UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO DE INGENIERÍA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Estudio de la socavación local en las subestructuras de los puentes Conache, Cacique, Santa Rosa y Moche - Trujillo 2023

LINEA DE INVESTIGACIÓN: INGENIERÍA CIVIL

SUB LINEA DE INVESTIGACIÓN: HIDRAULICA

AUTORES:

Cueva Vazallo, Alejandra Lucía

Gutierrez Zapata, Gabriel Alessandro

JURADO EVALUADOR:

- Presidente : Cabanillas Quiroz, Guillermo Juan
- Secretario : Sagastegui Plasencia, Fidel German
- Vocal : Medina Carbajal, Lucio Sigifredo

ASESOR:

García Rivera, Juan Pablo

Código Orcid: https://orcid.org/0000-0003-3498-7934

Trujillo - Perú

2024

FECHA DE SUSTENTACIÓN: 2024/04/17

II

UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO DE INGENIERÍA CIVIL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Estudio de la socavación local en las subestructuras de los puentes Conache, Cacique, Santa Rosa y Moche - Trujillo 2023

LINEA DE INVESTIGACIÓN: INGENIERÍA CIVIL

SUB LINEA DE INVESTIGACIÓN: HIDRAULICA

AUTORES:

Cueva Vazallo, Alejandra Lucía

Gutierrez Zapata, Gabriel Alessandro

JURADO EVALUADOR:

- Presidente : Cabanillas Quiroz, Guillermo Juan
- Secretario : Sagastegui Plasencia, Fidel German
- Vocal : Medina Carbajal, Lucio Sigifredo

ASESOR:

García Rivera, Juan Pablo

Código Orcid: https://orcid.org/0000-0003-3498-7934

Trujillo - Perú

2024

FECHA DE SUSTENTACIÓN: 2024/04/17

Estudio de la socavación local en las subestructuras de los puentes Conache, Cacique, Santa Rosa y Moche - Trujillo 2023

INFORM	E DE ORIGINALIDAD				
8 INDICE	% E DE SIMILITUD	8% FUENTES DE INTERNET	3% PUBLICACIONES	4% TRABAJOS DEL ESTUDIANTE	
FUENTES	5 PRIMARIAS				
1	hdl.hand Fuente de Inter	le.net			4%
2	Submitte Orrego Trabajo del este	d to Universida	d Privada Ant	enor	2%
3	repositor Fuente de Inter	rio.upao.edu.pe			2%

Excluir citas	Activo	Excluir coincidencias < 2	%
Excluir bibliografía	Activo		

JUAN BABLO GARCÍA RIVERA CIP 68614 INGENIERO CIVII

Declaración de originalidad

Yo, Juan Pablo Rivera García, docente del Programa de Estudio de Ingeniería Civil de la Universidad Privada Antenor Orrego, asesor de la tesis de investigación titulada "Estudio de la socavación local en las subestructuras de los puentes Conache, Cacique, Santa Rosa y Moche – Trujillo 2023" autores Cueva Vazallo Alejandra Lucia y Gutiérrez Zapata Gabriel Alessandro, dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud de 8%. Así lo consigna el reporte de similitud emitido por el software Turnitin el (09, Abril del 2024).
- He revisado con detalle dicho reporte y la tesis, y no se advierte indicios de plagio.
- Las citas a otros autores y sus respectivas referencias cumplen con las normas establecidas por la Universidad.

Lugar y fecha: Trujillo 10/04/2024

Jutionog-

GUTIERREZ ZAPATA, GABRIEL ALESSANDRO DNI: 71502646

CUEVA VAZALLO, ALEJANDRA LUCIA DNI: 73054461

RIVERA GARCIA JUAN PABLO DNI: 18216844 ORCID: https://orcid.org/0000-0003-3498-7934

DEDICATORIA

Quiero dedicar este logro a las personas que han sido fundamentales en mi vida y en mi camino hacia la culminación de esta tesis:

> **A Dios,** fuente de sabiduría y fortaleza, quien me ha acompañado en cada paso de este arduo camino académico.

A mi querida madre, Isabel Zapata, quien ha sido mi apoyo incondicional y mi fuente de inspiración. Tu amor, paciencia y constante motivación han sido pilares en mi camino académico.

> A mi amado hermano, Mathías Gutierrez, gracias por tu apoyo inquebrantable y por siempre alentarme a superar mis límites. Tu presencia ha sido un gran estímulo para alcanzar mis metas.

A mi preciada abuela Mercedes Santisteban, por ser un ejemplo de fortaleza y sabiduría. Tus palabras de aliento y tu amor incondicional han sido una guía constante en mi vida.

> A mi abuelo Vicente Zapata, aunque no estés físicamente presente, sé que tu espíritu me ha acompañado en cada paso de este camino. Tu legado de trabajo arduo y perseverancia sigue siendo mi motivación constante.

A mi familia, por su apoyo incondicional, comprensión y por creer en mí en todo momento. Gracias por estar siempre a mi lado, brindándome el apoyo emocional y logístico que necesitaba para alcanzar este logro.

DEDICATORIA

Este logro va dedicado en primer lugar **a mis padres Zoila Vazallo y Jorge Cueva** porque son el pilar fundamental en mi carrera académica. Su gran amor y motivación que me brindaron hizo que nunca me dé por vencida.

A mí Tía Elena Pantoja, por siempre creer en mí y acompañarme incondicionalmente con una sonrisa y orgullo en cada logro personal.

A mi abuelita Juana Jacobo, que, aunque no esté presente, sé que está muy orgullosa de mí y siempre me está guiando en cada paso que doy.

> A mí familia y amigos por su apoyo incondicional, porque siempre creyeron en mí y me brindaron una sonrisa y un buen consejo ante cualquier obstáculo.

A mí querida mascota Lola por su amor tan sincero e incondicional, por acompañarme en innumerables noches de ejecución del trabajo de investigación.

Bach. Cueva Vazallo, Alejandra Lucia

AGRADECIMIENTO

Quiero aprovechar este espacio para expresar mi más sincero agradecimiento a todas las personas que han sido parte fundamental en el desarrollo de mi tesis y en mi formación académica.

> A mi compañera de tesis, quien ha compartido conmigo cada etapa de este arduo proceso. Su compromiso, colaboración y valiosa contribución han enriquecido este trabajo y han sido clave alcanzar nuestros objetivos para comunes. Juntos hemos superado desafíos, celebrado logros y hemos amistad creado un lazo de V compañerismo que atesoraré siempre.

A mis mejores amigos, aquellos que han estado a mi lado durante todo este camino académico. Su constante apoyo, ánimo y palabras de aliento han sido un motor fundamental en los momentos de cansancio y desánimo. Agradezco su comprensión, paciencia y disposición para escucharme y brindarme su valiosa opinión en cada paso de este proceso.

> A mi asesor, Ing. Juan Pablo quien con su experiencia, conocimientos y guía ha sido una pieza fundamental en el éxito de esta tesis. Agradezco su dedicación, paciencia y disposición para brindarme sus orientaciones y consejos.

A mis docentes, quienes han compartido su conocimiento y experiencia a lo largo de mi trayectoria educativa.

AGRADECIMIENTO

A Dios por su amor infinito, protección y brindarme la fuerza necesaria para vencer cada obstáculo y alcanzar mi meta trazada.

A mis padres, que estuvieron a mi lado y sostuvieron mi mano en todo momento, gracias a su amor incondicional y cada enseñanza que me supieron dar, pude lograr trazar mi camino con perseverancia, y amor.

A mi compañero de tesis, que ha permanecido junto a mí en todo el desarrollo de la tesis. Su compañerismo y nobleza han sido parte fundamental para enriquecer el trabajo realizado, finalmente hemos conseguido nuestro objetivo común, ambos sabemos que no fue nada fácil, pero la compresión y la amistad hizo que pudiéramos superar cada desafío y llegar a celebrar este logro.

> A mi familia y amigos, por estar conmigo en todo momento dándome siempre palabras de aliento o un abrazo cuando lo más lo necesitaba.

A mi asesor, el Ing. Juan Pablo García Rivera por el constante apoyo en la realización de la tesis, compartiéndonos sus conocimientos, consejos y orientaciones durante todo el proceso de desarrollo del trabajo.

> A mis docentes, quienes me han brindado sus conocimientos y enseñanzas necesarias en todo el camino universitario para lograr así ser un buen profesional sobresaliente en el ámbito laboral.

Bach. Cueva Vazallo, Alejandra Lucia

RESUMEN

La relevancia de los modelos hidráulicos computacionales en la solución de desafíos ingenieriles reside en su capacidad para manejar y representar de manera efectiva entornos complejos de la realidad. En este sentido, consideramos importante realizar un estudio que nos brinde información sobre los parámetros hidrodinámicos del cauce y analizar su interacción con el puente en cuestión. Esto nos permitirá prever posibles inconvenientes futuros en la subestructura.

La presente investigación se realiza para encontrar la estimación de la socavación local en los puentes donde discurre el rio Moche, los cuales son: Moche, Santa Rosa, Cacique y Conache. Por lo tanto, es crucial comprender cómo y de qué manera este escenario podría presentarse, utilizando un enfoque virtual mediante modelos numéricos bidimensionales.

Con el plano topográfico del cauce del río Moche, se realizará el estudio de manera independiente a los 4 puentes en mención. La estimación del caudal de máxima avenida para un periodo de retorno de 500 años fue de 1010.02 m3/s. Utilizando un modelo hidráulico bidimensional, se obtuvo el tirante y velocidad critica máxima para cada puente en estudio y asi calcular la socavación local los cuales resulto: el puente moche tiene 1.37 m, el puente Santa Rosa 1.75 m, el puente Cacique 1.94m y el puente Conache 2.71 m; para la socavación general arrojaron los siguientes resultados al puente Moche 1.51 m, el puente Santa Rosa 1.16 m, el puente Cacique 1.98 m y el puente Conache 1.81 m.

Finamente, se realizó el cálculo de la socavación total dándonos como resultado que en el puente Moche se tiene una profundidad de socavación total de 2.88 m; en el puente Santa Rosa con una profundidad de socavación de 2.91 m; en el puente Cacique con una profundidad de socavación de 3.92 m; y por último el puente Conache con una socavación de 4.52 m.

Palabras clave: Socavación local, HEC-RAS, caudal máximo.

ABSTRACT

The relevance of computational hydraulic models in solving engineering challenges lies in their ability to effectively handle and represent complex real-world environments. In this regard, we consider it important to conduct a study that provides us with information on the hydrodynamic parameters of the channel and analyze its interaction with the bridge in question. This will allow us to anticipate possible future issues in the substructure.

The present research is carried out to estimate the local scour in the bridges where the Moche River flows, namely: Moche, Santa Rosa, Cacique, and Conache. Therefore, it is crucial to understand how and in what way this scenario could occur, using a virtual approach through two-dimensional numerical models.

With the topographic plan of the Moche River channel, the study will be conducted independently for the 4 mentioned bridges. The estimation of the maximum flow rate for a return period of 500 years was 1010.02 m3/s. Using a two-dimensional hydraulic model, the maximum critical depth and velocity were obtained for each bridge under study, and thus, calculate the local scour, which resulted in: the Moche bridge has 1.37 m, the Santa Rosa bridge 1.75 m, the Cacique bridge 1.94 m, and the Conache bridge 2.71 m; for the general scour, the following results were obtained: Moche bridge 1.51 m, Santa Rosa bridge 1.16 m, Cacique bridge 1.98 m, and Conache bridge 1.81 m.

