que han mejorado el control hídrico y mayor uso de insumos y productos que ayudan a mejorar el rendimiento del arroz. Desde 1961 se mantiene en crecimiento la producción de arroz, que inició con 200 millones de toneladas y se pronostica para 2051 que la producción será de 1200 millones según el Anexo 3

Bernardi (2020) indica que a nivel de Latinoamérica Perú y Colombia tienen una producción que representa un 8% de participación, por otro lado los países como Argentina, Venezuela y Uruguay sólo representan 3.5% de participación cada uno. Por otro lado, también indica que para elevar las producciones de arroz por cada país es necesario que ingresen a un proceso de industrialización del arroz, esto se muestra en el anexo 4, las cuales define los procesos como cosecha de arroz, parbolizado, descascarado, pulido, envasado y comercialización. De acuerdo con el informe, en el anexo 5, se muestra una creciente de producción de arroz industrializados, los cuales se fueron incrementando para el año 2016 con un 35 de producción superior. Esto permite reconocer las principales ventajas de mantener industrializado la producción de arroz, por otro lado, es necesario implementar técnicas modernas para incrementar la productividad sin elevar costos.

A nivel nacional en el Perú según el Mincetur (2018) muestra en el anexo 6 que hubo un crecimiento en la producción de arroz desde 1.5% en rendimiento hasta 3% anual, además, la producción indica que en 1950 apenas se producía 400 kilogramos por hectárea y a la fecha ha incrementado a 8000 kilogramos por cada hectárea empleada, esto permite destacar que las empresas peruanas

están implementando técnicas que permitan mejorar el rendimiento del arroz. Según el anexo 7 indica que desde el 2010 la penetración de importaciones de arroz pilado era de 4.6% y para el 2017 se incrementó a 15.9%.

A Nivel local nos encontramos con la empresa Indupersa SAC la cual se encarga de la Producción y comercialización de arroz en Trujillo y alrededores, la cual tiene problemas de baja productividad ya sea por máquinas en mal estado o exceso en el costo de las reparaciones al igual que las paras productivas, con relación a la mano de obra, estos no conocen al 100% el proceso productivo y les falta interés por seguir las indicaciones de los supervisores. El ambiente de trabajo mantiene un exceso de ruido al pilar, además existe desorden en el área de trabajo ocasionando demoras e insatisfacciones de los colaboradores.

El método que emplean para realizar sus labores es de forma empírica, además no cuentan con manual de funciones, esto permite que exista un descontrol en la producción. La materia prima que se adquiere tiene un elevado porcentaje de quebrados, además falta inspección de la materia prima o evaluación de proveedores que brinden un arroz de calidad (no quebrado). Con respecto a los indicadores de medición no cuentan con un registro histórico ce producción, por lo tanto mantiene insuficientes indicadores de medición de la calidad o producción del arroz. Todo ello conlleva a que la productividad de la empresa sea baja.

1.2. Descripción del problema

Para describir los problemas que presenta la empresa, se detalló en el anexo 1 las principales causas de la baja productividad, por otro lado en el anexo 8 muestra el análisis FODA en las cuales encontramos que existe capacitaciones limitadas a los colaboradores, estos no desarrollan correctamente sus actividades, por otro lado existen muchas calidades de arroz, esto indica que existe un porcentaje de quebrados elevado, además la volatilidad de los precios provoca que lo producido no tenga el rendimiento adecuado. Por estos motivos, es necesario aplicar una mejora de procesos para mejorar la productividad.

1.3. Formulación del problema

¿En qué medida el plan de mejora de la producción incrementará la productividad de la empresa Indupersa SAC Trujillo 2023?

1.4. Objetivos:

1.4.1. Objetivo general

Implementar mejoras en el proceso de pilado de arroz para incrementar
 la productividad de la empresa Indupersa SAC Trujillo 2023

1.4.2. Objetivos específicos

- Realizar un diagnóstico de la situación actual de la productividad de la empresa Indupersa SAC
- Aplicar el plan de mejora en mantenimiento y control de capacidad en la empresa Indupersa SAC
- Evaluar y determinar el aspecto técnico y económico de la mejora de la productividad de la empresa Indupersa SAC

1.5. Justificación

1.5.1. Practica

El trabajo se realiza porque existe la necesidad de incrementar la productividad de la empresa, usando métodos estudiados para la mejora de la producción, ya validados por otras investigaciones para mejorar los indicadores de control de la empresa Indupersa SAC

1.5.2. Teórica

La investigación se justifica teóricamente ya que se buscará demostrar los conocimientos obtenidos con relación a la aplicación de la mejora de la producción por lo que los resultados servirán para la formulación de una propuesta para lograr un beneficio para la empresa en la que se desarrolla y también en las demás empresas que tomen como guía este proyecto.

1.5.3. Metodológica

La presente investigación se justifica en el aspecto metodológico ya que se aplicará los conocimientos adquiridos para la empresa de producción de arroz Indupersa SAC., demostrando y validando que la mejora de la producción influye

positivamente en la productividad de tal manera que este trabajo quedará como material para ser empleado en otras investigaciones o trabajos educativos

1.5.4. Económica

Es importante en un sentido económico puesto que la investigación se enfoca en el incremento de la productividad por lo que generará ahorros en la empresa permitiendo ser más competitiva en el mercado

1.5.5. Social:

Es importante en un aspecto social ya que los colaboradores podrán realizar su labor más eficientemente y además estos podrán ser más productivos con las mejoras que se realicen para mejorar la calidad laboral.

II. MARCO DE REFERENCIA

2.1. Antecedentes

En la investigación de Espinoza y Menéndez (2018) en el enfoque principal era mejorar la gestión de los procesos operativos en la apiladora San José. Este trabajo de investigación fue de naturaleza descriptiva y explicativa, además de ser un estudio de campo en el cual se analizó la situación actual de la organización mediante la observación directa. La población bajo estudio estaba compuesta por los 20 empleados actuales de la empresa, quienes fueron considerados como la muestra. Tanto la técnica como el instrumento de investigación estuvieron directamente relacionados con el trabajo de campo, ya que se logró observar directamente los procesos operativos de la organización. Un instrumento adicional utilizado fue el cuestionario, el cual se aplicó mediante encuestas para identificar la principal deficiencia en el proceso de trabajo, siendo el escaso control en la compra de arroz en cascara el aspecto más destacado con un 40% de las deficiencias totales identificadas. Para abordar estos problemas, se propuso un nuevo diagrama de flujo aplicado al apilado de arroz y se definió un diagrama organizacional, ya que la empresa no contaba con uno. Con la implementación de estas propuestas de mejora, se logró aumentar la productividad en un 19.77%. Este estudio aporta significativamente al campo al aplicar la mejora continua en empresas productoras de arroz, y puede servir como un proceso metodológico para la implementación de un proceso de mejora continua en empresas similares.

En la investigación de Salas (2018) en México la cual presentó como objetivo de analizar el impacto del ciclo de Deming para mejorar el proceso de enseñanza-aprendizaje sobre el método de Gauss-Jordán por medio de la tecnología. La investigación es realizada bajo una metodología de tipo cuantitativa, experimental con un pre y post análisis. Los instrumentos utilizados fueron la del Histograma, la del Diagrama de Causa-efecto (Ishikawa) y el método Gauss-Jordán por medio de la aplicación web MsSchool y el servicio de nube Desmos esto permitió que se pueda desarrollar las habilidades matemáticas por medio de figuras, que permiten la facilidad del aprendizaje. Se pudo obtener que dentro de los alumnos se vio una mejora continua en las calificaciones de los alumnos, denotando que un 66.66% de los presentes logró obtener una calificación Inferior e igual a la de 8; sin embargo, gran parte de los presentes se ubican dentro de un rango de 7.9 a 7.0. Las diversas etapas del ciclo Deming permiten lograr transformar las diversas actividades de enseñanza - aprendizaje por medio de la incorporación de estrategias tecnológicas que complementan las estrategias y conocimiento en los alumnos de la presente institución. La presente investigación aporta con la aplicación del diagrama de Ishikawa, histogramas que serán empleadas en la presente investigación.

En la investigación de Becerra, Andrade y Díaz (2020) en México, y presentó como objetivo: Analizar los resultados de la aplicación del Ciclo Deming de Mejora Continua en el área de inventarios de una planta de almacenamiento y distribución de gas L.P. en México. La investigación realizada es Experimental, bajo un enfoque cuantitativo. Entre los instrumentos utilizados se implementó la lluvia de ideas, diagrama de Causa-efecto Ishikawa, las hojas de verificación y los diagramas de pareto. Se logró obtener una mejora continua dentro del rendimiento del área de almacenamiento e inventarios en un 3.09% al 2017 y un 4.04% en el 2018. Se puede concluir que la mejora de continua utilizada mantiene un rendimiento significativo según el ciclo Deming en las áreas de inventarios, con capacidad de potenciación; por su adecuada capacidad en otras plantas y bodegas de la misma empresa así como de distintos negocios. El aporte en la presente investigación es que se debe tomar en cuenta las áreas

auxiliares de producción como inventarios para incrementar los porcentajes de mejora.

En la investigación de Catellanos (2018) la cual llamó El ciclo de Deming para mejorar la productividad en los procesos de una empresa textil. La Cual presentó como objetivo: Incrementar la productividad mediante la aplicación de ciclo de Deming en los procesos de la empresa de servicios textiles. Se utilizo el método de investigación científico, el cual pertenece al tipo de investigación aplicada, nivel explicativo y diseño experimental. Teniendo en cuenta que la población de estudio hace referencia a los resultados de producción durante 30 días, siendo mayo el mes antes de la aplicación y agosto el mes después de la aplicación del ciclo de mejora continua. La técnica usada fue la observación de campo, también se utilizaron fuentes primarias como los datos históricos correspondientes al área de procesos. Como instrumento se emplearon fichas técnicas de observación y cuestionarios antes y después del tratamiento del ciclo PHVA; donde se tuvieron en cuenta los registros de tomas de tiempos y control de producción. La investigación nos muestra que la diferencia de productividad entre el antes y después de la aplicación del ciclo PHVA, mejora significativamente en un 44.6%. Con relación al indicador de eficiencia, la variación entre la pre y post aplicación es de 46.71%, mientras que para el indicador eficacia la diferencia es de 35.84%. Con la aplicación del ciclo de mejora continua se logró mejorar la productividad en la empresa textil, incrementando en un 44.6%. La presente investigación aporta con la aplicación de la productividad, eficiencia y eficacia que deben ser calculadas para medir los porcentajes de mejora en aquellos indicadores.

En la investigación de Ramos y Tantaleán (2018) la que nombraron Propuesta de un plan de mejora en el proceso de pilado de arroz, utilizando las herramientas de lean Manufacturing, para incrementar la productividad del área de producción en la molinera San Nicolás S.R.L, LAMBAYEQUE. La Cual presentó como objetivo: Mejorar el proceso de pilado de arroz usando las herramientas lean Manufacturing para el incremento de productividad en la Molinera. El proyecto hace referencia al tipo de investigación aplicada, descriptiva y de diseño no experimental- transversal, debido a que aborda una propuesta de mejora mediante la aplicación de herramientas lean Manufacturing

a todos los procesos del área de producción y porque los datos fueron recogidos en un solo momento, es decir no existe una comparación cuantitativa antes y durante el tratamiento. Se aplico un diagnóstico de la situación actual del área de producción de la empresa molinera, para identificación de factores críticos que afectan prejudicialmente a la productividad. Se realizaron entrevistas a los responsables de dicha área como: el jefe de producción, mantenimiento y operarios. Adoptando las herramientas de la filosofía lean Manufacturing, se abordaron las metodologías 5S, Kaizen y TPM. Se logra identificar un incremento de productividad de 6% para la MATERIA PRIMA, para la MANO DE OBRA se intensifica en un 2%, mientras que para la MAQUINARIA en un 27%. Teniendo en cuenta la Productividad Global Total después de la propuesta, se refleja un incremento del 35%. La investigación determina que por cada sol invertido en las propuestas de mejora, la empresa molinera conseguirá una utilidad adicional de 0.82 soles. La presente investigación aporta con la aplicación de herramientas de Lean Manufacturing para percibir buenos resultados con relación a la productividad.

En la investigación de Noriega (2020) en la cual llamó El ciclo de Deming y su efecto en la productividad en el molino Guadalupe SAC. 2020. La Cual presentó como objetivo: Establecer los resultados de la aplicación del ciclo de mejora continua en la productividad del molino Guadalupe. El estudio abarca un tipo de investigación aplicada con un diseño preexperimental el cual hace referencia al grupo de experimentación donde se ejecutan las observaciones (mediciones) antes y después de la aplicación. Siendo la población igual que la muestra el cual está formada por los procesos de producción del molino. Se efectuó un diagnóstico de la empresa donde se utilizaron las técnicas de entrevista y observación; siendo el instrumento en función la guía de observación para lograr conocer la problemática de la organización. Aplicando el ciclo PHVA con herramientas lean Manufacturing. Siendo los datos validados mediante la estadística descriptiva e inferencial. Para los recursos de mano de obra, materia prima y energía, se logró 0.80 soles de utilidad en promedio semanal; para el cual genera un incremento de productividad del 15%. El tratamiento del ciclo de mejora continua presenta un efecto positivo en la productividad del proceso productivo del molino Guadalupe, haciendo incrementar el índice combinado de

productividad en 15%. La presente investigación aporta con la evaluación económica de la propuesta, la cual servirá para determinar si es viable económicamente realizar la presente investigación y aprovechar sus beneficios.

En la investigación de Paye (2018) llamada Aplicación de Ciclo Deming para mejora de la Productividad en el área de Producción en la empresa Envases y Envolturas S.A. La Cual presentó como objetivo: Aumentar la productividad en el área de producción de la empresa Envases y Envolturas S.A, empleando el sistema del ciclo de mejora continua. Se orienta al tipo de investigación aplicada; y explicativa, debido a que el estudio trata de buscar las causas que generan aquellas situaciones, fenómenos o hechos. Mostrando un diseño del estudio cuasiexperimental. La población se representará por el número total de registros no conformes sobre impresiones y operadores del área de producción durante una etapa de 24 semanas. Siendo la muestra igual periodo que la población. Para la medición de los indicadores se utilizaron: Registros, Base de datos y recolección de datos. Se logro inferir acerca de la productividad, en el área de producción de la empresa de Envases y Envolturas S.A antes de la adaptación del círculo de mejora continua es de 52%, mientras que después de la aplicación es de 71%. A su ves, se determinaron los porcentajes de las dimensiones Eficiencia y Eficacia, mostrando un incremento del 5% y 15% respectivamente en una prueba de pre/post aplicación. Se logra observar un incremento en la productividad del 18.21% al implementar el ciclo PHVA. La presente investigación aporta con la aplicación medición del círculo de la mejora continua para evidenciar el porcentaje de mejora en la empresa, que también se tomará en cuenta para el desarrollo de la presente investigación

En la investigación de Canchari (2018) la cual fue llamada *Aplicación del ciclo de Deming para mejorar la productividad en el área de producción, empresa Concremax S.A. Lurín, 2018.* La Cual presentó como objetivo: Intensificar a través del ciclo PHVA la productividad en el área de producción de la empresa Concremax S.A.. Se asemeja al tipo de investigación aplicada, con un diseño de estudio cuasiexperimental. En relación con la población, esta es equivalente a la producción de concreto, donde la información se genera a través de la ficha de recolección de datos las cuales son medibles diariamente y serán afianzadas semanalmente por el periodo de 16 semanas antes y después de aplicar el ciclo

de mejora continua. En las fichas de recolección de datos se registrará la productividad durante el estudio. Se determinó que el comportamiento de la productividad antes del tratamiento en las últimas 16 semanas nos da un promedio de 46.7%; mientras que el comportamiento de la productividad en el post test nos da un 81.1%. Para el indicador eficiencia se refleja un incremento del 24.8%, y para la eficacia se muestra un incremento del 21.7%. Se obtuvo una mejora de la productividad en el área de producción con un incremento del 34.41%. La presente investigación aporta con el tiempo para lograr la medición de la productividad antes y después tomando 16 semanas periodo para realizar el análisis.

En la investigación de Escobedo y Cruz (2018) llamada Evaluación del Desarrollo y Sostenibilidad del Sistema de Gestión de la Investigación, basado en el ciclo de mejora de Deming, en la Universidad Privada del Norte. La Cual presentó como objetivo: Evaluar el desarrollo y sostenibilidad del Sistema de gestión de la investigación de la Universidad Privada del Norte. La metodología utilizada es de tipo descriptiva, no experimental, longitudinal, en la cual se documentó la muestra analizada desde los años s 2012 y 2017. Las técnicas utilizadas son la revisión documental, las encuestas y la observación directa; así mismo la técnica empleada es la de estadística descriptiva. Se puede precisar que con respecto a la implementación generada mediante el ciclo Deming, se apreciaron cambios significativos dentro de la gestión de la investigación en la presente universidad, logrando obtener que un 60% de las carreras se visualicen que la calidad de sus tesis ha mantenido una mejora continúa, llegando a niveles altos y muy altos; así mismo el 40% de las carreras, logran reconocer el fortalecimiento significativo de las habilidades en investigación por parte de docentes y estudiantes.. Se puede deducir que los resultados de la investigación aseveran que el desarrollo del sistema de gestión de la investigación, en base a la mejora continua del ciclo Deming, mantiene un mejor desarrollo y sostenibilidad en la Universidad Privada del Norte. La presente investigación aporta con el desarrollo de la mejora continua de Deming y la continuidad en el tiempo.

En la investigación de Rodríguez (2021) llamada Aplicación del ciclo de Deming para mejorar la productividad en el proceso de alcachofa cuartos

marinados en una empresa Agroindustrial. La Cual presentó como objetivo: Incrementar la productividad en el proceso de alcachofa marinada en una empresa agroindustrial empleando el ciclo de mejora continua de Deming. La investigación usó el método deductivo y es experimental longitudinal descriptiva, la cual empleó como muestra 30 días de análisis a los cuales se aplicó un tratamiento para evaluar la productividad antes y después de la mejora. . Para medir la variable se empleó el análisis documental en la cual se analizó los procesos y extrajo la información en diagramas de Pareto, Ishikawa, cartas de control para finalizar con una matriz de mejoras. Como resultados principales de la aplicación del ciclo Deming, se obtuvo una variación porcentual positiva de 26% en la productividad con la aplicación, además se elevó la eficiencia en un 16%. La investigación concluye con la contrastación de la hipótesis de que la aplicación del ciclo de Deming incrementa la productividad en una empresa agroindustrial. La investigación aporta con la aplicación del ciclo de Deming a detalle con el fin de mejorar la productividad que también se busca como objetivo en la presente investigación.

investigación de Carranza y Guerra (2019)llamada Implementación de la metodología del ciclo de Deming en la gestión de procesos operativos de un taller automotriz. La Cual presentó como objetivo: Emplear el ciclo de Deming para mejorar las gestiones de los procesos operativos, mejorar el servicio y la productividad de los trabajadores en la empresa RENUEVO en la ciudad de Trujillo. Presenta un tipo de investigación aplicada, siendo a su vez el diseño de investigación pre- experimental, debido a que se trata de validar la afectación de la variable independiente en un diseño preprueba/posprueba. La población en estudio se relaciona con todos los empleados contratados y asociados en total 17 miembros; sin embargo la muestra es conformada por los empleados encargados de los procesos operativos de la organización; es decir 11 empleados. Las técnicas señaladas en estudio fueron la observación, la encuesta y la entrevista; cada una con su respectivo instrumento como son; la guía de observación, cuestionario y la guía de entrevista. Se aplico el ciclo de mejora continua, usando herramientas como la metodología 5 S y fichas de control de calidad. A través de la aplicación de las metodologías en estudio, se generó mejoras en los procesos productivos de la organización, disminuyeron

los reprocesos en más del 70% por las fallas permanentes en la forma de laborar de los trabajadores; en la adaptación de las 5s se generó un incremento de 49% a 85% del cumplimiento; a su vez se logró disminuir en un 10% el tiempo total de procesos operativos. Se determino que financieramente es factible la implementación de ciclo PHVA, debido a que este mismo genera un valor actual neto de S/.64,872.27 Nuevo Soles y una Tasa de Retorno de 287%. También se detectó un Beneficio/costo de 4.77. La presente investigación se enfoca en la detección de fallas con la finalidad de mejorar la productividad, esto permitirá generar valor económico en la propuesta.

En la investigación de Calderón (2019) llamada Aplicación del ciclo de Deming para incrementar la productividad reduciendo las mermas de preformas de bebidas gasificadas en Arca Continental Lindley-Planta Trujillo. La Cual presentó como objetivo: Acrecentar la productividad reduciendo las mermas de preformas de bebidas gasificadas. Muestra un diseño de investigación preexperimental con pretest y post test. Se tomaron en cuenta los datos semanales de las mermas de tapas plásticas, PET (preformas) y etiquetas, de los cuales se extrajo una muestra del año 2016,2017 y 2018. para la recopilación de datos la técnica empleada fue la investigación bibliográfica, actas de reunión e investigación documentaria. Permite mejorar las áreas operacionales y funcionales a través de los criterios de mejora continua (Disponibilidad, confiabilidad, mantenibilidad) permitiendo reducir las mermas de preformas de 0.81% en el 2016 al 0.17% en el año 2018, generando un ahorro de S./252,658.21 en el 2016 a S./45,802.82 en las 2018 cifras consideradas antes y después del tratamiento. Mediante el ciclo de mejora continua se pueden lograr beneficios económicos, podemos identificarlos claramente en los costos los cuales se redujeron considerablemente de S./252,658.21 (2016) a S./45,802.82 (2018) y con el ciclo de mejora continua de Deming (PDCA) se logró obtener un beneficio sostenible hasta reducirse a 11,877.02 soles, logrando un ahorro aplicando Deming. La presente investigación aporta con la aplicación de ciclo PDCA durante un periodo de tiempo largo, el cual se tomará en cuenta sus estrategias para proponer la mejora en la presente investigación.

En la investigación de López (2018) llamada aplicación del ciclo PHVA en la producción de espárrago verde fresco para incrementar la productividad de

la empresa agrícola cerro prieto - Trujillo 2018. La Cual presentó como objetivo: Incrementar la productividad en la producción de espárrago verde fresco ejecutando el ciclo PHVA, en la empresa agrícola Cerro Prieto S.A. Diseño de investigación no experimental, el cual presenta un tipo de investigación descriptiva y cuantitativa, debido a que se emplea durante un estudio de situación real aplicándose metodologías para conseguir una mejora. Respecto a la población la conforman el número total de trabajadores del proceso de producción de esparrago es decir 74 colaboradores, tomándose en cuenta la misma cantidad de colaboradores para la muestra. Se emplearon dos instrumentos, la entrevista y encuesta las cual nos muestra el desconocimiento de los procesos por parte de los colaboradores. La baja productividad se genera por el alto nivel de desperdicios, la cual es 18721.56 kg / campaña. también el desconocimiento de métodos de trabajos, la falta de reuniones y la falta de interés por optar una mejora continua en los procesos; por lo tanto se concluye que si aplicamos la propuesta del ciclo de Deming, se lograra incrementar loa productividad en un 21.56% de productividad total. Se determino una estimación del beneficio/costo de S./2.40 nuevos soles, lo que significa que por cada sol invertido, se obtendrá S/.2.40 nuevos soles. Por lo tanto la propuesta es viable económicamente y se deberán seguir los protocolos establecidos para conseguir los mejores resultados. La presente investigación aplica la mejora del método de trabajo para lograr el incremento de la productividad.

2.2. Marco Teórico

2.3.1. Herramientas de calidad

Según Cuatrecasas y González (2017) mencionan que según Deming estás herramientas como el diagrama de Pareto e Ishikawa son necesarias para poder realizar la implementación del ciclo de Deming correctamente por otro lado también se debe realizar una aplicación del análisis FODA esto permitirá dar un contexto mayor a la situación en la cual se encuentra la organización por consiguiente ayudará a identificar las fortalezas oportunidades debilidades y amenazas que posee cada empresa en la cual se quiere implementar el ciclo de mejora continua, además es necesario utilizar flujograma y diagramas los cuales permitan dar un mayor contexto gráfico con relación a los problemas que posee la empresa.

El diagrama de Ishikawa permite identificar las causas posibles al problema al cual se le está atribuyendo y estas causas son evaluadas de acuerdo con la frecuencia con la cual ocurren por medio del diagrama de Pareto en el diagrama de Pareto se ordenará de mayor a menor la frecuencia de ocurrencia de las causas identificadas en el diagrama de Ishikawa por lo que permitirá identificar las causas más frecuentes que darán solución a la mayoría del problema existente en la empresa.

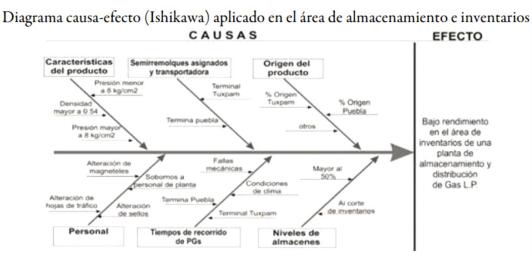


Figura 1 Diagrama Causa Efecto

Nota: el diagrama causa efecto mostrado en la figura 2 fue extraída de (Montesinos, Vázquez, Maya, Gracida, & Baruc, 2020)

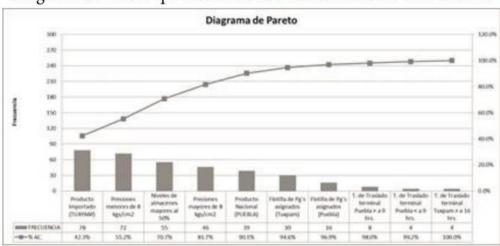


Diagrama de Pareto aplicado al área de almacenamiento e inventarios

Figura 2 Diagrama de Pareto

Nota: el diagrama de Pareto mostrado en la figura 3 fue extraída de (Montesinos, Vázquez, Maya, Gracida, & Baruc, 2020)

2.3.2. Proceso de mejora

Un proceso de mejora, también conocido como mejora continua o mejora de procesos, es un enfoque estructurado y sistemático para hacer cambios y mejoras en una organización, sus operaciones, productos o servicios. El objetivo principal de este proceso es optimizar la eficiencia, la efectividad y la calidad en todos los aspectos de la organización.

Pasos para el proceso de mejora:

- Identificación de Áreas de Mejora: Describir la importancia de identificar áreas de mejora dentro de una organización. Explicar las técnicas y métodos para identificar deficiencias, ineficiencias o áreas de oportunidad en un proceso o sistema.
- Análisis y Diagnóstico: Detallar cómo se realiza el análisis y diagnóstico de las áreas identificadas. Introducir métodos como el análisis FODA (Fortalezas, Oportunidades, Debilidades, Amenazas) u otros enfoques analíticos utilizados para comprender el estado actual de la organización.
- Establecimiento de Objetivos y Metas: Explicar cómo se establecen objetivos y metas específicos que la mejora busca alcanzar. Describir la

importancia de que estos objetivos estén alineados con la estrategia y visión de la organización.

- **Diseño de Soluciones y Estrategias de Mejora:** Presentar las metodologías y enfoques para diseñar soluciones que aborden las áreas identificadas para mejorar. Incluir técnicas como el diseño de experimentos, reingeniería de procesos, entre otros.
- Implementación de las Mejoras: Detallar el proceso de implementación de las soluciones diseñadas. Explicar la importancia de la comunicación efectiva, la capacitación y la gestión del cambio durante la implementación.
- Medición y Evaluación de Resultados: Describir cómo se miden los resultados de la mejora implementada y cómo se evalúa su impacto. Introducir herramientas y métricas utilizadas para medir el éxito de las mejoras.
- Retroalimentación y Ajustes: Explicar cómo se recopila la retroalimentación de los implicados y cómo se utilizan para ajustar las mejoras en curso. Mostrar la importancia de la flexibilidad y la adaptabilidad durante este proceso.
- Ciclo de Mejora Continua: Presentar los modelos de mejora continua más reconocidos, como el ciclo PDCA (Plan, Do, Check, Act) o DMAIC (Definir, Medir, Analizar, Mejorar, Controlar). Explicar cómo estos modelos facilitan la repetición estructurada del proceso de mejora para lograr mejoras sostenibles.

2.3.3. Eficiencia global de equipo

La eficiencia global de equipo (OEE - Overall Equipment Efficiency), representa una métrica que permite valorar el rendimiento de una máquina o equipo en un proceso productivo. Considera la eficiencia global considerando los tiempos de disponibilidad, rendimiento y calidad de dicho equipo. El cálculo de esta eficiencia implica multiplicar el porcentaje de disponibilidad, el porcentaje de rendimiento y el porcentaje de calidad. La disponibilidad hace referencia al tiempo en que la máquina está disponible para la producción, el rendimiento corresponde a la velocidad real de producción comparada con la velocidad

teórica, y la calidad representa el porcentaje de productos que cumplen con los estándares de calidad. (Becerra, Andrade, & Díaz, 2020)

$$OEE = A \times \eta \times q$$

Disponibilidad: Este indicador cuantifica el período durante el cual una máquina o equipo se encuentra en funcionamiento y listo para operar en comparación con el tiempo total programado para su operación. Se suele expresar como un porcentaje y refleja la fiabilidad de las máquinas. Una alta disponibilidad indica que las máquinas experimentan menos tiempo de inactividad no planificado. (Gutiérrez, 2021)

$$A = \frac{TON}{TF}$$

A: Disponibilidad

TON: Tiempo operativo neto

TF: Tiempo de funcionamiento

- Índice de Eficiencia: El índice de eficiencia evalúa cuánto tiempo una máquina o equipo opera a su máxima capacidad en relación con su tiempo de disponibilidad. Constituye una medida de la eficiencia de las máquinas cuando están en funcionamiento.

$$\eta = \frac{TOR}{TON}$$

η: Rendimiento del equipo

TON: Tiempo operativo neto

TOR: Tiempo operativo real

- Índice de Calidad: El índice de calidad se centra en la calidad de los productos o servicios generados por las máquinas o equipos. Calcula la proporción de productos o servicios de calidad con respecto al total producido. Un alto índice de calidad indica que la producción cumple con las especificaciones y estándares de calidad.

$$q = \frac{TPN}{TOR}$$

q: Tasa de calidad

TPN: Tiempo productivo neto

TOR: Tiempo operativo real

OEE (Efectividad General de los Equipos): El OEE es un indicador compuesto que fusiona la disponibilidad, la eficiencia y la calidad para evaluar el rendimiento integral de una máquina o equipo. Representa una métrica integral que brinda una perspectiva holística de la eficiencia de los equipos de producción.

$$OEE = A \times \eta \times q$$

A: Coeficiente de disponibilidad

η: Efectividad

q: Coeficiente de calidad

- La Productividad Efectiva Total de los Equipos (TEEF): es un indicador que mide la eficiencia y el rendimiento global de los equipos o maquinaria utilizados en un proceso de producción o manufactura. Este indicador se utiliza para evaluar cómo se están utilizando los recursos de producción, específicamente los equipos, en relación con el tiempo disponible para la producción.

$$TEEP = \frac{TPN}{TD}$$

TEEP: Productividad Efectiva Total de los Equipos

TD: Tiempo disponible

TPN: Tiempo productivo neto

Estos indicadores de mantenimiento desempeñan un papel esencial en la gestión y mejora de la eficiencia y la confiabilidad de los equipos en un entorno de producción.

Los indicadores relacionados con el tiempo de paradas en un proceso de producción se utilizan para evaluar la eficiencia y el rendimiento de dicho proceso. A continuación, se describen los principales indicadores y sus fórmulas:

- Tiempo Disponible (TD): Este indicador representa el tiempo total durante el cual el proceso de producción está disponible para funcionar.
 Se calcula simplemente como el propio tiempo disponible (TD).
- Tiempo de Funcionamiento (TF): El tiempo de funcionamiento es el tiempo en el que el proceso estuvo operativo, es decir, el tiempo durante el cual se produjo. Se calcula restando el tiempo de paro planificado (TPP) al tiempo disponible (TD): TF = TD - TPP.

- Descanso y Paros Previstos: Incluye los períodos programados para descanso de los trabajadores y paros planificados para el mantenimiento regular.
- Mantenimiento Preventivo: Representa el tiempo dedicado a realizar actividades de mantenimiento planificado para prevenir problemas futuros.
- Mantenimiento Productivo: Incluye el tiempo destinado a realizar actividades de mantenimiento que no están planificadas, pero que son necesarias para mantener el proceso en funcionamiento.
- Tiempo del Periodo de Operación (TOP): El tiempo del periodo de operación es el tiempo de funcionamiento ajustado por el tiempo de parada no planificada (TPA). Se calcula restando el TPA al TF: TOP = TF - TPA.
- Preparación para Operación: Incluye el tiempo utilizado para preparar el proceso antes de ponerlo en funcionamiento, como ajustes y cambios de configuración.
- Tiempo de Operación Neta (TON): El tiempo de operación neta es el tiempo de operación ajustado por el tiempo de paro no productivo (TPNP). Se calcula restando el TPNP al TOP: TON = TOP - TPNP.
- Averías y Reparaciones: Representa el tiempo en el que el proceso se detiene debido a fallas o problemas técnicos que requieren reparación.
- Otros por Suciedad por Viruta: Incluye el tiempo perdido debido a la acumulación de suciedad o virutas en el equipo.
- Tiempo Operativo Real (TOR): El tiempo operativo real es el tiempo de operación neta ajustado por las pérdidas de velocidad debido a problemas en el proceso (TPOP). Se calcula restando el TPOP al TON: TOR = TON - TPOP.
- Paradas Cortas: Representa las paradas breves no planificadas que afectan la velocidad del proceso.
- Reducción de Velocidad por Fallo: Incluye la pérdida de velocidad debida a fallas o problemas técnicos que no requieren una reparación completa.
- Tiempo Productivo Neto (TPN): El tiempo productivo neto es el tiempo operativo real ajustado por el tiempo perdido en productos defectuosos (TPD). Se calcula restando el TPD al TOR: TPN = TOR - TPD.

 Tiempo Perdido en Productos Defectuosos: Representa el tiempo en el que se producen productos defectuosos que deben ser desechados o reprocesados.

Estos indicadores son fundamentales para identificar áreas de mejora en el proceso de producción y para evaluar su eficiencia y calidad general.

Tabla 1
Indicadores para obtener el tiempo productivo neto

Indicador	Tiempo de paradas	Formula
Tiempo disponible: TD	Tiempo disponible (TD)	TD
Tiempo de funcionamiento: TF	Tiempo muerto para (TPP): Descanso y paros previstos Mantenimiento preventivo Mantenimiento productivo	TF = TD - TPP
periodo de	Tiempo de parada por (TPA): Preparación para operación ajustes de cambio	TOP = TF - TPA
- I -	Tiempo de paro por (TPNP): Averías y reparaciones. Otros por suciedad por viruta	TON = TOP - TPNP
Tiempo operativo real: TOR	Pérdidas de velocidad por (TPOP): Paradas cortas Reducción de velocidad por fallo	TOR = TON-TPOP
Tiempo productivo neto: TPN	Tiempo perdido en defectuosos (TPD): Tiempo perdido en productos defectuosos	TPN = TOR - TPD

Nota: se extrajo del análisis documental.

2.3.4. Control de proceso:

El control estadístico de procesos (CEP) es una herramienta fundamental en la gestión de la calidad que permite mantener y mejorar la calidad de un producto o servicio a lo largo del tiempo. Se basa en la recolección y análisis sistemático de datos durante la producción para asegurar que el proceso se mantenga en un estado de control estadístico y, por ende, genere productos o servicios consistentes y dentro de las especificaciones deseadas.

El objetivo final del control estadístico de procesos es mantener el proceso bajo control y, si se detectan desviaciones, tomar medidas correctivas para evitar la producción de productos o servicios no conformes. Esto garantiza que el producto o servicio final cumpla con los estándares de calidad establecidos y las expectativas de los clientes. (Madrigal, 2018)

Los indicadores de capacidad son métricas cruciales en la evaluación y mejora de un proceso de producción. A continuación, se presenta una explicación detallada de cada uno de estos indicadores:

- Cp (Capacidad del Proceso): Montesinos et. Al (2020) menciona que este indicador se enfoca en la capacidad del proceso para producir productos que estén dentro de las especificaciones en el corto plazo. Especifica la relación entre la tolerancia de especificación y la variabilidad del proceso en el corto plazo. Cuanto mayor sea el valor de Cp, mejor será la capacidad del proceso para mantenerse dentro de las especificaciones durante intervalos breves.

$$Cp = \frac{USL - LSL}{6\sigma}$$

- Cpk (Índice de Capacidad del Proceso): Cuatrecasas y González (2017) mencionan que el Cpk es un indicador más completo que evalúa la capacidad del proceso para producir productos dentro de las especificaciones tanto en el corto plazo como en el largo plazo. Considera tanto la variabilidad a corto plazo como a largo plazo. Un Cpk superior a 1 indica que el proceso es capaz de producir productos que cumplen con las especificaciones.

$$Cpk = Min(CPL, CPU)$$

$$Cpu = \frac{LES - \mu}{3\sigma}$$

$$Cpl = \frac{\mu - LEI}{3\sigma}$$

- PPM (OPMO) (Esperado): PPM significa Partes Por Millón y mide cuántas piezas defectuosas se anticipan por cada millón de piezas producidas. Un valor bajo de PPM (OPMO) indica que el proceso tiene una alta capacidad para mantenerse dentro de las especificaciones.

- Media: La media representa el valor promedio de una característica medida en el proceso. Es fundamental que la media esté centrada en el valor objetivo o nominal para garantizar que el proceso esté produciendo productos consistentes.
- Desviación Estándar (Corto Plazo): La desviación estándar a corto plazo mide la variabilidad del proceso en un período más corto, lo que refleja la variabilidad a corto plazo del proceso.

Estos indicadores son esenciales para evaluar la capacidad y la calidad del proceso de producción. Ayudan a identificar áreas de mejora y a garantizar que el proceso sea capaz de producir productos que cumplan con las especificaciones y los estándares de calidad de manera consistente. (Florez, Cogollo, & Florez, 2019)

2.3.5. Indicadores de calidad o productividad

La productividad se define como la correlación entre la producción y los recursos utilizados. Estos recursos pueden analizarse individualmente al calcular un cociente o pueden ser estandarizados en función de una unidad, como el costo de la materia prima, el costo de la mano de obra, etc. (Gutiérrez, 2021).

