Modelo predictivo de mineria de datos de apoyo a la gestion hospitalaria sobre la morbilidad de pacientes hospitalizados
View/ Open
Download
(application/pdf: 2.825Mb)
(application/pdf: 2.825Mb)
Date
2016Author(s)
Saldaña Valqui, Edwin John
Metadata
Show full item recordAbstract
La minería de datos en el sector salud permite identificar los perfiles de salud en los
pacientes, ayuda a comprender el patrón de comportamiento, a través del historial de
información almacenada que hace posible su gestión cotidiana, siendo así esta
información diversa y compleja.
El presente trabajo de investigación, propone aplicar un marco estándar de
actividades de minería datos, creando un modelo predictivo, que sirva de apoyo a la
Gestión Hospitalaria sobre la morbilidad con pacientes hospitalizados, basado en el
algoritmo de análisis de serie de tiempo, Modelo ARIMA (AutoRegresive Integrated
Moving Average) de Box y Jenkis (Box G.E.P. & Jenkins, 1973), con información
histórica de los últimos 7 años de los pacientes del Hospital Víctor Ramos Guardia.
En la investigación, se tomó como referencia la metodología CRISP-DM (Cross
Industry Standard Process For Data Mining), que consiste en la comprensión del
negocio, comprensión de los datos, preparación de los datos, modelado, evaluación y
despliegue. Por lo tanto se realizó la extracción de los datos, transformación de los
datos, carga de datos, limpieza de datos, diseño del datamart “HEALTHMINING”,
la selección y creación de variables que sirvieron como datos de entrada para mi
modelo, para posteriormente crear un modelo de pronósticos, que me permitió
conocer los casos de morbilidad en pacientes hospitalizados del hospital VRG para los próximos tres años. Data mining in the health care sector identifies the health profiles of patients, helps to
understand the pattern of behavior of patients through history stored information from
your transactional system.
This research proposes to apply a standard framework for data mining, creating a
predictive model, which supports the Hospital Management on morbidity in
hospitalized patients, based algorithm for time series analysis, ARIMA Model
(AutoRegresive Integrated Moving Average) of Box and Jenkins (Box GEP &
Jenkins, 1973), based on historical data to predict future or unknown values.
In research, reference was made to the CRISP-DM methodology (Cross Industry
Standard Process for Data Mining), which consists of business understanding, data
understanding, data preparation, modeling, evaluation and deployment. Therefore the
data extraction , data transformation , data loading , data cleansing , data mart design
““ HEALTHMINING ““ the selection and creation of variables that were used as input
to my model, was performed to create later forecasting model , which allowed me to
hear cases of morbidity in hospitalized patients in the hospital VRG for the next three
years.