Finally, the calculation of the total scour was carried out, resulting in a total scour depth of 2.88 m for the Moche bridge; 2.91 m for the Santa Rosa bridge; 3.92 m for the Cacique bridge; and 4.52 m for the Conache bridge.

Keywords: Local scour, HEC-RAS, maximum flow rate.

PRESENTACIÓN

Señores miembros del Jurado:

Dando conformidad y en cumplimiento de los requisitos estipulados en el Reglamento General de Grados y Títulos en la Facultad de Ingeniería de la Universidad Privada Antenor Orrego, someto a vuestra consideración el trabajo de tesis, titulado:

"Estudio de la socavación local en las subestructuras de los puentes Conache, Cacique, Santa Rosa y Moche - Trujillo 2023"

Con la finalidad de obtener el título profesional de ingeniero civil, así como también obtener algunas experiencias para el desarrollo de la ingeniería.

El contenido de nuestra presente investigación ha sido desarrollado con el marco de referencia de los lineamientos establecidos por nuestra escuela con el objetivo de desarrollar la tesis con nuestros conocimientos adquiridos durante el proceso de nuestra formación profesional, de igual forma de consultas bibliográficas, entre otros.

Consideramos señores miembros del jurado que con vuestras sugerencias y recomendaciones este trabajo puedo mejorarse y contribuyo a la difusión de la investigación de la Universidad.

abiel Butierroy Z

Br. Gutierrez Zapata, Gabriel Alessandro

Br. Cueva Vazallo, Alejandra Lucia

ÍNDICE DE CONENIDO

DEDICATORIA	VI
DEDICATORIA	VII
AGRADECIMIENTO	VIII
AGRADECIMIENTO	IX
RESUMEN	X
ABSTRACT	XI
PRESENTACIÓN	XII
ÍNDICE DE CONENIDO	XIII
ÍNDICE DE TABLAS	XVI
ÍNDICE DE ILUSTRACIONES	XVIII
ÍNDICE DE GRAFICOS	XXI
ÍNDICE DE ANEXOS	XXII
I. INTRODUCCIÓN	26
1.1. Problema de Investigación	
1.1.1. Realidad Problemática	
1.1.2. Enunciado del problema	
1.2. Objetivos	
1.2.1. Objetivo General	
1.2.2. Objetivos Específicos	29
1.3. Justificación del estudio	
II. MARCO DE REFERENCIA	30
2.1. Antecedentes del estudio	30
2.1.1. Antecedentes internacionales	
2.1.2. Antecedentes nacionales	31
2.1.3. Antecedentes locales	32
2.2. Marco Teórico	33

	2.2.1.	Modelo digital	33
:	2.2.2.	Caracterización del suelo de fundación	33
	2.2.3.	Estudio Hidrológico	35
	2.2.4.	Simulación Hidráulica mediante el software HEC-RAS	38
:	2.2.5.	Socavación en puentes	42
:	2.2.5.1.	Socavación Local	42
:	2.2.5.2.	Socavación General	43
:	2.2.6.	Métodos de socavación local en pilares	44
:	2.2.7.	Metodo de socavación en estribos	60
2.3	3. Ma	arco Conceptual	62
2.4	4. Si	stema de Hipótesis	63
	2.4.1.	Hipótesis General	63
2.5	5. Va	ariables: Operacionalización de la variable	63
III.	ΜΕΤΟΙ	DOLOGIA EMPLEADA	64
3.1	1. Tij	po y Nivel de Investigación	64
;	3.1.1.	Tipo de Investigación	64
;	3.1.2.	Nivel de Investigación	64
3.2	2. Po	oblación y Muestra de Estudio	64
;	3.2.1.	Población	64
;	3.2.2.	Muestra	64
3.3	3. Di	seño de Investigación	65
3.4	4. Té	écnicas e instrumentos de Recolección de Datos	65
;	3.4.1.	Técnicas	65
:	3.4.2.	Instrumentos	65
3.5	5. Pr	ocesamiento y Análisis de datos	66
;	3.5.1.	Estudio de Mecánica de suelos	66
:	3.5.2.	Estudio Topográfico	66

	3.5.3.	Estudio Hidrológico	66
	3.5.4.	Simulación Hidrológica	66
IV.	PRES	ENTACIÓN DE RESULTADOS	67
4	.1. P	ropuesta de investigación	67
	4.1.1.	Modelo digital	67
	4.1.2.	Caracterización del suelo de fundación	68
	4.1.3.	Estudio Hidrológico	69
	4.1.4.	Simulación Hidráulica mediante el software HEC-RAS	75
4	.2. A	nálisis de interpretación de resultados	86
	4.2.1.	Modelo digital	86
	4.2.2.	Granulometría	93
	4.2.3.	Estudió Hidrológico	97
	4.2.4.	Simulación Hidráulica mediante el software HEC-RAS	
4	.3. D	ocimasia de hipótesis	119
	4.3.1.	Interpretación de la Hipótesis nula (H0)	119
	4.3.2.	Interpretación de la Hipótesis Alterna (H1)	120
	4.3.3.	Interpretación de hipótesis propuestos	121
V.	DISCU	ISIÓN DE LOS RESULTADOS	122
со	NCLUS	IONES	123
RE	COMEN	IDACIONES	124
BIE	BIBLIOGRAFÍA 1		125
AN	EXOS		

ÍNDICE DE TABLAS

TABLA N°01: Criterio de Cowan para determinar la influencia de diversos factores
sobre el coeficiente n 41
TABLA N°02: Factor de corrección por la forma del pilar Kf método de CSU 45
TABLA N°03: Factor de corrección por el ángulo de ataque del flujo Kø método de CSU 46
TABLA N°04: Factor de corrección por la forma del lecho Kc Método de CSU 46
TABLA N°05: Criterios para adoptar Ka 47
TABLA N°06: Coeficiente Kf método de Lauser y Toch
TABLA N°07: Factor de corrección K _f por forma de la pila53
TABLA N°08: Factor de corrección K por ángulo de ataque de flujo 54
TABLA N°09: Factor de corrección Fc 56
TABLA N°10: Coeficiente Kf a partir de la forma de estribo 61
TABLA N°11: Operacionalización de la variable63
TABLA N°12: Distribución de calicatas 68
TABLA N°13: Registro de Caudales máximos anuales69
TABLA N°14: Distribución de calicatas 86
TABLA N°15: Coordenadas geográficas puente Conache
TABLA N°16: Coordenadas geográficas puente Cacique
TABLA N°17: Coordenadas geográficas puente Santa Rosa
TABLA N°18: Coordenadas geográficas puente Moche 88
TABLA N°19: Análisis Granulométrico 93
TABLA N°20: Análisis Granulométrico 96
TABLA N°21: Análisis Granulométrico 96
TABLA N°22: Análisis Granulométrico 96
TABLA N°23: Resumen de caudales de diseño 97
TABLA N°24: Prueba bondad de ajuste

TABLA N°25: Valores picos para diversos periodos de retorno
TABLA N°26: Valores críticos de velocidad y tirante 104
TABLA N°27: Socavación general en el Puente Conache 112
TABLA N°28: Resultados de socavación en el puente Conache 113
TABLA N°28: Resumen de socavación Local en el Puente Cacique 113
TABLA N°30: Resultados de socavación general en el puente Cacique 114
TABLA N°31: Resultados de socavación en el puente Cacique 115
TABLA N°32: Socavación local en el Puente Santa Rosa 115
TABLA N°33: Resultados de socavación general en el puente Santa Rosa 116
TABLA N°34: Resultados de socavación en el puente Santa Rosa 117
TABLA N°35: Socavación local en el Puente Moche 117
TABLA N°36: Resultados de socavación general en el puente Moche 118
TABLA N°37: Resultados de socavación en el puente Moche 119
TABLA N°38: Resumen de resultados de socavación local 120
TABLA N°39: Resumen de resultados de socavación local 120
TABLA N°40: Cuadro estadísticos de prueba 121

ÍNDICE DE ILUSTRACIONES

FIGURA N°01: Imagen real tomada del puente Conache donde discurre el Rio	
Moche 2023 2	8
FIGURA N°02: Formas típicas de pila. HEC – 18. 1993 4	5
FIGURA N°03: Estribos que se prolongan hasta el cauce principal y no existe flujo en la zona de inundación6	с Ю
FIGURA N°04: Los cuatro puentes de estudio6	4
FIGURA N°05: Procesamiento en Qgis6	7
FIGURA N°06: Análisis de Frecuencia7	2
FIGURA N°07: Ingreso de la información de precipitación máxima de 24 horas máxima anual7	2
FIGURA N°08: Distribuciones probabilística de la plataforma Hydrognomon7	3
FIGURA N°09: Prueba Bondad de Ajuste (Kolgmorov Smirnov y Chi-Cuadrado) 7	3
FIGURA N°10: Distribuciones probabilística de la plataforma Hydrognomon 7	4
FIGURA N°11: Distribuciones probabilística – caudal de diseño de la plataforma	
Hydrognomon7	4
FIGURA N°12: Creación del nuevo proyecto7	6
FIGURA N°13: Importación del Modelo digital de elevación	6
FIGURA N°14: malla creada para cada uno de los puentes a evaluar7	7
FIGURA N°15: Datos para la malla7	7
FIGURA N°16: ingreso de datos de las precipitaciones en HEC.RAS7	8
FIGURA N°17: Selección de la condición de contorno7	8
FIGURA Nº18: Programación para la corrida del periodo de retorno de 500 años 79	
FIGURA N°19: Resultado de la simulación para el periodo de retorno de 500 años	s
– perímetro moche	9
FIGURA N°20: Conexión 2D como Línea de quiebre	0
FIGURA N°21: Sección del terreno 8	0

FIGURA N°22: Tipo de estructura	81
FIGURA N°23: Ingreso de las dimensiones del tablero del puente	81
FIGURA N°24: Secciones transversales automatizadas	82
FIGURA N°25: Ingreso de las dimensiones de los pilares del puente	82
FIGURA N°26: Ingreso de las dimensiones de los estribos	83
FIGURA N°27: Configuración de la simulación con Puentes.	83
FIGURA N°28: Sección a detalle del puente	84
FIGURA N°29: Numero de Manning	84
FIGURA N°30: Corrida de la simulación con puente	85
FIGURA N°31: Tirante del tramo de estudio	85
FIGURA N°32: Velocidad del tramo de estudio	85
FIGURA N°33: Ubicación de puente Conache	86
FIGURA N°34: Ubicación de puente Cacique	87
FIGURA N°35: Ubicación de puente Santa Rosa	88
FIGURA N°36: Ubicación de puente Moche	88
FIGURA N°37: Se carga la superficie de la zona de estudio	89
FIGURA N°38: Se da formato para crear el alineamiento	89
FIGURA N°39: Se crea el alineamiento con ayuda de base topográfica e imagen	۱
satelital	90
FIGURA N°40: Se crea el alineamiento con ayuda de base topográfica e imagen	ן 1
	90
FIGURA N°41: Longitud total del alineamiento de rio.	91
FIGURA N°42: Recorte de la zona de estudio	91
FIGURA N°43: Perfil Longitudinal	92
FIGURA N°44: Perfil Longitudinal	92
FIGURA N°45: Curva granulometría, C-1 punto Puente Conache	94
FIGURA N°46: Curva granulometría, C-2 punto Puente Cacique	94
FIGURA N°47: Curva granulometría, C-3 punto Puente Santa Rosa	95