Productividad laboral

La productividad laboral se define como la cantidad de producción o servicios generados por un trabajador durante un período específico. Constituye un indicador fundamental para evaluar la eficiencia y el desempeño de los empleados en una organización. Su cálculo implica dividir la producción o servicios generados entre el número de horas trabajadas o el número de colaboradores involucrados en la producción.

$$PL = \frac{producción}{\#Trabajadores}$$

A. Productividad Efectiva Total de los Equipos

Se trata de una métrica que indica la eficiencia general de los equipos en un proceso de producción. La TEEP se basa en considerar la disponibilidad, el rendimiento y la calidad del equipo. Esta métrica refleja el tiempo real durante

el cual un equipo está produciendo productos de calidad en comparación con el tiempo total disponible. El cálculo de la TEEP consiste en multiplicar el porcentaje de disponibilidad por el porcentaje de rendimiento y luego por el porcentaje de calidad. Constituye un indicador clave para evaluar el rendimiento de la producción y se emplea para identificar áreas de mejora en la eficiencia del equipo.

$$TEEP = \frac{TPN}{TD}$$

2.3.6. Control estadístico de procesos,

A. Nivel óptimo de los factores

Para poder ejecutar un control estadístico de los procesos es necesario determinar los niveles óptimos de los factores del proceso con el objetivo de controlar los procesos es necesario dar un valor por el cual debe ser el óptimo para poder cumplir con las expectativas del cliente o con las expectativas del jefe de producción, es necesario tener controlados distintos aspectos técnicos para que se pueda ejecutar un trabajo controlado por medio de parámetros.

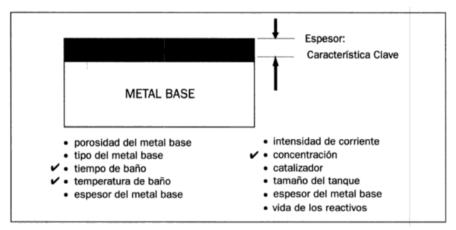


Figura 3 Ejemplo de determinar el nivel óptimo

Nota la figura muestra un ejemplo para determinar el nivel óptimo de acuerdo con una pieza.

La figura muestra los parámetros los cuales son elegidos para poder controlar en la pieza que va a ser trabajada en este caso es necesario evaluar la concentración, el tiempo de baño y la temperatura de baño controlando estos 3 aspectos afectarán de forma significativa a la variabilidad de las piezas obtenidas al final.

B. Determinación de los puntos de control:

una vez determinadas las características que son atribuidas a cada una de las piezas o procesos es necesario establecer puntos de control en los aspectos o parámetros más críticos los cuales puedan disminuir la variabilidad de los errores en los resultados finales ya sea del producto o servicio.

C. Selección de los gráficos de control

Para la selección de los gráficos de control es necesario determinar el tipo de datos que se está manejando es necesario saber si es que es un atributo o una variable, un atributo es una característica que tiene el objeto o unidad de análisis que se está manejando el cual tiene como respuesta cumple o no cumple, por otro lado la variable tiene una unidad la cual la define y puede ser un valor numérico muy exacto. Y es que el tipo de datos es una variable y la muestra es mayor a 10 es necesario utilizar el gráfico X-S Utilizar el gráfico X-R. (Cuatrecasas & González, 2017)

Si el tipo de dato analizado es un atributo vamos a analizar las unidades defectuosas o las cantidades de defectos para los efectos la cantidad tiene que ser constante y se puede emplear el gráfico C o U pero si la cantidad de datos analizados no es constante se utiliza el gráfico U. por otro lado si vamos a analizar las unidades defectuosas y N es constante es necesario utilizar el gráfico NP o P, por otro lado sí N no es constante es necesario utilizar el gráfico P

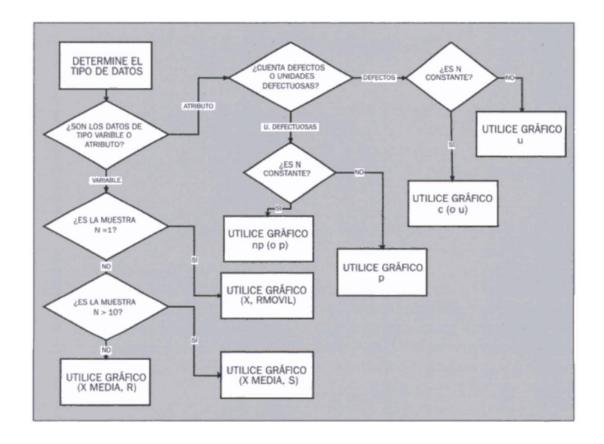


Figura 4 proceso de selección de una carta de control

D. Tamaños de muestras necesarios:

para realizar las cartas de control las reglas para determinar el tamaño de muestra primero siempre se debe tener una muestra mayor en un estudio inicial para determinar una variabilidad en los procesos ya conocidos.

siempre es necesario aplicar el tamaño de muestra en procesos marginales o erráticos que tengan un comportamiento correcto y repetitivo:

- unidad en gráficos (XI, RM)
- < 10 en gráficos (\bar{X}, R)
- > 10 en gráficos (\bar{X}, S)

Cuando nos referimos a los gráficos de control por atributos el tamaño de muestra se calcula por medio de las siguientes fórmulas debido a que es idóneo (Becerra, Andrade, & Díaz, 2020)

$$\bar{p} - 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n_i}} \ge 0$$
 $\bar{p} + 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n_i}} \le 0$

E. Determinación de un estado de control

El estado del control estadístico de un proceso se determina gráficamente por medio de los límites de control que estos han sido previamente analizados, en la siguiente figura se muestran los tipos de variación:

Figura 5 tipos de variación

Los límites de control establecidos son las líneas superior e inferior y se denominan las fronteras entre cada uno de los puntos en los cuales no debe salir o no debe presentar algún tipo de tendencia que permita generar un descontrol en el proceso que se está analizando. (Madrigal, 2018)

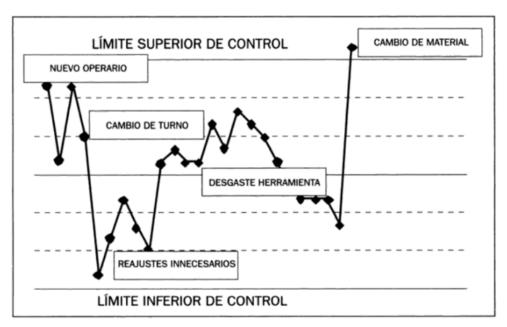


Figura 6 límites de control con pautas de no aleatoriedad observadas en el gráfico

La figura muestra los tipos de variaciones y las posibles respuestas a las distintas variaciones que tiene en la gráfica de control de esta forma el analista sabe dar una solución para mantener controlado dicho estado de control (Florez, Cogollo, & Florez, 2019)

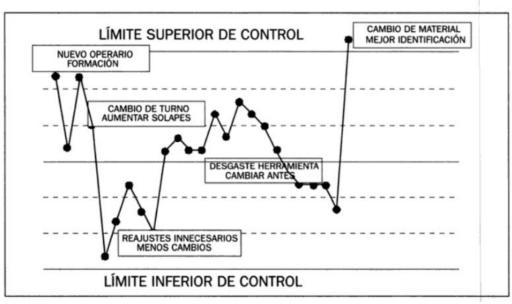


Figura 7 causas especiales que se encuentran en las gráficas de control

La figura muestra las causas especiales que se encuentran dentro de
una gráfica de control

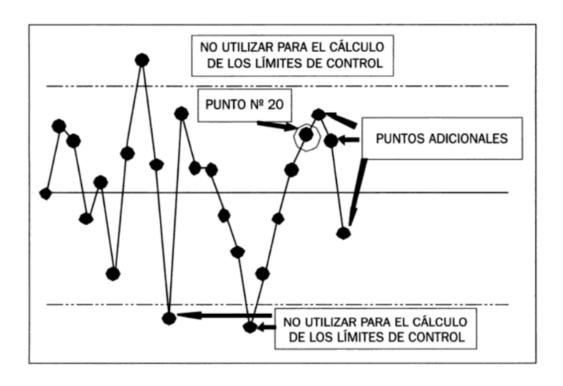


Figura 8 descontrol de los procesos en las cartas de control

La figura muestra que existe un descontrol porque existen puntos fuera de los límites de control por otro lado también presenta 5 puntos consecutivos o tendencias los cuales permiten deducir que no se encuentra bajo control.

2.3. Marco Conceptual

- Carta de control: Es un indicador que mide alguna variable o proporción, mantiene límites en los cuales se puede considerar una producción óptima, por lo que los productos que se encuentren dentro de los límites estarán bajo control, mientras que los que están fuera no.
- Evaluación de Proveedores: Es la cuantificación del beneficio obtenido por cada proveedor la cual se puede determinar qué proveedor cumple los requerimientos de la producción con la finalidad de establecer relaciones sólidas y garantizar el flujo de materiales para la producción.
- Hoja de verificación: Es una lista de criterios que se tiene evaluar con la observación y tiene la finalidad de determinar si cumple o no las indicaciones o actividades descritas en la lista.
- Inspección: Es la verificación de la producción con la finalidad de determinar si es apta para continuar el proceso, ser desechado o enviado a reproceso.
- Mantenimiento: Es la verificación, reparación y/o cambio de alguna pieza de los equipos y maquinarias empleadas para la producción.
- Muestreo de aplicación: Es la selección de forma aleatoria de porciones de materia prima con la finalidad de realizar una inspección de tal manera permita evaluar si se encuentran en los parámetros que requiere la producción y son importantes para el cliente
- Reproceso: Es la corrección de un producto terminado de una manera inadecuada pero tiene solución.
- Tasa de calidad: es la relación entre la cantidad de productos óptimos de salida sin contar los reprocesos o los productos desechados con la producción ingresada.

2.4. Hipótesis

 De implementarse mejoras en el proceso de pilado de arroz, la productividad se incrementará significativamente en la empresa Indupersa SAC Trujillo 2023

2.5. Variables

Tabla 2

Operacionalización de las variables

Variable	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Tipo
X: Mejora de la producción	La mejora de la producción se refiere al proceso mediante el cual una organización busca incrementar la	La mejora de la producción es el proceso continuo y sistemático de implementación de estrategias y acciones específicas para optimizar la calidad de los productos, la disponibilidad de los equipos y la la eficiencia global de la producción. Se mide por de indicadores de TPM (Total Productive Maintenance) como calidad, disponibilidad y eficiencia, así como el control de procesos mediante CP (Process	Indicadores c mantenimiento	Disponibilidad $A=rac{TON}{TF}$ Eficiencia $\eta=rac{TOR}{TON}$ Calidad $q=rac{TPN}{TOR}$	Razón Razón
			Control de proceso	$Cp = rac{USL - LSL}{6\sigma}$ $Cpk = Min(CPL, CPU)$	Razón Razón
	Es el resultado de un proceso continuo y sistemático de implementación de estrategias y	La medición de la productividad se logra después de la medición	Productividad laboral	$PL = rac{producción}{\#Trabajadores}$	Razón
Y: acciones específicas con el objetivo de la productividad labora Productividad productos, asegurar la disponibilidad Productividad Francisco de la Productividad labora Eficiencia global de equipo y	Eficiencia global o equipo	, ,	Razón		
	óptima de los equipos y mejorar la eficiencia global de la producción. (Gutiérrez, 2021)	Productividad Efectiva Total de los Equipos	Productividad Efectiv Total de los Equipos	$TEEP = \frac{TPN}{TD}$	Razón

III. METODOLOGÍA

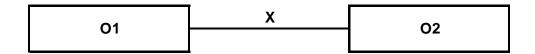
3.1. Tipo y nivel de investigación.

La investigación es de tipo cuantitativa de nivel aplicado, debido a que se enfoca en la recolección y análisis de datos numéricos y estadísticos. Es decir, se busca medir, cuantificar y analizar fenómenos o variables a través de la recolección de datos numéricos y la utilización de técnicas estadísticas para su análisis (Nicomedes, 2018). Además es aplicada ya que implica la aplicación de los conocimientos teóricos adquiridos en una situación real.

3.2. Población y Muestra

3.2.1. Población

La población según Hernández et al. (2018) la cantidad total o universo de estudio que comparte una característica la cual puede ser analizada y verificada. La Población estará representada por todas las operaciones del proceso productivo que impactan en la baja productividad en la empresa Indupersa SAC, Trujillo en el año 2023.


3.2.2. Muestra

La muestra según Hernández et al. (2018) es parte del universo de individuos u objetos de estudio que es representativo de la población, por lo que para la investigación la muestra es igual a la población, y por tanto está representada por todas las operaciones del proceso productivo que impactan en la baja productividad en la empresa Indupersa SAC, Trujillo en el año 2023.

3.3. Diseño de investigación

La investigación es de tipo descriptiva no experimental ya que no se manipularán las variables puesto que el principal método de obtención de la información es la observación.

De igual manera tiene un diseño transversal ya que se tomará la información en un determinado periodo de tiempo.

El diseño se muestra a continuación.

O1: Medición de la productividad en la situación actual

O2: Medición de la productividad con la propuesta

X: Variable independiente: Mejora de la producción

3.4. Técnicas e Instrumentos de investigación

Tabla 3 *Técnicas e instrumentos de recolección de datos*

Variable	Técnicas Herramientas	Instrumento		Fuente informante	Validación
	Entrevista	Anexo Entrevista	10	Jefe de producción de	Libro: Gestión integral de la Calidad
	Revisión documental	Anexo Productividad	9	la empresa Indupersa SAC	(Cuatrecasas & González, 2017)
	Observación	Anexo FODA	8		
Plan de mejora de la	Revisión documental	Anexo Porcentaje quebrados	14 de		Libro: Notas: de control estadístico de la calidad (Florez, Cogollo, & Florez,
producción	Análisis de la información	Anexo Hoja para el registro la eficacia	11 de	Proceso de producción de arroz	2019)
	Análisis de la información	Anexo Hoja para el registro la eficiencia	12 de		Libro: Control Estadístico de la Calidad. Un enfoque creativo (Madrigal, 2018)
Productividad	Revisión documental	Anexo 13 Hoja para el registro de la productividad Anexo Formato de variación la productividad	15		Libro: Implantación, Metodologías y Herramientas Seis Sigma (Gutiérrez, 2021)

3.5. Procesamiento y análisis de datos.

Tabla 4 *Métodos de análisis de datos*

Objetivos	Técnica	Instrumentos / Herramienta	Resultados
Realizar un diagnóstico de la situación actual de la	Entrevista	Anexo 10 Entrevista	Determinar la
productividad de la empresa Indupersa SAC	Revisión documental	Anexo 9 Productividad	productividad inicial.
	Observación	Anexo 8 FODA	Definir procesos críticos
Aplicar el plan de mantenimiento y control de	Revisión documental	Anexo 14 Porcentaje de quebrados	en la producción de arroz
capacidad en la empresa Indupersa SAC	Análisis de datos	Anexo 11 Hoja para el registro de la eficacia	Se espera que el proceso se controle por medio de un
		Anexo 12 Hoja para el registro de la eficiencia	plan de mejora.
Evaluar y determinar el aspecto técnico y económico		Anexo 13	Se espera un incremento
de la mejora de la productividad de la empresa	Análisis de datos	Hoja para el registro de la productividad Anexo 15	de la productividad y de los
Indupersa SAC		Formato de variación de la productividad	beneficios

Nota: elaboración propia.

A continuación se detallan los procedimientos y análisis de datos requeridos para cumplir con los objetivos planteados:

1. Realizar un diagnóstico de la mejora actual con relación a la productividad de la empresa Indupersa SAC:

Se realizarán entrevistas a los miembros del equipo utilizando el formato del Anexo 10. Los temas para abordar en las entrevistas pueden incluir la eficiencia, la eficacia, los problemas actuales y las oportunidades de mejora en la producción. Las respuestas deben ser codificadas y analizadas utilizando un software de análisis cuantitativos como formularios de Google así como también el uso de Microsoft Excel para el análisis descriptivo de la investigación.

2. Determinar la productividad inicial:

La revisión documental del Anexo 9 proporcionará los datos necesarios para establecer una línea base de la productividad. Deberían incluirse en la revisión documental informes de producción anteriores, registros de ventas y datos de la cadena de suministro. Estos datos pueden analizarse mediante un software de análisis de datos como Excel o SPSS.

3. Definir los procesos clave y actividades que deben realizar los colaboradores en la empresa Indupersa SAC:

La observación directa, acompañada de análisis FODA (Fortalezas, Oportunidades, Debilidades, Amenazas) del Anexo 6, ayudará a identificar los procesos y actividades críticas en la producción de arroz. Los resultados pueden registrarse y analizarse mediante diagramas de flujo de procesos en softwares como Microsoft Visio.

4. Aplicar la mejora del proceso productivo en la empresa Indupersa SAC:

Se aplicará utilizando los datos recopilados en los Anexos 11 y 12. Los cambios y su impacto en la eficacia y la eficiencia se rastrearán con el tiempo. Para esto, pueden emplearse herramientas de gestión de proyectos como Asana o Trello y software de análisis estadístico como SPSS o Excel

5. Evaluar y determinar el aspecto técnico y económico de la mejora de la productividad de la empresa Indupersa SAC:

Con los datos recopilados en los Anexos 13 y 15, se realizará un análisis para evaluar los aspectos técnicos y económicos de las mejoras propuestas. Este análisis deberá tener en cuenta factores como el coste de implementación, el retorno esperado de la inversión, la factibilidad técnica y los posibles riesgos. Para esto, pueden utilizarse herramientas de análisis financiero en Excel.

Cada una de estas etapas requiere un seguimiento continuo y un compromiso con el análisis y la mejora continua para asegurar el éxito del proyecto.

IV. PRESENTACIÓN DE RESULTADOS

4.1. Resultados del objetivo 1: "Realizar un diagnóstico de la situación actual con relación a la productividad de la empresa Indupersa SAC."

Descripción de la empresa

VISIÓN

Ser una empresa líder en el mercado local y nacional, especializada en la comercialización de arroz pilado de diferentes calidades en el mercado trujillano y alrededores.

MISIÓN

Brindar un servicio especializado de calidad, ágil y eficiente manteniendo nuestro compromiso con la seguridad, responsabilidad social y medioambiental

Figura 9
Organigrama empresa Indupersa SAC.

Nota: Se extrajo de la revisión documental en la empresa Indupersa S.A.C.

Tabla 5 *Máquinas y/o equipos de la empresa*

Maquinas empleadas para producción				
Maquinaria y/o equipos	Capacidad	Cap. Teórica (sacos)	Cantidad	
Elevadores	4500 Kg/h	336960	10	
Maquinas pre limpia	5000 Kg/h	374400	2	
Descascaradora Hongjia	5000 Kg/h	374400	2	
Pulidoras de piedra	4500 Kg/h	336960	2	
Pulidora de agua	5000 Kg/h	374400	1	
Mesa Paddy	4600 Kg/h	344448	1	
Clasificadoras	4000 Kg/h	299520	2	
Selectora GROTECH	6000 Kg/h	449280	1	
Balanza	4000 Kg/h	299520	1	
Total 22				

Nota: Se extrajo de la revisión documental en la empresa Indupersa S.A.C.

A continuación, se muestran las fichas técnicas para cada una de las máquinas mencionadas anteriormente:

Tabla 6
Especificaciones técnicas Maquinas pre limpia Agromay

	Marca Modelo Capacidad	Agromay M/100 8000 kg/h
	Antigüedad Peso	3 años 450 kg
	Dimensión(mm)	2500*1170*2100
	Tipo de mantenimiento	Correctivo
1 1 1 1 1 1 1 1 1 1	Potencia	2 HP
	Función	realizar una primera etapa de limpieza y separación de elementos extraños, como piedras, tierra, polvo, hojas y otros materiales que pueden estar presentes en el arroz después de la cosecha y el transporte.

Especificaciones técnicas Maquinas pre limpia Agromay

Tabla 7 Especificaciones técnicas Maquinas Descascaradora Hongjia

Especificaciones técnic	as Maquinas Descasca	radora Hongjia
	Marca	Hongjia rice mill plant
	Modelo	MLGT36-B
100	Capacidad	5000 kg/h
2	Antigüedad	3 años
	Tamaño del rodillo(mm)	Ø255
	Peso	920 kg
	Dimensión(mm)	1260*1300*2100
	Tipo de mantenimiento	Correctivo
	Potencia	10 HP
	Función	eliminar la cáscara o la capa exterior del grano de arroz, permitiendo así obtener el grano de arroz pulido y listo para su consumo.
Nota: se extraio de la revisión de las m	náquinas en el mantenir	niento.

Tabla 8 E Especificaciones técnicas Pulidora de agua wintonic

Especificaciones técnie	cas Pulidora de agua	wintonic
	Marca Modelo Capacidad Antigüedad Peso Dimensión(mm) Tipo de	China wintonic machinery. WTGW 5000 kg/h 3 años 1100 kg 1751x1850x2450mm
	mantenimiento Potencia	Correctivo 15 HP
Nota: se extrajo de la revisión de las máquinas en el man	Función	mejorar la apariencia, la textura y la calidad del arroz al eliminar la capa externa que puede contener impurezas, grasas y otros componentes no deseados.

Tabla 9
Especificaciones técnicas Pulidoras de piedra Zaccaria

Especificaciones técnicas Pulidoras de piedra Zaccaria Marca Zaccaria Modelo BVZ-1 Capacidad 6500 kg/h Antigüedad 3 años 1100 kg Peso 2080x1200x3060 Dimensión(mm) Tipo de Correctivo mantenimiento Potencia 4 HP eliminar la capa exterior del grano, que incluye salvado y otras Función impurezas, mediante el uso de agua y fricción controlada.

Nota: se extrajo de la revisión de las máquinas en el mantenimiento.

Tabla 10
Especificaciones técnicas elevadoras chenliangji

Especificaciones té	écnicas elevadoras che	nliangji
CHENILIANG II	Marca Modelo Capacidad Antigüedad Peso Dimensión(mm) Tipo de	chenliangji SEC6S-A 6500 kg/h 3 años 350 kg 2150x900x7500 Correctivo
	mantenimiento Potencia	2 HP elevar el arroz y otros productos a niveles superiores o diferentes áreas de la planta de
Notes as extrain de la revisión de las r	Función	procesamiento facilitando el movimiento vertical de los materiales en el flujo de producción.

Tabla 11
Especificaciones técnicas Mesa Paddy Zaccaria

Especificaciones	técnicas Mesa Paddy Zacca	aria
	Marca	Zaccaria
	Modelo	SMAZ-2
	Capacidad	6600 kg/h
	Antigüedad	3 años
	Peso	1300 kg
CALLERO	Dimensión(mm)	1750x2500x2900
	Tipo de mantenimiento	Correctivo
	Potencia	4 HP
		separación de los
		componentes
		indeseables del
		arroz crudo,
*	Función	conocido como
CHICARIA	1 diloion	"paddy", que
The state of the s		incluyen la cáscara,
		las impurezas y otros
6.5.54		materiales no
Note: en estraia de la resisión de la c		deseados.

Nota: se extrajo de la revisión de las máquinas en el mantenimiento.

Tabla 12
Especificaciones técnicas Clasificadoras wintonic

Especificaciones téc	cnicas Clasificadoras wi	ntonic
	Marca	China wintonic machinery.
	Modelo	MFJ150×3
9	Capacidad	6000 kg/h
	Antigüedad	3 años
	Peso	650 kg
	Dimensión(mm)	2000x2200x3000
	Tipo de mantenimiento	Correctivo
	Potencia	2 HP
	Función	Se utiliza principalmente para separar el arroz completo y el arroz
Notas as systemia de la revisión de las res	,	partido.

Tabla 13 Especificaciones técnicas selectora GROTECH

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON

Especificaciones técnicas selectora GROTECH

Marca GROTECH Modelo MS-800 Capacidad 8000 kg/h Antigüedad 3 años Peso 1250 kg 3068x1360x2050

Dimensión(mm)

Correctivo

Tipo de

Función

mantenimiento

8 HP

Potencia

garantizar que producto final cumpla con los estándares de calidad visual ٧

estética, eliminando granos defectuosos y garantiza que solo

los granos de arroz con la apariencia deseada sean

У

empacados distribuidos,

Nota: se extrajo de la revisión de las máquinas en el mantenimiento.

Tabla 14 Especificaciones técnicas Balanza

- :::			_
Especifica	ciones	tecnicas	Balanza

Sin marca Marca Modelo Mandada a hacer 4000 kg/h Capacidad Antigüedad 3 años Peso 450 kg

2000x1200x4000 Dimensión(mm)

Tipo de mantenimiento Correctivo

Potencia 2 HP

> pesa los sacos de arroz en la producción de arroz es determinar

Función registrar con precisión el peso de

cada saco de arroz

Maquinaria empleada para la producción de arroz

La empresa Indupersa S.A.C. utiliza un conjunto de máquinas y equipos especializados en su proceso de producción de arroz. Aquí está una interpretación general de estas máquinas y equipos:

- Elevadores (10 unidades): Los elevadores tienen una capacidad total de 4500 kg y están diseñados para transportar el arroz en diferentes etapas del proceso. Estos son esenciales para mover el arroz de un lugar a otro dentro de la planta.
- Máquinas Pre Limpia (2 unidades): Cada máquina pre limpia tiene una capacidad de 5000 kg y su función principal es eliminar impurezas y materiales no deseados del arroz antes de que ingrese al proceso de descascarado. Esto ayuda a garantizar que el arroz procesado sea de alta calidad y libre de contaminantes.
- Descascaradora Hongjia (2 unidades): Estas máquinas tienen una capacidad de 5000 kg cada una y son responsables de eliminar la cáscara exterior del arroz, dejando el grano de arroz blanco listo para su procesamiento posterior.
- Pulidoras de Piedra (2 unidades): Cada pulidora de piedra tiene una capacidad de 4500 kg y se utiliza para pulir el arroz, lo que le da un aspecto más brillante y mejora su calidad.
- **Pulidora de Agua (1 unidad):** Con una capacidad de 5000 kg, la pulidora de agua tiene la función de pulir el arroz utilizando agua, lo que puede mejorar aún más la calidad del arroz.
- Mesa Paddy (1 unidad): Con una capacidad de 4600 kg, la mesa Paddy se utiliza para separar los granos de arroz de la paja y otros materiales no deseados. Esto es fundamental para garantizar que solo los granos de arroz limpios y de alta calidad avancen en el proceso.
- Clasificadoras (2 unidades): Cada clasificadora tiene una capacidad de 4000 kg y se utiliza para clasificar el arroz según su tamaño y calidad.
 Esto puede ayudar a garantizar una calidad consistente en el producto final.
- Selectora GROTECH (1 unidad): Con una capacidad de 6000 kg, esta máquina es una selectora de arroz por color. Puede separar los granos

- de arroz en función de su color, lo que es crucial para producir arroz de alta calidad y aspecto uniforme.
- **Balanza (1 unidad):** Con una capacidad de 4000 kg, la balanza se utiliza para pesar los sacos de arroz antes de su distribución. Esto garantiza un envasado preciso y facilita el control de la cantidad de arroz producido.

En resumen, las máquinas y equipos utilizados en Indupersa S.A.C. desempeñan roles específicos en el proceso de producción de arroz, desde la limpieza y descascarado inicial hasta la clasificación y pulido final. Cada uno de estos equipos contribuye a garantizar la calidad y la eficiencia en la producción de arroz de la empresa.

Indicadores productivos

- Aquí está la explicación de cada uno de los indicadores productivos proporcionados:
- Capacidad Proyectada: Este indicador representa la capacidad máxima teórica de producción de arroz que la empresa puede alcanzar en una hora.
- **Capacidad Real:** es la cantidad de arroz que la empresa realmente ha producido en una hora.
- **Capacidad Utilizada:** Este indicador representa la cantidad de capacidad real que se está utilizando.
- Capacidad Ociosa: es la diferencia entre la capacidad real y la capacidad utilizada.
- Productividad de Materia Prima: Este indicador mide la eficiencia en la utilización de la materia prima, en este caso, el arroz. Representa el porcentaje de arroz que se convierte en producto final en comparación con la materia prima total utilizada.
- Productividad de Mano de Obra: Este indicador muestra cuántos kilogramos de arroz se producen por cada operario en un solo turno de trabajo.
- Merma: La merma representa la cantidad de arroz que se pierde o desperdicia durante el proceso de producción.
- % Quebrados: Este indicador muestra el porcentaje de arroz que resulta dañado o quebrado durante el proceso de producción.

- **Eficiencia Económica:** La eficiencia económica es una medida del costo de producción por unidad de producto.
- **Eficiencia de Planta:** Este indicador representa la eficiencia general de la planta de producción en la empresa.
- Utilización: La utilización es una medida de cuánta capacidad real se está utilizando en relación con la capacidad total disponible.

Estos indicadores proporcionan una visión detallada de la eficiencia y la productividad en la producción de arroz en la empresa Indupersa S.A.C. Permiten identificar áreas de mejora y tomar decisiones para optimizar el proceso de producción.

Producción

Tabla 15

Producción en 2022

	Producción 2022	
Mes	sacos	Lotes
ene-22	13790	37
feb-22	19268	52
mar-22	13967	37
abr-22	11903	32
may-22	18800	50
jun-22	25825	70
jul-22	16904	46
ago-22	13996	38
sep-22	13125	35
oct-22	11394	31
nov-22	15509	42
dic-22	4414	12
Total	178895	482

Tabla 16

Cantidad y costos por Hilo en 2022

Cantidad y costos por Hilo en 2022								
Meses	Cantidad (metros)	Cantidad (Rollos)	Costos					
Enero	17927	3.6	S/ 35.10					
Febrero	25048.4	5	S/ 48.75					
Marzo	18157.1	3.6	S/ 35.10					
Abril	15473.9	3.1	S/ 30.23					
Mayo	24440	4.9	S/ 47.78					
Junio	33572.5	6.7	S/ 65.33					
Julio	21975.2	4.4	S/ 42.90					
Agosto	18194.8	3.6	S/ 35.10					
Setiembre	17062.5	3.4	S/ 33.15					
Octubre	14812.2	3	S/ 29.25					
Noviembre	20161.7	4	S/ 39.00					
Diciembre	5738.2	1.1	S/ 10.73					
Total	232563.5	46.4	S/ 452.40					

Tabla 17

Cantidad y costos por sacos en 2022

C	antidad y costos por sacos	en 2022
	Cantidad	costos
Enero	13790	S/ 10,342.50
Febrero	19268	S/ 14,451.00
Marzo	13967	S/ 10,475.25
Abril	11903	S/ 8,927.25
Mayo	18800	S/ 14,100.00
Junio	25825	S/ 19,368.75
Julio	16904	S/ 12,678.00
Agosto	13996	S/ 10,497.00
Setiembre	13125	S/ 9,843.75
Octubre	11394	S/ 8,545.50
Noviembre	15509	S/ 11,631.75
Diciembre	4414	S/ 3,310.50
Total	178895	S/ 134,171.25

Tabla 18

Maquinas empleadas para producción

-								
Maquinas e	Maquinas empleadas para producción							
Maquinaria y/o equipos	Capacidad	Cap. Teórica (sacos)	Cantidad					
Elevadores	4500 Kg/h	336960	10					
Maquinas pre limpia	5000 Kg/h	374400	2					
Descascaradora Hongjia	5000 Kg/h	374400	2					
Pulidoras de piedra	4500 Kg/h	336960	2					
Pulidora de agua	5000 Kg/h	374400	1					
Mesa Paddy	4600 Kg/h	344448	1					
Clasificadoras	4000 Kg/h	299520	2					
Selectora GROTECH	6000 Kg/h	449280	1					
Balanza	4000 Kg/h	299520	1					
Total			22					

Costos de mantenimiento:

Tabla 19
Costos de mantenimiento:

Máquina	Repuestos	#	Costo Unitario	Costo total	Costo en repuestos	Personal externo y otros	Costo mantenimient o
	Faja BB-94	9	S/ 75.00	S/ 675.00			
	Grasa SKY-Amalie	8	S/ 25.00	S/ 200.00			
Pre limpia	Cribas o mallas	14	S/ 235.00	S/ 3,290.00	S/ 5,924.00	S/2 475 54	S/ 8,399.54
Agromay 1	Eje de ventilador	1	S/ 284.00	S/ 284.00	3/ 5,924.00	S/ 2,475.54	3/ 6,399.54
	Rodajes	5	S/ 144.00	S/ 720.00			
	Motor pedrollo	1	S/ 755.00	S/ 755.00			
	Faja Transportadora	9	S/ 225.00	S/ 2,025.00			
Elevador 1	Grasa SKY-Amalie	2	S/ 25.00	S/ 50.00	S/ 5,145.80	S/ 1,805.20	S/ 6,951.00
	Cangilones	12	S/ 255.90	S/ 3,070.80			
	Mallas	12	S/ 235.00	S/ 2,820.00			
	Faja BB-94	9	S/ 75.00	S/ 675.00			
Mesa Paddy	Grasa SKY-Amalie	5	S/ 25.00	S/ 125.00	S/ 6,578.00		S/ 10,730.36
Zaccaria	Rodajes	7	S/ 144.00	S/ 1,008.00		S/ 4,152.36	
	Arreglo de motor	1	S/ 450.00	S/ 450.00			
	Rectificación inclinación	2	S/ 750.00	S/ 1,500.00			
Elevador 2	Faja Transportadora	14	S/ 225.00	S/ 3,150.00			
	Grasa SKY-Amalie	9	S/ 25.00	S/ 225.00	S/ 7,213.50	S/ 2,158.50	S/ 9,372.00
	Cangilones	15	S/ 255.90	S/ 3,838.50	,	,	,
	Rodillo	13	S/ 200.00	S/ 2,600.00			
	Fajas	6	S/ 75.00	S/ 450.00			
Descascarado	-	2	S/ 190.00	S/ 380.00	S/ 4 67E 00	S/ 3,855.50	S/ 8,530.50
ra Hongjia 1	Arreglo motor	1	S/ 450.00	S/ 450.00	S/ 4,675.00		
	Grasa SKY-Amalie	3	S/ 25.00	S/ 75.00			
	Rodajes	5	S/ 144.00	S/ 720.00			
	Faja Transportadora	14	S/ 225.00	S/ 3,150.00		S/ 2,435.50	
Elevador 8	Grasa SKY-Amalie	6	S/ 25.00	S/ 150.00	S/ 7,138.50		S/ 9,574.00
	Cangilones	15	S/ 255.90	S/ 3,838.50			
	Sensor de color	1	S/ 1,475.50	S/ 1,475.50			
Selectora	Bandejas	3	S/ 550.00	S/ 1,650.00	S/ 3,799.50	S/ 4,975.60	S/ 8,775.10
GROTECH	Rectificación y revisión interna	1	S/ 674.00	S/ 674.00	·	,	·
	Faja BB-94	8	S/ 75.00	S/ 600.00			
	Grasa SKY-Amalie	7	S/ 25.00	S/ 175.00			
Pre limpia Agromay 2	Cribas o mallas	18	S/ 235.00	S/ 4,230.00	S/ 5,865.00	1658.89	S/7,523.89
Agroriay 2	Eje de ventilador	1	S/ 284.00	S/ 284.00			
	Rodajes	4	S/ 144.00	S/ 576.00			
	Cribas	3	S/ 235.00	S/ 705.00			
	Rodajes	4	S/ 144.00	S/ 576.00			
Pulidora de	Botella (rectificación)	4	S/ 450.00	S/ 1,800.00	S/ 4,331.00	4855.5	S/ 9,186.50
agua	Faja	5	S/ 75.00	S/ 375.00			
	Grasa SKY-Amalie	3	S/ 25.00	S/ 75.00			

	Arreglo sin fin	2	S/ 400.00	S/ 800.00			
	Fajas	7	S/ 75.00	S/ 525.00			
Clasificadora	Rectificación de cilindros	3	S/ 550.00	S/ 1,650.00	0/405400	4075.5	0/0.000 = 6
1	Rodajes	16	S/ 144.00	S/ 2,304.00	S/ 4,654.00	4975.5	S/ 9,629.5
	Grasa SKY-Amalie	7	S/ 25.00	S/ 175.00			
Pulidora de	Piedra pulidora	5	S/ 350.00	S/ 1,750.00			
piedra 2	Fajas	6	S/ 75.00	S/ 450.00	S/ 2,200.00	1352.2	S/ 3,552.2
	Faja Transportadora	5	S/ 225.00	S/ 1,125.00			
Elevador 6	Grasa SKY-Amalie	2	S/ 25.00	S/ 50.00	S/ 1,942.70	150.2	S/ 2,092.9
2.07440. 0	Cangilones	3	S/ 255.90	S/ 767.70	G/ 1,0 12.7 0	100.2	G, 2,002.0
	Faja Transportadora	2	S/ 225.00	S/ 450.00			
Elevador 4	Grasa SKY-Amalie	2	S/ 25.00	S/ 50.00	S/ 1,011.80	240.6	S/ 1,252.4
Licvadoi 4	Cangilones	2	S/ 255.90	S/ 511.80	0/ 1,011.00	240.0	0, 1,202.4
		3	S/ 235.90	S/ 675.00			
Eleverden 5	Faja Transportadora				0/4 540 70	250.5	0/4 000 0
Elevador 5	Grasa SKY-Amalie	4	S/ 25.00	S/ 100.00	S/ 1,542.70	350.5	S/ 1,893.2
	Cangilones	3	S/ 255.90	S/ 767.70			
Pulidora de	Piedra pulidora	1	S/ 350.00	S/ 350.00			
piedra 1	Faja	5	S/ 75.00	S/ 375.00	S/ 1,425.00	120	S/ 1,545.00
	Malla interna	2	S/ 350.00	S/ 700.00			
	Faja Transportadora	2	S/ 225.00	S/ 450.00		185.5	S/ 916.40
Elevador 10	Grasa SKY-Amalie	1	S/ 25.00	S/ 25.00	S/ 730.90		
	Cangilones	1	S/ 255.90	S/ 255.90			
Clasificadora	Fajas	2	S/ 75.00	S/ 150.00			
2	Rodajes	2	S/ 144.00	S/ 288.00	S/ 463.00	450.5	S/ 913.50
	Grasa SKY-Amalie	1	S/ 25.00	S/ 25.00			
	Faja Transportadora	1	S/ 225.00	S/ 225.00			
Elevador 7	Grasa SKY-Amalie	2	S/ 25.00	S/ 50.00	S/ 786.80	150.5	S/ 937.30
	Cangilones	2	S/ 255.90	S/ 511.80			
	Faja Transportadora	3	S/ 225.00	S/ 675.00			
Elevador 3	Grasa SKY-Amalie	2	S/ 25.00	S/ 50.00	S/ 1,236.80	120.3	S/ 1,357.1
	Cangilones	2	S/ 255.90	S/ 511.80			
	Faja Transportadora	3	S/ 225.00	S/ 675.00	0// 000 00		
Elevador 9	Grasa SKY-Amalie	2	S/ 25.00	S/ 50.00	S/ 1,236.80	75.5	S/ 1,312.3
	Cangilones	2	S/ 255.90	S/ 511.80			
	Rodillo	5	S/ 200.00	S/ 1,000.00			
Descascarado	Fajas	4	S/ 75.00	S/ 300.00	0/0/00	000 =	0/0 005 =
ra Hongjia 2	eje	2	S/ 190.00	S/ 380.00	S/ 3,132.00	230.5	S/ 3,362.5
	Grasa SKY-Amalie	4	S/ 255.00	S/ 1,020.00			
D-I-	Rodajes	3	S/ 144.00	S/ 432.00	0/040000	050	0/0 450 0
Balanza	Calibrado	6	S/ 350.00	S/ 2,100.00	S/ 2,100.00	350	S/ 2,450.0

Tabla 20 Historial de fallos

Máquina	Total	enero	febrero	marzo	abril	mayo	junio	julio	agosto	septiembre	octubre	noviembre	diciembre
Pre limpia 1	21	3	2	2	1	2	1	1	3	4	0	1	1
Pre limpia 2	15	2	1	1	0	1	2	1	0	2	3	1	1
Descascaradora Hongjia 1	13	0	2	1	0	1	2	1	2	0	1	0	3
Selectora GROTECH	13	1	0	1	0	1	0	1	2	2	3	1	1
Mesa Paddy Zaccaria	12	1	0	1	0	1	0	1	2	2	3	1	1
Pulidora de agua	12	1	1	1	1	1	1	1	1	1	1	1	1
Pulidora de piedra 2	12	2	0	1	0	2	1	2	0	1	1	0	2
Descascaradora Hongjia 2	11	1	1	0	0	1	0	1	2	1	2	1	1
Clasificadora 1	11	0	1	1	2	0	0	1	0	2	2	1	1
Elevador 1	11	2	0	0	2	1	0	0	2	0	1	0	3
Elevador 10	11	0	2	0	2	0	2	0	1	0	1	2	1
Elevador 3	11	0	2	1	2	1	1	1	1	0	0	1	1
Clasificadora 2	10	1	1	2	2	0	1	1	0	0	0	2	0
Elevador 4	10	1	1	1	1	1	2	2	0	0	0	1	0
Elevador 5	10	0	1	1	2	2	1	0	0	1	0	2	0
Elevador6	10	2	1	1	0	0	2	0	2	0	1	0	1
Elevador 7	9	2	0	0	1	0	2	1	0	1	0	2	0
Elevador 2	9	0	0	0	2	0	0	1	0	2	2	1	1
Elevador 8	9	0	0	0	2	1	0	0	2	0	1	0	3
Elevador 9	9	0	2	0	2	0	0	0	1	0	1	2	1
Pulidora de piedra 1	9	0	2	1	0	1	1	1	1	0	0	1	1
Balanza	8	1	1	0	2	0	1	1	0	0	0	2	0
Total	246	20	21	16	24	17	20	18	22	19	23	23	24

Figura 10

Análisis de los fallos por cada máquina

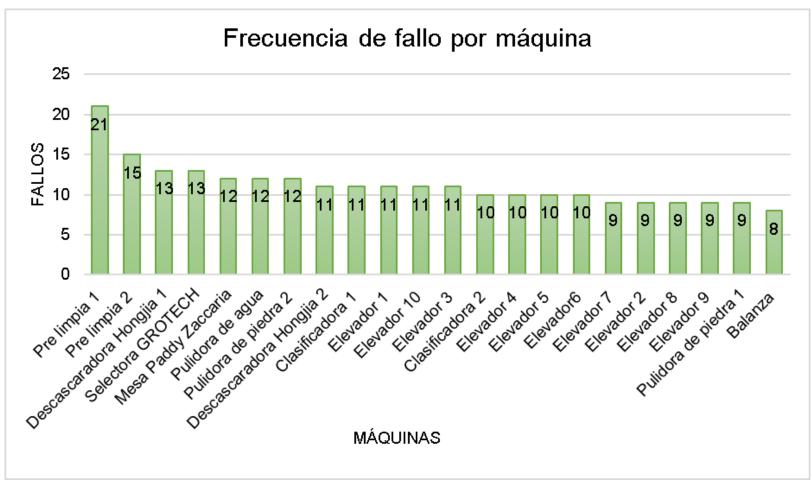


Tabla 21
Costos de mantenimiento inicial

			Costo	
<u>Máquina</u>	horas	costo MO	mantenimientos	Total
Pre limpia Agromay 1	109.70	S/ 5,310.13	S/ 8,399.54	S/ 13,709.67
Pre limpia Agromay 2	78.35	S/ 3,792.95	S/ 7,523.89	S/ 11,316.84
Descascaradora Hongjia 1	67.91	S/ 3,287.23	S/ 8,530.50	S/ 11,817.73
Selectora GROTECH	67.91	S/ 3,287.23	S/ 8,775.10	S/ 12,062.33
Mesa Paddy Zaccaria	62.68	S/ 3,034.36	S/ 10,730.36	S/ 13,764.72
Pulidora de agua	62.68	S/ 3,034.36	S/ 9,186.50	S/ 12,220.86
Pulidora de piedra 2	62.68	S/ 3,034.36	S/ 3,552.20	S/ 6,586.56
Descascaradora Hongjia 2	57.46	S/ 2,781.50	S/ 3,362.50	S/ 6,144.00
Clasificadora 1	57.46	S/ 2,781.50	S/ 9,629.50	S/ 12,411.00
Elevador 1	57.46	S/ 2,781.50	S/ 6,951.00	S/ 9,732.50
Elevador 10	57.46	S/ 2,781.50	S/ 916.40	S/ 3,697.90
Elevador 3	57.46	S/ 2,781.50	S/ 1,357.10	S/ 4,138.60
Clasificadora 2	52.24	S/ 2,528.64	S/ 913.50	S/ 3,442.14
Elevador 4	52.24	S/ 2,528.64	S/ 1,252.40	S/ 3,781.04
Elevador 5	52.24	S/ 2,528.64	S/ 1,893.20	S/ 4,421.84
Elevador6	52.24	S/ 2,528.64	S/ 2,092.90	S/ 4,621.54
Elevador 7	47.01	S/ 2,275.77	S/ 937.30	S/ 3,213.07
Elevador 2	47.01	S/ 2,275.77	S/ 9,372.00	S/ 11,647.77
Elevador 8	47.01	S/ 2,275.77	S/ 9,574.00	S/ 11,849.77
Elevador 9	47.01	S/ 2,275.77	S/ 1,312.30	S/ 3,588.07
Pulidora de piedra 1	47.01	S/ 2,275.77	S/ 1,545.00	S/ 3,820.77
Balanza	41.79	S/ 2,022.91	S/ 2,450.00	S/ 4,472.91
Total	1285	S/ 62,204.43	S/ 110,257.19	S/ 172,461.62

Tabla 22

Análisis de Pareto para la selección de máquinas críticas

Máquina	Costo	%
Mesa Paddy Zaccaria	S/ 13,730.57	7.99%
Pre limpia Agromay 1	S/ 13,649.90	15.94%
Clasificadora 1	S/ 12,379.69	23.15%
Pulidora de agua	S/ 12,186.71	30.24%
Selectora GROTECH	S/ 12,025.33	37.24%
Elevador 8	S/ 11,824.16	44.13%
Descascaradora Hongjia 1	S/ 11,780.73	50.99%
Elevador 2	S/ 11,622.16	57.75%
Pre limpia Agromay 2	S/ 11,274.15	64.32%
Elevador 1	S/ 9,701.19	69.97%
Pulidora de piedra 2	S/ 6,552.41	73.78%
Descascaradora Hongjia 2	S/ 6,112.69	77.34%
Elevador6	S/ 4,593.07	80.01%
Balanza	S/ 4,450.14	82.60%
Elevador 5	S/ 4,393.37	85.16%
Elevador 3	S/ 4,107.29	87.55%
Pulidora de piedra 1	S/ 3,795.16	89.76%
Elevador 4	S/ 3,752.57	91.95%
Elevador 10	S/ 3,666.59	94.08%
Elevador 9	S/ 3,562.46	96.16%
Clasificadora 2	S/ 3,413.67	98.14%
Elevador 7	S/ 3,187.46	100.00%
Total	S/ 172,461.62	

Figura 11

Análisis de Pareto para la selección de máquinas críticas

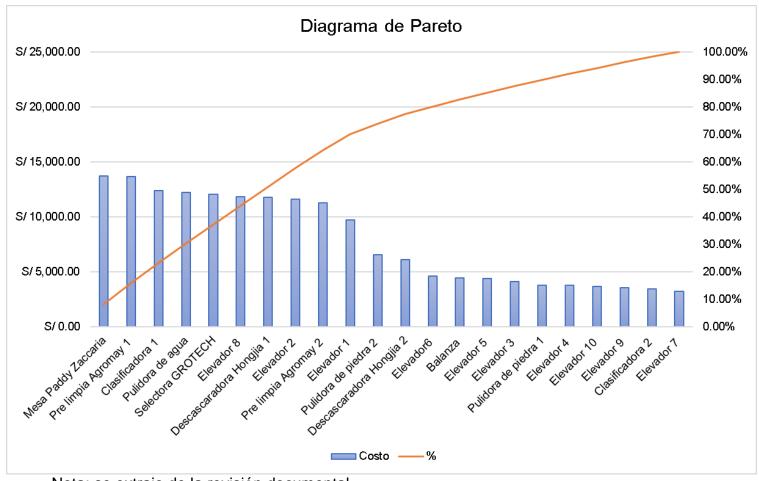


Tabla 23

Remuneraciones mensuales

	Remuneraciones mensuales	6	
Personal	Remuneración		Pago mensual
Jefe de planta	S/ 2,012.50	1	S/ 2,012.50
Analista de calidad	S/ 1,265.00	1	S/ 1,265.00
Maquinista 1	S/ 2,070.00	1	S/ 2,070.00
Operarios	S/ 1,495.00	4	S/ 5,980.00
Total	S/ 6,842.50	7	S/ 11,327.50
Co		S/ 48.41	

Tabla 24
Costo por tiempo de parada al mes

	Costo por tiempo	de parada al mes
Mes	Tiempos de parada	Costo de horas
	(horas)	perdidas
Ene	104.47	S/ 5,057.20
Feb	109.70	S/ 5,310.37
Mar	83.58	S/ 4,045.95
Abr	125.37	S/ 6,068.93
May	88.80	S/ 4,298.64
Jun	104.47	S/ 5,057.20
Jul	94.02	S/ 4,551.33
Ago	114.92	S/ 5,563.06
Sep	99.25	S/ 4,804.51
Oct	120.14	S/ 5,815.75
Nov	120.14	S/ 5,815.75
Dic	125.37	S/ 6,068.93
Total	1290.23	S/ 62,457.61

Figura 12

Tiempo de paras mensual

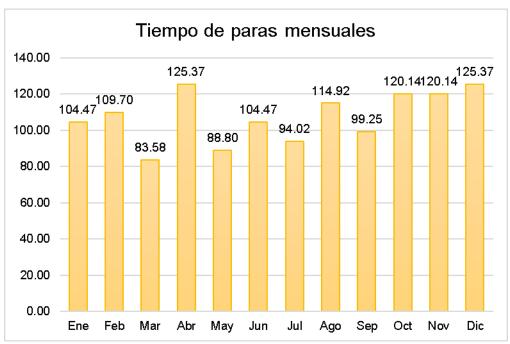


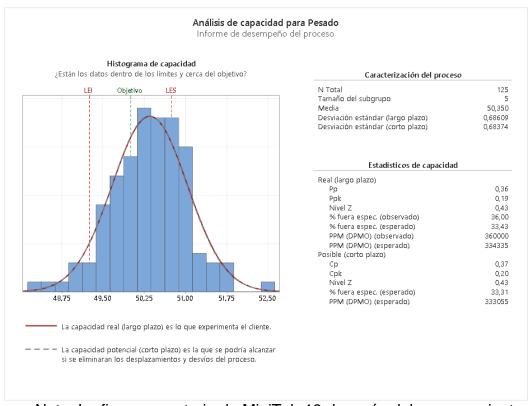
Tabla 25

Eficiencia, mermas y pérdidas económicas

Mes	Arroz cáscara (kg)	Arroz pilado (kg)	Eficiencia física	Mermas (kg)	Pérdidas económicas
Enero	1262412	694327	0.55	4826.50	S/ 13,996.85
Febrero	1902243	970144	0.51	6743.80	S/ 19,557.02
Marzo	1326865	703238	0.53	4888.45	S/ 14,176.51
Abril Mayo Junio Julio Agosto Septiembre Octubre	1175130 1893160 2653651 1605880 1355190 1295772 1195183	599316 946580 1300289 851116 704699 660844 573688	0.51 0.50 0.49 0.53 0.52 0.51 0.48	4166.05 6580.00 9038.75 5916.40 4898.60 4593.75 3987.90	S/ 12,081.55 S/ 19,082.00 S/ 26,212.38 S/ 17,157.56 S/ 14,205.94 S/ 13,321.88 S/ 11,564.91
Noviembre	1593629	780878	0.49	5428.15	S/ 15,741.64
Diciembre	453561	222245	0.49	1544.90	S/ 4,480.21
Total	17712674	9007363	0.51	62613.25	S/ 181,578.43

Análisis de capacidad para el pesado en la situación actual 1 mes

La implementación de la mejora de la producción implicó tomar datos del pesado en el primer mes para determinar la situación actual en la empresa INDUPERSA dio los siguientes resultados:

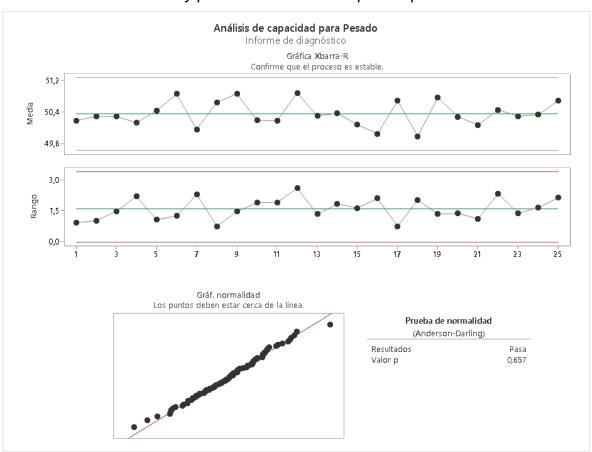

- Media: La media del peso de los sacos de arroz es de 50.350 kg, lo cual es ligeramente superior al objetivo de 50 kg. Esto indica que el proceso inicialmente está produciendo sacos con un poco más de peso del necesario, lo que podría implicar un desperdicio de recursos.
- Desviación Estándar: La desviación estándar a largo plazo y a corto plazo es relativamente alta, lo que significa que hay una variabilidad considerable en los pesos de los sacos de arroz. Este alto nivel de variabilidad puede conducir a un mayor número de sacos que no cumplen con las especificaciones de peso.
- Estadísticos de Capacidad (Pp, Ppk, Cp, Cpk): Estos indicadores son menores de 1, lo que sugiere que el proceso inicialmente tiene una capacidad baja para producir sacos de arroz dentro de los límites de especificación. En otras palabras, existe una considerable cantidad de sacos que no cumplen con los estándares de peso.
- Nivel Z: El nivel Z es de 0.43, lo cual es bajo. Este indicador mide cuántas desviaciones estándar está un punto de datos del promedio de un conjunto de datos. Un nivel Z bajo indica que hay una gran cantidad de sacos de arroz que están lejos del peso objetivo.
- % fuera de las especificaciones (observado y esperado): Tanto el porcentaje observado como el esperado de sacos de arroz que están fuera de las especificaciones es alto, lo que significa que hay una cantidad considerable de sacos que no cumplen con los estándares de peso.
- PPM (DPMO) (observado y esperado): Los Defectos Por Millón de Oportunidades (DPMO) tanto observados como esperados son muy altos, lo que significa que hay un alto número de sacos de arroz que no cumplen con las especificaciones.

En conclusión, los resultados del primer mes muestran que hay una necesidad significativa de mejora en el proceso de pesado de los sacos de arroz.

El ciclo de Deming, al ser implementado correctamente, debería ayudar a INDUPERSA a identificar las causas de esta alta variabilidad y a implementar medidas correctivas para mejorar la consistencia y reducir la cantidad de sacos de arroz que no cumplen con las especificaciones.

Figura 13

Análisis de la capacidad en el desempeño del proceso de pesado en el mes 1


Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el primer mes en la empresa Indupersa

La media y variación del proceso de pesado en el mes 1 son estables y no se encuentran fuera de control. En términos de la prueba de normalidad de Anderson-Darling, la hipótesis nula es que tus datos siguen una distribución normal. Un p-valor de 0.657 es relativamente grande (mayor que el típico umbral de 0.05 que se usa a menudo en las pruebas de hipótesis). Por lo tanto, no rechazaríamos la hipótesis nula y podríamos concluir que tus datos probablemente siguen una distribución normal.

En resumen, un p-valor de 0.657 en una prueba de Anderson-Darling indica que no hay suficiente evidencia para rechazar la hipótesis de que tus datos siguen una distribución normal.

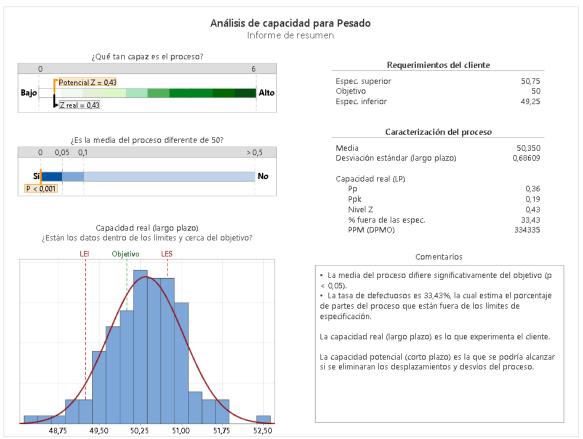

Figura 14

Gráfico de control X – R y prueba de normalidad para el pesado en el mes 1

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el primer mes en la empresa Indupersa

Figura 15
Resumen del análisis de la capacidad para el pesado en el mes 1

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el primer mes en la empresa Indupersa

Figura 16 Informe de resultados del análisis de capacidad para el pesado en el mes 1

Análisis de capacidad para Pesado Tarjeta de informe Estado Descripción La media y la variación del proceso son estables. No hay puntos fuera de control. Número de subgrupos Usted tiene 25 subgrupos. Para un análisis de capacidad, generalmente esto es suficiente para captar las diferentes fuentes de variación del proceso cuando los subgrupos se recolectan durante un período de tiempo suficientemente largo. Normalidad Sus datos pasaron la prueba de normalidad. Mientras tenga suficientes datos, las estimaciones de la capacidad deberían ser razonablemente precisas. El número total de observaciones es 100 o más. Las estimaciones de la capacidad deberían ser razonablemente precisas.

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el primer mes en la empresa Indupersa.

Tabla 26

Tiempos al año en las máquinas empleadas en la situación actual

Tiempos al año en las máquinas empleadas				
Indicador	Tiempo de paradas	horas		
Tiempo disponible: TD	TD	4992		
	Descanso y paros previstos	367		
Tiempo de funcionamiento: TF	Mantenimiento preventivo	262		
Hempo de funcionamiento. Tr	Mantenimiento productivo	165		
	TF	4198		
Tiempe del periode de	Preparación para operación	90		
Tiempo del periodo de operación: TOP	ajustes de cambio	56		
operación. Tor	TOP	4052		
Tiempo de operación neta:	Averías y reparaciones.	82		
TON	Otros por suciedad por viruta	47		
	TON	3923		
	Paradas cortas	67		
Tiempo operativo real: TOR	Reducción de velocidad por fallo	91		
	TOR	3766		
Tiempo productivo neto: TPN	Tiempo perdido en defectuosos	1290		
nempo productivo neto. TEN	TPN	2476		

Tabla 27
Indicadores de TPM en la situación actual.

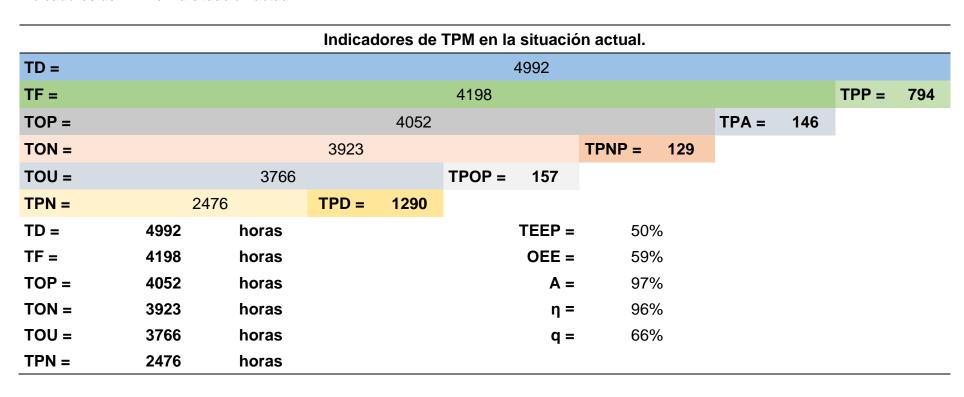


Tabla 28

Evaluación de los indicadores en la situación inicial

Tipo de indicador	Indicador	Valor actual	Unidad de medida
	Capacidad proyectada	6000	kg/hora
	Capacidad real	4600	kg/hora
	Capacidad utilizada	2482.92	kg/hora
	Capacidad ociosa	2117.08	kg/hora
Indicadores	Productividad de materia prima	52.48%	%
productivos	Productividad de mano de obra	354.70	kg/op.
	Merma	200.68	kg/día
	%Quebrados	10.31%	%
	Eficiencia económica	S/ 1.26	S/
	Eficiencia de planta	53.98%	%
	Utilización	41.38%	%
	Disponibilidad	96.53%	%
Indicadores de	Indice de eficiencia	95.99%	%
mantenimiento	Ìndice de calidad	65.74%	%
mantenninento	TEEP	49.59%	%
	OEE	58.97%	%
	Ср	0.37	
	Cpk	0.2	
	Nivel Z	0.43	
Indicadores de	% fuera espec. (esperado)	33.31	%
capacidad	PPM (OPMO) (esperado)	333055	Kg
	Media	50.35	Kg
	Desviación estándar (largo plazo)	0.68609	Kg
	Desviación estándar (corto plazo)	0.68374	Kg

4.2. Resultados del objetivo 2: "Propuesta de mejora en los procesos productivos *en la empresa Indupersa SAC"*

Introducción

En un mercado altamente competitivo, donde cada ventaja cuenta, la mejora constante de la productividad se convierte en un factor esencial para el éxito empresarial. En esta presentación, nuestro objetivo principal es presentar propuestas fundamentales que impulsarán la productividad en nuestra empresa. Para lograrlo, hemos diseñado una agenda que aborda tres áreas cruciales:

Plan de Mantenimiento Preventivo y Predictivo.

Enfrentar los desafíos del mantenimiento es una tarea esencial para minimizar el tiempo de inactividad no planificado y reducir los costos imprevistos. La implementación de un plan de mantenimiento preventivo basado en la simulación de procesos es nuestra propuesta clave. Esta estrategia permite anticiparnos a las necesidades de mantenimiento mediante la predicción precisa de cuándo y qué equipos necesitarán atención. La herramienta clave para este enfoque es la simulación de procesos, que nos brinda una visión detallada de las necesidades futuras de mantenimiento.

Beneficios: Mayor confiabilidad de equipos, reducción de costos de reparación y tiempo de inactividad.

Propuesta: Implementación de un plan de mantenimiento preventivo basado en simulación de procesos.

Herramienta Clave: Simulación de Procesos para predecir el mantenimiento necesario.

Análisis de Capacidad del Proceso.

Evaluar la capacidad de nuestros procesos es una acción crítica que nos ayudará a identificar áreas de mejora. Este análisis no solo conduce a una mayor eficiencia, sino que también reduce el desperdicio de recursos y mejora la calidad de nuestros productos. Nuestra propuesta incluye la realización de un análisis de capacidad del proceso específicamente orientado hacia el pesado y la

reducción de mermas. Para respaldar este proceso, utilizaremos herramientas

estadísticas y de análisis de datos que nos proporcionarán información precisa

y accionable.

Beneficios: Mayor eficiencia, menor desperdicio de recursos y mejor calidad del

producto.

Propuesta: Realizar un análisis de capacidad del proceso para pesado y

reducción de mermas.

Herramienta Clave: Estadísticas y herramientas de análisis de datos.

Estandarización de Procesos

La estandarización de procesos es una estrategia clave para asegurar la

consistencia, eficiencia y reducción de errores en nuestras operaciones. Nuestra

propuesta implica la creación de un Manual de Procedimientos integral que

documentará y estandarizará todos nuestros procesos. Este manual servirá

como una guía esencial para nuestros empleados, asegurando que cada tarea

se realice de manera uniforme y precisa. El Manual de Procedimientos se

convertirá en una herramienta clave para mantener el control y la consistencia

en nuestras operaciones

Beneficios: Mayor consistencia, entrenamiento más eficiente y reducción de

errores.

Propuesta: Crear un Manual de Procedimientos que documente y estandarice

todos los procesos.

Herramienta Clave: Manual de Procedimientos.

Implementación y Seguimiento

La implementación de estas propuestas requerirá un enfoque metódico y un

compromiso total de todos los miembros de nuestro equipo. Los pasos clave

incluyen la designación de equipos responsables, la implementación del Plan de

Mantenimiento, la realización del Análisis de Capacidad del Proceso, la creación

y distribución del Manual de Procedimientos, el entrenamiento de empleados y

el monitoreo continuo. Utilizaremos métricas clave, como el tiempo de

inactividad, los costos de mantenimiento, la tasa de mermas y el cumplimiento

63

del Manual de Procedimientos, para evaluar nuestro progreso y realizar ajustes según sea necesario.

Resultados Esperados

Al implementar estas propuestas, anticipamos una serie de beneficios significativos, que incluyen una mayor productividad, una reducción en los costos de mantenimiento, una mayor eficiencia en el proceso de pesado, una disminución de las mermas y procesos más consistentes y controlados. Estos resultados impulsarán nuestro éxito empresarial y nos ayudarán a mantener una ventaja competitiva en nuestro mercado.

Para alcanzar nuestros objetivos, es crucial que cada miembro del equipo esté comprometido con estas iniciativas. Nuestro próximo paso implica diseñar un plan de implementación detallado que establecerá claramente los roles y responsabilidades. También será esencial el seguimiento continuo para evaluar nuestro progreso y realizar ajustes según sea necesario. Juntos, podemos lograr mejoras significativas en la productividad y asegurarnos de que nuestra empresa continúe siendo competitiva y exitosa en el mercado.

Plan de mantenimiento preventivo

Tabla 29

Tiempo de funcionamiento después de la última reparación por máquina.

				Tiempo de	funcionam	niento después de	la última re	eparación r	oor máguir	ıa.			
Mesa Paddy Zaccaria	Pre limpia Agromay 1	Clasificadora 1	Pulidora de agua	Selectora GROTECH	Elevador 8	•		Pre limpia Agromay 2	Elevador 1	Pulidora de piedra 2	Descascaradora Hongjia 2	Elevador 6	Balanza
369.40	247.96	448.67	436.03	375.21	556.69	367.78	522.38	319.92	464.97	386.68	456.34	463.61	548.24
356.57	251.96	467.12	391.89	389.58	580.17	353.56	572.61	365.12	426.72	381.64	477.89	381.50	543.26
399.99	253.70	435.13	458.71	376.74	561.26	444.97	531.35	374.80	461.89	375.69	468.47	387.12	554.01
368.51	247.93	436.79	460.73	371.66	538.21	368.20	551.42	366.89	452.95	377.08	464.38	444.73	572.55
386.45	229.68	473.95	455.18	395.86	529.89	360.23	569.89	350.75	470.62	392.33	469.09	401.87	562.52
381.10	209.41	482.35	401.53	403.43	557.66	422.80	566.56	353.51	444.35	445.85	460.16	383.54	586.75
407.22	249.09	464.53	392.24	400.87	546.52	367.49	520.94	309.12	450.48	393.56	457.28	396.82	549.79
363.40	236.71	444.46	402.83	392.48	545.14	361.64	573.02	271.91	452.46	434.18	467.78	389.46	556.69
345.36	255.44	450.69	402.37	361.10	567.72	362.62	564.62	344.57	457.08	388.07	460.63	385.45	583.34
420.16	213.71	475.71	390.74	408.43	539.15	375.27	520.83	356.25	447.77	420.30	470.60	380.39	545.62
375.28	279.34	464.65	434.19	396.70	582.95	374.84	521.15	324.01	452.10	388.60	477.99	390.11	571.91
354.35	257.13	427.25	453.51	393.34	545.78	443.08	523.61	266.65	454.43	392.73	461.19	393.36	601.38
349.71	206.17	472.61	384.63	402.53	540.81	366.19	521.40	303.26	467.50	396.88	459.98	382.70	543.94
383.74	259.11	457.71	434.39	360.81	546.41	359.89	574.35	277.22	427.13	403.07	477.91	385.77	540.65
397.14	228.67	438.76	469.88	397.84	529.89	407.91	533.11	301.16	439.42	401.45	477.77	391.64	584.57
393.62	267.10	424.09	380.88	381.49	574.78	361.74	555.60	390.35	455.91	408.49	460.06	375.57	560.45
388.86	209.33	426.23	420.83	357.72	530.31	381.46	525.34	291.28	469.82	380.47	472.72	380.28	540.24
353.39	270.62	428.22	388.31	383.12	556.27	355.60	517.87	374.94	429.64	378.13	464.46	402.36	567.06

Nota: Se extrajo la información del análisis documental del funcionamiento de las máquinas de forma continua

Mesa Paddy Zaccaria

Figura 17
Identificación del tipo de distribución del comportamiento de fallo de la Mesa
Paddy Zaccaria

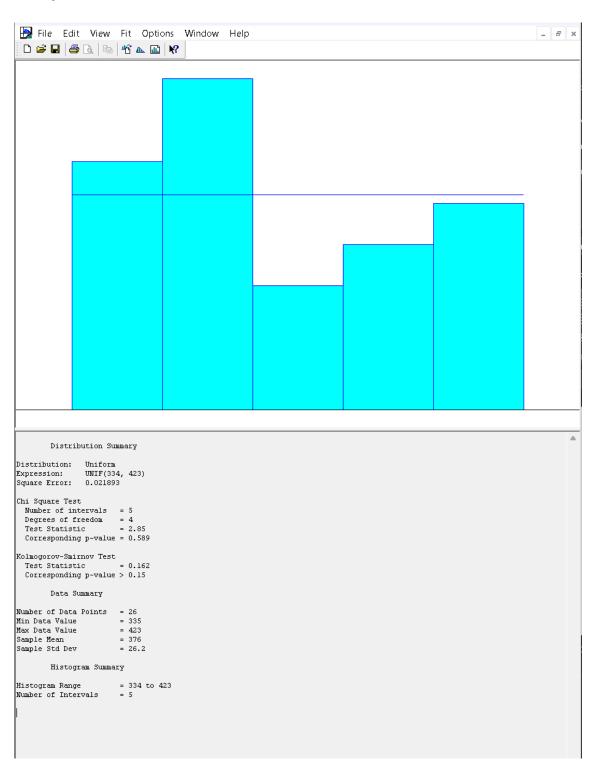
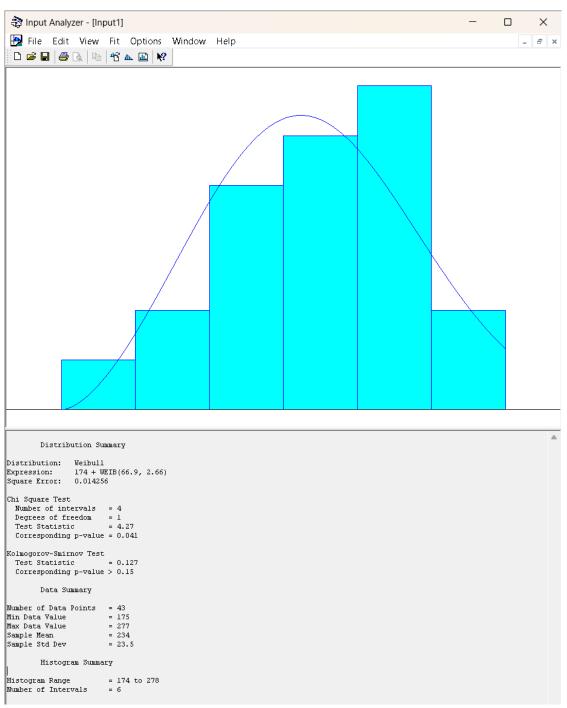


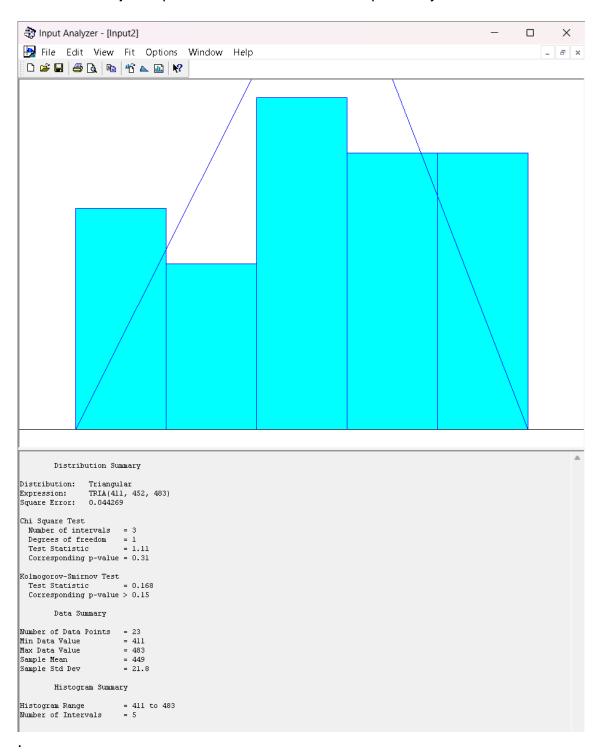
Tabla 30 Simulación del comportamiento de fallo de la Mesa Paddy Zaccaria

	Variables Uniformes					
Inferior	Superior					
334.00	423.00					
		Mesa Paddy				
n	ri	Zaccaria				
1	0.3978	369.40				
2	0.2536	356.57				
3	0.7415	399.99				
4	0.3878	368.51				
5	0.5893	386.45				
6	0.5292	381.10				
7	0.8227	407.22				
8	0.3304	363.40				
9	0.1276	345.36				
10	0.9681	420.16				
11	0.4638	375.28				
12	0.2287	354.35				
13	0.1765	349.71				
14	0.5589	383.74				
15	0.7095	397.14				
16	0.6699	393.62				
17	0.6164	388.86				
18	0.2179	353.39				
19	0.2136	353.01				
20	0.6559	392.38				

Pre limpia Agromay 1

Figura 18
Identificación del tipo de distribución del comportamiento de fallo de la maquina
Pre limpia Agromay 1




Tabla 31 Simulación del comportamiento de fallo de la maquina Pre limpia Agromay 1

VARIABLES WEIBULL						
Alfa	Beta	Gama				
2.6600	66.9000	174.0000				
n	ri	Pre limpia Agromay 1				
1	0.7291	247.96				
2	0.7773	251.96				
3	0.7967	253.70				
4	0.7287	247.93				
5	0.4587	229.68				
6	0.1681	209.41				
7	0.7432	249.09				
8	0.5691	236.71				
9	0.8150	255.44				
10	0.2210	213.71				
11	0.9648	279.34				
12	0.8317	257.13				
13	0.1329	206.17				
14	0.8501	259.11				
15	0.4426	228.67				
16	0.9101	267.10				
17	0.1672	209.33				
18	0.9299	270.62				
19	0.2038	212.37				
20	0.9824	287.08				

Clasificadora 1

Figura 19
Identificación del tipo de distribución del comportamiento de fallo de la maquina
Clasificadora 1

Nota: Se extrajo del procesamiento de fallos en Input Analyzer en Arena 16

70

Tabla 32 Simulación del comportamiento de fallo de la maquina Clasificadora 1

а	b	С	$\frac{c-a}{b-a} =$
411.00	452.00	483.00	0.57
			Clasificadora
n	rj	ri	1
1	0.5355	0.2737	448.67
2	0.4931	0.6076	467.12
3	0.6101	0.7037	435.13
4	0.6438	0.7593	436.79
5	0.0301	0.7643	473.95
6	0.4807	0.9819	482.35
7	0.5127	0.5527	464.53
8	0.7142	0.9409	444.46
9	0.1958	0.3039	450.69
10	0.5212	0.8076	475.71
11	0.3211	0.5553	464.65
12	0.2988	0.0510	427.25
13	0.3630	0.7323	472.61
14	0.0250	0.4209	457.71
15	0.1125	0.1486	438.76
16	0.2548	0.0331	424.09
17	0.8079	0.3092	426.23
18	0.9043	0.4116	428.22
19	0.4685	0.0774	431.03
20	0.9914	0.5294	430.74

Variables Triangulares

Pulidora de agua

Figura 20
Identificación del tipo de distribución del comportamiento de fallo de la Pulidora de agua

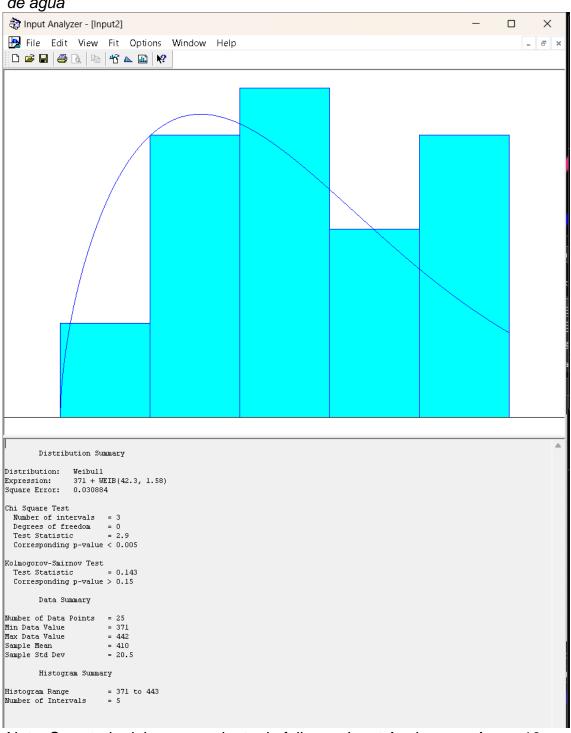


Tabla 33 Simulación del comportamiento de fallo de la maquina Pre limpia Agromay 1