FIGURA N°48: Curva granulometría, C-4 punto Puente Moche	95
FIGURA N°49: Distribuciones probabilísticas según el manual del MTC	;
FIGURA N°50: Modelado puente moche	100
FIGURA N°51: Resultado de la simulación puente moche	100
FIGURA N°52: Modelado puente Santa Rosa	101
FIGURA N°53: Resultado de la simulación puente santa rosa	101
FIGURA N°54: Modelado puente Cacique	102
FIGURA N°55: Resultado de la simulación puente Cacique	102
FIGURA N°56: Modelado puente Conache	103
FIGURA N°57: Resultado de la simulación puente Conache	103
FIGURA N°58: Tirante critico	104
FIGURA N°59: Velocidad critica	104
FIGURA N°60: Curva granulométrica del Puente Conache	105
FIGURA N°61: Curva granulométrica del Puente Cacique	105
FIGURA N°62: Curva granulométrica del Puente Santa Rosa	106
FIGURA N°63: Curva granulométrica del Puente Moche	106
FIGURA N°64: Socavación local en el Puente Conache	107
FIGURA N°65: Socavación local en el Puente Conache	108
FIGURA N°66: Socavación local en el Puente Conache	109
FIGURA N°67: Socavación local en el Puente Conache	110
FIGURA N°68: Socavación local en el Puente Conache	111

ÍNDICE DE GRAFICOS

GRAFICA N°01: Coeficiente Kg del método de Lausen y Toch	51
GRAFICA Nº02: Coeficiente Kø teniendo en cuenta el ángulo de ataque	52
GRAFICA N°03: Factor correctivo K Ø	58
GRAFICA Nº04: Diagrama de docimasia de hipótesis	121

ÍNDICE DE ANEXOS

ANEXO 1: Resolución y permisos 128
ANEXO 1.1: Solicitud de revisión de proyecto de tesis 128
ANEXO 1.2: Declaración jurada de compromiso de asesor 129
ANEXO 1.3: Oficio para designación de propuesta de jurado 130
ANEXO 1.4: Oficio para designación de jurado
ANEXO 1.5: Aprobación e inscripción de proyecto de tesis 132
ANEXO 1.6: Resolución emitida por facultad para comenzar el trámite del
Informe de tesis 133
ANEXO 2: Resultados y ensayos 134
ANEXO 2.1: Estudio de granulometría de la C-1 134
ANEXO 2.2: Estudio de granulometría de la C-2 135
ANEXO 2.3: Estudio de granulometría de la C-3 136
ANEXO 2.4: Estudio de granulometría de la C-4 137
ANEXO 3: Resultados del cálculo de socavación de forma empírica 138
ANEXO 3.1: Calculo de socavación local en el puente Conache mediante el método CSU
ANEXO 3.2: Calculo de socavación local en el puente Conache mediante el método CSU
ANEXO 3.3: Calculo de socavación local en el puente Conache mediante el método CSU
ANEXO 3.4: Calculo de socavación local en el puente Conache mediante el método CSU
ANEXO 3.5: Calculo de socavación local en el puente Conache mediante el método CSU
ANEXO 3.6: Calculo de socavación local en el puente Santa Rosa mediante el método CSU

ANEXO 3.7: Calculo de socavación local en el puente Santa Rosa mediante el método CSU
ANEXO 3.8: Calculo de socavación local en el puente Santa Rosa mediante el método CSU
ANEXO 3.9: Calculo de socavación local en el puente Santa Rosa mediante el método CSU
ANEXO 3.10: Calculo de socavación local en el puente Santa Rosa mediante el método CSU
ANEXO 3.11: Calculo de socavación local en el puente Moche mediante el método CSU
ANEXO 3.12: Calculo de socavación local en el puente Moche mediante el método CSU
ANEXO 3.13: Calculo de socavación local en el puente Moche mediante el método CSU
ANEXO 3.14: Calculo de socavación local en el puente Moche mediante el método CSU
ANEXO 3.15: Calculo de socavación local en el puente Moche mediante el método CSU
ANEXO 4: Resultados del cálculo de socavación local en estribos de forma
empirica
ANEXO 4.1: Calculo de socavación local en estribos del puente Conache mediante el método de Liu, Chang y Skinner
ANEXO 4.2: Calculo de socavación local en estribos del puente Conache mediante el método e Liu, Chang y Skinner
ANEXO 4.3: Calculo de socavación local en estribos del puente Cacique mediante el método e Liu, Chang y Skinner
ANEXO 4.4: Calculo de socavación local en estribos del puente Cacique mediante el método e Liu, Chang y Skinner
ANEXO 4.5: Calculo de socavación local en estribos del puente Santa Rosa mediante el método e Liu, Chang y Skinner

ANEXO 4.6: Calculo de socavación local en estribos del puente Santa Rosa	
mediante el método e Liu, Chang y Skinner 158	3
ANEXO 4.7: Calculo de socavación local en estribos del puente Moche	
mediante el método e Liu, Chang y Skinner 159)
ANEXO 4.8: Calculo de socavación local en estribos del puente Moche	`
mediante el metodo e Liu, Chang y Skinner)
ANEXO 5: Panel fotográfico 161	1
ANEXO 5.1: Fotografía tomada en el puente - Rio Moche 161	
ANEXO 5.2: Fotografía tomada en el puente - Rio Moche 161	
ANEXO 5.3: Fotografía tomada en el puente - Rio Moche 162) -
ANEXO 5.4: Fotografía tomada en el puente - Rio Moche 162	2
ANEXO 5.5: Fotografía tomada en el puente - Rio Moche 163	}
ANEXO 5.6: Fotografía tomada en el puente - Rio Moche 163	}
ANEXO 5.7: Fotografía tomada en el puente - Rio Santa Rosa 164	ł
ANEXO 5.8: Fotografía tomada en el puente - Rio Santa Rosa 164	ł
ANEXO 5.9: Fotografía tomada en el puente - Rio Santa Rosa 165	;
ANEXO 5.10: Fotografía tomada en el puente - Rio Santa Rosa 165	;
ANEXO 5.11: Fotografía tomada en el puente - Rio Santa Rosa 166	;
ANEXO 5.12: Fotografía tomada en el puente - Rio Santa Rosa 166	;
ANEXO 5.13: Fotografía tomada en el puente - Rio Cacique 167	,
ANEXO 5.14: Fotografía tomada en el puente - Rio Cacique 167	,
ANEXO 5.15: Fotografía tomada en el puente - Rio Cacique 168	}
ANEXO 5.16: Fotografía tomada en el puente - Rio Cacique 168	}
ANEXO 5.17: Fotografía tomada en el puente - Rio Cacique 169)
ANEXO 5.18: Fotografía tomada en el puente - Rio Cacique 169)
ANEXO 5.19: Fotografía tomada en el puente - Rio Conache 170)
ANEXO 5.20: Fotografía tomada en el puente - Rio Conache 170)
ANEXO 5.21: Fotografía tomada en el puente - Rio Conache 171	

ANEXO 6: Otros1	172
ANEXO 6.1: Ubicación de C-01	172
ANEXO 6.2: Ubicación de C-02	172
ANEXO 6.3: Ubicación de C-03	173
ANEXO 6.4: Ubicación de C-04	173
ANEXO 6.5: Descargas máximas anuales	174
ANEXO 6.6: Resultados de la prueba de bondand	175
ANEXO 7: Planos	176

I. INTRODUCCIÓN

1.1. Problema de Investigación

1.1.1. Realidad Problemática

Durante décadas los puentes se han considerado una de las infraestructuras fundamentales para el progreso y bienestar de la sociedad, ya que nos permite realizar el cruce de desniveles. Por otro lado, los ríos se presentan como una combinación de caudales tanto solidos como líquidos, los caudales sólidos son representados como la carga de los sedimentos y los líquidos como caudales líquidos, siendo estos los determinantes de la forma del rio. Entonces se deduce que cuando el rio y el puente tienen interacción, ambos tienden a influir uno del otro.

Con lo mencionado anteriormente hay causas a considerar, ya que esta descontrolada forma en la que discurre hace que el rio traiga consigo efectos negativos en las estructuras hidráulicas, como es el caso de los puentes, ya que en tiempos de crecida se estaría enfrentado a la socavación local.

Con el estudio realizado por (Muñoz, 2002) El 35% de los puentes que se han estudiado han fallado por socavación en la cimentación en los estribos y pilas, esto pasa mayormente en los puentes que han sido construidos ya hace un buen tiempo, aproximadamente 20 años, dónde el criterio más importante de diseño de dicha cimentación se inclinaba más a la capacidad portante que a los fenómenos producto de la socavación.

Se puede interpretar que los puentes pueden colapsar debido a la socavación local, donde este abarca un proceso en el que el agua erosiona al suelo alrededor de los cimientos del puente debido al tiempo o a los malos cálculos donde esto debilita la estructura, provocando su caída. La prevención implica técnicas para controlar el flujo del agua y fortalecer los cimientos.

Según el autor peruano (Martinez, 2007) en toda construcción de ingeniería civil dónde abarque la ocupación de dicho cauce de rio, tiene que considerar que se está generando una alteración y modificación en el comportamiento natural en del cauce, es por ello que el autor propone que se debe ejecutar estudios como son la hidrología, geomorfología fluvial, así como también los procesos que se tiene de la sedimentación, erosivos fluvial y finalmente así lograr que no vuelva a ocurrir el suceso de los puentes Simón Rodríguez y Bolognesi los cuales fueron afectados por la socavación local.

La cuenca del río Moche se encuentra en la región costera norte de Perú, forma parte de la cuenca del océano Pacífico y abarca un área total de 2708 km2. Este se localiza en el departamento de la Libertad, los cuales comprende un total o parcialmente las provincias de Trujillo, Otuzco, Santiago de chuco y Julcán. (Callirgos & Mendez, 2015)

El cauce principal del rio Moche recorre 102 km. A la altura de la localidad de San Juan, a unos 14 Km de su origen, toma el nombre de río Moche, el cuál mantiene hasta su desembocadura en el mar, tiene como pendiente promedio de cauce de 4% y la pendiente del cauce 16% en el caso de la quebrada La cuesta. (Guillermo, 2010)

Se realizó un recorrido de campo en el rio Moche específicamente en los puentes puente Conache, Cacique, Santa Rosa y Moche donde se pudo identificar el problema de socavación general donde se vio el transporte de sedimentos en el lecho del rio Moche, ocasionado por el reciente fenómeno del niño costero. También se encontró el efecto de socavación local, ya que se vio el descenso del material del rio en los pilares de estos puentes.

Comprendido la importancia del impacto que tiene el realizar el estudio de la socavación local en los puentes, tenemos como objetivo realizar el estudio de los efectos de socavación que sería

causada con una avenida o alguna corriente máxima en el rio Moche, en los tramos del puente Conache, Cacique, Santa Rosa y Moche con el apoyo del software de simulación hidráulica HEC-RAS, con la finalidad de determinar cuál sería la profundidad de socavación local. Estos datos son esenciales para proponer soluciones efectivas y preventivas que garanticen la seguridad y durabilidad de estas estructuras cruciales.