	VARIABLES WEIBULL					
Alfa	Beta	Gama				
1.5800	42.3000	371				
n	ri	Pulidora de agua				
1	0.8609	436.03				
2	0.2796	391.89				
3	0.9578	458.71				
4	0.9624	460.73				
5	0.9485	455.18				
6	0.4497	401.53				
7	0.2860	392.24				
8	0.4716	402.83				
9	0.4640	402.37				
10	0.2591	390.74				
11	0.8483	434.19				
12	0.9435	453.51				
13	0.1539	384.63				
14	0.8496	434.39				
15	0.9782	469.88				
16	0.0955	380.88				
17	0.7263	420.83				
18	0.2163	388.31				
19	0.6139	411.99				
20	0.0287	375.51				

Selectora GROTECH

Figura 21

Identificación del tipo de distribución del comportamiento de fallo de la Selectora GROTECH

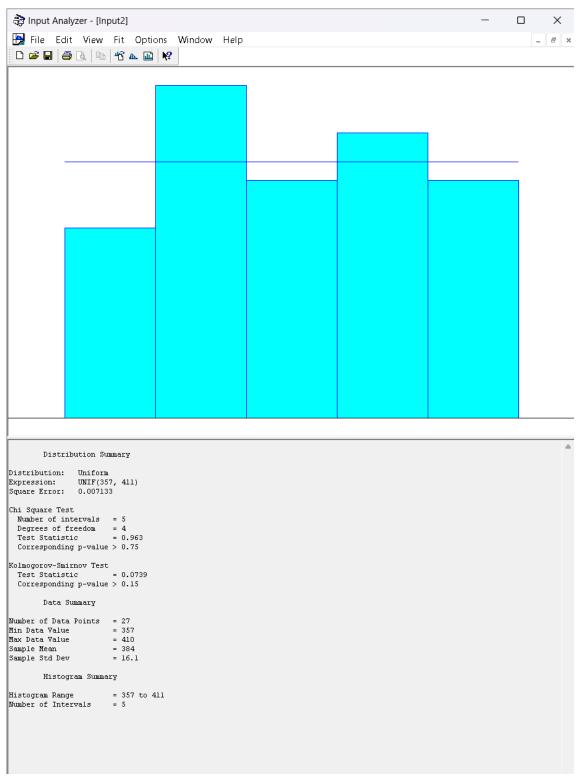


Tabla 34
Simulación del comportamiento de fallo de la Selectora GROTECH

	Variables U	Iniformes
Inferior	Superior	
357.00	411.00	
n	ri	Selectora GROTECH
1	0.3372	375.21
2	0.6034	389.58
3	0.3655	376.74
4	0.2714	371.66
5	0.7196	395.86
6	0.8598	403.43
7	0.8124	400.87
8	0.6570	392.48
9	0.0758	361.10
10	0.9525	408.43
11	0.7352	396.70
12	0.6730	393.34
13	0.8432	402.53
14	0.0705	360.81
15	0.7562	397.84
16	0.4535	381.49
17	0.0133	357.72
18	0.4836	383.12
19	0.0553	359.99
20	0.0633	360.42

Elevador 8

Figura 22 Identificación del tipo de distribución del comportamiento de fallo del Elevador 8

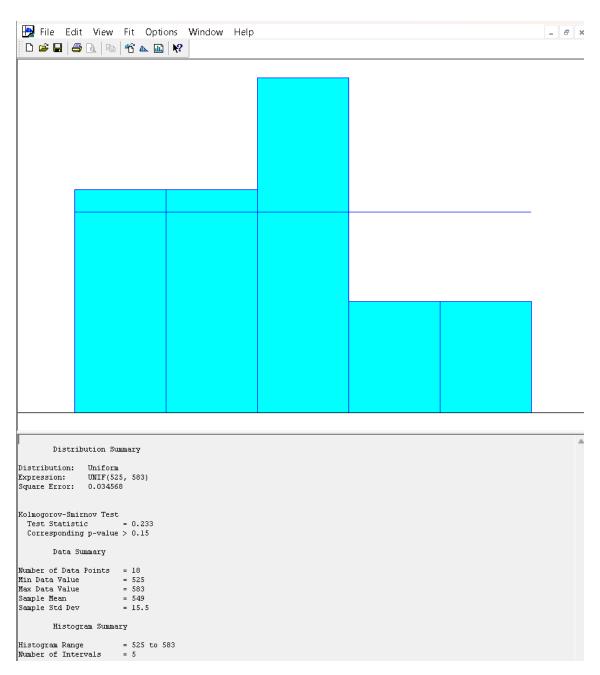


Tabla 35 Simulación del comportamiento de fallo de la maquina Pre limpia Agromay 1

	Variables Unifor	mes
Inferior	Superior	
525.00	583.00	
n	ri	Elevador 8
1	0.5464	556.69
2	0.9513	580.17
3	0.6251	561.26
4	0.2278	538.21
5	0.0844	529.89
6	0.5631	557.66
7	0.3711	546.52
8	0.3472	545.14
9	0.7366	567.72
10	0.2440	539.15
11	0.9992	582.95
12	0.3583	545.78
13	0.2726	540.81
14	0.3691	546.41
15	0.0844	529.89
16	0.8583	574.78
17	0.0915	530.31
18	0.5391	556.27
19	0.6949	565.31
20	0.0817	529.74

Descascaradora Hongjia 1

Figura 23
Identificación del tipo de distribución del comportamiento de fallo de la
Descascaradora Hongjia 1

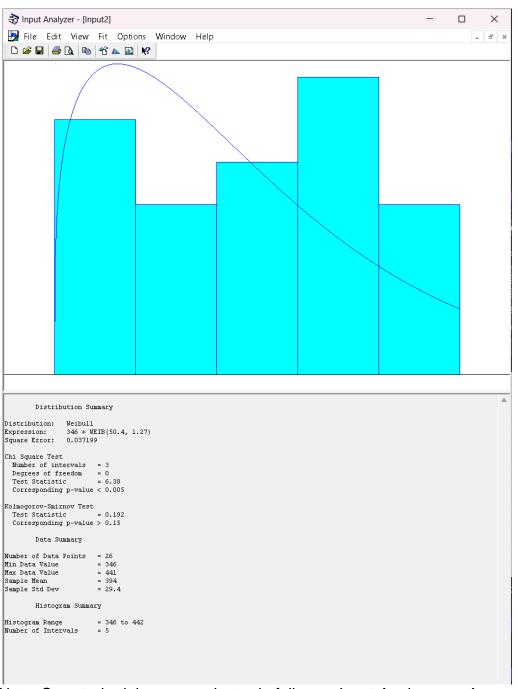


Tabla 36 Simulación del comportamiento de fallo de la maquina Pre limpia Agromay 1

_	VARIABLES WEIBULL							
Alfa	Beta	Gama						
1.2700	50.4000	346						
n	ri	Descascaradora Hongjia 1						
1	0.2914	367.78						
2	0.0860	353.56						
3	0.9052	444.97						
4	0.2974	368.20						
5	0.1818	360.23						
6	0.8186	422.80						
7	0.2873	367.49						
8	0.2025	361.64						
9	0.2169	362.62						
10	0.3944	375.27						
11	0.3886	374.84						
12	0.8997	443.08						
13	0.2686	366.19						
14	0.1768	359.89						
15	0.7271	407.91						
16	0.2039	361.74						
17	0.4726	381.46						
18	0.1147	355.60						
19	0.5464	387.89						
20	0.2739	366.55						

Elevador 2

Figura 24 Identificación del tipo de distribución del comportamiento de fallo del Elevador 2

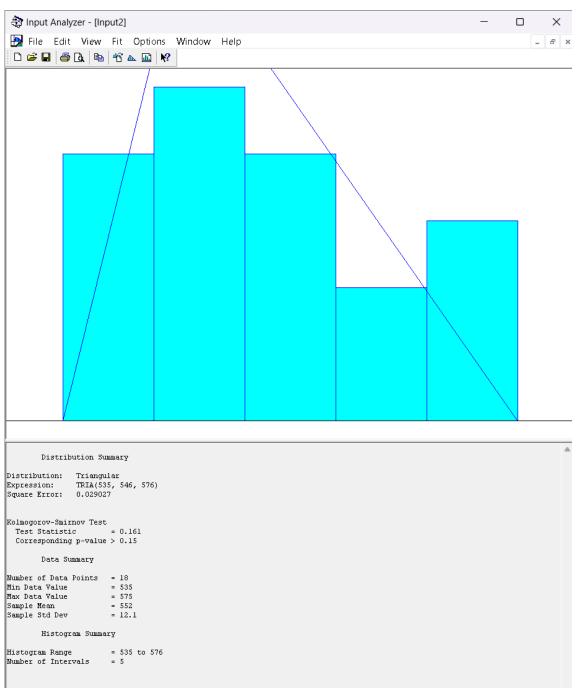


Tabla 37 Simulación del comportamiento de fallo de la maquina Pre limpia Agromay 1

Variables Triangulares							
а	b	С	$\frac{c-a}{b-a} = 0.27$				
535	546.00	576.00	0.21				
n	rj	ri	Elevador 2				
1	0.6387	0.3801	522.38				
2	0.2324	0.8413	572.61				
3	0.4147	0.7614	531.35				
4	0.2109	0.1604	551.42				
5	0.0157	0.7242	569.89				
6	0.2523	0.5927	566.56				
7	0.4649	0.3021	520.94				
8	0.1696	0.8601	573.02				
9	0.1528	0.5220	564.62				
10	0.3055	0.2959	520.83				
11	0.4682	0.3138	521.15				
12	0.6478	0.4431	523.61				
13	0.4125	0.3278	521.40				
14	0.2630	0.9214	574.35				
15	0.4923	0.8155	533.11				
16	0.0750	0.2523	555.60				
17	0.8258	0.5259	525.34				
18	0.6290	0.1205	517.87				
19	0.8149	0.4936	524.65				
20	0.6433	0.4979	524.74				

Pre limpia Agromay 2

Figura 25
Identificación del tipo de distribución del comportamiento de fallo de la maquina
Pre limpia Agromay 2

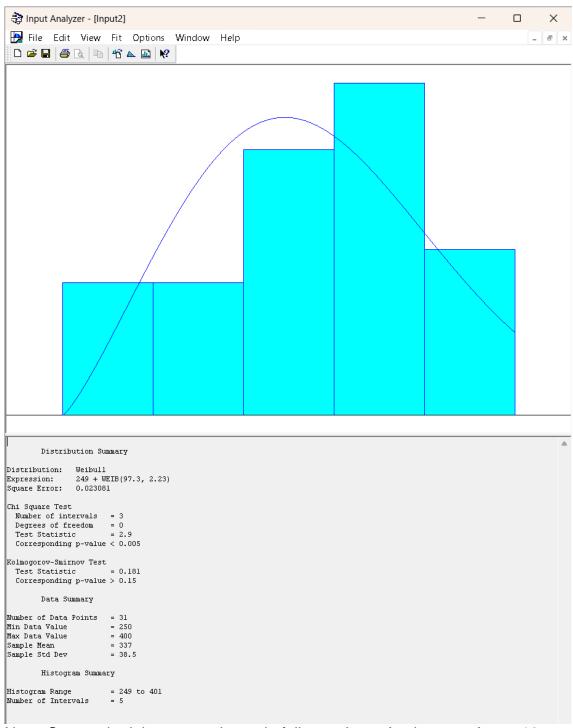


Tabla 38 Simulación del comportamiento de fallo de la maquina Pre limpia Agromay 1

	VARIABLES WEIBULL	
Alfa	Beta	Gama
2.3300	97.3000	249
n	ri	Corte
1	0.3804	319.92
2	0.7791	365.12
3	0.8379	374.80
4	0.7907	366.89
5	0.6704	350.75
6	0.6931	353.51
7	0.2779	309.12
8	0.0338	271.91
9	0.6167	344.57
10	0.7148	356.25
11	0.4204	324.01
12	0.0186	266.65
13	0.2262	303.26
14	0.0544	277.22
15	0.2086	301.16
16	0.9081	390.35
17	0.1336	291.28
18	0.8387	374.94
19	0.5860	341.19
20	0.9055	389.64

Elevador 1

Figura 26
Identificación del tipo de distribución del comportamiento de fallo del Elevador 1

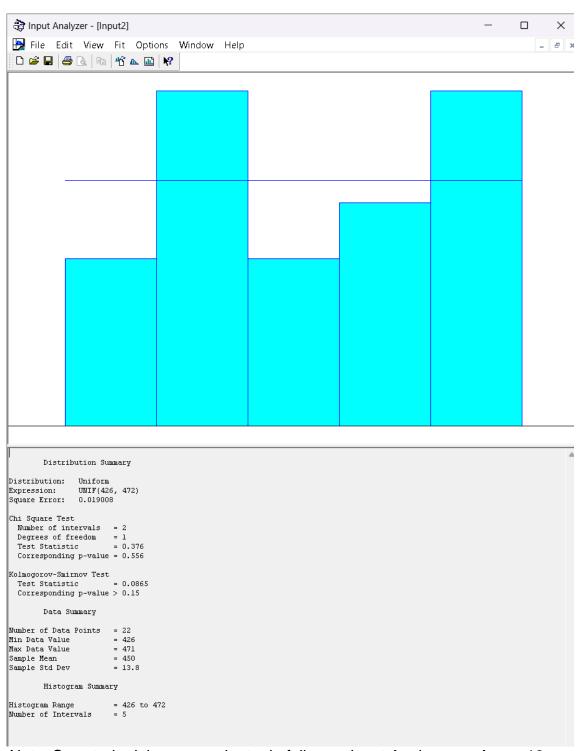


Tabla 39 Simulación del comportamiento de fallo de la maquina Pre limpia Agromay 1

	Variables Uniform	nes
Inferior	Superior	
426.00	472.00	
n	ri	Elevador 1
1	0.8472	464.97
2	0.0157	426.72
3	0.7803	461.89
4	0.5859	452.95
5	0.9700	470.62
6	0.3990	444.35
7	0.5322	450.48
8	0.5752	452.46
9	0.6757	457.08
10	0.4732	447.77
11	0.5674	452.10
12	0.6180	454.43
13	0.9021	467.50
14	0.0246	427.13
15	0.2916	439.42
16	0.6502	455.91
17	0.9525	469.82
18	0.0792	429.64
19	0.9078	467.76
20	0.6822	457.38

Pulidora de piedra 2

Figura 27
Identificación del tipo de distribución del comportamiento de fallo de la Pulidora de piedra 2

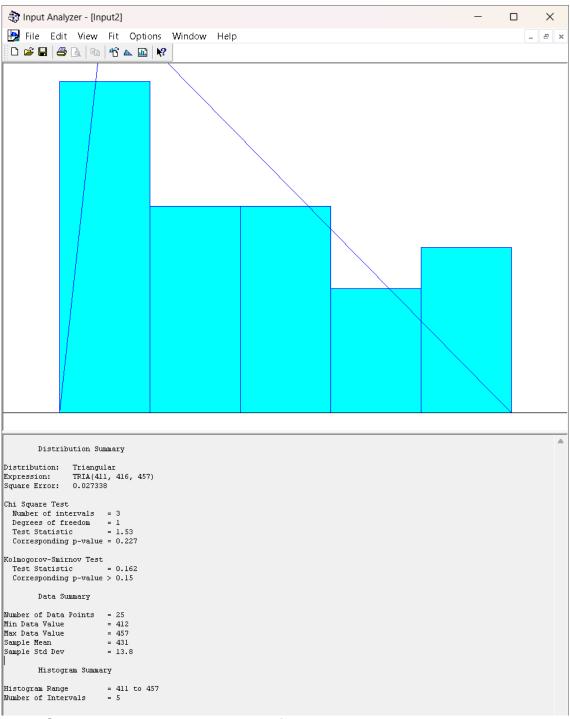


Tabla 40 Simulación del comportamiento de fallo de la maquina Pre limpia Agromay 1

Variables Triangulares			
а	<u> </u>		_
			$\frac{b-a}{b-1}$ 0.11
411.00	416.00	457.00	
n	rj	ri	Pulidora de piedra 2
1	0.4270	0.4885	386.68
2	0.3280	0.2978	381.64
3	0.6618	0.0334	375.69
4	0.5711	0.0989	377.08
5	0.5821	0.6668	392.33
6	0.0545	0.5740	445.85
7	0.2664	0.7005	393.56
8	0.0759	0.2540	434.18
9	0.4378	0.5358	388.07
10	0.0125	0.0408	420.30
11	0.8241	0.5535	388.60
12	0.8306	0.6778	392.73
13	0.9896	0.7826	396.88
14	0.5970	0.9005	403.07
15	0.8829	0.8740	401.45
16	0.3265	0.9664	408.49
17	0.3722	0.2492	380.47
18	0.8170	0.1467	378.13
19	0.1273	0.3157	382.08
20	0.9769	0.5264	387.78

Descascaradora Hongjia 2

Figura 28
Identificación del tipo de distribución del comportamiento de fallo de la
Descascaradora Hongjia 2

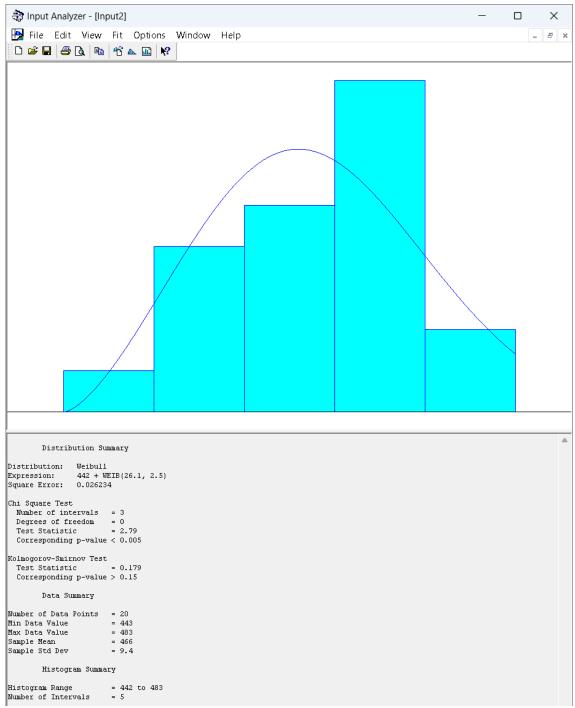


Tabla 41
Simulación del comportamiento de fallo de la maquina Pre limpia Agromay 1

VARIABLES WEIBULL				
Alfa	Beta	Gama		
2.5000	26.1000	442		

Descascaradora

	20000000.000.0		
n	ri	Hongjia 2	
1	0.2005	456.34	
2	0.8911	477.89	
3	0.6450	468.47	
4	0.4938	464.38	
5	0.6662	469.09	
6	0.3323	460.16	
7	0.2308	457.28	
8	0.6209	467.78	
9	0.3499	460.63	
10	0.7154	470.60	
11	0.8928	477.99	
12	0.3709	461.19	
13	0.3255	459.98	
14	0.8915	477.91	
15	0.8891	477.77	
16	0.3285	460.06	
17	0.7774	472.72	
18	0.4968	464.46	
19	0.3648	461.03	
20	0.8413	475.31	

Elevador 6

Figura 29
Identificación del tipo de distribución del comportamiento de fallo del Elevador 6

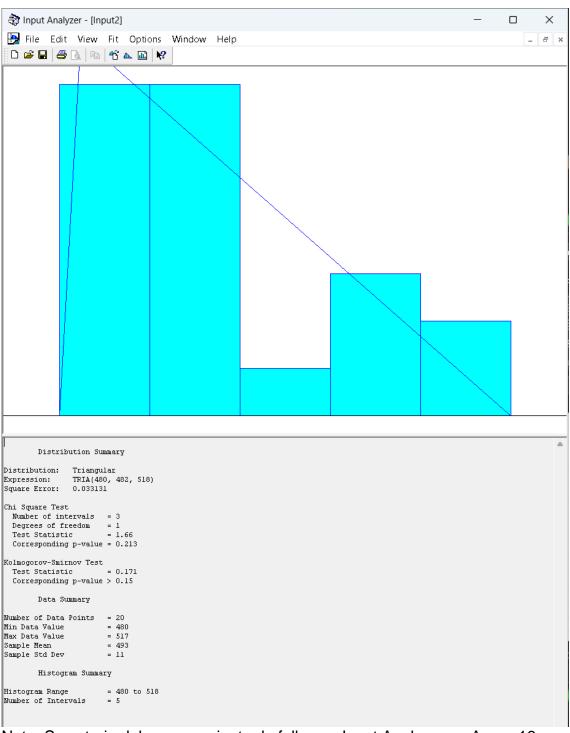
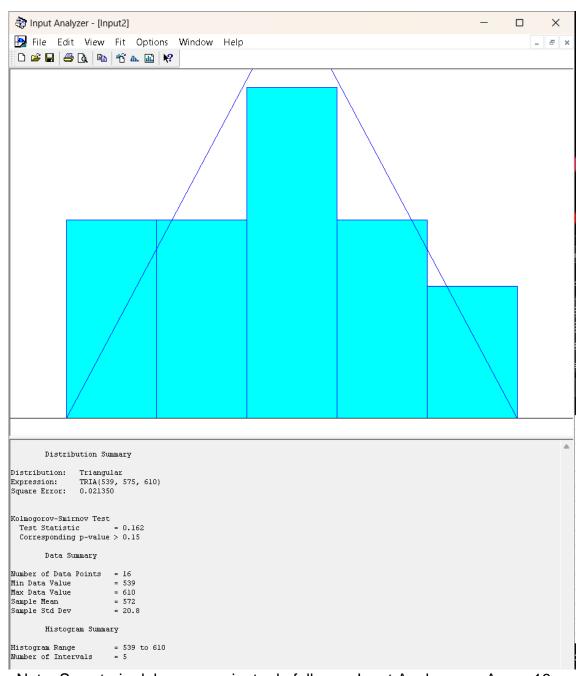



Tabla 42 Simulación del comportamiento de fallo de la maquina Pre limpia Agromay 1

Variables Triangulares				
		$\frac{c-a}{}=$		
а	b	c $b-a$	0.05	
480.00	482.00	518.00		
n	rj	ri	Elevador 6	
1	0.2455	0.7389	463.61	
2	0.5840	0.2918	381.50	
3	0.8932	0.5037	387.12	
4	0.0964	0.5378	444.73	
5	0.1991	0.8813	401.87	
6	0.3955	0.3733	383.54	
7	0.7824	0.7813	396.82	
8	0.4652	0.5809	389.46	
9	0.1532	0.4447	385.45	
10	0.3272	0.2456	380.39	
11	0.1407	0.6012	390.11	
12	0.9589	0.6950	393.36	
13	0.2413	0.3405	382.70	
14	0.7018	0.4565	385.77	
15	0.8293	0.6471	391.64	
16	0.3829	0.0275	375.57	
17	0.6317	0.2409	380.28	
18	0.1777	0.8893	402.36	
19	0.3082	0.6687	392.40	
20	0.2381	0.3091	381.92	

Balanza

Figura 30 Identificación del tipo de distribución del comportamiento de fallo de la Balanza

Nota: Se extrajo del procesamiento de fallos en Input Analyzer en Arena 16

Tabla 43 Simulación del comportamiento de fallo de la maquina Pre limpia Agromay 1

	Variables Triangulares					
а	b	С	$\frac{c-a}{b-a} =$			
539.00	575.00	610.00	0.51			
n	rj	ri	Balanza			
1	0.9954	0.4153	548.24			
2	0.6556	0.1777	543.26			
3	0.7998	0.6405	554.01			
4	0.2007	0.2233	572.55			
5	0.2832	0.1098	562.52			
6	0.1300	0.4524	586.75			
7	0.6705	0.4811	549.79			
8	0.6208	0.7264	556.69			
9	0.2752	0.3899	583.34			
10	0.9409	0.2954	545.62			
11	0.4690	0.2148	571.91			
12	0.2845	0.7718	601.38			
13	0.8593	0.2126	543.94			
14	0.5171	0.0368	540.65			
15	0.3486	0.4120	584.57			
16	0.2915	0.0913	560.45			
17	0.9601	0.0139	540.24			
18	0.0117	0.1562	567.06			
19	0.6056	0.0227	540.40			
20	0.0100	0.1485	566.36			

Nota: Se extrajo del procesamiento de fallos en Microsoft Excel

Tabla 44

Parámetros por tipo de distribución en cada máquina.

_	Tipo de	_ ,		
Proceso	distribución	Parámetro	s de la distrik	oución
Mesa Paddy	Uniforme	Inferior	Superior	
Zaccaria	Offiloffile	334	423	
Pre limpia	Weibull	Alfa	Beta	Gamma
Agromay 1	vveibuli	66.90	2.66	174
Clasificadors 1	Trionquior	а	b	С
Clasificadora 1	Triangular	411	452	483
Dulidara da agua	\/\aibll	Alfa	Beta	Gamma
Pulidora de agua	Weibull	42.30	1.58	371
Selectora	Uniforme	Inferior	Superior	
GROTECH	Onlionne	357	411	
Elovador 9	Uniforma	Inferior	Superior	_
Elevador 8	Uniforme	525	583	
Descascaradora	\/\aibll	Alfa	Beta	Gamma
Hongjia 1	Weibull	50.40	1.27	346
Elevador 2	Trionquior	а	b	С
Elevadoi Z	Triangular	535	546	576
Pre limpia	Weibull	Alfa	Beta	Gamma
Agromay 2	vveibuli	97.30	2.33	249
Floure des 1	l loife me	Inferior	Superior	
Elevador 1	Uniforme	426	472	
Pulidora de	Trionquior	а	b	С
piedra 2	Triangular	411	416	457
Descascaradora	Weibull	Alfa	Beta	Gamma
Hongjia 2	vveibuli	26.10	2.50	442
Elevador 6	Triongular	а	b	С
Elevador o	Triangular	480	482	518
Balanza	Triongular	а	b	С
Dalanza	Triangular	539	575	610
Note: Co extraio del procesamiento de fellos en Microsoft Event				

Nota: Se extrajo del procesamiento de fallos en Microsoft Excel

Tabla 45

Actividades de mantenimiento para la máquina Pre limpia Agromay 1.

Actividades de mantenimiento para la máquina Pre limpia Agromay 1							
Actividad	Tiempo	Periodicidad días	frecuencia anual	Tiempo anual			
Realizar limpieza del motor y verificar la operación adecuada.	30	26	14	420			
Sustituir las mallas utilizadas en la máquina.	25	26	14	350			
Realizar ajustes necesarios en las mallas para asegurar la operatividad	15	26	14	210			
Cambiar el eje del ventilador de la máquina para mantener su eficiencia.	22	26	14	308			

Tabla 46

Actividades de mantenimiento para la máquina Pre limpia Agromay 1.

Actividades de mantenimiento para la Mesa Paddy Zaccaria							
Actividad	Tiempo	Periodicidad días	frecuencia anual	Tiempo anual			
Verificar la alineación de la correa.	30	28	13	390			
Sustituir la correa.	25	28	13	325			
Llevar a cabo una inspección del motor y verificar la operación adecuada.	15	28	13	195			
Realizar los ajustes necesarios en las mallas.	16	28	13	208			
Cambiar las mallas.	22	28	13	286			

Tabla 47

Actividades de mantenimiento para la Clasificadora 1.

Actividades de mantenimiento para la Clasificadora 1						
Actividad	Tiempo	Periodicidad días	frecuencia anual	Tiempo anual		
Aplicar lubricante en los rodajes.	25	36	10	250		
Examinar la alineación de las bandas.	15	36	10	150		
Sustituir las bandas cuando sea necesario.	40	36	10	400		

Tabla 48

Actividades de mantenimiento para la Pulidora de agua

Actividades de mantenimiento para la Pulidora de agua						
Actividad	Tiamna	Periodicidad	frecuencia	Tiempo		
Actividad	Tiempo	días	anual	anual		
Reemplazar la botella.	25	33	11	275		
Sustituir el sinfín.	20	33	11	220		
Cambiar las cribas según sea necesario.	10	33	11	110		
Aplicar lubricación a los rodajes.	25	33	11	275		

Nota: se realizó después identificar los posibles fallos de la máquina.

Tabla 49

Actividades de mantenimiento para la Selectora GROTECH

Actividades de mantenimiento para la Selectora GROTECH						
Actividad	Tiempo	Tiempo anual				
Verificar el ensamblaje de las bandejas y para la operación adecuada.	30	30	12	360		
Realizar la limpieza del motor y verificar su funcionamiento	30	30	12	360		

Tabla 50

Actividades de mantenimiento para la Elevador 8

Actividades de mantenimiento para la Elevador 8					
Actividad	Tiempo	Periodicidad	frecuencia	Tiempo	
Actividad	Петтро	días	anual	anual	
Sustituir la correa.	35	40	9	315	
Evaluar la alineación de la correa.	20	40	9	180	
Reemplazar los cangilones según sea requerido.	15	40	9	135	

Tabla 51

Actividades de mantenimiento para la Descascaradora Hongjia 1

Actividades de manteni	Actividades de mantenimiento para la Descascaradora Hongjia 1					
Actividad	Tiempo	Periodicidad	frecuencia	Tiempo		
Actividad	Петтро	días	anual	anual		
Sustituir la faja.	30	28	13	390		
Realizar la lubricación de los rodillos.	25	28	13	325		
Limpiar el motor y verificar su funcionamiento adecuado.	35	28	13	455		
Cambiar el eje según sea necesario.	15	28	13	195		

Nota: se realizó después identificar los posibles fallos de la máquina.

Tabla 52

Actividades de mantenimiento para la Elevador 2

Actividades de mantenimiento para la Elevador 2				
Actividad	Tiempo	Periodicidad días	frecuencia anual	Tiempo anual
Reemplazar la correa.	35	40	9	315
Inspeccionar la alineación de la correa.	20	40	9	180
Cambiar los cangilones según sea necesario.	15	40	9	135

Tabla 53

Actividades de mantenimiento para la máquina Pre limpia Agromay 2.

Actividades de mantenimiento para la Pre limpia Agromay 2						
Actividad	Tiempo	Periodicidad	frecuencia	Tiempo		
Actividad	Пешро	días	anual	anual		
Sustituir las mallas.	30	26	14	420		
Realizar ajustes en las	0.5	20	4.4	050		
mallas según sea	25	26	14	350		
necesario.						
Cambiar el eje del ventilador.	15	26	14	210		
Realizar la limpieza del						
motor y verificar su						
funcionamiento	22	26	14	308		
adecuado.						

Tabla 54

Actividades de mantenimiento para la Elevador 1.

Actividades de mantenimiento para la Elevador 1

Tiemno	Periodicidad	frecuencia	Tiempo	
Петпро	días	anual	anual	
35	33	11	385	
20	33	11	220	
15	33	11	165	
	20	35 33 20 33	Itempo días anual 35 33 11 20 33 11	

Nota: se realizó después identificar los posibles fallos de la máquina.

Tabla 55

Actividades de mantenimiento para la Pulidora de piedra 2.

Actividades de	mantenimie	ento para la Puli	dora de piedra 2	
Actividad	Tiempo Periodicidad frecuencia anual		Tiempo	
Actividad	Петтро	días	necdencia andai	anual
Reemplazar los rodillos.	30	30	12	360
Cambiar las piedras.	25	30	12	300
Inspeccionar el alineamiento de la faja.	15	30	12	180
Cambiar la faja.	16	30	12	192
Limpiar el motor y verificar				
su funcionamiento	22	30	12	264
adecuado.				

Tabla 56

Actividades de mantenimiento para la Descascaradora Hongjia 2

Actividades de mantenimiento para la Descascaradora Hongjia 2								
Actividad	Tiempo	Periodicidad frecuencia						
Actividad	Петтро	días	anual	anual				
Sustituir la faja.	30	36	10	300				
Aplicar lubricación a los rodillos.	25	36	10	250				
Realizar la limpieza del motor y verificar su funcionamiento apropiado.	35	36	10	350				
Cambiar el eje.	15	36	10	150				

Tabla 57

Actividades de mantenimiento para la máquina Pre limpia Agromay 1.

Actividades de mantenimiento para la Elevador 6							
Actividad	Tiempo	Periodicidad días	frecuencia anual	Tiempo anual			
Verificar la alineación de la correa.	30	30	12	360			
Sustituir la correa. Llevar a cabo una	25	30	12	300			
inspección del motor y verificar la operación adecuada.	15	30	12	180			

Nota: se realizó después identificar los posibles fallos de la máquina.

Tabla 58

Actividades de mantenimiento para la máquina Pre limpia Agromay 1.

Actividades de mantenimiento para la Balanza							
Actividad	Tiempo	Periodicidad	frecuencia	Tiempo			
		días	anual	anual			
Calibración de la balanza	20	40	9	180			
Inspección visual de componentes	40	40	9	360			
Comprobación de cables y conexiones eléctricas	25	40	9	225			
Verificación de la precisión de lectura	25	40	9	225			
Lubricación de partes móviles	15	40	9	135			

Cronograma de aplicación del mantenimiento predictivo.

Tabla 59 Cronograma de aplicación del mantenimiento predictivo.

Máquina				Ser	nana d	lel año	para e	l mant	enimie	nto pre	edictivo)		
Mesa Paddy Zaccaria	3	7	11	15	19	23	27	31	35	39	43	47	50	
Pre limpia Agromay 1	2	5	7	10	12	15	17	20	22	24	27	30	32	35
Clasificadora 1	4	9	14	18	23	28	33	38	42	47				
Pulidora de agua	4	8	13	18	22	27	31	35	39	43	48			
Selectora GROTECH	3	7	11	15	19	24	28	32	36	40	44	48		
Elevador 8	5	11	17	23	28	34	40	45	51					
Descascaradora Hongjia 1	3	7	12	15	19	24	27	31	35	39	43	47	51	
Elevador 2	5	11	16	22	28	34	39	45	51					
Pre limpia Agromay 2	3	7	11	14	18	22	25	28	31	35	38	41	44	47
Elevador 1	4	9	14	18	23	28	33	37	42	47	51			
Pulidora de piedra 2	4	8	11	15	19	24	28	33	37	41	45	49		
Descascaradora Hongjia 2	4	9	14	19	24	29	33	38	43	48				
Elevador 6	4	8	12	17	21	25	29	33	37	41	45	49		
Balanza	5	11	17	23	28	35	40	46	52					

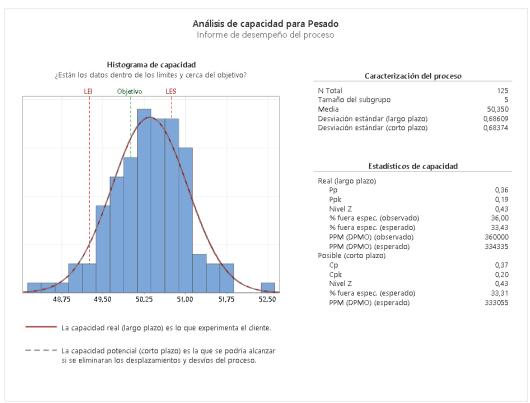
Nota: Se extrajo del procesamiento de fallos en Microsoft Excel

Tabla 60
Tiempo destinado el mantenimiento predictivo

Mémin		Tiempo de ma	antenimiento
Máquina	Frecuencia	Minutos	Horas
Mesa Paddy Zaccaria	13	1404	23.40
Pre limpia Agromay 1	14	1288	21.47
Clasificadora 1	10	800	13.33
Pulidora de agua	11	880	14.67
Selectora GROTECH	12	720	12.00
Elevador 8	9	630	10.50
Descascaradora Hongjia 1	13	1365	22.75
Elevador 2	9	630	10.50
Pre limpia Agromay 2	14	1288	21.47
Elevador 1	11	770	12.83
Pulidora de piedra 2	12	1296	21.60
Descascaradora Hongjia 2	10	1050	17.50
Elevador6	12	840	14.00
Balanza	9	1125	18.75
Total	159	14086	234.77

Control de proceso y capacidad

Análisis de capacidad para Pesado mes 1:

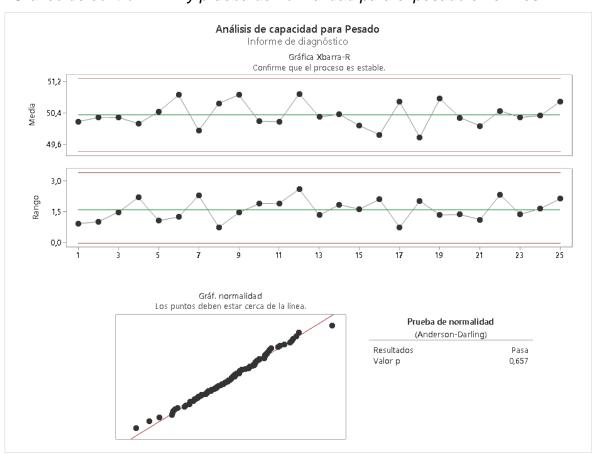

La implementación del ciclo de Deming en el primer mes en la empresa INDUPERSA dio los siguientes resultados:

- Media: La media del peso de los sacos de arroz es de 50.350 kg, lo cual es ligeramente superior al objetivo de 50 kg. Esto indica que el proceso inicialmente está produciendo sacos con un poco más de peso del necesario, lo que podría implicar un desperdicio de recursos.
- Desviación Estándar: La desviación estándar a largo plazo y a corto plazo es relativamente alta, lo que significa que hay una variabilidad considerable en los pesos de los sacos de arroz. Este alto nivel de variabilidad puede conducir a un mayor número de sacos que no cumplen con las especificaciones de peso.
- Estadísticos de Capacidad (Pp, Ppk, Cp, Cpk): Estos indicadores son menores de 1, lo que sugiere que el proceso inicialmente tiene una capacidad baja para producir sacos de arroz dentro de los límites de especificación. En otras palabras, existe una considerable cantidad de sacos que no cumplen con los estándares de peso.
- Nivel Z: El nivel Z es de 0.43, lo cual es bajo. Este indicador mide cuántas desviaciones estándar está un punto de datos del promedio de un conjunto de datos. Un nivel Z bajo indica que hay una gran cantidad de sacos de arroz que están lejos del peso objetivo.
- % fuera de las especificaciones (observado y esperado): Tanto el porcentaje observado como el esperado de sacos de arroz que están fuera de las especificaciones es alto, lo que significa que hay una cantidad considerable de sacos que no cumplen con los estándares de peso.
- PPM (DPMO) (observado y esperado): Los Defectos Por Millón de Oportunidades (DPMO) tanto observados como esperados son muy altos, lo que significa que hay un alto número de sacos de arroz que no cumplen con las especificaciones.

En resumen, los resultados del primer mes muestran que hay una necesidad significativa de mejora en el proceso de pesado de los sacos de arroz. El ciclo de Deming, al ser implementado correctamente, debería ayudar a INDUPERSA a identificar las causas de esta alta variabilidad y a implementar medidas correctivas para mejorar la consistencia y reducir la cantidad de sacos de arroz que no cumplen con las especificaciones.