FIGURA N°01: Imágenes reales tomadas en puentes de estudio donde discurre el Rio Moche.

Fuente: Elaboración Propia

1.1.2. Enunciado del problema

¿Cuál es el estudio de socavación local en las subestructuras de los puentes Conache, Cacique, Santa Rosa y Moche?

1.2. Objetivos

1.2.1. Objetivo General

Estudiar la socavación local de las subestructuras de los puentes Conache, Cacique, Santa Rosa y Moche, ubicados en la ciudad de Trujillo.

1.2.2. Objetivos Específicos

- Analizar el modelo digital del terreno del Rio Moche, en los tramos de los puentes Conache, Cacique, Santa Rosa y Moche.
- Realizar un análisis granulométrico de los sedimentos de fondo en las secciones donde se ubican los puentes en estudio.
- Realizar el análisis de máximas avenidas del Rio Moche.
- Realizar la simulación hidráulica mediante el sofware Hec-Ras para diferentes escenarios del rio Moche, de los puentes a estudiar.
- Estimar la profundidad de socavación local en los pilares de los puentes Conache, Cacique, Santa Rosa y Moche a través de los métodos empíricos.

1.3. Justificación del estudio

El estudio detallado de hidráulica fluvial que llevamos a cabo se centra en el analizar el transporte de sedimentos y el fenómeno de socavación en los pilares de los puentes Conache, Cacique, Santa Rosa y Moche. Utilizamos investigaciones previas como base, pero nuestro enfoque está en innovar y actualizar estos conocimientos para ofrecer soluciones avanzadas. Al obtener los resultados, nos dedicaremos a un análisis profundo y meticuloso. Estos datos procesados nos permitirán proponer soluciones específicas y prácticas.

No solo nos centramos en abordar los problemas actuales, como la pérdida de material en los pilares que conduce a la inestabilidad de los puentes, sino que también nos esforzamos por anticipar desafíos futuros. Nuestras propuestas no solo se orientan hacia la mejora inmediata, sino también hacia una visión a largo plazo para garantizar la durabilidad y seguridad de estos puentes esenciales para la comunidad local. Una vez obtenido los resultados se analizarán y procesaran para dar alguna propuesta de solución, la cual nos va a permitir que en futuras investigaciones tengan alguna visión que sea más clara de cómo se podría mejorar la situación actual.

II. MARCO DE REFERENCIA

2.1. Antecedentes del estudio

- 2.1.1. Antecedentes internacionales
 - Según Reyes Ramírez Carlos & Reyes Ramírez Juan (2020) en Colombia realizaron el estudio de la "Determinación de la socavación para las pilas del puente localizado en el Municipio de Riosucio Caldas", Este articulo tiene como objetivo determinar los parámetros de la socavación inicial por medio de los diversos parámetros del suelo y así poder mejorar las propiedades mecánicas de dicho suelo. Por lo que el artículo concluye con la identificación de las condiciones críticas y a su vez las que pueden llegar a presentar socavación, mediante el uso de diversos materiales y así finalmente poder lograr aumentar la resistencia al corte, hasta un rango que llegue a ser admisible para lograr una buena interacción con la estructura y así conseguir la estabilidad deseada.
 - Según Bishwajit Singh, Tamphasana Devi, & Kumar (2020) en \geq India, realizaron el estudio titulado "The local scour around bridge piers - a review of remedial techniques", Este articulo tiene como objetivo el explicar el proceso de la socavación local alrededor del pilar de un puente, además de ofrecer técnicas para la protección y control. El artículo explica las diferentes medidas para contrarrestar y prevenir dicha socavación local. Durante el desarrollo de la tesis se propone que una de las medidas son el uso de las piedras riprap siendo una forma de blindaje que se coloca al alrededor de todo el muelle la efectividad de esta forma de blindaje es buena, pero en el artículo concluyen que para obtener mejores resultados con eficiente del 100% se necesita realizar más investigaciones con el fin de estabilizar los prototipos y aplicarlo en el campo.

2.1.2. Antecedentes nacionales

- Según Encalada Rojas, Mario Kevin (2022) realizo una \geq "Evaluación de la Socavación Local en los pilares de concreto del Puente Ramis Puno 2020", en el marco de esta investigación, se plantea una evaluación exhaustiva de la estabilidad del puente Ramis, ubicado entre los distritos de Taraco y Huancané en el departamento de Puno. Este puente, sostenido por cinco pares de pilares circulares, ha sido objeto de estudio para determinar su resistencia ante diferentes escenarios hidrológicos. Para ello, se han utilizado los datos de caudales registrados en la estación Hidrométrica del Puente, los cuales desempeñan un papel fundamental en el cálculo del caudal de diseño máximo, siendo este de vital importancia para predecir la socavación local. Los resultados obtenidos en esta investigación resaltan la necesidad de implementar obras de protección adicionales en las zonas de mayor vulnerabilidad para garantizar la estabilidad y durabilidad del puente ante situaciones de riesgo.
- Según Aguinaga Ramírez & Higeiny Adubel (2019) realizaron "Estudio de la socavación en los estribos del puente Cascajal - Olmos ante máximas avenidas", En la investigación se busca conocer la socavación general y local que se genera en los estribos del puente Cascajal en Piura ante las máximas avenida, durante el desarrollo de la investigación se utilizaron bases teóricas como son la de Liu, Chang y Skinner, así somo también cabe mencionar la utilización el software de simulación "H-RAS ", teniendo como resultado el cálculo de las profundidades de socavación. Por lo que la investigación concluye que, a partir de las ecuaciones teóricas y las ecuaciones dadas por el programa, se escoge la más optima y la que se ajusta más a la realidad y poder aplicarla para solucionar la falla.

2.1.3. Antecedentes locales

- Según Armas Meléndez, Mariana (2021) en la investigación \geq "Análisis de la socavación local en los pilares del puente Moche ubicado en la ciudad de Trujillo mediante simulación hidráulica en HEC-RAS", en el marco de esta investigación, se ha planteado como objetivo analizar detalladamente el fenómeno de la socavación local en los pilares del puente Moche a través del software "HEC-RAS". Los resultados obtenidos, reflejan una velocidad de flujo de 1.53 m/s y también una profundidad del tirante máximo de 3.18 m. Al ingresar estos datos del puente y el suelo, en el software en consideración, calcularon su socavación local que salio 1.71 m. Estos resultados son importantes para lograr comprender el problema que se genera mediante la socavación y a su vez contar con las medidas necesarias para mitigar los efectos de la socavación en los pilares de cualquier puente.
- Según Araujo Vazallo Alexandra & Perez Marin Durbys (2019) realizaron el "Efecto de la Descolmatación del río Chicama aguas arriba del puente Victoria en la socavación de sus pilares", La investigación sobre la socavación en el Puente Victoria, situado en el río Chicama. Para logar este desafío, se van a usar dos herramientas, uno unidimensional y otro es el bidimensional, a través de los programas Iber y Hec - RAS. Estos dos modelos van a permitir que se pueda simular el comportamiento hidráulico y a su vez hallar las condiciones que generan la socavación. Las herramientas que se usaran para la simulación van a permitir el tomar una buena decisión con fundamento en el diseño y por lo tanto también en la protección de la infraestructura que tendrá que ir en contra del fenómeno de socavación.

2.2. Marco Teórico

2.2.1. Modelo digital

Según (Felicísimo, 1994) en su libro "Modelos digitales del terreno: introducción y aplicaciones en las ciencias ambientales"; Nos da como definición que un modelo de elevaciones (MDE) se conoce como una estructura de forma numérica en dónde se presentan datos los cuales representan una distribución espacial con respecto a la altitud que se tiene de la superficie del terreno evaluado.

Los modelos digitales de elevación son herramientas que nos permiten llevar la data topográfica de una realidad hacia los modelos que permiten estudiar algunas variables. Existen diversas herramientas para poder elaborar un DEM donde abarque el levantamiento topográfico como el hecho principal para lograr iniciar un modelo digital, donde se utilizará la estación total tanto como el GPS. En la actualidad, se ha incorporado el uso de los drones, donde estos son capaces de lograr un levantamiento topográfico mucha más preciso y a su vez más práctico.

2.2.2. Caracterización del suelo de fundación

2.2.2.1. Transporte y arrastre de sedimentos

El conocimiento que se logra tener del transporte de sedimentos es primordial para el análisis hidráulico fluvial y a su vez el lograr una excelente dinámica de los sistemas fluviales, que vendrían a ser el resultado de diversos fenómenos complejos que se generan en los cauces naturales. El considerar estos estudios beneficiará, en lo que respecta al desarrollo de los recursos para el cuidado de la naturaleza y la creación de soluciones a los diversos problemas ambientales que se tiene en la actualidad; algunos de sus usos consideran la sedimentación en canales

naturales, las erosiones localizadas como es el fenómeno de socavación en los pilares de puentes, el diseño de estructuras con respecto al drenaje, etc.

El transporte de sedimentos genera que se tenga interacciones importantes entre un gran número de variables interrelacionadas, que vendrían a ser la velocidad del flujo, la pendiente del río a tratar, así también como la profundidad, el esfuerzo cortante que se genera, el valor que toma la fuerza del flujo, la rugosidad que presenta el canal, así como también el número de Froude, etc. A partir de ello se generan diferentes tipos de ecuaciones que se van a aplican al flujo y lograr así resultados. El transporte que se genera de los sedimentos en el lecho del río respectivo, se divide en transporte en el lecho del río y también en transporte de sólidos en suspensión. Estos dos tipos de transporte de fondo van a afectar los procesos de erosión y de la sedimentación en rio. A partir de ello se han propuesto diversas ecuaciones que se han basado en las propiedades como son las morfológicas, las propiedades hidráulicas y también de las sedimentarias locales a partir de los cursos de agua donde esto nos permitirá calcular el transporte de sedimentos. Su credibilidad está limitada por el rango de variabilidad que se tiene de los parámetros hidrodinámicos y de los sedimentológicos que ya se han procesado y han logrado ser validados. La capacidad que se tiene del transporte de sólidos en equilibrio, también se le considera como la capacidad de transporte.

2.2.2.2. Análisis Granulométrico

Los lechos de los ríos pueden ser granulares o cohesivos. En el primer caso, el lecho está constituido por partículas sueltas de distintos tamaños. Los ríos aluviales, que discurren sobre materiales transportados por el propio río, tienen por ello lechos granulares. Un río puede tener también un cauce abierto en roca o materiales cohesivos; no por eso su contorno es fijo o inamovible pero las modificaciones del cauce serán muy lentas debido a la mayor resistencia a la erosión. Tras una erosión del fondo, un lecho cohesivo se puede restablecer en su fondo original, pero ya no como cohesivo sino como granular, y en esto se diferencia de los lechos granulares. (Vide, 2003)

La manera más común de analizar la distribución de tamaños en el lecho (o granulometría) es tamizar una muestra y pesar la fracción que pasa cada tamiz, pero es retenido en el siguiente. La representación gráfica de estas fracciones en un histograma es una versión discreta, en clases de tamaños, de una función de densidad de probabilidad de los tamaños. (Vide, 2003)

2.2.3. Estudio Hidrológico

2.2.3.1. Morfología de los ríos

La Morfología Fluvial viene a ser el estudio de las formas variadas que tienen los ríos. Cuando hablamos de la forma de los ríos, que vendría a ser su apariencia, debe entenderse que vendría a ser los mismo que describirlos tal y como se ven desde el aire. (Rocha Felices, 2009)

Por lo que podemos interpretar que la morfología en los ríos, se encarga de estudiar su forma estructural del rio, así como su conformación y su geometría tanto en la sección transversal, como también con respecto a la forma de fondo.

La morfología de un río va a generar que se estudie los diversos cambios que logra experimentar un rio, tanto como en su trayecto, como en su sección transversal que vendría a ser el lecho y márgenes y finalmente su comportamiento del río depende altamente de la topografía que se tiene, porque así logramos ver las condiciones en las que encontramos un rio.

2.2.3.2. Caudal Máximo

El caudal dominante o también llamado formativo o efectivo, viene a definirse como el valor que determina la forma y las dimensiones del cauce principal del río. Es el caudal el que logra llenar el cauce activo del río, llegando hasta los márgenes y a su vez marca el inicio de tiene la inundación de la planicie aluvial. Asimismo, representa el caudal de crecida que más se usa en el modelado del cauce y también se ha definido como el más efectivo en lo que respecta al transporte de sedimento.

2.2.3.3. Lecho del Rio

El lecho del río es la parte que se ubica en el fondo del valle y por lo tanto donde se genera una corriente de agua que se presenta a partir de la gravedad, no obstante, es el mismo en el cual se emplazan los pilares que forman parte del puente a considerar, continuamente se van a encontrar vulnerables a partir del fenómeno de erosión que se genera a partir del paso del agua y también con el tiempo se forma la socavación en el puente.

El lecho de un rio también es llamado cauce, así como álveo o también madre; este mismo viene a ser la superficie de tierra en donde las aguas lo abarcan mayormente. Para que se realice un estudio de socavación de un puente se tiene que tener como conocimiento de que en si está compuesto y a su vez de las características específicas que presenta la sección del lecho de rio en donde se aloja y formar la cimentación de la subestructura para así lograr evitar el fallo.
2.2.3.4. Periodo de retorno

Se define el período de retorno T, como un intervalo promedio que evalúa el tiempo en años, es por ello que un evento de magnitud (x) pueda ser igualado o tambien excedido, al menos una vez en promedio. Así que si un evento ya sea igual o mayor a (x), llega a suceder una vez en T años, su probabilidad de ocurrencia es P, que es igual a 1 en T casos. (Villon Bejar, 2007).

$$P(X \ge x) = \frac{1}{T}$$

Donde:

- *P*(X ≥ x): Probabilidad de ocurrencia de un evento ≥ x.
- X: Variable aleatoria.
- **x**: Valor particular que toma la variable aleatoria.
- T: Período de retorno.

La probabilidad de que (x) no se ocasione en cualquier año; es decir, que la probabilidad de ocurrencia sea < x.

$$P(x < X) = 1 - P(X \ge x)$$

De donde:

$$P(x < X) = 1 - \frac{1}{T}$$

Entonces:

- P(X < x): Probabilidad de excedencia.
- $P(X \le x)$: Probabilidad de no excedencia.

2.2.3.5. Software Hydrognomon

Hydrognomon es un software ampliamente utilizado en el campo de la hidrología y la gestión de recursos hídricos. Desarrollado por el Instituto de Hidráulica Ambiental de la Universidad Politécnica de Valencia (España), proporciona una plataforma integral para la modelización y simulación de procesos hidrológicos en cuencas hidrográficas.

Algunas de las características y funcionalidades clave de Hydrognomon incluyen:

- Modelización hidrológica: Permite la creación de modelos hidrológicos de cuencas hidrográficas, teniendo en cuenta factores como la topografía, la geología, el uso del suelo y la vegetación.
- Análisis de balance hídrico: Facilita la evaluación de la distribución y disponibilidad del agua en una cuenca, ayudando a entender los flujos de entrada y salida de agua, así como los cambios en los niveles de almacenamiento.
- Simulación de caudales: Permite predecir los caudales de los ríos y arroyos en función de diferentes escenarios hidrológicos, lo que es útil para la gestión de inundaciones, el diseño de infraestructuras hidráulicas y la planificación del uso del agua.

En resumen, Hydrognomon es una herramienta poderosa para los profesionales y expertos en hidrología, proporcionando capacidades avanzadas para la modelización, simulación gestión de y cuencas hidrográficas con el objetivo de garantizar un uso sostenible y eficiente de los recursos hídricos.

2.2.4. Simulación Hidráulica mediante el software HEC-RAS

2.2.4.1. Simulación Hidráulica

En la simulación hidráulica para la socavación local nos referimos al proceso de utilizar modelos y herramientas computacionales para simular y analizar el comportamiento del flujo de agua y la erosión en áreas específicas de un cuerpo de agua, como estribos de puentes, pilares o estructuras cercanas a un cauce. Mediante la simulación hidráulica, podremos evaluar diversos factores, como la velocidad del flujo, la fuerza de arrastre de los sedimentos, la forma del lecho del río y otros parámetros relevantes, para predecir el grado de socavación que puede ocurrir en una ubicación específica. Estos modelos permiten a los ingenieros comprender cómo el flujo de agua interactúa con las estructuras y el lecho del río, lo que ayuda a prever los efectos de la erosión y tomar decisiones informadas en términos de diseño y protección de las infraestructuras.

2.2.4.2. Software HEC-RAS

El software que tendremos como herramienta es el HEC-RAS, este es desarrollado por el Cuerpo de Ingenieros del Ejército de los Estados Unidos, se caracteriza por ser herramienta especializada y muy utilizada para el análisis y el cálculo del fenómeno denominado socavación local que se generan a partir de estructuras hidráulicas y esto especialmente en los puentes. Gracias a la gran capacidad de esta herramienta para simular y lograr modelar el flujo ya sea en agua en ríos o canales, y esto a su vez nos va a permitir evaluar de manera exacta y bien detallada el riesgo que se presenta en los fenómenos como la erosión y socavación. HEC-RAS es una valiosa solución para realizar estudios hidráulicos complejos y nos ayudara a determinar las condiciones de flujo que pueden llegar a provocar problemas de socavación en diferentes estructuras. Su gran capacidad para el análisis y la simulación, brinda una buena opción para que los ingenieros evalúen diferentes alternativas y estrategias de protección para disminuir los efectos que llega a presentar la socavación, así como garantizar la estabilidad y la resistencia de las estructuras hidráulicas.

2.2.4.3. Coeficiente de Manning

a) Selección del Coeficiente de Rugosidad de Manning

Al aplicar la ecuación de Manning la mayor dificultad está en la determinación del coeficiente de rugosidad n, ya que no existe un método exacto para la selección del valor n. (Te Chow, 1994)

b) Factores que Afectan el Coeficiente de Rugosidad de Manning

A partir de los diversos factores que llegan a afectar el coeficiente de rugosidad de Manning, Cowan ha desarrollo un método para lograr estimar el valor de n. Esto se da mediante lo siguiente, donde n puede calcularse:

$$n = (n_0 + n_1 + n_2 + n_3 + n_4) * m_5$$

Donde:

- n₀: Rugosidad base para un canal recto, uniforme, prismático y con rugosidad homogénea.
- n₁: Rugosidad adicional debida a irregularidades superficiales del perímetro mojado a lo largo del tramo en estudio.
- n₂: Rugosidad adicional equivalente debida a variación de forma y de dimensiones de las secciones a lo largo del tramo en estudio.
- n₃: Rugosidad equivalente debida a obstrucciones existentes en el cauce.
- n₄: Rugosidad adicional equivalente debida a la presencia de vegetación.
- m5: Factor de corrección para incorporar efecto de sinuosidad del cauce o presencia de meandros.

TABLA N°01: Criterio de Cowan para determinar la influencia de diversos factores sobre el coeficiente n

CONDICIONES	VALORES		
	Tierra		0.020
MAERIAL	Corte en Roca	no	0.025
INVOLUCADO	Grava fina		0.024
	Grava gruesa		0.028
	Suave		0.000
GRADO DE	Menor	n1	0.005
IRREGULARIDAD	Modera		0.010
	Severo		0.020
	Gradual		0.000
VARIACIONES DE LA SECCION	Ocasionalmente Alterante	n2	0.005
TRANSVERSAL	Frecuentemente Alterante		0.010 – 0.015
EFECTO	Insignificante		0.000
RELATIVO DE	Menor	n3	0.010 – 0.015
	Apreciable	115	0.020 – 0.030
OBSTRUCCIONES	Severo		0.040 - 0.060
	Baja		0.005 – 0.010
VEGETACIÓN	Media	n4	0.010 - 0.025
	Alta		0.025 - 0.050
	Muy Alta		0.050 – 0.100
GRADO DE LOS	Menor		1.000
EFECTIVOS POR	Apreciable	m5	1.150
MEANDRO	Severo		1.300

FUENTE: Vent te Chow (1959)

2.2.5. Socavación en puentes

2.2.5.1. Socavación Local

Esta situación se origina cuando un obstáculo se interpone a la trayectoria del flujo, por lo que esto conlleva a la formación de vórtices que hacen que finalmente disminuya la elevación del fondo, pero esto es solo en la zona que llega a rodear el obstáculo a tratar (Nava Olguin, 2013)

Mayormente todas las fallas que llegan a generase en los puentes vienen a ser producto de la socavación y en general por la socavación de sus estribos o pilares en puentes, por lo cual este fenómeno tiene el 50% de las fallas que se llegan a originar en los puentes (Campa Rodriguez & Astorga Bustillos, 2015)

2.2.5.1.1. Efectos de la socavación local

Este fenómeno se provoca a partir de un cambio en la dirección que ya se tiene con respecto a las líneas de la corriente, tanto como la turbulencia y también la aceleración que se tiene del flujo. (Campa Rodriguez & Astorga Bustillos, 2015)

2.2.5.1.2. Variable que influyen en la socavación

2.2.5.1.2.1. Forma de las partículas

La geometría este no juega un papel significativo dentro del proceso de socavación, no obstante, en conjunto con el tamaño, si influye en ciertas propiedades físicas. La configuración con respecto a la geométrica puede ser analizada a través de parámetros como son la redondez, así como la esfericidad y también el factor de forma. (Quispe Ccahuin, 2019)

2.2.5.1.2.2. Régimen de flujo

El flujo viene a ser un tramo específico a partir de una corriente natural y esta se clasifica de acuerdo al número de Froude, que vendría a ser una relación adimensional entre las fuerzas inerciales y las fuerzas gravitacionales.

Con respecto al régimen supercrítico (F >1), este flujo tiene lugar a una alta velocidad, es común en los cauces empinados o ríos de montaña. El régimen subcrítico (F <1) viene a ser un flujo de baja velocidad dentro de áreas planas. El flujo crítico (F = 1) conlleva a un estado teórico en las corrientes naturales que realizan una marca en la transición a partir de los regímenes subcrítico y de los regímenes supercrítico. (Quispe Ccahuin, 2019)

2.2.5.2. Socavación General

La socavación general se refiere al proceso mediante el cual se produce el retiro o la erosión del material del lecho de un cuerpo de agua, como un río o un canal, debido al flujo de agua. Este proceso puede ser causado por varios factores, como la velocidad del agua, la dirección del flujo, la presión del agua y la naturaleza del material del lecho.