Figura 31

Análisis de la capacidad en el desempeño del proceso de pesado en el mes 1


Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el primer mes en la empresa Indupersa

La media y variación del proceso de pesado en el mes 1 son estables y no se encuentran fuera de control. En términos de la prueba de normalidad de Anderson-Darling, la hipótesis nula es que tus datos siguen una distribución normal. Un p-valor de 0.657 es relativamente grande (mayor que el típico umbral de 0.05 que se usa a menudo en las pruebas de hipótesis). Por lo tanto, no rechazaríamos la hipótesis nula y podríamos concluir que tus datos probablemente siguen una distribución normal.

En resumen, un p-valor de 0.657 en una prueba de Anderson-Darling indica que no hay suficiente evidencia para rechazar la hipótesis de que tus datos siguen una distribución normal.

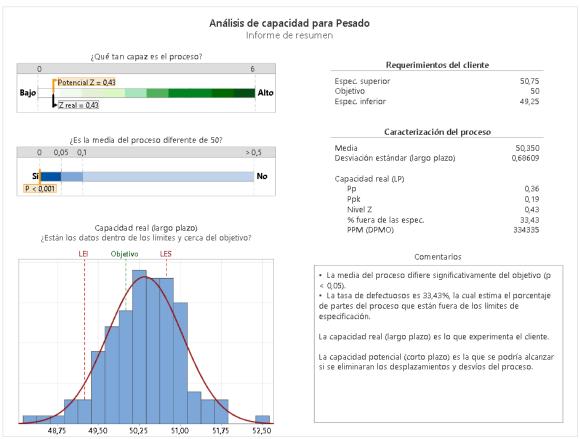

Figura 32

Gráfico de control X – R y prueba de normalidad para el pesado en el mes 1

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el primer mes en la empresa Indupersa

Figura 33
Resumen del análisis de la capacidad para el pesado en el mes 1

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el primer mes en la empresa Indupersa

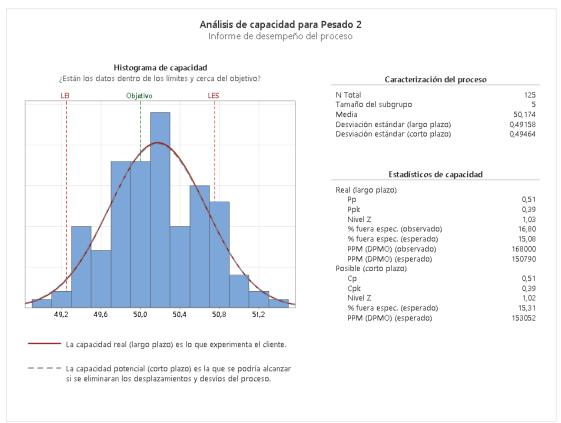
Figura 34
Informe de resultados del análisis de capacidad para el pesado en el mes 1

	Análisis de capacidad para Pesado						
Verificar	Esta do	Tarjeta de informe Descripción					
Estabilidad	\checkmark	La media y la variación del proceso son estables. No hay puntos fuera de control.					
Número de subgrupos	1	Usted tiene 25 subgrupos. Para un análisis de capacidad, generalmente esto es suficiente para captar las diferentes fuentes de variación del proceso cuando los subgrupos se recolectan durante un período de tiempo suficientemente largo.					
Normalidad		Sus datos pasaron la prueba de normalidad. Mientras tenga suficientes datos, las estimaciones de la capacidad deberían ser razonablemente precisas.					
Cantidad de datos	\checkmark	El número total de observaciones es 100 o más. Las estimaciones de la capacidad deberían ser razonablemente precisas.					

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el primer mes en la empresa Indupersa.

Análisis de capacidad para Pesado 2

La implementación del ciclo de Deming en el segundo mes en la empresa INDUPERSA dio los siguientes resultados:

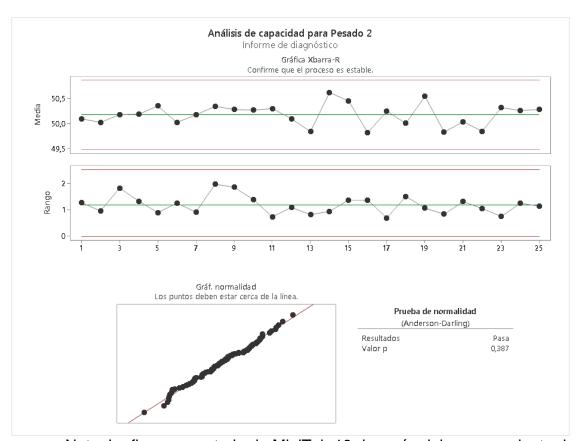

- Media: La media de peso ha disminuido ligeramente a 50.174 kg. Esto indica que el proceso de producción se ha ajustado para acercarse más al objetivo de 50 kg, reduciendo así el desperdicio de recursos.
- Desviación Estándar: Las desviaciones estándar tanto a largo plazo como a corto plazo han disminuido significativamente, lo que indica que la variabilidad en el peso de los sacos de arroz ha disminuido. Esto es un indicativo de que las medidas correctivas que se han implementado están teniendo un efecto positivo en la consistencia del proceso.
- Estadísticos de Capacidad (Pp, Ppk, Cp, Cpk): Estos indicadores han aumentado con respecto al primer mes, aunque todavía están por debajo de 1. Esto sugiere que el proceso todavía tiene una capacidad moderada para producir sacos de arroz dentro de los límites de especificación, aunque se ha mejorado con respecto al primer mes.
- **Nivel Z**: El nivel Z ha aumentado a 1.03, lo cual es una mejora. Sin embargo, todavía indica que hay una cantidad significativa de sacos de arroz que están lejos del peso objetivo.
- % fuera de las especificaciones (observado y esperado): El porcentaje tanto observado como esperado de sacos de arroz que están fuera de las especificaciones ha disminuido significativamente, lo que indica que se ha mejorado la calidad del proceso.
- PPM (DPMO) (observado y esperado): Los DPMO tanto observados como esperados han disminuido significativamente, lo que indica que se está produciendo una menor cantidad de sacos de arroz que no cumplen con las especificaciones.

En resumen, los resultados del segundo mes indican que las medidas correctivas que se han implementado están teniendo un impacto positivo en el proceso de producción. La variabilidad en el peso de los sacos de arroz ha disminuido, y la cantidad de sacos que no cumplen con las especificaciones también ha disminuido. Sin embargo, todavía hay margen para mejorar y el ciclo

de Deming debe continuar para identificar y corregir otras posibles áreas de mejora.

Figura 35

Análisis de la capacidad en el desempeño del proceso de pesado en el mes 2


Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el segundo mes en la empresa Indupersa

La estabilidad es un supuesto importante del análisis de capacidad. Aunque no hay puntos fuera de los límites de control hay demasiados puntos consecutivos dentro de 1 desviación estándar desde la línea central en la gráfica Xbarra. Lo más probable es que la desviación estándar dentro de los subgrupos esté inflada, lo cual afecta las estimaciones de la capacidad potencial. Adicionalmente, los límites en la gráfica Xbarra son demasiado amplios y, por consiguiente, resulta difícil evaluar la estabilidad. Es probable que esta condición sea causada por una fuente sistemática de variación dentro de los subgrupos.

En términos de la prueba de normalidad de Anderson-Darling, un p-valor de 0.387 en una prueba de Anderson-Darling indica que no hay suficiente evidencia para rechazar la hipótesis de que tus datos siguen una distribución normal.

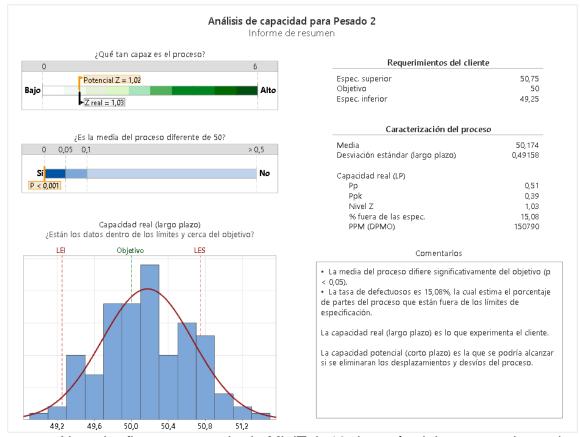

Figura 36

Gráfico de control X – R y prueba de normalidad para el pesado en el mes 2

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el segundo mes en la empresa Indupersa

Figura 37
Resumen del análisis de la capacidad para el pesado en el mes 2

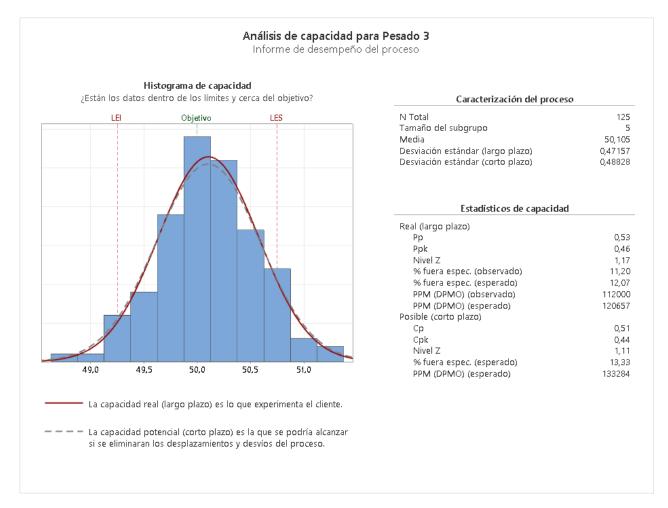
Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el segundo mes en la empresa Indupersa

Figura 38 Informe de resultados del análisis de capacidad para el pesado en el mes 2

Análisis de capacidad para Pesado 2 Tarjeta de informe Verifican Esta do Descripción Estabilidad La estabilidad es un supuesto importante del análisis de capacidad. Aunque no hay puntos fuera de los límites de control, hay demasiados puntos consecutivos dentro de 1 desviación estándar desde la línea central en la gráfica Xbarra. Lo más probable es que la desviación estándar dentro de los subgrupos esté inflada, lo cual afecta las estimaciones de la capacidad potencial. Adicionalmente, los límites en la gráfica Xbarra son demasiado amplios y, por consiguiente, resulta difícil evaluar la estabilidad. Es probable que esta condición sea causada por una fuente sistemática de variación dentro de los subgrupos. Examine su estrategia de recolección de datos para determinar las posibles fuentes. Usted tiene 25 subgrupos. Para un análisis de capacidad, generalmente esto es suficiente para captar las diferentes fuentes Número de subgrupos de variación del proceso cuando los subgrupos se recolectan durante un período de tiempo suficientemente largo. Normalidad Sus datos pasaron la prueba de normalidad. Mientras tenga suficientes datos, las estimaciones de la capacidad deberían ser razonablemente precisas. Cantidad El número total de observaciones es 100 o más. Las estimaciones de la capacidad deberían ser razonablemente precisas. de datos

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el segundo mes en la empresa Indupersa

Análisis de capacidad para Pesado 3

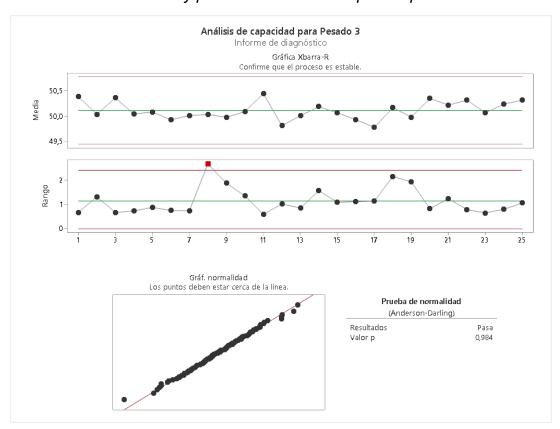

La implementación del ciclo de Deming en el tercer mes en la empresa INDUPERSA dio los siguientes resultados:

- Media: La media del peso ha disminuido nuevamente a 50.105 kg. Esto muestra una mejora continua en la precisión del peso del arroz producido, acercándose aún más al objetivo de 50 kg.
- Desviación estándar: Tanto las desviaciones estándar a largo plazo como a corto plazo han disminuido aún más desde el segundo mes. Esto sugiere que la variabilidad en el proceso de producción sigue disminuyendo, mostrando una mejora en la consistencia de la producción.
- Estadísticos de Capacidad (Pp, Ppk, Cp, Cpk): Estos indicadores han mejorado aún más desde el segundo mes, aunque aún no alcanzan el valor deseado de 1. Esto muestra una mejora continua en la capacidad del proceso para producir sacos de arroz dentro de los límites de especificación.
- Nivel Z: El nivel Z ha aumentado a 1.17 en el proceso a largo plazo y a 1.11 en el proceso a corto plazo, lo cual es una mejora. Esto indica que hay menos sacos de arroz que se desvían del peso objetivo.
- % fuera de las especificaciones (observado y esperado): El porcentaje tanto observado como esperado de sacos de arroz que están fuera de las especificaciones ha disminuido una vez más, lo que indica una mejora continua en la calidad del proceso.
- PPM (DPMO) (observado y esperado): Los DPMO tanto observados como esperados han disminuido considerablemente, lo que indica que se está produciendo una menor cantidad de sacos de arroz que no cumplen con las especificaciones.

En resumen, el tercer mes de la implementación del ciclo de Deming muestra una mejora continua en la precisión y consistencia del proceso de producción. Se observa una disminución en la variabilidad del peso de los sacos de arroz, y una reducción en la cantidad de sacos que no cumplen con las especificaciones. El ciclo de Deming debe continuar para seguir identificando y corrigiendo áreas de mejora, con el objetivo de lograr un nivel de calidad óptimo.

Figura 39

Análisis de la capacidad en el desempeño del proceso de pesado en el mes 3



Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el tercer mes en la empresa Indupersa

Después de haber realizado el análisis de capacidad del proceso para la producción de arroz en sacos de 50 kilos, se encontró que había un punto fuera de control en una de las gráficas de control X - R en el Informe de diagnóstico. Como resultado de este hallazgo, se tomó en cuenta que la estabilidad del proceso es un supuesto importante para realizar el análisis de capacidad de manera confiable. La eliminación de la variación por causa especial es crucial para garantizar que el proceso sea estable y predecible, lo que permitirá obtener resultados más precisos y confiables en el análisis de capacidad en la empresa INDUPERSA.

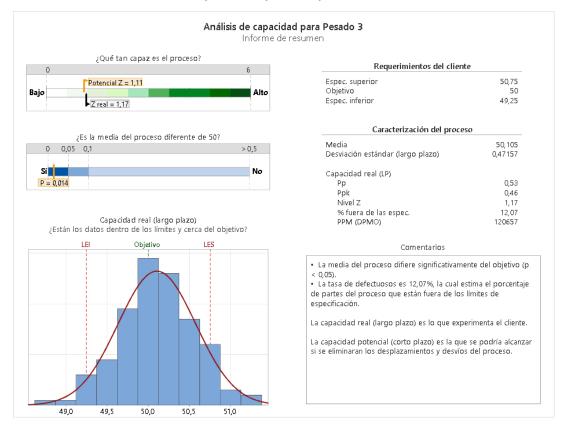

En términos de la prueba de normalidad de Anderson-Darling, un p-valor de 0.984 en una prueba de Anderson-Darling indica que no hay suficiente evidencia para rechazar la hipótesis de que tus datos siguen una distribución normal.

Figura 40
Gráfico de control X – R y prueba de normalidad para el pesado en el mes 3

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el tercer mes en la empresa Indupersa

Figura 41
Resumen del análisis de la capacidad para el pesado en el mes 3

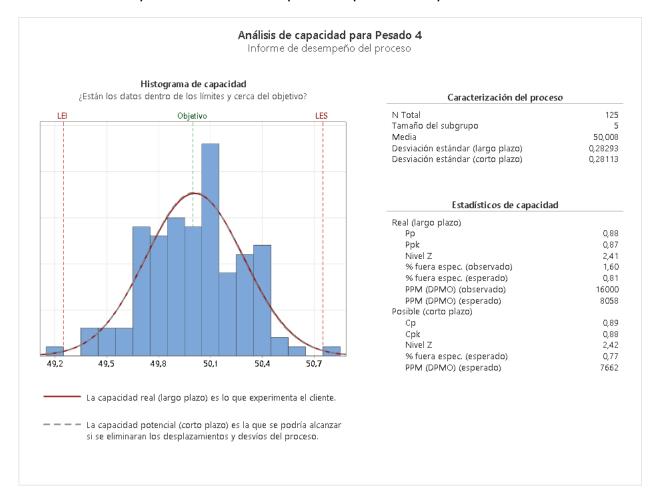
Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el segundo mes en la empresa Indupersa

Figura 42
Informe de resultados del análisis de capacidad para el pesado en el mes 3

Verificar	Esta do	Análisis de capacidad para Pesado 3 Tarjeta de informe Descripción
Estabilidad	<u>.</u>	La estabilidad es un supuesto importante del análisis de capacidad. Para determinar si su proceso es estable, examine las gráficas de control en el Informe de diagnóstico. Investigue los puntos fuera de control y elimine cualquier variación por causa especial en su proceso antes de continuar con este análisis.
Número de subgrupos	i	Usted tiene 25 subgrupos. Para un análisis de capacidad, generalmente esto es suficiente para captar las diferentes fuentes de variación del proceso cuando los subgrupos se recolectan durante un período de tiempo suficientemente largo.
Normalidad		Sus datos pasaron la prueba de normalidad. Mientras tenga suficientes datos, las estimaciones de la capacidad deberían ser razonablemente precisas.
Cantidad de datos	\checkmark	El número total de observaciones es 100 o más. Las estimaciones de la capacidad deberían ser razonablemente precisas.

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el tercer mes en la empresa Indupersa

Análisis de capacidad para Pesado 4

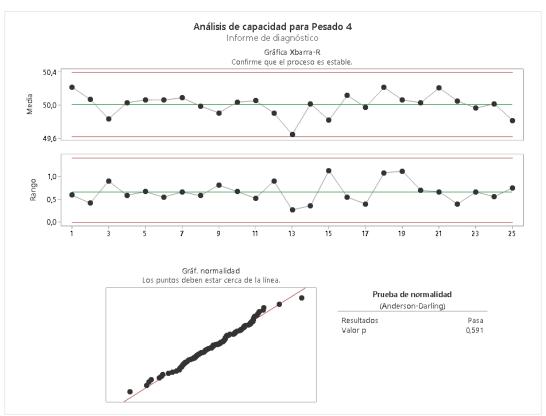

Los resultados del cuarto mes de implementación del ciclo de Deming en la empresa INDUPERSA muestran una mejora significativa en comparación con los tres meses anteriores:

- Media: La media ha disminuido a 50.008 kg, lo que indica que la precisión del proceso de producción ha mejorado considerablemente y se acerca casi perfectamente al peso objetivo de 50 kg.
- Desviación Estándar: Las desviaciones estándar a corto y largo plazo han disminuido significativamente, lo que indica que la variabilidad en el proceso de producción ha disminuido considerablemente. Esto sugiere una mayor consistencia y control sobre el proceso de producción.
- Estadísticos de Capacidad (Pp, Ppk, Cp, Cpk): Todos estos indicadores se acercan al valor ideal de 1, lo que sugiere que el proceso está casi perfectamente centrado entre los límites de especificación y la mayoría de los productos cumplen con las especificaciones de peso.
- Nivel Z: El nivel Z ha aumentado drásticamente en ambos casos, lo que indica que la cantidad de productos fuera de especificación ha disminuido significativamente.
- % fuera de las especificaciones (observado y esperado): Tanto el porcentaje observado como el esperado de productos fuera de especificación han disminuido drásticamente, lo que indica que la mayoría de los productos están dentro de las especificaciones de peso.
- PPM (DPMO) (observado y esperado): Los DPMO tanto observados como esperados han disminuido significativamente, lo que indica que la cantidad de productos que no cumplen con las especificaciones de peso ha disminuido de manera significativa.

En resumen, después de cuatro meses de implementación del ciclo de Deming, se ha logrado una mejora significativa en la precisión, la consistencia y el control del proceso de producción en la empresa INDUPERSA. Esto ha resultado en un proceso más eficiente y efectivo, con la mayoría de los productos cumpliendo con las especificaciones de peso. Estos resultados demuestran el éxito de la implementación del ciclo de Deming en la mejora de la calidad y eficiencia del proceso de producción.

Figura 43

Análisis de la capacidad en el desempeño del proceso de pesado en el mes 4


Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el cuarto mes en la empresa Indupersa

La media y variación del proceso de pesado en el mes 4 son estables y no se encuentran fuera de control. En términos de la prueba de normalidad de Anderson-Darling, la hipótesis nula es que tus datos siguen una distribución normal. Un p-valor de 0.591 es relativamente grande (mayor que el típico umbral de 0.05 que se usa a menudo en las pruebas de hipótesis). Por lo tanto, no rechazaríamos la hipótesis nula y podríamos concluir que tus datos probablemente siguen una distribución normal.

En resumen, un p-valor de 0.591 en una prueba de Anderson-Darling indica que no hay suficiente evidencia para rechazar la hipótesis de que tus datos siguen una distribución normal.

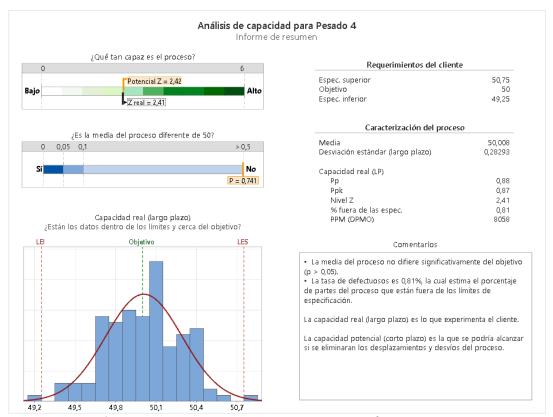

Figura 44

Gráfico de control X – R y prueba de normalidad para el pesado en el mes 4

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el cuarto mes en la empresa Indupersa

Figura 45
Resumen del análisis de la capacidad para el pesado en el mes 4

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el cuarto mes en la empresa Indupersa

Figura 46
Informe de resultados del análisis de capacidad para el pesado en el mes 4

Análisis de capacidad para Pesado 4						
Verificar	Estado	Tarjeta de informe Descripción				
Estabilidad	\checkmark	La media y la variación del proceso son estables. No hay puntos fuera de control.				
Número de subgrupos	i	Usted tiene 25 subgrupos. Para un análisis de capacidad, generalmente esto es suficiente para captar las diferentes fuentes de variación del proceso cuando los subgrupos se recolectan durante un período de tiempo suficientemente largo.				
Normalidad		Sus datos pasaron la prueba de normalidad. Mientras tenga suficientes datos, las estimaciones de la capacidad deberían ser razonablemente precisas.				
Cantidad de datos	\checkmark	El número total de observaciones es 100 o más. Las estimaciones de la capacidad deberían ser razonablemente precisas.				

Nota: La figura se extrajo de MiniTab 18 después del procesamiento de los datos de la mejora de Deming en el cuarto mes en la empresa Indupersa

Figura 47
Informe del Capability Sixpack del proceso para Pesado

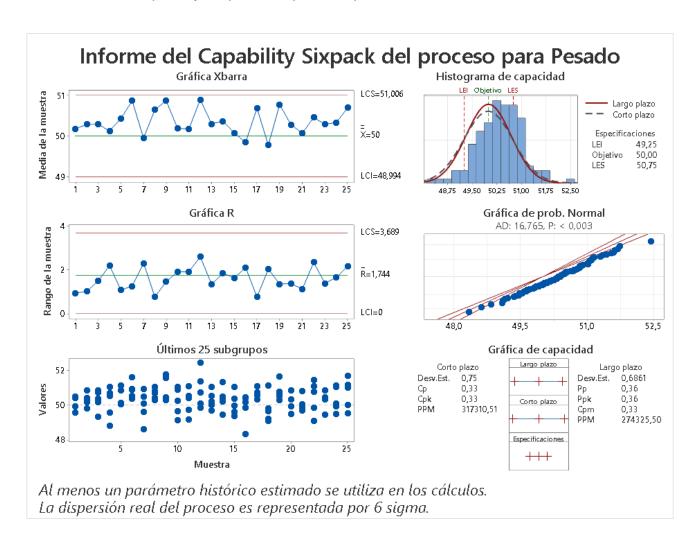


Figura 48
Informe del Capability Sixpack del proceso para Pesado 2

Informe del Capability Sixpack del proceso para Pesado 2

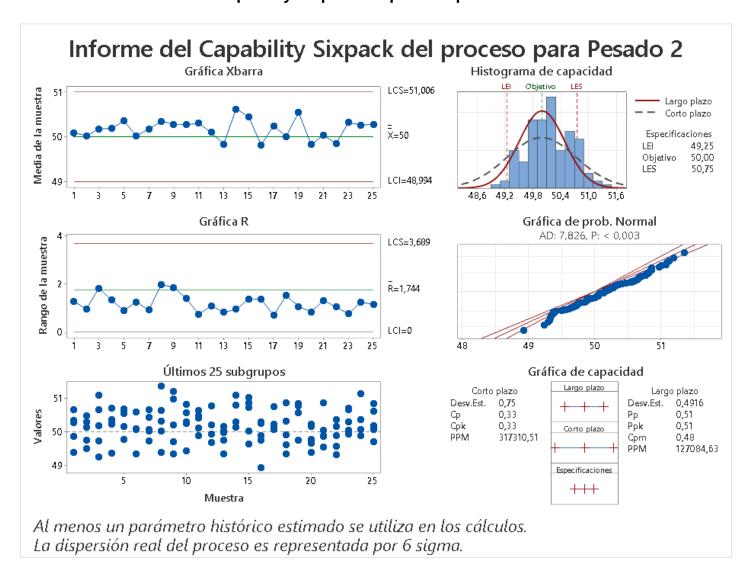


Figura 49

Informe del Capability Sixpack del proceso para Pesado 3

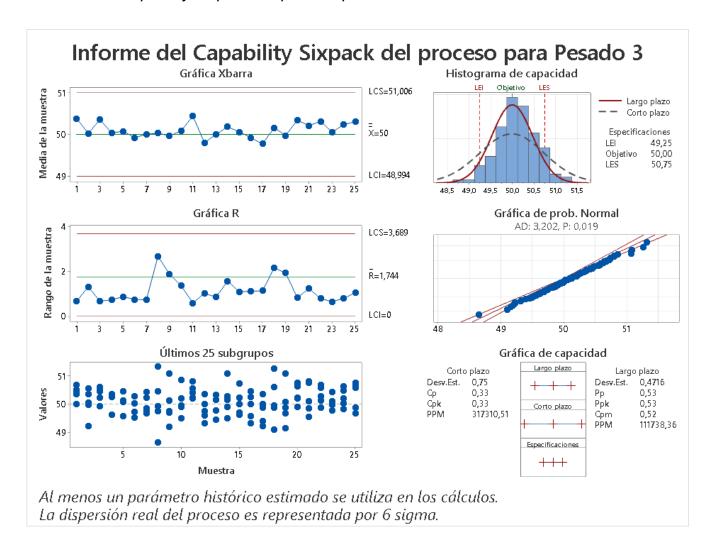


Figura 50
Informe del Capability Sixpack del proceso para Pesado4

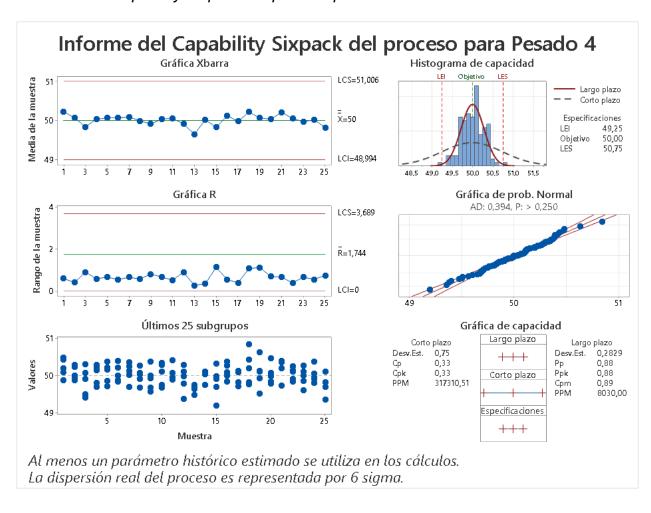
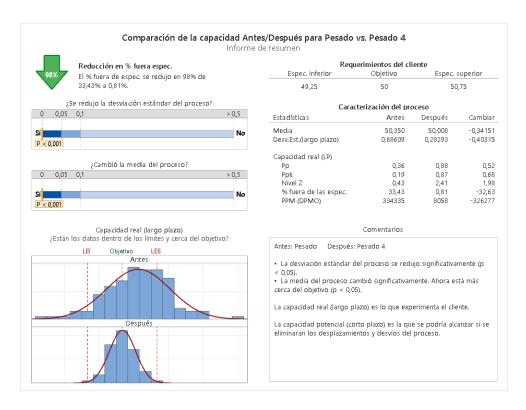
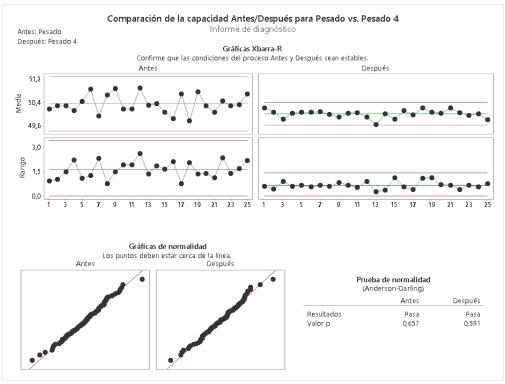
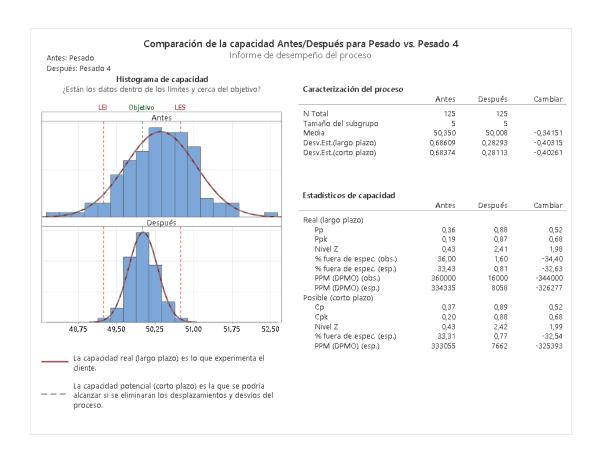





Figura 51

Comparación de la capacidad Antes/Después para Pesado vs. Pesado 4

Comparación de la capacidad Antes/Después para Pesado vs. Pesado 4 Tarjeta de informe

Verificar	Esta do	Descripción
Estabilidad	\checkmark	Para los datos de Antes y Después, la media y la variación del proceso son estables. No hay puntos fuera de control.
Número de subgrupos	i	Tanto los datos de Antes como los de Después tienen por lo menos 25 subgrupos. Para un análisis de capacidad, generalmente esto es suficiente para captar las diferentes fuentes de variación del proceso cuando los subgrupos se recolectan durante un período de tiempo suficientemente largo.
Normalidad	\checkmark	Tanto los datos de Antes como los de Después pasaron la prueba de normalidad. Mientras usted tenga suficientes datos, las estimaciones de la capacidad deberían ser razonablemente precisas.
Cantidad de datos	\checkmark	El número total de observaciones para los datos de Antes y Después es 100 o más. Las estimaciones de la capacidad deberían ser razonablemente precisas.

Estandarización de procesos

La empresa Indupersa S.A.C. cuenta con una estructura de procesos que engloba aspectos gerenciales, operativos y de apoyo. No obstante, estos procesos no se encuentran definidos y estandarizados de manera adecuada. Por esta razón, se ha iniciado un proceso de identificación y documentación de estos procesos y subprocesos a través de la creación de un manual de procesos y procedimientos.

De la Figura 52 a la Figura 55, que se presenta a continuación se detallan los procesos y subprocesos identificados en la empresa. Esta identificación se llevó a cabo a través de reuniones con la participación del administrador y el gerente de Indupersa S.A.C.

El propósito principal de este proceso de identificación es establecer una base sólida para la creación del manual de procesos y procedimientos. Este manual será elaborado de manera integral, abarcando aspectos como el inicio y finalización de cada proceso, los objetivos que persiguen, los indicadores de rendimiento, las personas responsables, los insumos necesarios, así como los proveedores involucrados en cada uno de los procesos y subprocesos.

Este esfuerzo de documentación y estandarización conforman el manual de procesos y procedimientos de la empresa Indupersa S.A.C. Este manual se convierte en una herramienta fundamental para la gestión eficiente de los procesos empresariales, asegurando una mayor coherencia, control y optimización de las operaciones.

Procedimiento de Planeación y Gestión

PROCEDIMIENTO PROC-PG-001 PLANEACIÓN Y GESTIÓN Fecha: 10/09/2023 Versión:01

Área responsable

Gerencia general, Administración y Contabilidad

- 1. OBJETIVO: Este procedimiento tiene como finalidad dirigir, organizar, controlar y optimizar las condiciones operativas y financieras de los recursos en Indupersa S.A.C., basándose en la información recopilada en cada uno de los procesos empresariales.
- 2. ALCANCE: Este procedimiento se aplica desde la obtención de información en las áreas de producción, logística, control de calidad y mantenimiento, hasta la supervisión de la ejecución de planes aprobados por la gerencia y elaborados por el equipo administrativo.
- 3. RESPONSABLES: Los encargados de implementar y dar seguimiento a este procedimiento son el Gerente General, el Administrador y el Contador de la empresa.
- 4. ACTIVIDADES: Las tareas que se realizan en el marco de este procedimiento engloban:

Creación de planes anuales y mensuales.

Comunicación de los planes a los jefes de área para asegurar el cumplimiento de las metas.

Análisis de los reportes mensuales proporcionados por cada área.

Supervisión y control de las actividades de todas las áreas.

Orientación a los jefes de área para implementar ajustes si no se alcanzan las metas establecidas por la gerencia.

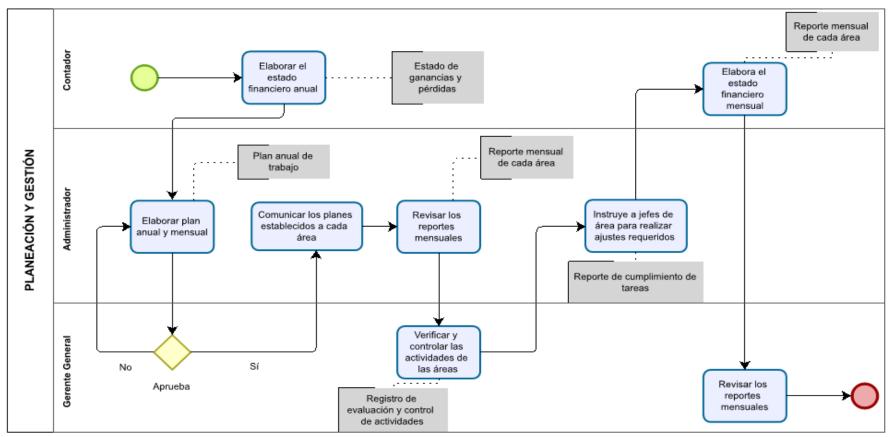
Revisión mensual del estado financiero de la empresa.

DIAGRAMA DE FLUJO

5. DEFINICIONES

Plan: Un programa que detalla los recursos y acciones necesarios para llevar a cabo una idea o proyecto.

Reporte: Un documento dirigido a superiores que describe detalladamente una actividad o trabajo específico realizado en un período determinado, incluyendo datos y explicaciones.


Estado financiero: Un informe utilizado para comunicar la situación económica y financiera de la empresa, así como los cambios que experimenta en un período específico.

6. REGISTROS: El formato del reporte mensual se encuentra en el anexo adjunto a este procedimiento.

Nota: Este procedimiento se enfoca en asegurar la gestión efectiva y coordinada de los recursos y actividades en Indupersa S.A.C., contribuyendo al logro de sus metas y objetivos empresariales.

Figura 52

Procedimiento de Planeación y Gestión

Nota: Este procedimiento se enfoca en asegurar la gestión efectiva y coordinada de los recursos y actividades en Indupersa S.A.C., contribuyendo al logro de sus metas y objetivos empresariales.

PROCEDIMIENTO	PROC-PCC-002
	Fecha: 10/09/2023

COMUNICACIÓN CON EL CLIENTE

Versión:01

Área responsable Gerencia General y Administración

- 1. OBJETIVO: El propósito de este procedimiento es comprender los requisitos y las necesidades de los clientes, tanto internos como externos, con el fin de lograr la satisfacción del cliente dentro de los estándares de calidad en los procesos y productos de la empresa.
- 2. ALCANCE: El proceso comienza con la identificación del cliente y finaliza cuando se logra la satisfacción del mismo.
- 3. RESPONSABLES: Los encargados de llevar a cabo este procedimiento son el Gerente General y el Administrador de la empresa.
- 4. ACTIVIDADES: Las actividades relacionadas con este procedimiento incluyen:

Identificar al cliente.

Establecer una comunicación efectiva con el cliente.

Realizar una presentación formal de la empresa.

Registrar los datos del cliente en la base de datos de la empresa.

Establecer las normas y términos comerciales con el cliente para prevenir posibles conflictos o incumplimientos.

Entender los requisitos y necesidades del cliente.

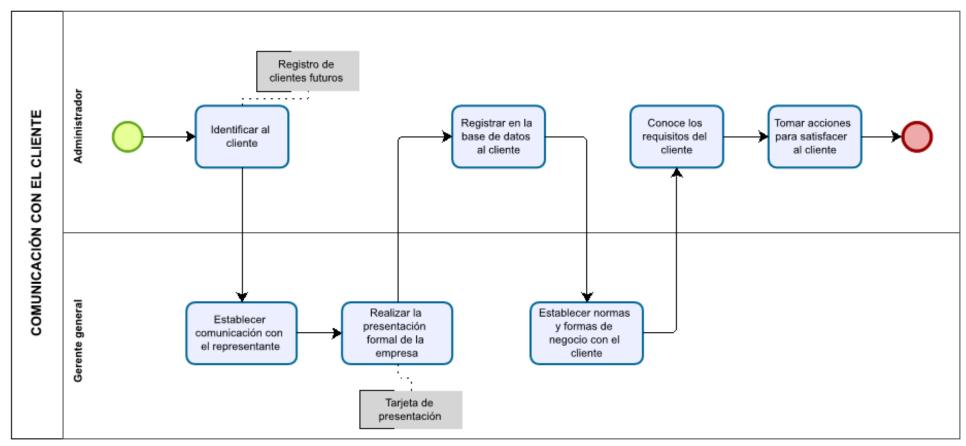
Tomar acciones necesarias para garantizar la satisfacción del cliente.

DIAGRAMA DE FLUJO

5. DEFINICIONES:

Cliente: Una persona que recibe un producto o servicio a cambio de un pago realizado a un proveedor.

Comunicación: La transmisión de información de forma oral, involucrando a un emisor y un receptor.


Registro: Un documento donde se registran eventos o información, especialmente aquellos que deben mantenerse permanentemente de manera oficial.

6. REGISTROS: El formato para el registro de clientes existentes se encuentra en el anexo , y el formato para el registro de clientes potenciales se muestra en el anexo

Nota: Este procedimiento se centra en asegurar que la empresa comprenda y satisfaga de manera efectiva las necesidades y requisitos de sus clientes, contribuyendo así a la calidad de los productos y servicios ofrecidos.

Figura 53

Procedimiento de comunicación con el cliente

Nota: Este procedimiento se centra en asegurar que la empresa comprenda y satisfaga de manera efectiva las necesidades y requisitos de sus clientes, contribuyendo así a la calidad de los productos y servicios ofrecidos.

PROCEDIMIENTO DE COMPRAS EN INDUPERSA S.A.C.

PROC-PC-003

Fecha: 10/09/2023

eciia. 10/03

COMPRAS

Versión:01

Área responsable Administración y Logística

- 1. OBJETIVO: El objetivo de este procedimiento es proporcionar a cada área de la empresa los insumos necesarios para llevar a cabo sus actividades y cumplir con los clientes internos y externos.
- 2. ALCANCE: Este procedimiento se aplica desde la revisión del inventario y las órdenes de pedido hasta la entrega de los insumos a los procesos correspondientes.
- 3. RESPONSABLES: Los responsables de llevar a cabo este procedimiento son el Administrador, el Jefe de Logística y el Asistente de Logística.
- 4. ACTIVIDADES: Las actividades que deben realizarse incluyen:

Revisar el inventario de almacén para identificar los insumos que faltan.

Registrar los insumos que se requieren.

Recopilar los requisitos de insumos de cada área.

Generar órdenes de pedido para la compra de insumos, previa aprobación del Jefe de Logística y el Administrador.

Realizar los pedidos a los proveedores.

Recepcionar y verificar los pedidos enviados por los proveedores.

Entregar los insumos a cada una de las áreas.

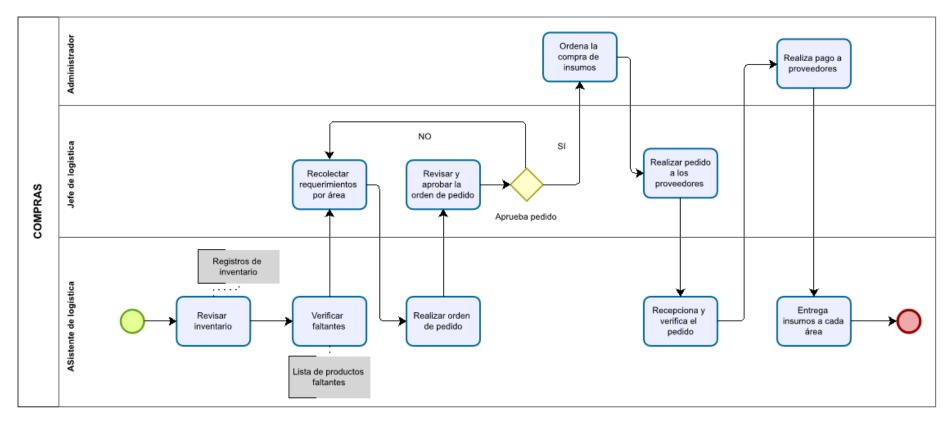
DIAGRAMA DE FLUJO

5. DEFINICIONES:

Inventario: Un registro detallado y valorado de los elementos que conforman el patrimonio de una empresa o persona en un momento determinado.

Requerimiento: Un documento que enumera los materiales necesarios para un área específica y se envía al área de Logística para su entrega.

Orden de Pedido: Un documento emitido por el comprador para solicitar mercancías al vendedor; incluye detalles como cantidad, descripción, precio, condiciones de pago y términos de entrega.


Proveedor: Una persona o entidad que suministra productos necesarios a una persona o empresa.

6. REGISTROS: El registro del inventario se encuentra en el anexo 45.

Nota: Este procedimiento tiene como objetivo garantizar que cada área de la empresa cuente con los insumos necesarios para llevar a cabo sus actividades de manera eficiente y satisfacer las necesidades de los clientes internos y externos.

Figura 54

Procedimiento de compras

Nota: Este procedimiento tiene como objetivo garantizar que cada área de la empresa cuente con los insumos necesarios para llevar a cabo sus actividades de manera eficiente y satisfacer las necesidades de los clientes internos y externos..

Tabla 64

Procedimiento de subproceso de recepción e inspección de materia prima

PROCEDIMIENTO	PROC-SRIMP-004	
SUB-PROCESO DE RECEPCIÓN E INSPECCIÓN DE MATERIA PRIMA		Fecha: 10/09/2023 Versión:01
Área responsable	Producción	

- 1. OBJETIVO: El objetivo de este subproceso es recibir y llevar a cabo una inspección inicial de la materia prima, en este caso, el arroz, desde su descarga en la pampa de recepción hasta su almacenamiento en la tolva de prelimpia I.
- 2. ALCANCE: Este subproceso abarca desde la descarga de los sacos de arroz en la pampa de recepción hasta el vaciado del arroz en la tolva de recepción, listo para ser procesado en la prelimpia I.
- 3. RESPONSABLES: Los responsables de este subproceso son el Jefe de Producción y el Analista de Calidad.
- 4. ACTIVIDADES: Las actividades incluyen:

El Analista de Calidad recibe la materia prima y registra su ingreso. Luego, verifica la información del proveedor y su lugar de origen.

Se toma una muestra del lote de aproximadamente un kilogramo de arroz cáscara.

La humedad de la muestra se mide y registra.

El arroz se descarga en la pampa para su secado.

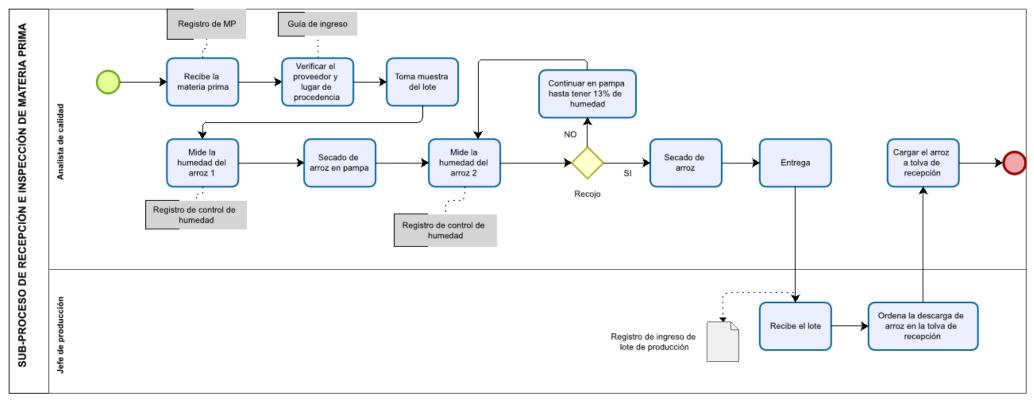
Después de un período de secado y reposo, se vuelve a medir la humedad. Si la humedad está entre el 13% y el 14%, el arroz se ensaca; de lo contrario, se deja en la pampa hasta que alcance la humedad deseada.

Una vez que el lote esté seco y haya reposado, se entrega al Jefe de Producción, quien programa el día de la pila y la orden de descarga de arroz en la tolva.

DIAGRAMA DE FLUJO

5. DEFINICIONES:

Proveedor: Una empresa o persona que suministra bienes o servicios a otras personas o empresas.


Control: Una de las etapas del proceso administrativo que proporciona información precisa sobre lo que está sucediendo.

6. REGISTROS: Los registros incluyen el registro de ingreso de materia prima (Anexo 46), la guía de ingreso (Anexo 47), el registro de control de humedades inicial y final (Anexo 48), y el registro de ingreso de lote a producción (Anexo 49).

Nota: Este subproceso garantiza la recepción y la inspección adecuada de la materia prima, asegurando que el arroz cumple con los estándares de calidad y humedad necesarios antes de ser procesado en la prelimpia I.

Figura 55

Procedimiento de subproceso de recepción e inspección de materia prima

Nota: Este subproceso garantiza la recepción y la inspección adecuada de la materia prima, asegurando que el arroz cumple con los estándares de calidad y humedad necesarios antes de ser procesado en la prelimpia I.

PROCEDIMIENTO DE SUB-PROCESO DE PRODUCCIÓN

PROC-SPPRE1-005

Fecha: 10/09/2023 Versión:01

SUB-PROCESO DE PRE LIMPIA I

Área responsable Producción

- 1. OBJETIVO: El objetivo de este subproceso es eliminar piedras, pajillas, palotes e impurezas de tamaño regular del arroz cáscara.
- 2. ALCANCE: Este procedimiento abarca desde el ingreso del arroz cáscara a la máquina de prelimpia I hasta el transporte del arroz mediante el elevador hacia la máquina de prelimpia II.
- 3. RESPONSABLES: Los responsables de este subproceso son el Jefe de Producción y los operarios.
- 4. ACTIVIDADES: Las actividades incluyen:

El operario debe asegurarse de que el arroz cáscara pase correctamente por el elevador sin obstrucciones.

Se verifica el estado de las mallas de la máquina de prelimpia I, ya que los desajustes en estas pueden permitir el paso de un mayor porcentaje de impurezas al siguiente subproceso.

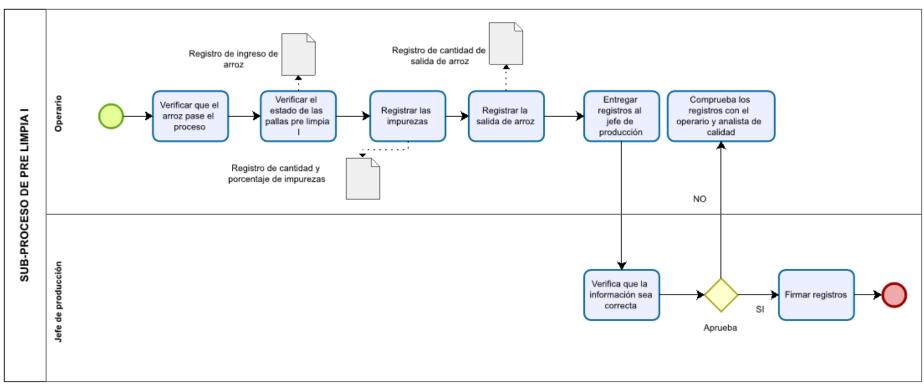
Después de que el lote de arroz ha pasado de la tolva a los demás procesos, se registran las impurezas.

Para ello, el operario pesa el saco con impurezas en una balanza y calcula el porcentaje de impurezas con respecto al arroz cáscara que ingresó.

El operario también registra la cantidad de arroz de salida y entrega todos los registros al Jefe de Producción para su verificación. Una vez verificados, se procede a firmar los registros entregados.

DIAGRAMA DE FLUJO

5. DEFINICIONES:


Impurezas: Restos de sustancias cuya separación no es de interés.

Subproceso: Conjunto de actividades con una secuencia lógica para cumplir un propósito.

6. REGISTROS: Se utiliza un formato de recorrido de línea que abarca desde la etapa de prelimpia I hasta la etapa de envasado.

Figura 56

Procedimiento de subproceso de pre limpia I

Tabla 66

Procedimiento de subproceso de pre limpia II

PROCEDIMIENTO DE SUB-PROCESO DE PRODUCCIÓN

PROC-SPPRE2-006

Fecha: 10/09/2023

SUB-PROCESO DE PRE LIMPIA II

Versión:01

Área responsable Producción

- 1. OBJETIVO: El objetivo de este subproceso es eliminar piedras, pajillas, palotes e impurezas de tamaño regular del arroz cáscara.
- ALCANCE: Este procedimiento abarca desde el ingreso del arroz cáscara a la máquina de prelimpia I hasta el transporte del arroz mediante el elevador hacia la máquina de prelimpia II.
- 3. RESPONSABLES: Los responsables de este subproceso son el Jefe de Producción y los operarios.
- 4. ACTIVIDADES: Las actividades incluyen:

El operario debe asegurarse de que el arroz cáscara pase correctamente por el elevador sin obstrucciones.

Se verifica el estado de las mallas de la máquina de prelimpia I, ya que los desajustes en estas pueden permitir el paso de un mayor porcentaje de impurezas al siguiente subproceso.

Después de que el lote de arroz ha pasado de la tolva a los demás procesos, se registran las impurezas. Para ello, el operario pesa el saco con impurezas en una balanza y calcula el porcentaje de impurezas con respecto al arroz cáscara que ingresó.

El operario también registra la cantidad de arroz de salida y entrega todos los registros al jefe de Producción para su verificación. Una vez verificados, se procede a firmar los registros entregados.

DIAGRAMA DE FLUJO

5. DEFINICIONES:

Impurezas: Restos de sustancias cuya separación no es de interés.

Subproceso: Conjunto de actividades con una secuencia lógica para cumplir un propósito.

6. REGISTROS: Se utiliza un formato de recorrido de línea que abarca desde la etapa de prelimpia I hasta la etapa de envasado.

Figura 57

Procedimiento de subproceso de pre limpia II

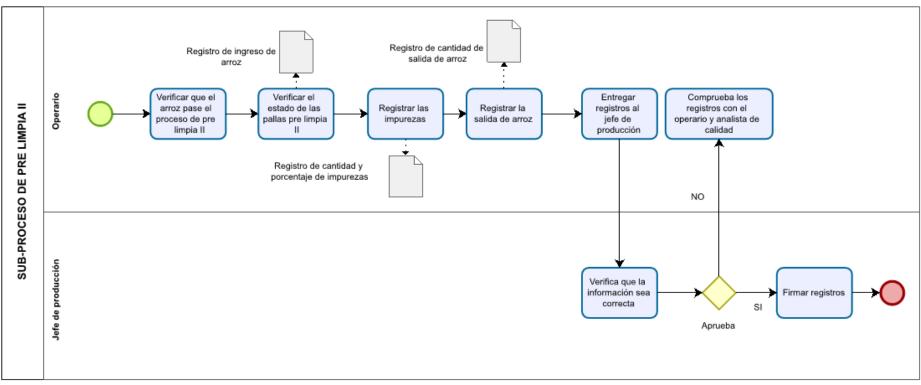


Tabla 67

Procedimiento de subproceso de descascarado

PROCEDIMIENTO DE SUB-PROCESO DE PRODUCCIÓN PROC-SPD-007

SUB-PROCESO DE DESCASCARADO

Fecha: 10/09/2023 Versión:01

Área responsable Producción

- 1. OBJETIVO: El objetivo de este subproceso es descascarar el grano de arroz y eliminar la cascarilla de arroz.
- 2. ALCANCE: Este procedimiento comienza con el ingreso de arroz cáscara a la máquina Descascaradora y concluye con el transporte de arroz mediante el elevador hacia la Mesa Paddy.
- 3. RESPONSABLES: Los responsables de este subproceso son el Jefe de Producción y los operarios.
- 4. ACTIVIDADES: Las actividades incluyen:

El operario registra el ingreso de arroz cáscara a la descascaradora y debe también registrar la cantidad de desecho obtenido, así como las impurezas.

Una vez que el lote de arroz ha sido descascarado en la máquina descascaradora, se registra la cantidad de arroz descascarado.

El operario entrega los registros al Jefe de Producción.

El Jefe de Producción recibe los registros y verifica que la información sea veraz y oportuna, para luego firmarla.

Si la información no es veraz y oportuna, el Jefe de Producción verifica y corrige los registros junto con el operario.

DIAGRAMA DE FLUJO

5. DEFINICIONES:

Desecho: Residuo del que se prescinde por no tener utilidad.

Información: Un conjunto organizado de datos procesados que constituyen un mensaje que cambia el estado de conocimiento del sujeto o sistema que recibe dicho mensaje.

6. REGISTROS: Se utiliza un formato de recorrido de línea que abarca desde la etapa de prelimpia I hasta la etapa de envasado.

Figura 58

Procedimiento de subproceso de descascarado

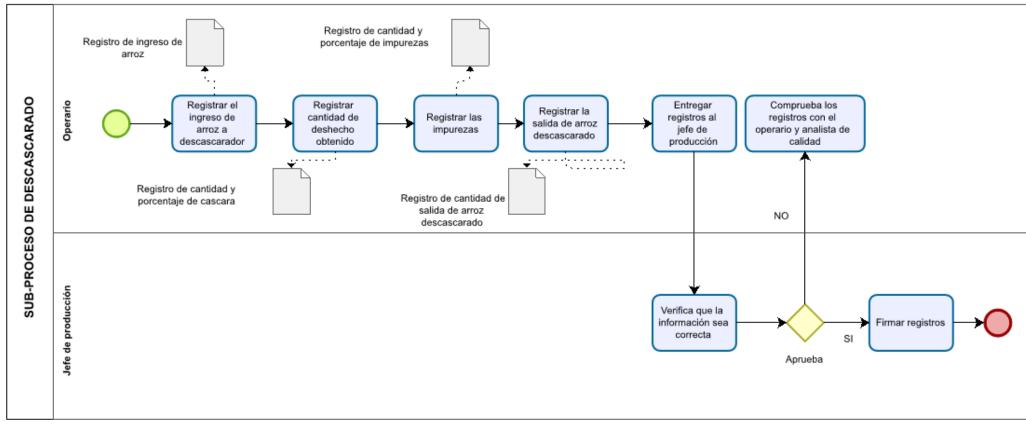


Tabla 68

Procedimiento de subproceso de separación de cáscara

PROCEDIMIENTO DE SUB-PROCESO DE PRODUCCIÓN PROC-SPSC-008 SUB-PROCESO DE SEPARACIÓN DE CÁSCARA Fecha: 10/09/2023 Versión:01

Área responsable Producción

- 1. OBJETIVO: El objetivo de este subproceso es realizar la separación por gravedad del grano de arroz Paddy descascarado y el arroz cáscara que aún no ha sido descascarado, con el último retornando al subproceso de descascarado.
- 2. ALCANCE: Este procedimiento comienza con el ingreso de arroz cáscara a la Mesa Paddy y concluye con el transporte de arroz mediante el elevador hacia las pulidoras de piedra.
- 3. RESPONSABLES: Los responsables de este subproceso son el jefe de Producción y los operarios.
- 4. ACTIVIDADES: Las actividades incluyen:

El operario registra el ingreso de arroz descascarado.

Luego de la separación de la cáscara, se registra la cantidad de salida de arroz cáscara que no ha sido descascarado, el cual el operario lleva hacia la máquina descascaradora para ser reprocesado, es decir, descascarado.

El operario informa al jefe de Producción sobre la cantidad de arroz cáscara que se reprocesó.

Una vez informado al jefe de Producción, el operario registra la cantidad de salida de arroz. Se juntan todos los registros y se entregan al jefe de Producción.

El jefe de Producción, al recibir los registros, verifica que la información sea veraz y oportuna y luego firma.

Si la información no es veraz y oportuna, el jefe de Producción verifica y corrige los registros junto con el operario.

DIAGRAMA DE FLUJO

5. DEFINICIONES:

Descascarado: Quitar la cáscara de una cosa; por ejemplo, descascarar las avellanas para su venta.

Reproceso: Acción tomada sobre un producto no conforme para que cumpla con los requisitos.

6. REGISTROS: Se utiliza un formato de recorrido de línea que abarca desde la etapa de prelimpia I hasta la etapa de envasado.

Figura 59

Procedimiento de subproceso de separación de cáscara

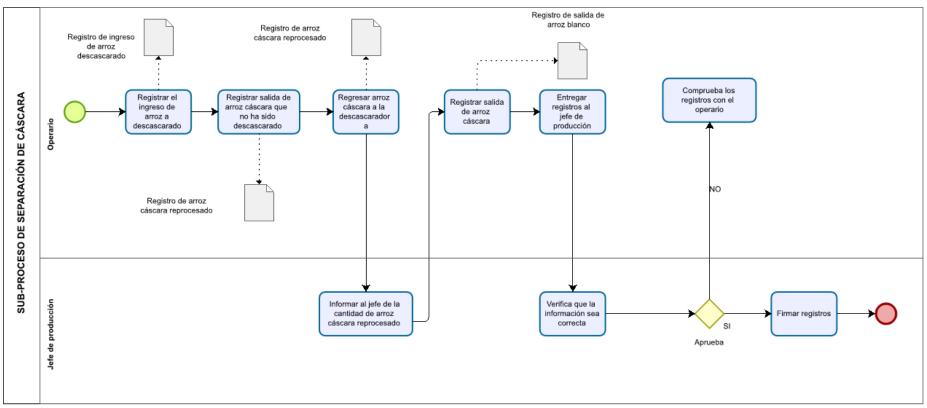


Tabla 69

Procedimiento de subproceso de pulido

PROCEDIMIENTO DE SUB-PROCESO DE PRODUCCIÓN PROC-SPP-009 SUB-PROCESO DE PULIDO Fecha: 10/09/2023 Versión:01

Área responsable Producción

- 1. OBJETIVO: El objetivo de este subproceso es pulir el arroz y separar el arroz blanco del polvillo (subproducto).
- 2. ALCANCE: Este procedimiento comienza con el ingreso de arroz cáscara a las pulidoras de piedra y concluye con el transporte de arroz mediante el elevador hacia las pulidoras al aqua.
- 3. RESPONSABLES: Los responsables de este subproceso son el Jefe de Producción y los operarios.

4. ACTIVIDADES: Las actividades incluyen:

El operario verifica que el arroz no se obstruya en el elevador para pasar a la pulidora. Luego, registra el ingreso de arroz blanco a las pulidoras, la cantidad de subproductos obtenidos y la cantidad de arroz pulido.

Después de realizar los registros, el operario entrega los registros al Jefe de Producción. El Jefe de Producción, al recibir los registros, verifica que la información sea veraz y oportuna y luego firma.

Si la información no es veraz y oportuna, el Jefe de Producción verifica y corrige los registros junto con el operario.

DIAGRAMA DE FLUJO

5. DEFINICIONES:

Pulido: Es la acción y el efecto de alisar, dar lustre y tersura a un objeto hasta dotarle de una superficie brillante.

Polvillo: Es el resultado del pulimento en la obtención del arroz para alimentación humana. 6. REGISTROS: Se utiliza un formato de recorrido de línea que abarca desde la etapa de prelimpia I hasta la etapa de envasado.

Figura 60

Procedimiento de subproceso de pulido

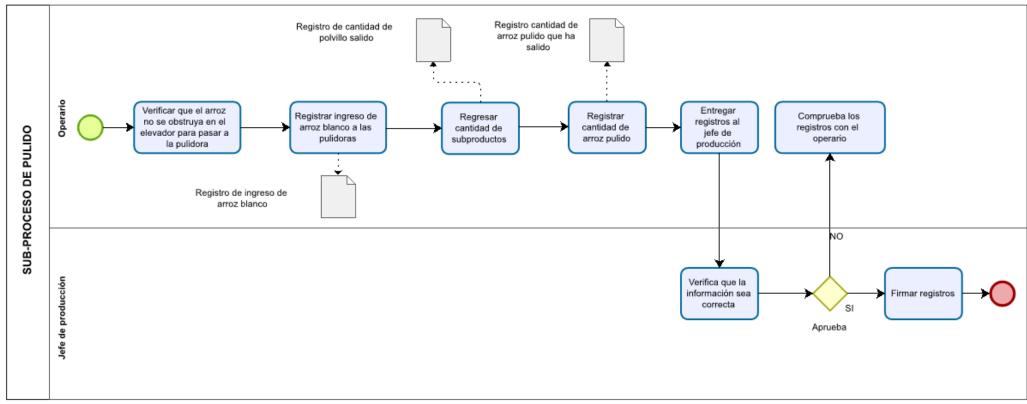


Tabla 70

Procedimiento de subproceso de abrillantado

PROCEDIMIENTO DE SUB-PROCESO DE PRODUCCIÓN PROC-SPA-010 SUB-PROCESO DE ABRILLANTADO Fecha: 10/09/2023 Versión:01

Área responsable Producción

- 1. OBJETIVO: El objetivo de este sub-proceso es pulir y darle un aspecto transparente al grano de arroz.
- 2. ALCANCE: Este procedimiento inicia con el ingreso de arroz cáscara a las pulidoras de agua y culmina con el transporte de arroz mediante el elevador hacia la clasificadora.
- 3. RESPONSABLES: Los responsables de este sub-proceso son el Jefe de Producción y los operarios.

4. ACTIVIDADES: Las actividades incluyen:

El operario registra la cantidad de ingreso de arroz a la pulidora de agua.

Luego, verifica la cantidad de ingreso de agua a la pulidora, y una vez registrado lo anterior, registra la cantidad de salida de arroz blanco.

Posteriormente, el operario verifica que el arroz no se obstruya en el elevador.

El Jefe de Producción, al recibir los registros, verifica que la información sea veraz y oportuna y luego firma.

Si la información no es veraz y oportuna, el Jefe de Producción verifica y corrige los registros junto con el operario.

DIAGRAMA DE FLUJO

5. DEFINICIONES:

Comprobar: Pasar a tener la certeza de la veracidad de una suposición, un dato o un resultado obtenido anteriormente mediante demostración o pruebas que los acreditan como ciertos.

Veracidad: La veracidad es la cualidad de lo que es verdadero o veraz y está conforme con la verdad.

6. REGISTROS: Se utiliza un formato de recorrido de línea que abarca desde la etapa de pre-limpia I hasta la etapa de envasado.

Figura 61

Procedimiento de subproceso de abrillantado

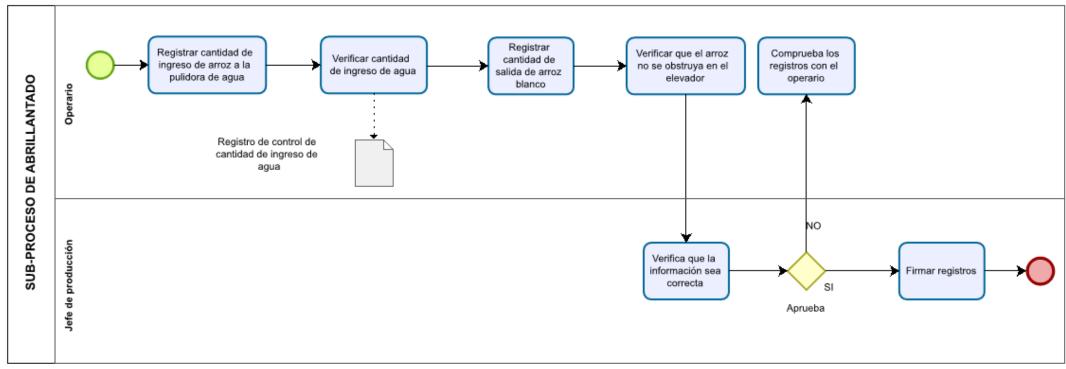


Tabla 71 Procedimiento de subproceso de clasificación

PROCEDIMIENTO DE SUB-PROCESO DE PRODUCCIÓN PROC-SPC-011 Fecha: 10/09/2023 SUB-PROCESO DE CLASIFICACIÓN Versión:01

Área responsable Producción

- 1. OBJETIVO: El objetivo de este subproceso es clasificar el arroz blanco de grano entero, del arrocillo, ñelen y descarte.
- 2. ALCANCE: Esta instrucción abarca desde el ingreso de arroz cáscara a la clasificadora hasta el transporte de arroz mediante el elevador hacia la Selectora.
- 3. RESPONSABLES: Los responsables de este subproceso son el Jefe de Producción y los operarios.
- 4. ACTIVIDADES: Las actividades incluyen:

El operario verifica que el arroz no se atasque en el elevador.

Se registran las salidas de cada uno de los subproductos generados en el proceso, es decir, del arrocillo, ñelen y descarte.

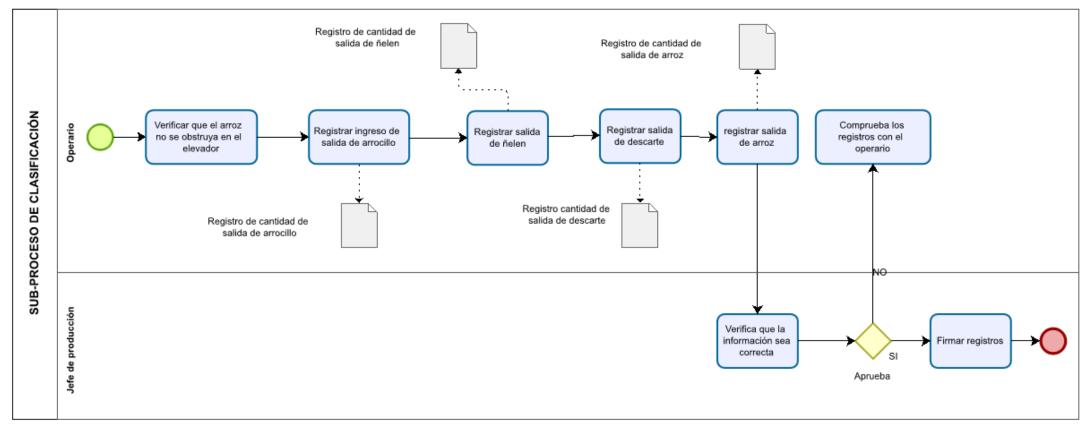
Como última actividad, el operario registra la salida de arroz para posteriormente entregar los registros al Jefe de Producción.

El Jefe de Producción, al recibir los registros, verifica que la información sea veraz y oportuna y luego firma.

Si la información no es veraz y oportuna, el Jefe de Producción verifica y corrige los registros junto con el operario.

DIAGRAMA DE FLUJO

5. DEFINICIONES:


Ñelen: Lo conforman los granos de arroz quebrados menores a ¼ de la longitud de la variedad del grano de mayor contraste.

Arrocillo: Lo conforman los granos quebrados mayores o iguales a ¼ de la longitud de la variedad del grano de mayor contraste.

6. REGISTROS: Se utiliza un formato de recorrido de línea que abarca desde la etapa de prelimpia I hasta la etapa de envasado.

Figura 62

Procedimiento de subproceso de clasificación

Tabla 72

Procedimiento de subproceso de selección

PROCEDIMIENTO DE SUB-PROCESO DE PRODUCCIÓN PROC-SPS-012

Fecha: 10/09/2023

SUB-PROCESO DE SELECCIÓN

Versión:01

Área responsable Producción

- 1. OBJETIVO: El objetivo de este subproceso es seleccionar el arroz de acuerdo con el color y tamaño del grano, así como separar aquellos granos deformes y rojos.
- 2. ALCANCE: Este procedimiento abarca desde el ingreso de arroz cáscara a la selectora hasta el transporte de arroz mediante el elevador hacia la Tolva de envasado.
- 3. RESPONSABLES: Los responsables de este subproceso son el jefe de Producción y los operarios.
- 4. ACTIVIDADES: Las actividades incluyen:

El operario verifica que el arroz no se atore en el elevador e ingrese a la selectora.

Luego, registra el ingreso de arroz a la selectora y debe inspeccionar cada dos horas los parámetros establecidos en la selectora.

El operario verifica y verifica la calidad del grano en la selectora.

Posteriormente, registra la cantidad de salida de arroz descartado, así como la cantidad de salida de arroz blanco.

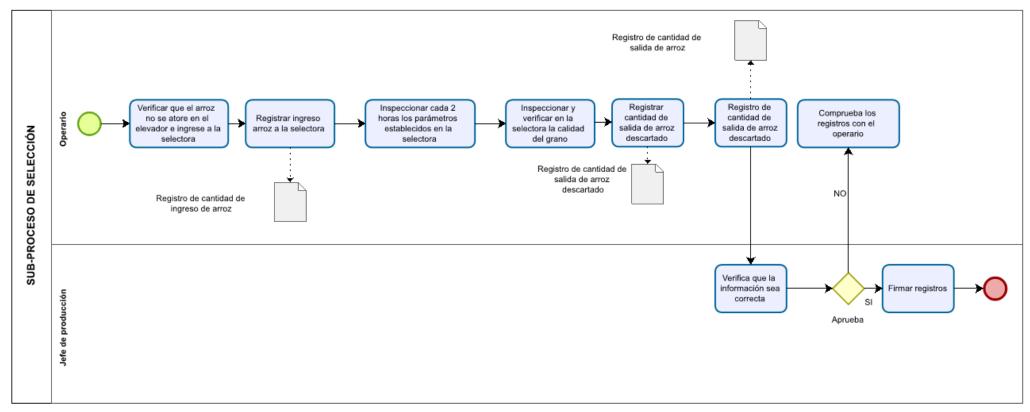
Una vez registrado todo, el operario entrega los registros al jefe de Producción.

El jefe de Producción, al recibir los registros, verifica que la información sea veraz y oportuna y luego firma.

Si la información no es veraz y oportuna, el jefe de Producción verifica y corrige los registros junto con el operario.

DIAGRAMA DE FLUJO

5. DEFINICIONES:


Parámetro: Es un número que resume la gran cantidad de datos que pueden derivarse del estudio de una variable estadística.

Calidad: Conjunto de propiedades inherentes a una cosa que permite caracterizarla y valorarla con respecto a las restantes de su especie.

6. REGISTROS: Se utiliza un formato de recorrido de línea que abarca desde la etapa de prelimpia I hasta la etapa de envasado.

Figura 63

Procedimiento de subproceso de selección

PROCEDIMIENTO DE SUB-PROCESO DE PRODUCCIÓN PROC-SPE-013 SUB-PROCESO DE ENVASADO Fecha: 10/09/2023 Versión:01

Área responsable Producción

- 1. OBJETIVO: El objetivo de este subproceso es envasar y pesar el arroz pilado en sacos de 50 kg.
- 2. ALCANCE: Este procedimiento inicia con el envasado y pesado de arroz y culmina con el sellado de sacos de arroz con hilo.
- 3. RESPONSABLES: Los responsables de este subproceso son el Jefe de Producción y los operarios.

4. ACTIVIDADES: Las actividades incluyen:

El operario verifica el ingreso de arroz a la tolva de envasado.

Luego, verifica e inspecciona que la balanza esté calibrada y registra el ingreso de arroz a la tolva de producto terminado.

Posteriormente, el operario envasa y pesa el arroz en sacos de 50 kg.

Después de pesar cada saco, lo sella con hilo pabilo.

Una vez que todos los sacos se han envasado y pesado, el operario entrega todos los registros al Jefe de Producción.

El Jefe de Producción, al recibir los registros, verifica que la información sea veraz y oportuna y luego firma.

DIAGRAMA DE FLUJO

5. DEFINICIONES:

Inspeccionar: Examinar atentamente una cosa o un lugar.

Calibrar: La calibración es el proceso de comparar los valores obtenidos por un instrumento de medición con la medida correspondiente de un patrón de referencia.

Tolva: Dispositivo similar a un embudo de gran tamaño destinado al depósito y canalización de materiales granulares o pulverizados, entre otros.

6. REGISTROS: Se utiliza un formato de recorrido de línea que abarca desde la etapa de prelimpia I hasta la etapa de envasado.

Nota: se muestra el registro de producción total obtenida para llevar un control de ingreso y salida de materia prima y subproductos, así como parámetros de quebrado.

Figura 64

Procedimiento de subproceso de envasado

Nota: se muestra el registro de producción total obtenida para llevar un control de ingreso y salida de materia prima y subproductos, así como parámetros de quebrado.

Tabla 74

Procedimiento de subproceso de almacenaje de producto terminado

PROCEDIMIENTO DE SUB-PROCESO DE PRODUCCIÓN SUB-PROCESO DE ALMACENAJE DE PRODUCTO TERMINADO Área responsable Producción PROC-SPA-014 Fecha: 10/09/2023 Versión:01

- 1. OBJETIVO: El objetivo de este sub-proceso es mantener el producto en el almacén de producto terminado para que se conserve en buenas condiciones.
- 2. ALCANCE: Este procedimiento inicia con el transporte de producto terminado y culmina con el arrumado de sacos de arroz pilado en el almacén de producto terminado.
- 3. RESPONSABLES: Los responsables de este sub-proceso son el Jefe de Logística y el Jefe de Producción.
- 4. ACTIVIDADES: Las actividades incluyen:

El Jefe de Logística se encarga de destinar el espacio en donde se pondrá el lote de producto terminado y da la orden al Jefe de Producción para que el arroz sea transportado hacia el almacén de producto terminado.

Luego, el Jefe de Producción da la orden a los operarios para que empiecen a transportar el arroz al almacén.

Los operarios llevan los sacos de arroz al almacén de producto terminado y los arruman en pallets. Además, registran la cantidad de salida de arroz.

Finalmente, entregan los registros al Jefe de Producción.

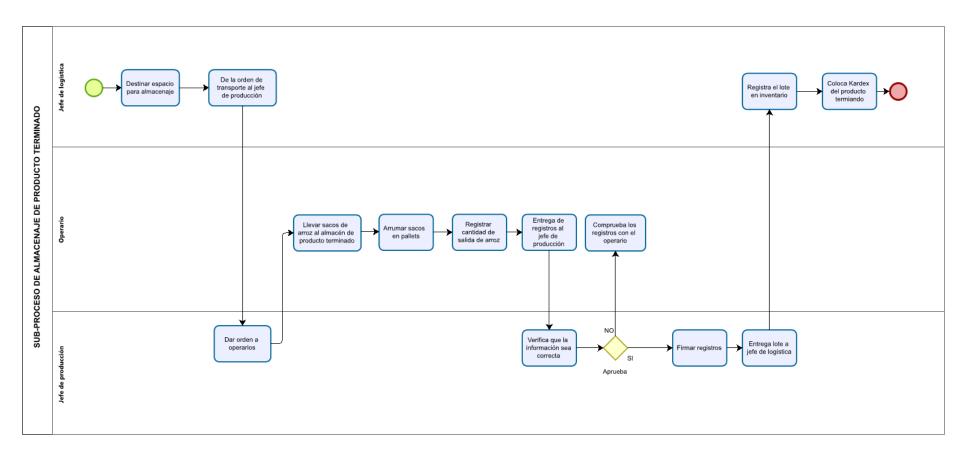
El Jefe de Producción, al recibir los registros, verifica que la información sea veraz y oportuna, y luego firma.