La socavación general es un fenómeno natural que puede tener importantes implicaciones en la ingeniería civil y ambiental. Por un lado, puede causar daños en estructuras cercanas al cuerpo de agua, como puentes, diques o edificios, al erosionar el suelo en el que están construidas. Por otro lado, puede alterar el ecosistema del cuerpo de agua al cambiar su forma y su dinámica hidrológica.

Para prevenir o mitigar los efectos de la socavación general, se pueden implementar diversas medidas de ingeniería, como la construcción de diques o enrocados para proteger las estructuras cercanas al cuerpo de agua, la regulación del flujo de agua o la revegetación de las márgenes del río para estabilizar el suelo. Además, es importante realizar un monitoreo continuo de la evolución del lecho del río y de las condiciones hidrológicas para anticipar y gestionar adecuadamente los riesgos asociados a la socavación general.

2.2.6. Métodos de socavación local en pilares

2.2.6.1. Método de la Universidad Estatal de Colorado (CSU)

Hay ecuaciones desarrolladas por la Universidad Estatal de Colorado (CSU) para calcular la socavación local de los pilares ya sea en agua clara o también en un lecho móvil.

Esta ecuación se desarrolló con base en el análisis dimensional de los parámetros que afectan tanto el análisis de los datos de laboratorio, como la socavación. Este es el método más utilizado en los Estados Unidos (HEC-18, 1993, 1995) y uno de los dos métodos utilizados en el programa HEC-RAS (1998).

La ecuación que se usa para este método es:

$$\frac{y_s}{h} = 2.0 * K_f * K_{\emptyset} * K_c * K_a * \left(\frac{a}{h}\right)^{0.65} * F_r^{0.43}$$

Donde:

- Y_s = Profundidad que presenta la socavación local (m).
- h = Profundidad del flujo del pilar aguas arriba (m).
- K_f = Factor que toma en cuenta la forma que tiene el pilar.
- K_{ϕ} = Factor que toma en cuenta el ángulo del ataque de flujo.
- K_c = Factor que toma en cuenta la forma que se presenta del lecho.

- K_a = Factor que toma en cuenta el acorazamiento del sedimento de lecho.
- a = Ancho de pilar (m).
- l = Longitud de la pila (m).
- F_r = Es el número de Froude en el pilar dentro de la sección aguas arriba.

Para escoger el factor de corrección se debe escoger cual es la forma del pilar:

FIGURA N°02: Formas típicas de pila. HEC – 18. 1993

Fuente: Manual de Hidrología, Hidráulica y Drenaje.

TABLA N°02: Factor de corrección por la forma del pilar K_f método de CSU

FORMA DE LA PILA	K _f
Nariz cuadrada	1.1
Nariz redonda	1.0
Cilíndrica	1.0
Punta aguda	0.9
Grupo de cilindros	1.0

Fuente: Manual de Hidrología, Hidráulica y Drenaje.

El factor de corrección Kf se va a hallar a partir de la tabla anterior, cuando se presenta un ángulo de ataque menor a 5°. En otro caso, el factor KØ se denomina para ángulos mayores por lo que Kf y este debe ser tomado igual a 1.0, por lo tanto, el factor Kf debe tomarse solamente cuando las condiciones del flujo van a influir en toda la longitud de la pila presentada ya que el factor de corrección podría llegar a ser menor en otros casos.

TABLA N°03: Factor de corrección por el ángulo de ataque del flujo Kø método de CSU

Angulo de ataque	I/a = 4	l/a = 8	l/a = 12
0°	1.00	1.00	1.00
15°	1.50	2.00	2.50
30°	2.00	2.75	3.50
45°	2.30	3.30	4.30
90°	2.50	3.90	5.00

Fuente: Manual de Hidrología, Hidráulica y Drenaje.

En el caso de que l/a es mayor que 12, se usan los valores correspondientes a l/a = 12 como máximos.

$$K_{\emptyset} = (\operatorname{sen} \emptyset + \frac{1}{a} \operatorname{sen} \emptyset)^{0.65}$$

TABLA N°04: Factor de corrección por la forma del lechoKc Método de CSU

Condición del lecho	Altura de la duna H [pies]	Кс
Socavación en aguas claras	N/A	1.1
Lecho plano y anti dunas	N/A	1.1
Dunas pequeñas	2< H <10	1.1
Dunas medianas	10< H <30	1.1 a 1.2
Dunas grandes	H > 30	1.3

Fuente: Manual de Hidrología, Hidráulica y Drenaje.

TABLA N°05: Criterios para adoptar Ka

D ₅₀ < 2mm o D ₉₅ < 20mm	Ka = 1.0
$D_{50} \ge 2mm \ o \ D_{95} \ge 20mm$	Ka = $0.4 (V_R)^{0.15}$

Fuente: Manual de Hidrología, Hidráulica y Drenaje.

En el caso de que el D50 sea mayor a 2mm o D95 sea mayor que el 20mm, se usa la siguiente formula:

$$Ka = 0.4 (V_R)^{0.15}$$

Donde V_R es:

$$V_R = \left[\frac{V_1 - V_{icD_{50}}}{v_{cD_{50}} - V_{icD_{50}}}\right] > 0$$

Donde V_{icDx}

$$V_{icD_x} = 0.645 \left[\frac{D_x}{a}\right]^{0.053} V_{cD_x}$$

Donde:

- V1 = Velocidad de aproximación justo aguas arriba de la pila expresada en (m/s).
- VicDx = Velocidad de aproximación requerida para iniciar socavación en la pila para el tamaño Dx de las partículas de sedimento (m/s).
- VicD95 = Velocidad de aproximación requerida para iniciar socavación en la pila para el tamaño D95 del material de lecho (m/s).

- VicD50 = Velocidad de aproximación requerida para iniciar socavación en la pila para el tamaño D50 del material de lecho (m/s).
- V_{cDx} = Velocidad crítica para iniciar movimiento de partículas de tamaño Dx del material de lecho (m/s).
- VcD50 = Velocidad crítica para iniciar movimiento de partículas de tamaño D50 del material de lecho (m/s).
- a = Ancho de la pila (m).
- V_{cDx} = 6.19 h^{1/6} D_x^{1/3}
- *Vcp50* = Tamaño de las partículas para la que el x por ciento del material del lecho es más fino (m).
- V_{cD50} = La profundidad del agua, aguas arriba del pilar sin incluir las socavación local (m).

2.2.6.2. Método de Laursen y toch (1953, 1956)

El método fue desarrollado por el Instituto de Hidráulica de Lowa y a su vez confirmado por ciertas mediciones en el sector del río Skunk ejecutadas por P.G. Hubbard en el mismo Instituto en la década de 1950. Desarrollado en condiciones de transporte continuo de sedimentos.

Este método se puede aplicar a suelos arenosos, pero no se sabe si se puede aplicar para gravas, pero está claro que no se puede aplicar para el caso de boleos.

Descubrieron que la profundidad máxima de socavación era independiente del flujo, ya que se retuvo el tirante y la formación de socavación no progresó, cuando la velocidad de la corriente aumentó significativamente. Este argumento se basa en la suposición de que, dada una profundidad constante, los cambios en la velocidad de la corriente y el tamaño del sedimento producen cambios proporcionales en la zona de socavación y el límite de corte de la profundidad de socavación, y la capacidad de transporte de sedimentos.

Su principal preocupación es la socavación máxima y no se prevén criterios para cuando no exista arrastre dentro del fondo.

Los resultados se muestran gráficamente y se detallan en las siguientes ecuaciones:

• Caso del flujo de agua paralelo al eje mayor del pilar:

$$y_s = K_f * K_g * a$$

Donde:

- Y_s = Profundidad que presenta la socavación local calculada a partir del fondo del cauce expresado en (m).
- K_f = Coeficiente que varía a partir de la forma de la nariz del pilar.
- K_g = Coeficiente que varía a partir de la relación Hs/a
- H_s = Profundidad presentada del agua después
 de generarse la socavación por contracción
 expresada en (m).

a = EI ancho del pilar expresado en (m).

Donde Kf se escoge mediante las siguientes tablas:

FORMA I	COEFICIENTE Kf DE SCHNEIBLE	
RECTANGULAR		1.00
1 / a = 4		1.00
SEMICIRCULAR		0.90
ELIPTICA	$\frac{p}{r} = \frac{2}{1}$	0.81
	$\frac{p}{r} = \frac{3}{1}$	0.75
LENTICULAR	CULAR $\frac{p}{r} = \frac{2}{1}$	
	$\frac{p}{r} = \frac{3}{1}$	0.69

TABLA N°06: Coeficiente Kf método de Lauser y Toch.

FORMA DE LA NARIZ	SEGÚN TISON
BISELADA 1/a = 4	0.78
PERFIL HIDRODINAMICO 1/a = 4	0.75

Fuente: Parte IV SOCAVACIÓN EN PUENTES

Para escoger el Kg se debe seguir el siguiente procedimiento, se debe conocer:

- La longitud del pilar (ℓ)
- El ancho del pilar ($^{\alpha}$)
- Profundidad de agua que queda después de la socavación por contracción (H_s).

Ya que para encontrar el coeficiente Kg se obtendrá mediante un gráfico, el cual está relacionado con la división de la profundidad de agua que queda después de la socavación por contracción (Hs) y el ancho del pilar (α).

GRAFICA N°01: Coeficiente K_g del método de Lausen v Toch.

Fuente: Parte IV SOCAVACIÓN EN PUENTES

 Pero en el caso de flujo de agua con ángulo de ataque al eje de mayor dimensión del pilar o tambien la profundidad de socavación no depende de la forma de la pila:

$$y_s = K_g * K_{\emptyset} * a$$

Donde:

 K_{ϕ} = Coeficiente que se guía del ángulo de ataque del flujo y también de la geometría que presenta el pilar.

Según se plantea en las siguientes curvas en ángulos de ataque de 0° a 90°, donde se tiene en consideración el largo de la sección de la pila y el ancho de la pila como podemos ver a continuación:

GRAFICA N°02: Coeficiente Kø teniendo en cuenta el ángulo de ataque.

Fuente: Parte IV SOCAVACIÓN EN PUENTES

2.2.6.3. Método de Larras (1963)

Larras nos brinda una ecuación teórica y otra práctica que deriva de las mediciones ya realizadas en diferentes puentes tras alguna avenida presentada. Larras se centró en la máxima profundidad que se presenta de socavación en situaciones cercanas a la velocidad crítica del movimiento de los sedimentos.

$$y_{\rm s} = 1.05 * K * a^{0.75}$$

Donde:

 y_s = Es la profundidad de socavación medida desde el fondo de cauce expresado en (m)

a = EI ancho proyectado del pilar expresado en (m)

Donde el factor K es:

$$K = K_f * K_\phi$$

Donde:

- K_f = Factor que toma en cuenta la forma que tiene el pilar.
- K_{ϕ} = Factor que toma en cuenta el ángulo del ataque de flujo.

Por lo que en forma aproximada K = 1.0 para pilas cilíndricas y K = 1.4 para pilas rectangulares.

Por lo que la ecuación seria:

$$y_s = 1.05 * K_f * K_\phi * a^{0.75}$$

FORMA DE LA PILA	L/a del	kf				
EN PLANTA	Pilar	Chatou	Iowa	Tison	Escande	Venkatadri
Circular	1	1	1	1	1	
	2		0.97			
Lenticular	3		0.76			
Londoun	4	0.73		0.67		
	7			0.41		
Perfil hidrodinamico	4	0.86				
o joukwski	4.1			0.76		
ojouninom	4.5				0.76	
Flinting	2		0.91			
Еприса	3		0.83			
Ojival	4	0.92		0.86		
Circular doble	4	0.95				
	1		1			
	1.5		1			
Oblonga	2		1			
	3		1			
	4	1.03		1		
Rectangular chafanada	4			1.01		
	0.25		1.3			
	4			1.4		
Rectangular	4.5				1.25	
	5.3			1.4		
	9.3			1.4		
Nariz triangular a 60°						0.75
Nariz triangular a 90 $^\circ$						1.25
Nariz parabilica						0.56

TABLA N°07: Factor de corrección K_f por forma de la pila.

Fuente: Parte IV SOCAVACIÓN EN PUENTES

TABLA N°08: Factor de corrección K por ángulo de

FORMA DE LA	L/a del			K	1ø			
PILA EN PLANTA	Pilar	0°	10°	15°	20°	30°	45°	
Circular	1.0	1.00	1.00	1.00	1.00	1.00	1.00	
	2.0	0.91				1.13		
Lenticular	3.0	0.76	0.98	1.02	1.24			
	4.0	0.76		1.12		1.50	2.02	
Perfil	4.0	0.86		1.09		1.40	1.97	
hidrodinamico	4.5					1.36		
Flintico	2.0	0.91				1.13		
Еприса	3.0	0.83	0.98	1.06	1.24			LENTICULAR PERFIL JOUKOWSKY O ELIPTICA
Oji val	4.0	0.92		1.18		1.51		HDRODINAMICO
	2.0	1.00				1.17		
011	3.0	1.00	1.02	1.13	1.24			
Obionga	4.0	1.00		1.15		1.52		OJIVAL CIRCULAR DOBLE OBLONGA
	4.5					1.60		
	2.0	1.11		1.38		1.56	1.65	RECTANGULAR RECTANGULAR RECTANGULAR CON
	4.0	1.11		1.72		2.17	2.43	O BISELADA
	4.5					2.09		
Kectangular	6.0	1.11		2.20		2.68	3.05	
	8.0	1.11		2.23		3.03	3.64	
	10.0	1.11		2.48		3.43	4.16	

ataque de flujo.

Fuente: Parte IV SOCAVACIÓN EN PUENTES

2.2.6.4. Método de Neil (1964)

Las ecuaciones resultantes a partir del ajuste que se realizó a través de los datos experimentales en el fenómeno de la socavación en los pilares rectangulares y también de los circulares halladas por Laursen y Toch y estas fueron expresadas por Neill de la siguiente forma:

$$y_s = 1.5 * (a')^{0.7} * (h)^{0.3}$$

Donde:

- y_s = Es la profundidad de socavación medida desde el fondo de cauce expresado en (m)
- a' = El ancho proyectado del pilar expresado en (m)
- h = La profundidad del flujo del pilar aguas arriba
 expresado en (m)

La ecuación brinda la máxima profundidad con respecto a la socavación que se espera a cualquier velocidad.

2.2.6.5. Método de Carsten (1966)

Es un método que logra estimar la erosión local presentada en los pilares en el lecho móvil, ante esto se debe tener en cuenta el tamaño del sedimento. No obstante, no se llega a considerar el ángulo de incidencia, ni tampoco la profundidad de equilibrio.

$$d_s = 0.54 \ a \ (\frac{N_s - 1.25}{N_s - 5.02})^{\frac{5}{6}}$$

Para calcular Ns

$$N_{s} = \frac{V}{\sqrt{\Delta g D}}$$
$$\Delta = \frac{\rho_{s} - \rho_{w}}{\rho_{w}} = \frac{\gamma_{s} - \gamma_{w}}{\gamma_{w}}$$

Donde:

Ns = Numero de sedimento

- Δ = Densidad relativa (Tiene relación el peso específico del agua con el sedimento)
- D = Tamaño del sedimento (m)
- a = Ancho del pilar (m)

2.2.6.6. Método de Maza-Sánchez (1968)

Es el método utilizado para calcular la socavación en pilares a través de curvas que están en base a datos de laboratorio. Los parámetros claves que se tienen, son la profundidad del flujo, así como el ancho del pilar, el número de Froude y también el del ángulo de ataque. Se debe tener en consideración que este método no se aplica en suelos granulares y tampoco considera el tamaño del sedimento. El procedimiento de este método de da inicio al determinar el número de Froude y para que luego se aplique un factor de corrección para pilares sesgados.

Si es que la pila esta sesgada con respecto al flujo y el valor $Fr^2 < 0.06$, se debe optar por trabajar con fc=1.0

Pero si la pila no está sesgada con respecto al flujo y el valor Fr $2 \ge 0.06$, se de usar la siguiente tabla:

FACTOR DE CORRECCIÓN FC						
ф	0°	15°	30°	45°		
fc	1	1.25	1.4	1.45		

TABLA N°09: Factor de corrección Fc

Fuente: Manual de Hidrología, 2012

Proseguimos calculando la relación $\frac{h_1}{a'}$, donde a' vendría a ser la proyección del ancho del pilar con respecto a la dirección del flujo. Para calcular la profundidad de socavación, se elige un gráfico, que se pueden encontrar en el manual de Hidrología, la cual corresponda a la forma del pilar en análisis. Luego, se traza el valor Fr² en el eje horizontal y se interseca con la curva $\frac{h_1}{a'}$. En el eje vertical, se lee el valor de $\frac{h_s}{a'}$, lo que nos permite determinar el valor de Δ s.

$$\Delta_s = H_s - h_1$$

Donde:

 H_s = Profundidad posterior de la socavación (m)

 Δ_s = Fondo de socavación que es medida desde el lecho del cauce (m)

2.2.6.7. Método de Breusers, Nicollet y shen (1977)

Breusers propuso este método a tratar en el año 1965, donde propone que la socavación en los pilares está directamente vinculada con su ancho, a partir de la siguiente expresión:

$$ds = 1.4 * a$$

No obstante, en el año 1977, Nicollet y Shen hicieron una contribución para el desarrollo de otro método en la cual se llegó a la siguiente ecuación:

$$ds = a * f_1\left(\frac{V}{Vc}\right) * f_2 * \left(\frac{h}{a}\right) * (forma) * f_3 * f_4\left(\emptyset \frac{L}{a}\right)$$

Para calcular f_1 :

$$f_1\left(\frac{V}{Vc}\right) = 0; para \frac{V}{Vc} \le 0.5$$

$$f_1\left(\frac{V}{Vc}\right) = 2\left(\frac{V}{Vc} - 0.5\right); para \ 0.5 \le \frac{V}{Vc} \le 0.5$$

$$Vc = 21 * \left(\frac{R}{D_{50}}\right)^{\frac{1}{6}} * \sqrt{0.056 * \frac{Ys - Yw}{Yw}} * D$$

Para calcular f_2 :

$$f_2\left(\frac{h}{a}\right) = 2.0 Tanh\left(\frac{h}{a}\right); \ para \ valores \ altos \ f_2 \cong 2$$

Para calcular f3:

- $f_3 = 1.00$ Para pilares circulares
- $f_3 = 0.75$ Para pilares de forma hidrodinámica
- $f_3 = 1.30$ Para pilares rectangulares

Para calcular f₄:

Para este cálculo se necesita la gráfica donde se relaciona el ángulo de ataque (\emptyset) con las dimensiones del pilar (I/a) para calcular el factor de correlación K \emptyset

GRAFICA N°03: Factor correctivo K Ø

Donde:

- $\Delta s =$ Socavación (m)
- a = Ancho del pilar
- V = Velocidad media del flujo (m/s)
- V_c = Velocidad critica para el inicio del movimiento en las partículas del fondo (m/s)
- h = Profundidad inicial del agua (m)
- Ø = Angulo de ataque (°)
- l = longitud del pilar (m)
- R = Radio hidráulico (m)
- D = Diámetro de acorazamiento del cauce = D84(m)
- Yw = Peso específico del agua (N/m3)
- Ys = Peso específico del suelo (N/m3)

2.2.6.8. Método de Froehlich (1991)

El método de Froehlich, fue desarrollado por el Dr. David Froehlich, aquí es donde el utiliza este método para determinar la máxima profundidad que se genera en socavación en pilares a tratar. En si este método nos propone que no se agregue el ancho del pilar (a) a la ecuación, a menos que esta llegue a ser analizada en un caso particular. A partir del software Hec-Ras, se incorpora siempre este factor de corrección para poder lograr calcular la socavación en pilares. Para la ecuación se limite a un máximo que vendría a ser:

$$ds = \le 2.4(a) \ para F_{r1} \le 0.8$$

 $ds = \le 3.4(a) \ para F_{r1} \le 0.8$

La ecuación está definida:

$$ds = 0.32 \phi(a')^{0.62} * h_1^{0.47} * f_{r1}^{0.22} * D_{50}^{-0.09} + a$$

Donde:

ds = Socavación. (m)

- kf = Es el factor de correlación para la forma de la nariz del pilar.
 - kf = 1.3 para nariz del pilar cuadrados

kf = 1.0 para nariz del pilar redonda

$$kf = 0.7$$
 para nariz del pilar puntiaguda

- a = Ancho del pilar. (m)
- a' = Ancho del pilar en relación a la dirección del flujo. (m)
- *h* = Fondo inicial aguas arribas del pilar. (m)
- f_r = N° de Froude correspondiente aguas arribas del pilar.
- D_{50} = Diámetro que corresponde al 50% de la curva granulométrica (m)

2.2.7. Metodo de socavación en estribos

2.2.7.1. Método de Liu, Chang y Skinner

Este método se fundamenta principalmente en la ecuación resultante de estudios de laboratorio y análisis dimensional realizados en 1961.

Esta ecuación se aplica para determinar las condiciones específicas que se ilustran en la figura adjunta, proporcionando una guía para resolver problemas relacionados con dichas condiciones.

FIGURA N°03: Estribos que se prolongan hasta el cauce principal y no existe flujo en la zona de inundación

Fuente: Manual de Hidrología, Hidráulica y Drenaje.

Se tiene la siguiente formula:

$$\frac{y_s}{h} = K_f \left(\frac{L}{h}\right)^{0.4} F_r^{0.33}$$

Donde se tiene las siguientes definiciones:

- ys: Profundidad de socavación
- h: Profundidad media del flujo arriba del cauce
- L: Longitud del estribo y accesos al puente que se opone al paso del agua.
- Kf: Coeficiente de corrección por forma del estribo. Es igual a 1.10 para estribos con pared inclinada hacia el cauce y 2.15 para estribos con pared vertical.