Luego, entrega el lote al Jefe de Logística y registra el lote en inventario y coloca el Cardex de producto terminado.

DIAGRAMA DE FLUJO

5. DEFINICIONES:

Orden: Disposición o mandato que una persona da a sus súbditos.


Pallets: Plataforma utilizada para agrupar, apilar, almacenar, manipular y transportar mercaderías embaladas.

Kardex: Registro estructurado de la existencia de mercancías en un almacén o empresa utilizado para tener control de los movimientos.

Nota: Este procedimiento asegura que el producto terminado se almacene de manera adecuada y se mantenga en buenas condiciones hasta su posterior distribución.

Figura 65

Procedimiento de subproceso de almacenaje de producto terminado

Nota: Este procedimiento asegura que el producto terminado se almacene de manera adecuada y se mantenga en buenas condiciones hasta su posterior distribución.

PROCEDIMIENTO PROC-VEN-015 Fecha: 10/09/2023 VENTAS Versión:01

Área responsable Gerencia general, Administración y Logística

- 1. OBJETIVO: El propósito fundamental de este procedimiento es asegurar que el arroz pilado en sacos de 50 kg sea entregado en perfecto estado, cumpliendo de manera rigurosa con los estándares y requisitos establecidos por nuestros clientes.
- 2. ALCANCE: Este manual cubre todas las etapas desde la obtención del arroz pilado, empacado en sacos de 50 kg, hasta su entrega final al cliente.
- 3. RESPONSABLES: Los encargados de llevar a cabo este procedimiento son el Gerente General, el Administrador y el Jefe de Logística.
- 4. ACTIVIDADES: Las actividades comprendidas en este procedimiento son las siguientes:

Llevar a cabo la entrega del producto al Administrador y documentar la salida de este, asegurando su adecuada carga en el camión que lo transportará.

Notificar al Administrador para que registre formalmente la salida del producto.

Entregar la orden de salida al Gerente General, quien debe autorizarla mediante su firma.

El Jefe de Logística tiene la responsabilidad de coordinar el transporte del producto desde nuestras instalaciones hasta el lugar de destino designado por el cliente.

Finalmente, se efectúa la entrega del producto al cliente, quien debe rubricar la orden de remisión, dejando constancia oficial de la recepción de la mercancía.

DIAGRAMA DE FLUJO

5. DEFINICIONES:

Orden de salida: Se refiere al documento emitido por el vendedor al momento en que una persona adquiere un producto, solicitando al almacén que entregue el artículo específico requerido.

Orden de remisión: Es un comprobante que evidencia que los artículos han sido entregados por una parte y recibidos por la otra. Este documento es útil para efectuar comprobaciones y no posee valor tributario alguno.

6. REGISTROS: Los registros que documentan la salida de productos del almacén se encuentran detallados en el anexo 51, mientras que los registros relacionados con las ventas se presentan en el anexo 52.

Figura 66

Procedimiento de ventas

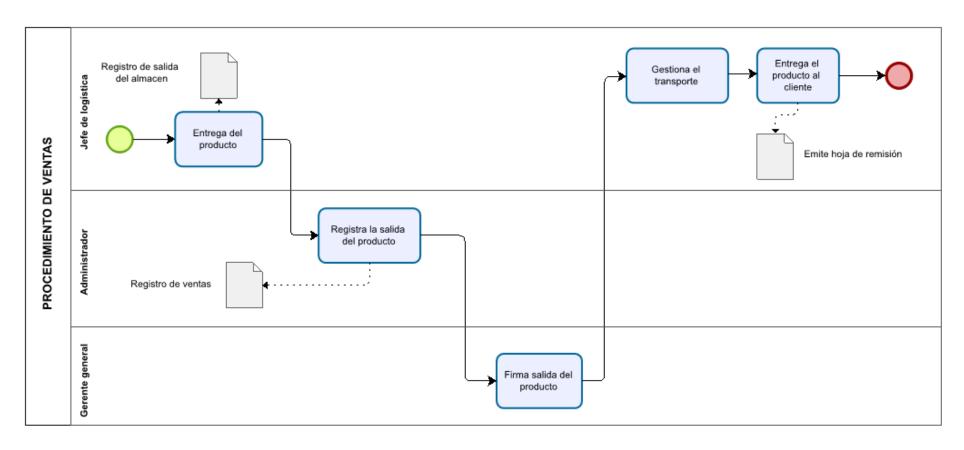


Tabla 76

Procedimiento de mantenimiento de equipos

PROCEDIMIENTO		PROC-MQ-016
MANTENII	MANITENIMIENTO DE FOLUDOS	
MANTENIMIENTO DE EQUIPOS		Versión:01
Área responsable Mantenimiento y Logística		

- 1. OBJETIVO: El objetivo de este procedimiento es mantener las máquinas o equipos en buenas condiciones y mejorar su eficiencia.
- 2. ALCANCE: El alcance de este procedimiento incluye la revisión e inspección de mantenimiento de equipos hasta el funcionamiento correcto de las máquinas.
- 3. RESPONSABLES: Los responsables de este procedimiento son el Jefe de Mantenimiento, los Maquinistas y los Técnicos en Mantenimiento.
- 4. ACTIVIDADES: Las actividades incluyen:

Llevar a cabo una revisión exhaustiva de la maquinaria y documentar esta inspección en la hoja de inspección correspondiente.

Elaborar una lista de insumos necesarios para llevar a cabo el plan de mantenimiento preventivo, y remitirla al Jefe de Logística.

El Jefe de Logística tiene la responsabilidad de proveer los insumos requeridos tanto a los Maquinistas como a los Técnicos en Mantenimiento.

Los Técnicos en Mantenimiento deben cumplir rigurosamente con la ejecución del plan de mantenimiento preventivo, siguiendo el cronograma establecido.

Los Maquinistas deben solicitar los insumos necesarios para llevar a cabo el mantenimiento autónomo y, además, deben completar la orden de trabajo correspondiente.

DIAGRAMA DE FLUJO

5. DEFINICIONES:

Maquinaria: Se refiere al conjunto de máquinas utilizadas para un propósito específico.

Mantenimiento Preventivo: Es el conjunto de actividades destinadas a conservar los equipos mediante la realización de revisiones y reparaciones que aseguran su correcto funcionamiento y confiabilidad.

Mantenimiento Autónomo: Se trata de una de las fases en la implementación del TPM (Mantenimiento Productivo Total) y consiste en la acción más desafiante y que requiere mayor tiempo, debido a la dificultad de cambiar la forma habitual de trabajo.

6. REGISTROS: El registro de las tareas de mantenimiento se encuentra detallado en la figura 38, que corresponde a la orden de trabajo de mantenimiento.

Figura 67

Procedimiento de mantenimiento de equipos

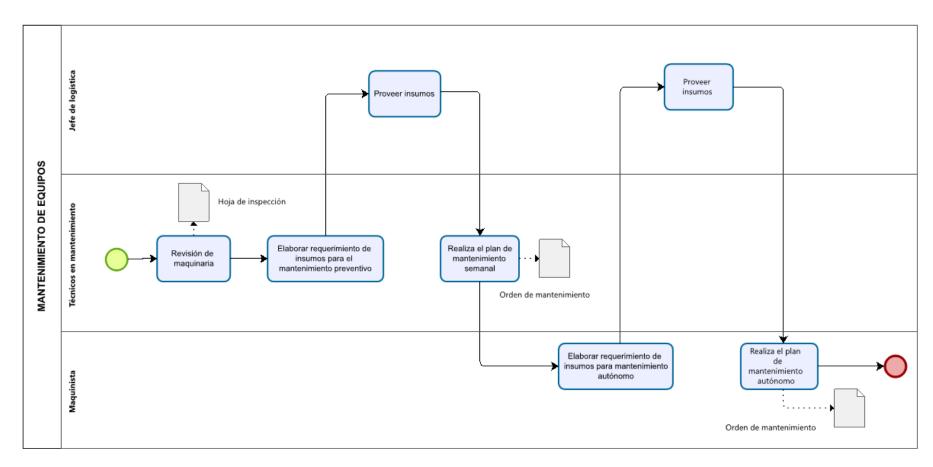


Tabla 77

Procedimiento de Registros

PROCEDIMIENTO	PROC-REG-017
DECISTROS	Fecha: 10/09/2023
REGISTROS	Versión:01
Área responsable Administración	

- 1. OBJETIVO: El objetivo de este procedimiento es mantener los registros documentados y actualizados de las actividades realizadas para la planeación adecuada.
- 2. ALCANCE: Este instructivo abarca desde la implementación de formatos hasta la elaboración de informes.
- 3. RESPONSABLES: El responsable de este procedimiento es el Administrador.
- 4. ACTIVIDADES: Las actividades incluyen:

Implementar los registros necesarios para el reporte de cada área de la empresa.

Entregar los registros a los jefes de cada proceso, asegurando su correcto uso y actualización.

Realizar la recolección mensual de los registros de todas las áreas de la empresa.

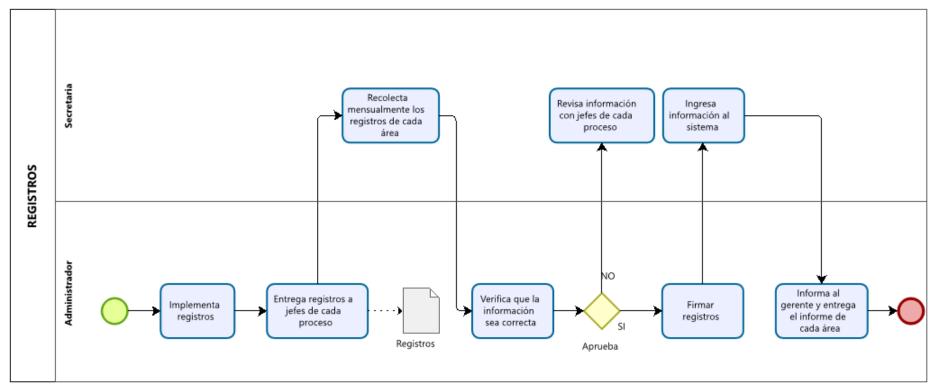
Verificar que la información registrada en cada uno de los documentos sea precisa y oportuna.

Validar los registros mediante la firma del Administrador, lo que garantiza su autenticidad. Ingresar la información contenida en los registros al sistema de la empresa, para su posterior gestión y análisis.

Informar al Gerente sobre el estado y desempeño de cada una de las áreas de la empresa, entregando el reporte mensual correspondiente.

DIAGRAMA DE FLUJO

5. DEFINICIONES:


Registro: Se refiere a un documento donde se detallan ciertos acontecimientos o información relevante, especialmente aquellos que deben quedar constatados de manera oficial y permanente.

Informe: Consiste en una exposición, ya sea oral o escrita, acerca del estado de una cosa o de una persona, así como de las circunstancias que rodean un hecho o situación.

6. REGISTROS: Los registros específicos utilizados en este procedimiento se encuentran detallados en los anexos correspondientes.

Figura 68

Procedimiento de Registros

4.3. Resultados del objetivo 3 "Evaluar y determinar el aspecto técnico y económico de la mejora de la productividad de la empresa Indupersa SAC"

Producción

Tabla 78

Producción con la mejora

	Producción 2022	
Mes	sacos	Lotes
ene-22	13876	37
feb-22	19393	52
mar-22	14055	37
abr-22	11978	32
may-22	18921	50
jun-22	25987	70
jul-22	17013	46
ago-22	14083	38
sep-22	13209	35
oct-22	11468	31
nov-22	15606	42
dic-22	4442	12
Total	180032	482

Nota: se extrajo de la revisión documental

Tabla 79

Cantidad y costos con la mejora por Hilo con la propuesta

Cantidad y costos por Hilo en 2022				
Meses	Cantidad (metros)	Cantidad (Rollos)	Costos	
Enero	18039	3.6	S/ 35.10	
Febrero	25210	5	S/ 48.75	
Marzo	18272	3.7	S/ 36.08	
Abril	15572	3.1	S/ 30.23	
Mayo	24598	4.9	S/ 47.78	
Junio	33783	6.8	S/ 66.30	
Julio	22117	4.4	S/ 42.90	
Agosto	18308	3.7	S/ 36.08	
Setiembre	17172	3.4	S/ 33.15	
Octubre	14908	3	S/ 29.25	
Noviembre	20287	4.1	S/ 39.98	
Diciembre	5774	1.2	S/ 11.70	
Total	234041	46.9	S/ 457.28	

Tabla 80

Cantidad y costos por sacos con la propuesta

	Cantidad y costos por saco e	en 2022
	Cantidad	costos
Enero	13876	S/ 10,406.83
Febrero	19393	S/ 14,544.44
Marzo	14055	S/ 10,541.60
Abril	11978	S/ 8,983.63
Mayo	18921	S/ 14,191.00
Junio	25987	S/ 19,490.27
Julio	17013	S/ 12,760.03
Agosto	14083	S/ 10,562.56
Setiembre	13209	S/ 9,906.81
Octubre	11468	S/ 8,600.96
Noviembre	15606	S/ 11,704.22
Diciembre	4442	S/ 3,331.42
Total	180032	S/ 135,023.77

Nota: se extrajo de la revisión documental

Tabla 81

Fallos y tiempo de parada después de la mejora

Máquinas	N° Fallas	Tiempo total de operación	Tiempo de parada
Pre limpia 1	7	4992	35.67
Pre limpia 2	5	4992	28.33
Descascaradora Hongjia 1	4	4992	21.85
Selectora GROTECH	4	4992	20.62
Mesa Paddy Zaccaria	4	4992	33.67
Pulidora de agua	4	4992	22.67
Pulidora de piedra 2	4	4992	18.00
Descascaradora Hongjia 2	3	4992	6.82
Clasificadora 1	3	4992	15.82
Elevador 1	3	4992	16.36
Elevador 10	3	4992	12.27
Elevador 3	3	4992	10.09
Clasificadora 2	3	4992	12.30
Elevador 4	3	4992	16.80
Elevador 5	3	4992	16.80
Elevador6	3	4992	17.10
Elevador 7	3	4992	13.33
Elevador 2	3	4992	18.33
Elevador 8	3	4992	33.00
Elevador 9	3	4992	12.00
Pulidora de piedra 1	3	4992	19.67
Balanza	2	4992	2.00

Figura 69

Análisis de los fallos por cada máquina después de la mejora

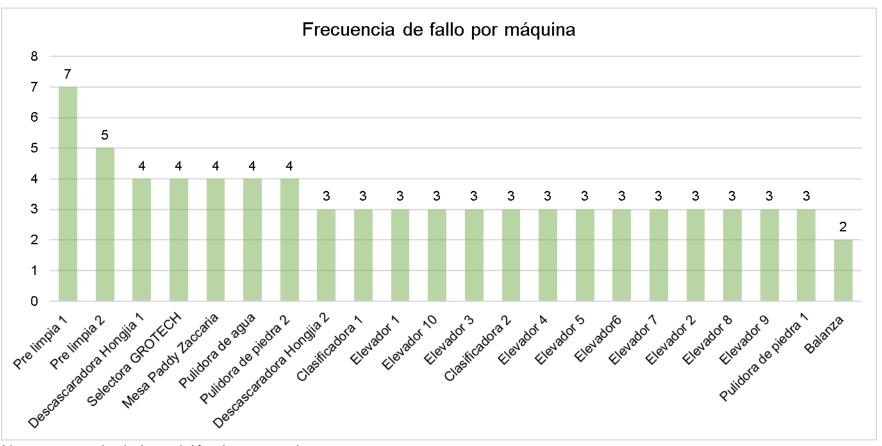


Tabla 82
Costos de mantenimiento con la propuesta

-			Costo	
Máquina	horas	costo MO	mantenimientos	Total
Pre limpia Agromay 1	35.67	S/ 1,707.12	S/ 2,799.85	S/ 4,506.97
Pre limpia Agromay 2	28.33	S/ 1,356.13	S/ 2,507.96	S/ 3,864.09
Descascaradora Hongjia 1	21.85	S/ 1,045.63	S/ 2,624.77	S/ 3,670.40
Selectora GROTECH	20.62	S/ 986.72	S/ 2,700.03	S/ 3,686.75
Mesa Paddy Zaccaria	33.67	S/ 1,611.40	S/ 3,576.79	S/ 5,188.18
Pulidora de agua	22.67	S/ 1,084.90	S/ 3,062.17	S/ 4,147.07
Pulidora de piedra 2	18.00	S/ 861.54	S/ 1,184.07	S/ 2,045.61
Descascaradora Hongjia 2	6.82	S/ 326.34	S/ 917.05	S/ 1,243.39
Clasificadora 1	15.82	S/ 757.11	S/ 2,626.23	S/ 3,383.34
Elevador 1	16.36	S/ 783.22	S/ 1,895.73	S/ 2,678.94
Elevador 10	12.27	S/ 587.41	S/ 249.93	S/ 837.34
Elevador 3	10.09	S/ 482.98	S/ 370.12	S/ 853.10
Clasificadora 2	12.30	S/ 588.72	S/ 274.05	S/ 862.77
Elevador 4	16.80	S/ 804.10	S/ 375.72	S/ 1,179.82
Elevador 5	16.80	S/ 804.10	S/ 567.96	S/ 1,372.06
Elevador6	17.10	S/ 818.46	S/ 627.87	S/ 1,446.33
Elevador 7	13.33	S/ 638.18	S/ 312.43	S/ 950.61
Elevador 2	18.33	S/ 877.49	S/ 3,124.00	S/ 4,001.49
Elevador 8	33.00	S/ 1,579.49	S/ 3,191.33	S/ 4,770.82
Elevador 9	12.00	S/ 574.36	S/ 437.43	S/ 1,011.79
Pulidora de piedra 1	19.67	S/ 941.31	S/ 515.00	S/ 1,456.31
Balanza	2.00	S/ 95.73	S/ 612.50	S/ 708.23
Total	403	S/ 19,312.43	S/ 34,552.98	S/ 53,865.41

Nota: Se extrajo del análisis de los datos

Tabla 83

Análisis de Pareto para la selección de máquinas críticas

Costo	%
S/ 13,730.57	7.99%
S/ 13,649.90	15.94%
S/ 12,379.69	23.15%
S/ 12,186.71	30.24%
S/ 12,025.33	37.24%
S/ 11,824.16	44.13%
S/ 11,780.73	50.99%
S/ 11,622.16	57.75%
S/ 11,274.15	64.32%
S/ 9,701.19	69.97%
S/ 6,552.41	73.78%
S/ 6,112.69	77.34%
S/ 4,593.07	80.01%
S/ 4,450.14	82.60%
S/ 4,393.37	85.16%
S/ 4,107.29	87.55%
S/ 3,795.16	89.76%
S/ 3,752.57	91.95%
S/ 3,666.59	94.08%
S/ 3,562.46	96.16%
S/ 3,413.67	98.14%
S/ 3,187.46	100.00%
S/ 172,461.62	
	S/ 13,730.57 S/ 13,649.90 S/ 12,379.69 S/ 12,186.71 S/ 12,025.33 S/ 11,824.16 S/ 11,780.73 S/ 11,622.16 S/ 11,274.15 S/ 9,701.19 S/ 6,552.41 S/ 6,112.69 S/ 4,593.07 S/ 4,450.14 S/ 4,393.37 S/ 4,107.29 S/ 3,795.16 S/ 3,752.57 S/ 3,666.59 S/ 3,562.46 S/ 3,413.67 S/ 3,187.46

Nota: se extrajo de la revisión documental

Tabla 84

Remuneraciones mensuales

Remuneraciones mensuales				
Personal	Remuneración	Cantidad	Pago mensual	
Jefe de planta	S/ 2,012.50	1	S/ 2,012.50	
Analista de calidad	S/ 1,265.00	1	S/ 1,265.00	
Maquinista 1	S/ 2,070.00	1	S/ 2,070.00	
Operarios	S/ 1,495.00	4	S/ 5,980.00	
Total	S/ 6,842.50	7	S/ 11,327.50	
Costo por hora			S/ 48.41	

Tabla 85

Eficiencia, mermas y pérdidas económicas

	Arroz cáscara		Eficiencia	Mermas	Pérdidas
Mes	(kg)	Arroz pilado (kg)	física	(kg)	económicas
Enero	1262412	694327	0.55	537.81	S/ 1,559.65
Febrero	1902243	970144	0.51	514.46	S/ 1,491.92
Marzo	1326865	703238	0.53	465.10	S/ 1,348.79
Abril	1175130	599316	0.51	407.08	S/ 1,180.54
Mayo	1893160	946580	0.50	513.24	S/ 1,488.40
Junio	2653651	1300289	0.49	937.45	S/ 2,718.60
Julio	1605880	851116	0.53	447.96	S/ 1,299.07
Agosto	1355190	704699	0.52	527.65	S/ 1,530.18
Septiembre	1295772	660844	0.51	389.81	S/ 1,130.46
Octubre	1195183	573688	0.48	290.55	S/ 842.59
Noviembre	1593629	780878	0.49	597.10	S/ 1,731.58
Diciembre	453561	222245	0.49	150.52	S/ 436.50
					S/
Total	17712674	9007363	0.51	5778.72	16,758.27

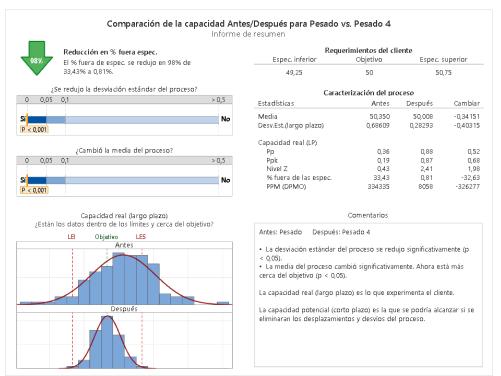
Nota: se extrajo de la revisión documental

Tabla 86

Nuevos tiempos en las máquinas después de la propuesta.

Tiempos al año en las m	áquinas empleadas	
Indicador	Tiempo de paradas	horas
Tiempo disponible: TD	TD	4992
	Descanso y paros previstos	317
Tiempo de funcionamiento: TF	Mantenimiento preventivo	234
riempo de funcionamiento. Tr	Mantenimiento productivo	130
	TF	4198
	Preparación para operación	78
Tiempo del periodo de operación: TOP	ajustes de cambio	52
	TOP	4052
	Averías y reparaciones.	52
Tiempo de operación neta: TON	Otros por suciedad por viruta	26
	TON	3923
	Paradas cortas	52
Tiempo operativo real: TOR	Reducción de velocidad por fallo	62
	TOR	3766
Tiempo productivo neto: TPN	Tiempo perdido en defectuosos	638
	TPN	3127

Tabla 87
Indicadores de TPM en la situación después de la propuesta.


		ln	dicadores	de TPM en	la situacio	ón despu	és de la pro	puesta.				
TD =						4992						
TF =					4198						TPP =	794
TOP =				4052					TPA =	146		
TON =			3923				TPNP =	129				
TOU =		3766			TPOP =	157						
TPN =	3	127	TPD =	638								
TD =	4992	horas							TEEP =	96	3 %	
TF =	4198	horas		TPP =	794	horas			OEE =	83	3%	
TOP =	4052	horas		TPA =	146	horas			A =	63	3%	
TON =	3923	horas		TPOP =	157	horas			η =	75	5%	
TOU =	3766	horas		TPD =	638	horas			q =	97	7%	
TPN =	3127	horas										

Comparación de la capacidad Antes/Después para Pesado vs.

Pesado 4

Figura 70

Análisis de la comparación de la capacidad Antes/Después del pesado

Nota: La imagen muestra la variación de la capacidad de proceso

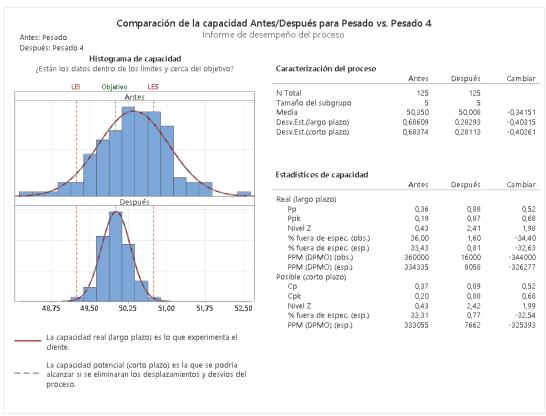
Los resultados del análisis de variación en el pesado de los sacos de 50 kilos en Indupersa S.A.C. muestran una serie de estadísticas que indican cómo ha evolucionado este proceso en el mes 1 en comparación con el mes 4. Aquí se presenta una interpretación de los principales indicadores:

N Total y Tamaño del Subgrupo: Ambos se mantienen constantes, lo que significa que la cantidad de sacos pesados y el tamaño de los subgrupos no han cambiado entre los dos meses analizados.

Media: La media del peso de los sacos ha disminuido ligeramente, específicamente en un 0.68%. Esto indica que, en promedio, los sacos pesan un poco menos en el mes 4 en comparación con el mes 1.

Desviación Estándar (Largo Plazo y Corto Plazo): La desviación estándar, que mide la dispersión de los datos, ha disminuido significativamente tanto a largo plazo (58.76%) como a corto plazo (58.88%). Esto sugiere que la

variabilidad en el peso de los sacos se ha reducido notablemente, lo que puede ser positivo para la consistencia del producto.


Estadísticos de Capacidad (Real - Largo Plazo y Posible - Corto Plazo): Los valores de Pp, Ppk, y Nivel Z han aumentado considerablemente tanto a largo plazo como a corto plazo. Esto indica que el proceso de pesado ha mejorado significativamente en términos de su capacidad para mantener el peso dentro de los límites especificados.

% Fuera de Especificación y PPM (DPMO): Tanto el porcentaje de productos fuera de especificación como los PPM (Partes Por Millón Defectuosas) han disminuido drásticamente en comparación con el mes 1. Esto significa que en el mes 4, hay menos sacos cuyo peso está fuera de las especificaciones establecidas y, por lo tanto, menos productos defectuosos.

En conclusión, estos resultados indican una mejora significativa en la consistencia y precisión del proceso de pesado de los sacos de 50 kilos en Indupersa S.A.C. Durante el período analizado, se ha logrado reducir la variabilidad en el peso de los sacos, lo que ha llevado a una mayor capacidad del proceso para mantenerse dentro de los límites de especificación. Esto, a su vez, se traduce en una reducción significativa en la cantidad de productos defectuosos, lo que es una señal positiva para la empresa en términos de calidad y eficiencia de producción.

Figura 71

Comparación de la capacidad

Nota: La imagen muestra la variación de la capacidad de proceso

Figura 72
Interpretación Minitab 18

Descripción

Estado

Verificar

Comparación de la capacidad Antes/Después para Pesado vs. Pesado 4 Tarjeta de informe

Para los datos de Antes y Después, la media y la variación del proceso son estables. No hay puntos fuera de control.

Número de subgrupos

Tanto los datos de Antes como los de Después tienen por lo menos 25 subgrupos. Para un análisis de capacidad, generalmente esto es suficiente para captar las diferentes fuentes de variación del proceso cuando los subgrupos se recolectan durante un período de tiempo suficientemente largo.

Normalidad

Tanto los datos de Antes como los de Después pasaron la prueba de normalidad. Mientras usted tenga suficientes datos, las estimaciones de la capacidad deberían ser razonablemente precisas.

Cantidad de datos El número total de observaciones para los datos de Antes y Después es 100 o más. Las estimaciones de la capacidad deberían ser razonablemente precisas.

Nota: La imagen muestra la variación de la capacidad de proceso

Tabla 88
Indicadores en la situación después de la propuesta.

Tipo de indicador	Indicador	Valor	Unidad de medida
	Capacidad proyectada	6000	kg/hora
	Capacidad real	4600	kg/hora
	Capacidad utilizada	2877.06	kg/hora
	Capacidad ociosa	1722.94	kg/hora
Indicadores	Productividad de materia prima	56.14%	%
productivos	Productividad de mano de obra	411.01	kg/op.
productivos	Merma	18.52	kg/día
	%Quebrados	10.31%	%
	Eficiencia económica	S/ 1.27	S/
	Eficiencia de planta	62.54%	%
	Utilización	47.95%	%
	Disponibilidad	62.65%	%
lu dinadanan da	Indice de eficiencia	74.50%	%
Indicadores de mantenimiento	Ìndice de calidad	96.53%	%
mantenimento	TEEP	95.99%	%
	OEE	83.05%	%
	Ср	0.89	
	Cpk	0.88	
	Nivel Z	2.42	
Indicadores de	% fuera espec. (esperado)	0.77	%
capacidad	PPM (OPMO) (esperado)	7662	Kg
	Media	50.008	Kg
	Desviación estándar (largo plazo)	0.28293	Kg
	Desviación estándar (corto plazo)	0.28113	Kg

Nota: La tabla surge después del análisis de los datos

Variación de indicadores

Tabla 89

Variación de los indicadores propuestos.

Tipo de indicador	Indicador	Valor actual	Valor propuesto	Unidad de medida	Variación
	Capacidad proyectada	6000	6000	kg/hora	-
	Capacidad real	4600	4600	kg/hora	-
	Capacidad utilizada	2482.92	2877.06	kg/hora	15.87%
	Capacidad ociosa	2117.08	1722.94	kg/hora	-18.62%
Indicadores	Productividad de materia prima	52.48%	56.14%	%	6.96%
productivos	Productividad de mano de obra	354.70	411.01	kg/op.	15.87%
	Merma	200.68	18.52	kg/día	-90.77%
	%Quebrados	10.31%	10.31%	%	-
	Eficiencia económica	S/ 1.26	S/ 1.27	S/	0.64%
	Eficiencia de planta	53.98%	62.54%	%	15.87%
	Utilización	41.38%	47.95%	%	15.87%
	Disponibilidad	96.53%	62.65%	%	-35.10%
Indicadores de	Indice de eficiencia	95.99%	74.50%	%	-22.38%
mantenimiento	Ìndice de calidad	65.74%	96.53%	%	46.84%
mantenninento	TEEP	49.59%	95.99%	%	93.56%
	OEE	58.97%	83.05%	%	40.83%
	Ср	0.37	0.89		140.54%
	Cpk	0.2	0.88		340.00%
	Nivel Z	0.43	2.42		462.79%
	% fuera espec.				
Indicadores de	(esperado)	33.31	0.77	%	-97.69%
capacidad	PPM (OPMO) (esperado)	333055	7662	Kg	-97.70%
capacidad	Media	50.35	50.008	Kg	-0.68%
	Desviación estándar				
	(largo plazo)	0.68609	0.28293	Kg	-58.76%
	Desviación estándar				
	(corto plazo)	0.68374	0.28113	Kg	-58.88%

Nota: La tabla surge después del análisis de los datos

4.4. Evaluación económica

Tabla 90 Costos con la mejora

Ítems		enero	febrero	marzo	abril	mayo	junio	julio	agosto	septiembre	octubre	noviembre	diciembre
Ingresos													
Ahorro de costos de M.O.	-	3,475.66	3,649.74	2,780.63	4,171.02	2,954.38	3,475.66	3,127.97	3,823.34	3,302.06	3,996.93	3,996.93	4,171.02
Ahorro de costos por mermas		12,437.20	18,065.10	12,827.71	10,901.01	17,593.60	23,493.78	15,858.49	12,675.76	12,191.42	10,722.32	14,010.06	4,043.71
Ahorro en mantenimiento		9,602.71	10,083.68	7,682.46	11,523.89	8,162.50	9,602.71	8,642.12	10,563.30	9,123.09	11,042.93	11,042.93	11,523.89
Total ingresos		25,515.57	31,798.51	23,290.80	26,595.92	28,710.48	36,572.15	27,628.59	27,062.40	24,616.56	25,762.19	29,049.92	19,738.62
Egresos													
Recurso material													
Capacitación de personal	6,500.00	600.00		600.00		600.00		600.00		600.00		600.00	600.00
Materiales para Iimpieza		500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00
Mantenimiento preventivo	15,000.00	4,361.51	4,579.63	3,489.46	5,233.98	3,707.16	4,361.51	3,925.28	4,797.75	4,143.40	5,015.87	5,015.87	5,233.98
Apilador eléctrico	54,000.00												
Egresos por recurso material	75,500.00	5,461.51	5,079.63	4,589.46	5,733.98	4,807.16	4,861.51	5,025.28	5,297.75	5,243.40	5,515.87	6,115.87	6,333.98
Recurso humano													
Jefe de planta		2,012.50	2,012.50	2,012.50	2,012.50	2,012.50	2,012.50	2,012.50	2,012.50	2,012.50	2,012.50	2,012.50	2,012.50
Analista de calidad		1,265.00	1,265.00	1,265.00	1,265.00	1,265.00	1,265.00	1,265.00	1,265.00	1,265.00	1,265.00	1,265.00	1,265.00
Maquinista 1		2,070.00	2,070.00	2,070.00	2,070.00	2,070.00	2,070.00	2,070.00	2,070.00	2,070.00	2,070.00	2,070.00	2,070.00
Operarios		5,980.00	5,980.00	5,980.00	5,980.00	5,980.00	5,980.00	5,980.00	5,980.00	5,980.00	5,980.00	5,980.00	5,980.00
Egresos por recurso humano		11,327.50	11,327.50	11,327.50	11,327.50	11,327.50	11,327.50	11,327.50	11,327.50	11,327.50	11,327.50	11,327.50	11,327.50
Total egresos		16,789.01	16,407.13	15,916.96	17,061.48	16,134.66	16,189.01	16,352.78	16,625.25	16,570.90	16,843.37	17,443.37	17,661.48
Utilidad		8,726.55	15,391.38	7,373.84	9,534.43	12,575.81	20,383.13	11,275.80	10,437.15	8,045.66	8,918.82	11,606.56	2,077.14

Nota: se extrajo del procesamiento de la información con relación a la mejora.

Tabla 91

Flujo de caja

		enero	febrero	marzo	abril	mayo	junio	julio	agosto	septiembre	octubre	noviembre	diciembre
Costes		16,789.01	16,407.13	15,916.96	17,061.48	16,134.66	16,189.01	16,352.78	16,625.25	16,570.90	16,843.37	17,443.37	17,661.48
Beneficio		25,515.57	31,798.51	23,290.80	26,595.92	28,710.48	36,572.15	27,628.59	27,062.40	24,616.56	25,762.19	29,049.92	19,738.62
Inversión(S/)	-75,500.00												_
Flujo Neto	-75,500.00	8,726.55	15,391.38	7,373.84	9,534.43	12,575.81	20,383.13	11,275.80	10,437.15	8,045.66	8,918.82	11,606.56	2,077.14

Tabla 92

Evaluación económica.

Evaluación económica							
VAN	S/ 113,760.32						
Inversión	S/ 75,500.00						
TIR	9.65%						
PR	7 meses						
Tasa mensual	1.78%						
B/C	S/ 1.51						

La evaluación económica de la inversión realizada se muestra en la Tabla 92, donde se han calculado el VAN (Valor Actual Neto): es positivo (S/ 113,760.32), lo que indica que la inversión realizada generará más ingresos de los que se invirtieron. Es una señal positiva para la viabilidad económica del proyecto. La TIR es 9.65%, lo que significa que la inversión generará un rendimiento del 9.65%. Es una tasa de rendimiento atractiva, lo que sugiere que el proyecto es rentable. PR es de 7 meses, esto indica que la inversión inicial será recuperada en aproximadamente 7 meses a partir de los ingresos generados por el proyecto. La tasa mensual del proyecto es del 1.78% y el índice B/C es 1.51, lo que indica que por cada unidad monetaria invertida, se obtendrá un beneficio de 1.51 unidades monetarias. Esto es una medida positiva de la rentabilidad del proyecto.

4.5. Docimasia de la hipótesis

Para la investigación se propuso la hipótesis:

- H₀: Elaborar un plan de mejora de la producción no genera un cambio significativo en la productividad en la empresa Indupersa SAC, Trujillo en el año 2022
- H₁: Elaborar un plan de mejora de la producción genera un cambio significativo en la productividad en la empresa Indupersa SAC, Trujillo en el año 2022

Tabla 93

Estadística descriptiva de la productividad

Estadísticas de grupo									
Productividad	Ν	Media	Desv. Desviación	Desv. Error promedio					
Productividad actual	26	362.73	26.57	5.21					
Productividad con la propuesta	26	405.27	26.82	5.26					

Nota: se extrajo de SPSS.

La Tabla 93 muestra estadísticas descriptivas relacionadas con la productividad antes y después de aplicar la propuesta. La comparación entre la productividad actual y la productividad con la propuesta sugiere que, en promedio, la productividad ha aumentado después de implementar la propuesta. La media de productividad ha pasado de aproximadamente 362.73 a 405.27 sacos por trabajador. Este aumento en la productividad promedio indica que la propuesta ha tenido un impacto positivo en la eficiencia del proceso, al menos en términos de la métrica de productividad utilizada. Además, las desviaciones estándar sugieren que la variabilidad en la productividad también ha cambiado, lo que puede indicar una mayor estabilidad en el proceso. Sin embargo, se necesitaría un análisis estadístico más detallado para confirmar si este cambio es estadísticamente significativo.

Tabla 94

Comprobación de la hipótesis

	Prueba de muestras independientes											
prueba t para la igualdad de medias												
							intervalo de					
			Sig.	Diferencia	Diferencia de		de la diferencia					
	t	gl	(bilateral)	de medias	error estándar	Inferior	Superior					
Evaluación de	-5.745	50	0.000	-42.53	7.40	-57.40	-27.66					
la productividad	-5.745	49.996	0.000	-42.53	7.40	-57.40	-27.66					

Nota: se extrajo de SPSS.

La tabla 94 muestra los resultados de la comprobación de la hipótesis utilizando una prueba t para muestras independientes. La prueba t resulta en un valor de -5.745 con 50 grados de libertad y una significación (p-valor) extremadamente baja (0.000). Este p-valor es mucho menor que cualquier nivel de significación convencional, lo que indica una diferencia altamente significativa en las medias entre las dos muestras.

La diferencia de medias entre la productividad antes y después de aplicar el plan de mantenimiento control de capacidad es de -42.53. Esto indica que, en promedio, la productividad ha disminuido después de la aplicación del plan de mantenimiento control de capacidad.

Con base en estos resultados, se rechaza la hipótesis nula (H0) que afirmaba que la aplicación de un plan de mejora de la producción no generaba un cambio significativo en la productividad. En cambio, se acepta la hipótesis alternativa (H1) que plantea que la aplicación de este plan sí ha generado un cambio significativo en la productividad.

V. DISCUSIÓN DE RESULTADOS

5.1. Discusión del resultado del primer objetivo: "Realizar un Diagnóstico de la mejora actual con relación a la productividad de la empresa Indupersa SAC"

Para realizar el diagnóstico de la situación actual de la productividad de la empresa Indupersa SAC se realizó un Análisis de Pareto para la selección de máquinas críticas en la Tabla 22, este análisis revela las máquinas críticas en función de su costo y su porcentaje con respecto al total. Las máquinas "Descascaradora Hongjia 1", "Elevador 2", y "Pre limpia Agromay 2" representan los mayores costos porcentuales, lo que indica que son críticas para el proceso y merecen especial atención en términos de eficiencia y mantenimiento. Tabla 23 detalla las remuneraciones mensuales para el personal clave en la empresa. Destaca que el costo total mensual por remuneraciones asciende a S/ 11,327.50, con un costo por hora de S/ 48.41. Estos datos son esenciales para evaluar los costos operativos y planificar eficazmente el presupuesto de la empresa. La Tabla 24 Muestra el costo en términos de horas perdidas en cada mes debido a las paradas. Los costos totales anuales por tiempo de parada ascienden a S/ 62,457.61, señalando la importancia de minimizar las paradas para reducir los costos asociados.

Por último, en la Tabla 28 muestra los resultados de la evaluación de indicadores en la situación inicial ofrecen una comprensión detallada del rendimiento, eficiencia y calidad en la empresa en estudio. La capacidad teórica de producción planeada era de 6000 kg por hora, una meta ambiciosa, la capacidad alcanzada fue de 4600 kg por hora, mostrando una desviación de la proyección inicial, solo se utilizó el 41.38% de la capacidad real disponible, indicando subutilización.

En la evaluación pasada, la productividad de la materia prima alcanzó un nivel de eficiencia del 52.48%, demostrando una mejora en su uso. Además, cada operador produjo en promedio 354.70 kg de producto, indicando un nivel de eficiencia en la mano de obra. Sin embargo, la cantidad de producto perdido al día fue significativa, alcanzando los 200.68 kg, lo cual plantea un área de mejora importante. Aproximadamente el 10.31% de los productos resultaron dañados o inutilizables, señalando un desafío en la gestión de la calidad. En términos económicos, se generó un ingreso de S/1.26 por unidad de producción,

ilustrando eficiencia en términos de retorno económico. En cuanto a los indicadores de mantenimiento, el equipo estuvo disponible para operar el 96.53% del tiempo, evidenciando una alta disponibilidad. La eficiencia operativa, expresada mediante el índice de eficiencia, fue del 95.99%, reflejando un rendimiento elevado del equipo. No obstante, el índice de calidad se situó en un 65.74%, mostrando un espacio para mejorar la calidad operativa. Además, el OEE (Eficiencia Global del Equipo) fue del 49.59%, indicando un margen de mejora en la eficiencia global del equipo. La fiabilidad del equipo se mantuvo en un 58.97%, sugiriendo que existían oportunidades para aumentar la confiabilidad del equipo.

En el análisis previo, se encontró que la capacidad del proceso, representada por Cp (Capacidad del Proceso), fue de 0.37, lo que indicó cierta variabilidad en el proceso de producción. El valor del Cpk fue de 0.2, lo que sugiere que el proceso podría estar fuera de control en ciertas ocasiones, lo que es un aspecto crítico para abordar. El nivel Z, con un valor de 0.43, sugiere que existe margen para mejorar la capacidad del proceso. En cuanto al % Fuera de Especificación (Esperado), se anticipaba que el 33.31% de los productos podrían estar fuera de especificación, lo que indica un área que necesita atención. El PPM (OPMO) (Esperado) indicaba que se esperaban 333,055 kg de productos fuera de especificación, subrayando la importancia de abordar la calidad del proceso.

En comparación con las investigaciones de Espinoza y Menéndez (2018) en Ecuador y Becerra, Andrade y Díaz (2020) en México, nuestra investigación en la empresa Indupersa SAC en Perú comparte un enfoque de mejora continúa utilizando herramientas similares para lograr los objetivos. Espinoza y Menéndez (2018) aplicaron el ciclo de mejora continua en una apiladora en Ecuador, identificando deficiencias en los procesos y proponiendo mejoras que incrementaron la productividad en un 19.77%. Nuestra investigación en Indupersa SAC también identificó áreas de mejora y aplicó mejoras para incrementar la productividad y eficiencia.

Por otro lado, Becerra, Andrade y Díaz (2020) enfocaron su estudio en la mejora continua en el área de inventarios en una planta de almacenamiento en México. Utilizaron herramientas como el diagrama de Causa-Efecto Ishikawa y diagramas de Pareto. Observaron mejoras significativas en el rendimiento del

área de inventarios, reflejando la eficacia de la mejora continua. Asimismo, en nuestra investigación, destacamos la importancia de reducir costos y mejorar la eficiencia operativa, en línea con la mejora continua.

En nuestra investigación, utilizamos herramientas como el Análisis de Pareto para identificar máquinas críticas en función de su costo y porcentaje con respecto al total. También evaluamos costos operativos, remuneraciones mensuales y tiempo de paradas, subrayando la necesidad de minimizar paradas para reducir costos asociados. En resumen, estas investigaciones comparten la meta de optimizar procesos y mejorar la eficiencia en diferentes áreas de operación, destacando la aplicabilidad y eficacia del ciclo de mejora continua. Cada estudio aporta valiosos aspectos sobre cómo abordar la mejora en distintos contextos industriales.

5.2. Discusión del resultado del segundo objetivo: "Aplicar el plan de mantenimiento y control de capacidad en la empresa Indupersa SAC"

En el contexto del objetivo 2, centrado en la propuesta de mejora de los procesos productivos en Indupersa SAC, la implementación de un Plan de Mantenimiento Preventivo y Predictivo se destacó como un pilar fundamental. Este plan se diseñó considerando las necesidades específicas de la empresa y su maquinaria. La estrategia central consistió en la utilización de simulación de procesos para anticipar las necesidades de mantenimiento con precisión, permitiendo una mejor planificación y reducción de tiempo de inactividad no planificado y costos inesperados. En la Tabla 29 se detalla el Tiempo de funcionamiento después de la última reparación por máquina y desde la tabla 30 hasta la Tabla 43 se simuló el comportamiento de las máquinas críticas y se obtuvo que en la Tabla 44, la simulación se basó en parámetros específicos de distribución para cada tipo de máquina, lo que proporcionó una comprensión más profunda de sus patrones y necesidades de mantenimiento

Desde la Tabla 45 hasta la Tabla 58, se detallaron las actividades de mantenimiento preventivo para cada máquina crítica en Indupersa SAC, junto con los tiempos estimados requeridos para llevar a cabo estas tareas. Esto representa una parte fundamental del plan de mantenimiento propuesto. Se definieron actividades específicas para cada máquina, con una frecuencia determinada para garantizar la eficiencia y confiabilidad operativa. Además, en la tabla 59, se presentó un Cronograma de aplicación del mantenimiento

predictivo. Este cronograma mostró cómo se distribuirían las actividades de mantenimiento predictivo a lo largo del tiempo, permitiendo una planificación óptima y anticipada. La planificación incluyó consideraciones como la frecuencia de las intervenciones y la duración estimada para cada una de ellas.

Por último, en la Tabla 60, se calculó el tiempo total destinado al mantenimiento predictivo para cada máquina crítica, considerando la frecuencia y el tiempo estimado de cada actividad. Este análisis permitió obtener una visión global del tiempo dedicado al mantenimiento predictivo en la empresa. Se identificó un total de 159 intervenciones, con un tiempo acumulado de 14,086 minutos o aproximadamente 234.77 horas. Este dato es crucial para la planificación de recursos y la gestión eficiente del tiempo en el contexto de la estrategia de mantenimiento propuesta.

El análisis de la capacidad del proceso es fundamental para comprender la eficiencia y la calidad de los procesos de pesado y reducción de mermas en Indupersa SAC. Este análisis se centra en evaluar la capacidad del proceso en términos de peso y en la reducción de desperdicios. Se recopilaron 125 datos en total, con un tamaño de subgrupo de 5. La media del proceso fue de 50.008, lo que indica que el proceso tiende a estar centrado alrededor de este valor. Se calcularon diversos estadísticos de capacidad para evaluar la eficacia y la variabilidad del proceso. En el análisis a corto plazo, se obtuvo un índice de capacidad Cpk de 0.88 y un nivel Z de 2.42. Estos indicadores indican que, a corto plazo, el proceso tiene una buena capacidad para cumplir con las especificaciones y controlar la variabilidad.

La estandarización de procesos es una práctica esencial para garantizar la coherencia, eficiencia y reducción de errores en las operaciones de Indupersa SAC. La propuesta de crear un Manual de Procedimientos integral es fundamental para lograr esta estandarización. Este manual se convertirá en una herramienta crucial que documentará y establecerá un estándar para cada uno de nuestros procesos y subprocesos. Desde la Tabla 61 hasta la Tabla 77 se diseñó el procedimiento para cada proceso y subproceso de forma que el proceso se mantenga estándar. Esta iniciativa también fortalecerá el control y la consistencia en todas las operaciones de la empresa. Al estandarizar los procedimientos, se facilita la supervisión, se reduce la variabilidad y se sientan

las bases para mejoras continúas basadas en una comprensión precisa y compartida de los procesos.

Además, al establecer procesos estandarizados, la empresa puede adaptarse más fácilmente a cambios, incorporar nuevas tecnologías y métodos, y escalar eficientemente. El Manual de Procedimientos se convirtió en una herramienta viva que puede actualizarse y mejorarse constantemente, reflejando la evolución de la empresa y las mejores prácticas de la industria.

Las investigaciones de Catellanos (2018), Ramos y Tantaleán (2018), y Noriega (2020) abordan estrategias de mejora de la productividad en distintos contextos empresariales, utilizando enfoques como el ciclo de Deming y herramientas de Lean Manufacturing.

Catellanos (2018) se centra en la industria textil y propone aplicar el ciclo de Deming para mejorar la productividad. Este enfoque es relevante para evaluar y mejorar procesos en un ciclo continuo de planificación, ejecución, verificación y acción correctiva. Los resultados indican una mejora significativa en la productividad, eficiencia y eficacia, demostrando la efectividad de la aplicación.

Por otro lado, Ramos y Tantaleán (2018) proponen mejorar el proceso de pilado de arroz utilizando herramientas de Lean Manufacturing en una molinera. La implementación de técnicas como 5S, Kaizen y TPM resultó en un aumento sustancial de la productividad en diferentes áreas. Estos resultados resaltan cómo las herramientas de Lean Manufacturing pueden optimizar la eficiencia de los procesos y generar mejoras significativas en la productividad.

Noriega (2020) investigó el efecto de la aplicación del ciclo de Deming y herramientas de Lean Manufacturing en la productividad de un molino. Al igual que en la investigación de Catellanos, se aplicaron estos enfoques para mejorar la eficiencia y la efectividad de los procesos. Los resultados indicaron un incremento en la productividad, especialmente en la utilización de recursos clave, lo que subraya la eficacia de estas estrategias de mejora.

En conjunto, estas investigaciones subrayan la importancia de enfoques sistemáticos y estratégicos, como las herramientas de Lean Manufacturing, para mejorar la productividad en diversos sectores industriales.

5.3. Discusión del resultado del tercer objetivo: "Evaluar y determinar el aspecto técnico y económico de la mejora de la productividad de la empresa Indupersa SAC"

El resultado del objetivo 3, enfocado en evaluar y determinar los aspectos técnicos y económicos de la mejora de la productividad en Indupersa SAC, revela variaciones significativas en varios indicadores clave, abordando tanto aspectos productivos como de mantenimiento y capacidad.

En términos de indicadores productivos, se observa un aumento del 15.87% en la capacidad utilizada y una reducción del 18.62% en la capacidad ociosa. La productividad de materia prima y mano de obra aumentó en un 6.96% y un 15.87% respectivamente. Además, se logró una notable reducción del 90.77% en la merma. Estos indicadores demuestran una eficiencia económica mejorada en un 0.64%, acompañada por un incremento de la eficiencia de planta y la utilización en un 15.87%.

En cuanto a los indicadores de mantenimiento, se evidencian reducciones importantes: la disponibilidad disminuyó en un 35.10% y el índice de eficiencia en un 22.38%. No obstante, el índice de calidad experimentó un incremento notable de 46.84%. Especialmente destacado es el aumento sustancial en el OEE (Overall Equipment Efficiency) en un 93.56% y en el TEEP (Total Effective Equipment Performance) en un 40.83%.

Finalmente, los indicadores de capacidad mostraron mejoras significativas. El índice Cp (Capacidad del proceso) aumentó en un 140.54%, y el índice Cpk (Índice de Capacidad del Proceso) en un impresionante 340.00%. El Nivel Z también se incrementó notablemente en un 462.79%. Además, se lograron reducciones sustanciales en el % fuera de especificación (esperado) en un 97.69% y en los PPM (Partes Por Millón) fuera de especificación (esperado) en un 97.70%. Aunque la media disminuyó ligeramente en un 0.68%, las desviaciones estándar, tanto a largo como a corto plazo, experimentaron una disminución significativa de aproximadamente un 58.76% y 58.88% respectivamente.

Estas variaciones en los indicadores destacan una mejora generalizada en la eficiencia, la utilización de recursos y la calidad de los procesos en Indupersa SAC, llevando consigo un impacto económico y técnico positivo para la empresa. Estas mejoras son esenciales para la competitividad y sostenibilidad a largo plazo de la organización.

La evaluación económica de la inversión se detalla en la Tabla 92. El VAN (Valor Actual Neto) es positivo, alcanzando S/ 113,760.32, lo que indica que

la inversión generará ingresos superiores a la inversión inicial, señalando la viabilidad económica del proyecto. La TIR (Tasa Interna de Retorno) es del 9.65%, mostrando un rendimiento atractivo y confirmando la rentabilidad del proyecto. El PR (Periodo de Recuperación) es de 7 meses, indicando que la inversión se recuperará en aproximadamente 7 meses a partir de los ingresos generados. La tasa mensual es del 1.78%, y el índice B/C es 1.51, evidenciando una rentabilidad positiva, donde por cada unidad invertida se obtendrá un beneficio de 1.51 unidades monetarias.

En cuanto a la docimasia de la hipótesis presentada, la Tabla 93 proporciona estadísticas descriptivas sobre la productividad antes y después de la implementación de la propuesta. La comparación muestra un aumento promedio en la productividad después de la implementación, pasando de aproximadamente 362.73 a 405.27 sacos por trabajador. Este aumento indica un impacto positivo en la eficiencia del proceso con la aplicación de la propuesta. En la Tabla 94 se rechaza la hipótesis nula (H0) que afirmaba que la aplicación de un plan de mantenimiento y control de capacidad no gene un cambio significativo en la productividad. En cambio, se acepta la hipótesis alternativa (H1) que plantea que la aplicación de este plan sí ha generado un cambio significativo en la productividad.

Rodríguez (2021) se enfoca en el proceso de alcachofa marinada en una empresa agroindustrial. La implementación de la mejora condujo a un aumento del 26% en la productividad y un incremento del 16% en la eficiencia. Este estudio confirma que la aplicación del ciclo de mejora continua tiene un impacto positivo en la productividad, respaldando así la hipótesis inicial. Este hallazgo es esencial, ya que demuestra la efectividad de aplicar métodos de mejora continua en procesos específicos, en este caso, en la industria agroindustrial.

Carranza y Guerra (2019) exploran la implementación de la mejora continua, enfocándose en mejorar la gestión de procesos operativos y la productividad de los trabajadores. Los resultados son alentadores, mostrando reducciones significativas en los reprocesos, un incremento en el cumplimiento de las metodologías aplicadas y una disminución en el tiempo total de procesos operativos. Además, la evaluación financiera demostró la viabilidad económica de la mejora en términos de VAN, TIR y B/C. Este estudio ilustra cómo la implementación efectiva del ciclo de Deming puede conllevar a mejoras notables

en la productividad y eficiencia, contribuyendo a la rentabilidad económica de la organización.

López (2018) se orienta hacia la producción de espárrago verde fresco en una empresa agrícola, buscando incrementar la productividad aplicando el ciclo de mejora continua. La propuesta demuestra un aumento estimado del 21.56% en la productividad total, respaldada por un análisis de beneficio/costo favorable.

En resumen, todas las investigaciones resaltan la mejora de la la productividad en distintos sectores industriales. Los resultados consistentemente indican que esta metodología conduce a mejoras sustanciales en la eficiencia operativa, reducción de mermas y, en última instancia, a un impacto positivo en la rentabilidad económica de las organizaciones.

VI. CONCLUSIONES

- El diagnóstico de la productividad en Indupersa SAC ha revelado áreas críticas y oportunidades de mejora. Identificar las máquinas críticas, evaluar los costos laborales y cuantificar las pérdidas de tiempo por paradas son esenciales para entender la situación actual, la productividad de la mano de obra fue de 354.70 sacos de arroz por colaborador, productividad de la eficiencia de equipos de 58.97% y mermas de 200.68 kg diarios. Los indicadores de capacidad muestran una subutilización de la capacidad real disponible. Se resalta la importancia de mejorar la eficiencia y reducir las pérdidas de producto y mejorar la calidad para maximizar los ingresos.
- La implementación de un Plan de Mantenimiento Preventivo y Predictivo, apoyado por simulaciones de procesos, ha demostrado ser efectiva en anticipar necesidades de mantenimiento y reducir tiempos de inactividad no planificados. Así como también la estandarización de los procesos por medio del manual de procedimientos ayudaron a que se nivele los indicadores de mantenimiento, producción y capacidad.
- Las mejoras en la productividad y eficiencia operativa han tenido un impacto económico positivo, se observa un aumento de la productividad de materia prima y mano de obra en un 6.96% y un 15.87% respectivamente. Además, se logró una notable reducción del 90.77% en la merma. La investigación fue estadísticamente significativa ya que se obtuvo un p-valor de 0.00 lo que implica aceptar un aumento promedio en la productividad después de la implementación, pasando de aproximadamente 362.73 a 405.27 sacos por trabajador. Además la propuesta fue viable económicamente puesto que tuvo un beneficio costo de 1.51 y una recuperación de capital de 7 meses.
- La implementación del plan de mejora resultó en una optimización significativa de los procesos, mejorando la eficiencia operativa y generando impactos económicos positivos para Indupersa SAC. La empresa ha demostrado su capacidad para adaptarse y mejorar, lo que refuerza su posición competitiva y su capacidad para enfrentar desafíos en el futuro. La combinación de estrategias técnicas, operativas y

económicas ha llevado a un aumento tangible en la productividad y la rentabilidad de la empresa.

VII. RECOMENDACIONES

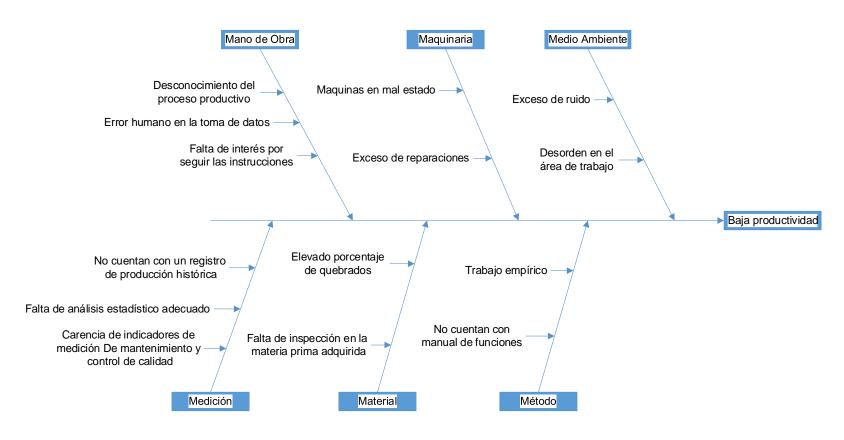
- Implementar un programa de capacitación, brindando adiestramiento continuo al personal para aumentar la productividad de la mano de obra.
 Esto puede incluir entrenamiento en métodos de trabajo más eficientes y en la reducción de errores.
- Identificar y abordar las causas de los productos dañados o inutilizables, ya que esto puede reducirse aún más. Implementar un sistema de control de calidad más riguroso para garantizar que los productos cumplan con las especificaciones. Realizar una revisión completa de los recursos utilizados en el proceso, incluidos los costos laborales y los insumos, para identificar oportunidades de optimización y reducción de costos.
- Implementar medidas de control de calidad, continuar mejorando los procesos de control de calidad para reducir aún más el porcentaje de productos dañados o fuera de especificación, cuando se detecten problemas o desviaciones en los indicadores, llevar a cabo análisis de causa raíz para abordar las causas subyacentes.

Referencias

- Becerra, F., Andrade, A., & Díaz, L. (2020). *Mejora Continua en una empresa en México: estudio desde el ciclo Deming.* Ciudad de México: Universidad del Zulia. Obtenido de https://www.redalyc.org/journal/290/29065286036/html/
- Bernardi, L. (2020). *Perfil del mercado del arroz.* Organización de las Naciones Unidas para la Agricultura y la Alimentación.
- Calderón, J. (2019). "Aplicación del ciclo de deming para incrementar la productividad reduciendo las mermas de preformas de bebidas gasificadas en Arca Continental Lindley-Planta Trujillo. Trujillo: Universidad Nacional de Trujillo. Obtenido de http://dspace.unitru.edu.pe/handle/UNITRU/14400
- Canchari, R. (2018). "Aplicación del ciclo de Deming para mejorar la productividad en el área de producción, empresa Concremax S.A. Lurín, 2018. Lima: Universidad Cesar Vallejo. Obtenido de https://hdl.handle.net/20.500.12692/38169
- Carranza, K., & Guerra, G. (2019). Implementación de la metodologia del ciclo de deming en la gestion de procesos operativos de un taller automotriz.
 Trujillo: Universidad Privada del Norte. Obtenido de https://hdl.handle.net/11537/14991
- Catellanos, I. (2018). El ciclo de deming para mejorar la productividad en los procesos de una empresa textil. Huancayo: Universidad Peruana de los Andes. Obtenido de https://hdl.handle.net/20.500.12848/962
- Cuatrecasas, L., & González, J. (2017). *Gestión integral de la Calidad.* Barcelon: PROFIT.
- Escobedo, E., & Cruz, B. (2018). Evaluación del Desarrollo y Sostenibilidad del Sistema de Gestión de la Investigación, basado en el ciclo de mejora de Deming, en la Universidad Privada del Norte. Trujillo: Universidad Privada del Norte. Obtenido de https://hdl.handle.net/11537/24082
- Espinoza, M., & Menéndez, C. (2018). PROPUESTA PALA MEJORA DE PROCESOS OPERATIVOS MEDIANTE LA HERRAMIENTA phya,

- PILADORA "SAN JOSÉ" CANTÓN DAULE. Guayaquil: Universidad de Guayaquil.

 Obtenido de http://repositorio.ug.edu.ec/bitstream/redug/46233/1/Tesis%20Final-%20FCA.pdf
- Florez, N., Cogollo, J., & Florez, A. (2019). *Notas: de control estadístico de la calidad.* La Habana: Universitaria.
- Gutiérrez, S. (2021). Implantación, Metodologías y Herramientas Seis Sigma. Bogotá: Corporación Universitaria de Asturias. Obtenido de https://www.studocu.com/co/document/corporacion-universitaria-deasturias/fundamentos-de-administracion/unidad-3-pdf2/16254478
- Hernández, R., Fernández, C., & Baptista, P. (2018). *Metodología de la investigación*. Bogotá: McGraw Hill.
- López, M. (2018). aplicación del ciclo PHVA en la producción de espárrago verde fresco para incrementar la productividad de la empresa agrícola cerro prieto - Trujillo 2018. Trujillo: Universidad Cesar Vallejo. Obtenido de https://hdl.handle.net/20.500.12692/30241
- Madrigal, R. (2018). Control Estadístico de la Calidad. Un enfoque creativo.


 Ciudad de México: Grupo Editorial Patria. Obtenido de https://books.google.com.pe/books?hl=es&lr=&id=nzxKEAAAQBAJ&oi=f nd&pg=PA4&dq=Control+estadistico+de+calidad&ots=b7GXSrujGe&sig =_bDCKChtxR26tZmGuP6fPGLB4AY#v=onepage&q&f=false
- Méndez, P. (2020). *Capítulo 11. Producción y comercialización .* Roma: Organización de las naciones unidas .
- Ministerio de Comercio Exterior y Turismo. (2018). Reporte Comercial de Productos Arroz. Lima: Dirección general de investigación y estudios sobre el comercio exterior.
- Montesinos, S., Vázquez, C., Maya, I., Gracida, G., & Baruc, E. (2020). Mejora Continua en una empresa en México: estudio desde el ciclo Deming. *Revista Venezolana de Gerencia, 25*(92), 1863-1879. Obtenido de https://www.redalyc.org/articulo.oa?id=29065286036

- Noriega, M. (2020). El ciclo de deming y su efecto en la productividad en el molino Guadalupe SAC. 2020. Chepén: Universidad César Vallejo. Obtenido de https://hdl.handle.net/20.500.12692/50681
- Paye, D. (2018). Aplicación de Ciclo Deming para mejora de la Productividad en el área de Producción en la empresa Envases y Envolturas S.A. Lima: Universidad Cesar Vallejo. Obtenido de https://hdl.handle.net/20.500.12692/20713
- Ramos Galarza, C. (2021). Diseños de investigación experimental. *10*(1), 1-7. Obtenido de https://dialnet.unirioja.es/servlet/articulo?codigo=7890336
- Ramos, M., & Tantaleán, K. (2018). Propuesta de un plan de mejora en el proceso de pilado de arroz, utilizando las herramientas de lean manufacturing, para incrementar la productividad del área de producción en la molinera San Nicolás S.R.L, LAMBAYEQUE. Lambayeque: Universidad Señor de Sipan. Obtenido de https://hdl.handle.net/20.500.12802/5440
- Rodriguez, M. (2021). Aplicación del ciclo de Deming para mejorar la productividad en el proceso de alcachofa cuartos marinados en una empresa Agroindustrial. Trujillo: Universidad César Vallejo. Obtenido de https://hdl.handle.net/20.500.12692/73004
- Salas, R. (2018). Uso del ciclo de Deming para asegurar la calidad en el proceso educativo sobre las Matemáticas. Ciudad de México: REVISTA CIENTÍFICA UNEMI. doi:http://dx.doi.org/10.29076/issn.2528-7737vol11iss27.2018pp8-19p

Anexos

Anexo 1

Diagrama Causa Efecto

Nota: el diagrama causa efecto muestra la baja productividad en la empresa

Anexo 2

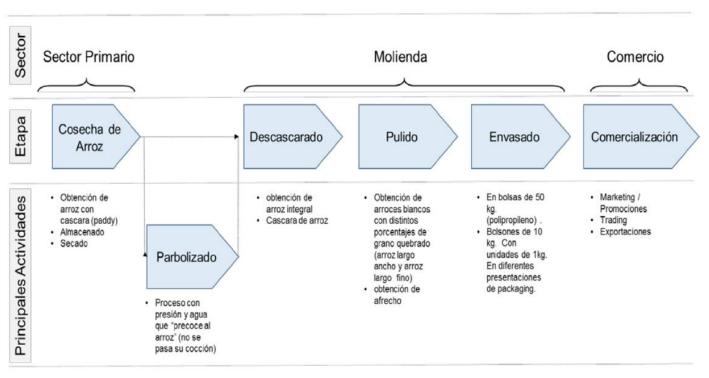

Producción, comercio y consumo mundial de cereales en millones de toneladas (Mt) y porcentaje (%) en 2019.

Cereal	Producción	%	Área	%	Rendimiento	Comercio	%	Consumo	%
Maíz	1.112	38	194	27	5,732	170	37	1.120	42
Arroz*	756	26	163	23	4,638	44	10	505	19
Trigo	762	26	215	30	3.544	188	41	740	28
Otros cereales	310	11	142	20	2.183	55	12	325	12
Total	2.940	100	714	100	4.118	457	100	2.690	100

Fuentes: FAO (2020) y USDA FAS (2020).

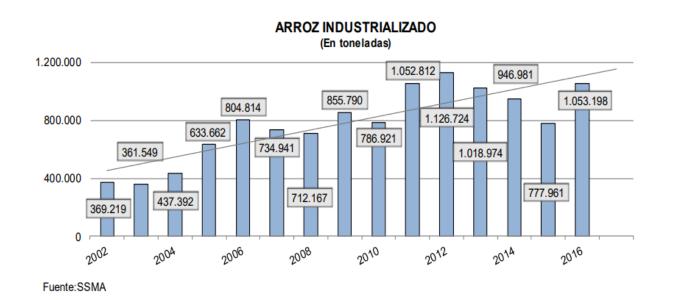
Anexo 3

Evolución de la producción mundial de arroz y tendencias futuras en millones de toneladas (Mt)

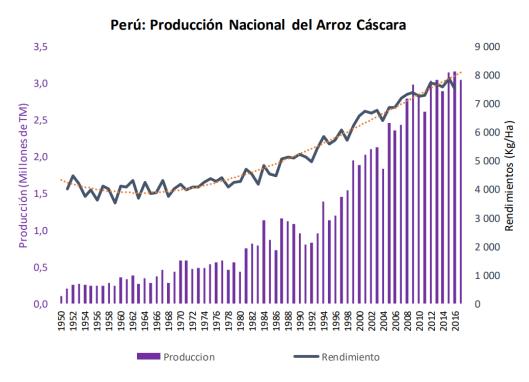


Nota: se extrajo del capítulo 11 del artículo Producción y comercialización mundial del arroz

^{*}Producción arroz cáscara, comercio y consumo arroz pulido (arroz cáscara x 0,67).

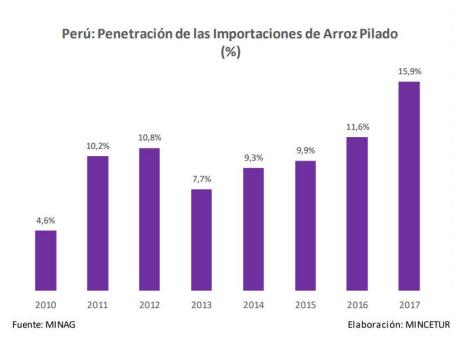

Anexo 4 *Proceso para industrializar el arroz*

Proceso de Industrialización del Arroz

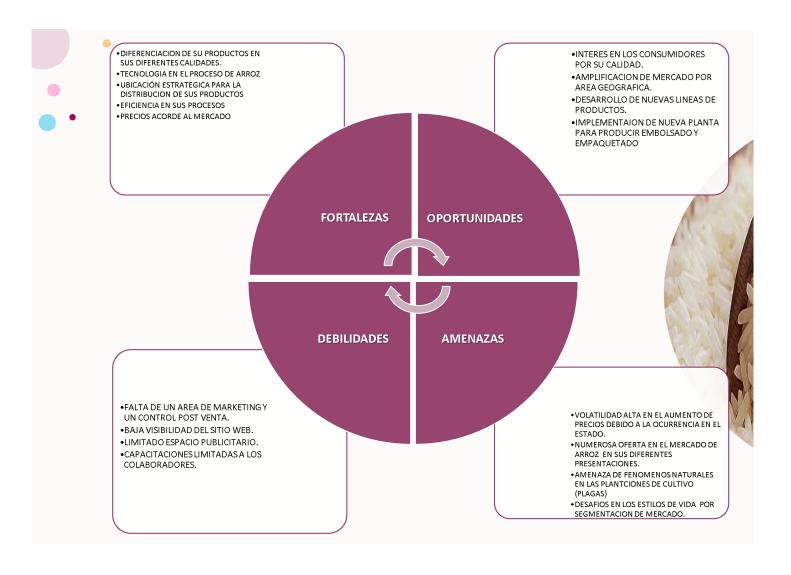


Fuente: Minagro

Anexo 5Resultados del arroz industrializado



Anexo 6Evolución de la producción de arroz en el Perú 1950-2016



Fuente: MINAG Elaboración: MINCETUR

Anexo 7 *Evolución de las importaciones de arroz*

Anexo 8 FODA

Anexo 9

Productividad

			MEDICIÓ	N DE PRODUCTIVIDA	AD PROCESO)	
DIAS	FECHA	(KG)	Horas hombre usadas (H)	PRODUCTIVIDAD M.O.	TOTAL PAGADO HH (S/.)	COSTO MP(S/.)	PRODUCTIVIDAD CAPITAL
1				(KG)/Horas hombre usadas (H)			(KG) / (TOTAL PAGADO HH (S/.) + COSTO MP (S/.)
2				, ,			, ,
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
	TOTAL	0			0	0	

Anexo 10

Entrevista

ENTREVISTA

Nombre del entrevistado Nombre del investigador

Rubro de la empresa

Objetivo Extraer información para realizar la investigación

No.	Preguntas realizadas	Observaciones
1	¿Qué actividades dentro del proceso productivo de arroz son las más críticas?	
2	¿Cuántos y cuales son controles de calidad posee la producción de arroz?	
3	¿Qué especificaciones debe cumplir el producto terminado, o materia prima para que esté en buen estado?	
4	¿Cuál es la proporción de quebrados por tonelada procesada?	
5	¿Cuáles son los indicadores de control de calidad que posee?	
6	¿Tienen definido el manual de funciones de cada colaborador?	
7	¿Cuáles son los problemas en el control de la calidad de la producción de arroz?	
8	¿Qué tipo de acción realizan con la merma?	
9	¿Existe un registro de producción diario, semanal o mensual?	
10	¿Hay especificaciones que se dejan pasar por alto en la producción de arroz?	

Nota: Las preguntas son a fin de obtener información para analizar el problema.

Anexo 11

Hoja para el registro de la eficacia

Eficacia

Nombre de la empresa Nombre del observador

Rubro de la empresa

Objetivo

Obtener la eficacia

		Unidades	4.	Promedio		
día	Unidades producidas	planificadas	eficacia		LS	LI
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Nota: es para medir la eficacia de la empresa.

Anexo 12

Hoja para el registro de la eficiencia

Eficiencia

Nombre de la empresa Nombre del observador Rubro de la empresa

Objetivo

Obtener la eficiencia

		Tiempo		Promedio		
día	Tiempo realizado	planeado	Eficiencia		LS	LI
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Nota: es para medir la eficiencia de la empresa.

Anexo 13

Hoja para el registro de la productividad

Productividad

Nombre de la empresa Nombre del observador Rubro de la empresa

Objetivo

Obtener la productividad

día	Eficacia	Eficiencia	productividad	Promedio	LS	LI
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Nota: es para medir la eficiencia de la empresa.

Anexo 14

Porcentaje de quebrados

Revisión Documental

Nombre de la empresa Nombre del observador Rubro de la empresa

Objetivo

Obtener proporción de quebrados

	# kilogramos	# kilogramos		
dia	analizados por lote	quebrados	% Quebrados	Observaciones
		•		
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

Nota: Formato para establecer la proporción de quebrados

Anexo 15
Formato de variación de la productividad

Formato de variación de la productividad

nombre de la empresa Nombre del observador Rubro de la empresa

Objetivo Evaluar la productividad antes y después de la mejora

día	Productividad actual	Productividad con la mejora	Variación	Observaciones
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

Nota: evaluación de la productividads

Anexo 16
Identificación de tiempos de para en la producción de arroz por máquina

Mac	quinas	MQ-01	MQ-02	MQ-03	MQ-04	MQ-05	MQ-06
Indicador	Tiempo de paradas	Mesa Paddy Zaccaria	Pre limpia Agromay 1	Clasificadora 1	Pulidora de agua	Selectora GROTECH	Elevador 8
Tiempo disponible: TD	TD	960	960	960	960	960	960
	Descanso y paros previstos	60	61	62	63	64	65
Tiempo de funcionamiento: TF	Mantenimiento preventivo	51	57	54	58	59	43
Tiempo de funcionamiento. Ti	Mantenimiento productivo	32	31	25	29	27	39
	TF	817	811	819	810	810	813
Tienen e del mesie de de en en estério	Preparación para operación	19	15	17	17	19	20
Tiempo del periodo de operación: TOP	ajustes de cambio	10	10	10	10	10	10
101	TOP	788	786	792	783	781	783
	Averías y reparaciones.	15	13	20	15	15	16
Tiempo de operación neta: TON	Otros por suciedad por viruta	11	11	9	7	9	11
	TON	762	762	763	761	757	756
	Paradas cortas	12	15	11	13	14	13
Tiempo operativo real: TOR	Reducción de velocidad por fallo	19	16	18	18	16	18
	TOR	731	731	734	730	727	725
Tiempo productivo neto: TPN	Tiempo perdido en defectuosos	63	110	57	63	68	47
Hempo productivo neto. Triv	TPN	726	726	729	725	722	720

Nota: Se extrajo de la revisión documental y el historial de fallos.

MQ-07	MQ-08	MQ-09	MQ-10	MQ-11	MQ-12	MQ-13	MQ-14	MQ-15	MQ-16	MQ-17
Descascaradora Hongjia 1	Elevador 2	Pre limpia Agromay 2	Elevador 1	Pulidora de piedra 2	Descascaradora Hongjia 2	Elevador6	Balanza	Elevador 5	Elevador 3	Pulidora de piedra 1
960	960	960	960	960	960	960	960	960	960	960
66	67	68	69	70	71	72	73	74	75	76
47	59	42	44	42	59	42	60	51	46	50
27	29	36	26	36	37	27	39	40	34	30
820	805	814	821	812	793	819	788	795	805	804
15 10	15 10	18 11	17 12	15 10	17 12	17 11	20 10	18 10	19 12	17 10
795	780	785	792	787	764	791	758	767	774	777
17	14	15	16	20	19	18	15	16	16	18
11	8	9	7	9	9	8	7	8	9	9
767	758	761	769	758	736	765	736	743	749	750
13	14	12	10	15	12	14	15	14	12	14
19	17	18	15	17	15	17	19	16	18	15
735	727	731	744	726	709	734	702	713	719	721
68	47	78	57	63	57	52	42	52	57	47
730	722	726	739	721	704	729	697	708	714	716

Nota: Se extrajo de la revisión documental y el historial de fallos.

MQ-18	MQ-19	MQ-20	MQ-21	MQ-22		
Elevador 4	Elevador 10	Elevador 9	Clasificadora 2	Elevador 7	minutos	horas
960	960	960	960	960	960	4992
77	78	79	80	81	71	367
43	42	60	58	42	50	262
30	35	37	28	26	32	165
810	805	784	794	811	807	4198
16	17	19	19	15	17	90
12	11	12	10	12	11	56
782	777	753	765	784	779	4052
12	12	16	17	12	16	82
8	11	9	9	10	9	47
762	754	728	739	762	754	3923
14	11	10	14	10	13	67
16	19	20	20	18	17	91
732	724	698	705	734	724	3766
52	57	47	52	47	58	1290
727	719	693	700	729	719	2476

Nota: Se extrajo de la revisión documental y el historial de fallos.