TABLA N°10: Coeficiente Kf a partir de la forma de estribo

Situación	Kf
Para estribos con pared inclinada hacia el cauce	1.10
Para estribos con pared vertical	2.15

Fuente: Manual de Hidrología, Hidráulica y drenaje

$$F_r = \frac{V}{\sqrt{gh}}$$

Donde:

- Fr: Número de Froude en la sección de aguas arriba
- V: Velocidad del flujo aguas arriba.
- g: Gravedad

2.3. Marco Conceptual

Galibo

Distancia vertical libre entre la parte inferior de la superestructura del puente y el nivel máximo alcanzado por el agua debajo del puente. (Felicísimo, 1994)

> Sedimentos

Compuestos por limo, arcilla, arena y otras partículas sueltas del suelo que se posan a lo largo del fondo de una masa de agua. (Farfán & Villena, 2021)

> Cauce

Es el continente de las aguas durante sus máximas crecientes. Es el espacio físico por donde fluye un curso de agua. (ANA, 2020)

Erosión

Es desgaste que se genera en la superficie del suelo, roca o de los materiales en su totalidad, por la acción de agentes externos. (Nava Olguin, 2013)

Área Hidráulica

Es el área de la sección transversal ocupada por el líquido dentro del conducto. (GRACIA, 2013)

> Tirante Hidráulico

Es la distancia vertical del punto más bajo de la sección hasta la superficie libre. El tirante hidráulico es la relación del área hidráulica al ancho de la superficie libre (SOTELO,1994)

Presión

Es la fuerza que actúa sobre una superficie determinada. Una misma fuerza puede producir más o menos presión según la superficie sobre la que actúa sea menor o mayor. (MONGE, 2018)

2.4. Sistema de Hipótesis

2.4.1. Hipótesis General

A través de la simulación con el software HEC-RAS y mediante los estudios analíticos, se va a lograr evaluar la socavación local en las subestructuras de los puentes Conache, Cacique, Santa Rosa y Moche. Dándonos como resultado de socavación de 1.20m a 2.80m.

2.5. Variables: Operacionalización de la variable

Se tiene como variable general analítica al estudio de la socavación local en las subestructuras de los puentes Conache, Cacique, Santa Rosa y Moche - Rio Moche, el cual contiene las siguientes dimensiones: Estudio de mecánica de suelos, hidrológicos, topográficos y gasto formativo.

	DEFINICION CONCEPTUAL	DEFINICION OPERACIÓNAL	DIMENSIONES	INDICADORES
Remoción que	El estudio de la socavación local se refiere a la evaluación y análisis de la erosión o excavación de	Socavación Local	Método de la Universidad Estatal de Colorado Método de Lui, Chang y Skiner	
	material alrededor de los pilares, debido a la		Granulometría (%)	
VARIABLE	VARIABLErealiza el agua delVARIABLEmaterialsólidoconstituyentedel	acción del agua o corrientes fuertes. Este estudio busca comprender y prevenir los posibles riesgos y daños y así tomar medidas adecuadas	Estudio de Mecánica de suelos	Gravedad especifica
ESTUDIO DE LA alrededores de	lecho fluvial en los alrededores de			Contenido de humedad (%)
LOCAL	ciertas estructuras como pilares y			Peso específico (gr.)
estribos. (Armas Meléndez, 2022)	de diseño, construcción o	diseño, ucción o ción para	Secciones transversales (m ²)	
		garantizar la estabilidad y seguridad de los	garantizar la estabilidad y seguridad de los	Modelo Digital
		puentes frente a este fenómeno.	Simulación Hidráulica	Máximas Avenidas

TABLA N°11: Operacionalización de la variable

FUENTE: Elaboración propia

III. METODOLOGIA EMPLEADA

3.1. Tipo y Nivel de Investigación

3.1.1. Tipo de Investigación

El tipo de investigación con respondiente a la orientación y/o su finalidad es **APLICADA** ya que tiene como objetivo el determinar una propuesta práctica para la realidad problemática.

3.1.2. Nivel de Investigación

El nivel de investigación de acuerdo a la técnica de contrastación es **DESCRIPTIVA** ya que de acuerdo a los objetivos se busca presentar información precisa y detallada para proporcionar una visión clara del estudio.

3.2. Población y Muestra de Estudio

3.2.1. Población

La población de estudio estará representada por todos los puentes que se encuentren a lo largo del rio Moche.

3.2.2. Muestra

Para nuestra muestra de estudio, se considerarían los cuatro puentes de estudio los cuales serían el puente: Conache, Cacique, Santa Rosa y Moche.

FIGURA N°04: Los cuatro puentes de estudio.

FUENTE: Google Earth Pro

3.3. Diseño de Investigación

Estamos realizando un diseño de proyecto no experimental, descriptivo simple, por lo tanto, el esquema que se concluye es el siguiente:

Μ ----- Ο

Donde:

- M: Puentes Conache, Cacique, Santa Rosa y Moche donde discurre el rio Moche.
- O: Mediciones de levantamiento topográfico, estudio de suelo y estudio hidrológico.

3.4. Técnicas e instrumentos de Recolección de Datos

- 3.4.1. Técnicas
 - a) Observación del lugar: Se realizo el estudio e investigación in situ para analizar la problemática que presenta los puentes de estudio con la finalidad de obtener información previa al desarrollo del proyecto.
 - b) Entrevista: Programar una entrevista con algún especialista responsable de la comisión de rehabilitación y limpieza del Rio Moche.
 - c) Registro Histórico: Se consiguió el registro histórico de los caudales máximos en la estación meteorológica del Rio Moche.

3.4.2. Instrumentos

- ➢ Hec − Ras 6.3.1
- Qgis 3.32.3
- AutoCAD 2021
- ➢ Hydrognomon 4.1

3.5. Procesamiento y Análisis de datos

3.5.1. Estudio de Mecánica de suelos

- Se van a tomar muestras del material que ha sido encontrado en el margen del Rio Moche – Puentes Conache, Cacique, Santa Rosa y Moche.
- Dentro del laboratorio se van a llevar a cabo los ensayos tanto como el estudio de sedimentos.

3.5.2. Estudio Topográfico

Al tener el levantamiento topográfico se prosigue a:

3.5.2.1. Qgis 3.32.3

Con este software se realizar una verificación a la data ya obtenida con la finalidad de levantar algunas observaciones.

3.5.2.2. Google Earth pro

Con la ayuda de este aplicativo veremos las ubicaciones exactas de los puentes a estudiar, con ayuda de las coordenadas.

3.5.3. Estudio Hidrológico

Mediante este estudio se evaluará y conocerá las características de la cuenca, así como también se nos brindó los estudios hidrológicos para continuar con los estudios pertinentes.

3.5.4. Simulación Hidrológica

Una vez recolectado los resultados de los estudios; se tiene la información necesaria para ser ingresada en el software Hec – Ras. El software HEC- RAS nos va permite realizar la simulación hidráulica, esta simulación nos determinara las características hidráulicas, las cuales algunas de estas son: El caudal, el tirante y la velocidad en el tramo de la sección de estudio donde el flujo transcurre de una manera natural.

IV. PRESENTACIÓN DE RESULTADOS

4.1. Propuesta de investigación

4.1.1. Modelo digital

Para obtener información detallada sobre la geometría del terreno en el área de estudio, crucial para realizar la simulación hidráulica del río Moche, se utilizó la data topográfica, con la finalidad de conocer los cuatro puentes de estudio en las cuales se generaron superficies, para cada uno de los puentes de estudio, el alineamiento horizontal y el perfil longitudinal del terreno.

FIGURA N°05: Procesamiento en Qgis

FUENTE: Elaboración propia

4.1.1.1. Puentes

La solicitud de los detalles geométricos del Puente Moche, Santa Rosa, Cacique y Conache se gestionarán bajo nuestras visitas hechas en campo.

4.1.2. Caracterización del suelo de fundación

Para el análisis de la socavación local en puentes, se llevó a cabo un proceso detallado para conocer la composición y las características específicas de la sección del lecho del río donde se encuentra cimentada la subestructura del puente. Este proceso se dividió en las siguientes etapas:

En campo:

Se realizaron cuatro calicatas ubicadas precisamente en los ejes de los puentes, cerca de los pilares. Se extrajo una muestra por cada calicata correspondiendo de la siguiente manera:

PUENTE	N° CALICATA	PROFUNDIDAD			
PUENTE CACIQUE	C – 01	0.00 – 0.90			
PUENTE CONACHE	C – 02	0.00 - 0.95			
PUENTE SANTA ROSA	C – 03	0.00 – 0.85			
PUENTE MOCHE	C – 04	0.00 - 0.95			

TABLA Nº12: Distribución de calicatas

FUENTE: Elaboración propia

En laboratorio y gabinete:

Se llevaron a cabo los ensayos de Análisis Granulométrico, siendo este ensayo primordial para determinar características importantes del suelo, como su clasificación según el Sistema Unificado de Clasificación de Suelos (SUCS), la gravedad específica, y los diámetros medios (D50) y (D95). Estos dos últimos son especialmente relevantes para la estimación de la socavación local.

Se aplicó normativa específica para cada ensayo en el laboratorio de mecánica de suelos, siguiendo estándares reconocidos en la disciplina.

4.1.3. Estudio Hidrológico

Con el propósito de determinar el caudal máximo para un periodo de retorno de 500 años, considerado y recomendado según la normativa para evaluar la profundidad de la socavación y la estabilidad de la cimentación ante eventos hidrológicos extremos. Este proyecto posee información de la estación Quirihuac, ubicada en las coordenadas: 8° 4'52.96" S, 78°52'23.26" O, a una cota de 196 m.s.n.m., cerca del puente de Fierro que cruza el río Moche.

Para garantizar resultados confiables, el Manual de Hidrología, Hidráulica y Drenaje sugiere un mínimo de 25 años de registro. Posteriormente, utilizando el software Hydrognomon y aplicando un análisis de frecuencia mediante distribuciones probabilísticas, se sometieron estas a una prueba de bondad de ajuste por el método de Smirnov-Kolmogorov. Se estimaron los caudales máximos para periodos de retorno de 2, 5, 10, 20, 50, 100 y 500 años. Para la estimación de la socavación local en los pilares, se utilizó el caudal máximo para un periodo de retorno de 500 años, obtenido a partir de la distribución seleccionada, la cual mostró un mejor ajuste a la serie de datos en comparación con otras distribuciones. Se obtiene los valores máximos de precipitación de 24 horas para todos los años de estudio que proporciona la Autoridad Nacional del Agua (1950 – 2022). (agregar anexo precipitación de 24 h)

AÑO	CAUDAL MAXIMO (m³/s)
1950	56
1951	48.26
1952	170.17
1953	94.33
1954	93.26
1955	132.75

lales máximos anuales
1

1956	212.88
1957	197.93
1958	88.33
1959	117.5
1960	198.63
1961	43.92
1962	180.31
1963	117.57
1964	119.19
1965	78.4
1966	58.45
1967	336.6
1968	23.42
1969	91.81
1970	96.1
1971	117.63
1972	138.25
1973	152.96
1974	50.29
1975	170.88
1976	112.85
1977	201.52
1978	24
1979	54.88
1980	56
1981	160
1982	90
1983	280
1984	152
1985	20.8
1986	72
1987	64
1988	98.53

1989	40
1990	22.64
1991	41.5
1992	26.06
1993	66.97
1994	204.8
1995	23.84
1996	64
1997	200
1998	1000
1999	240.36
2000	71.02
2001	150
2002	109.46
2003	42.51
2004	39.41
2005	38.96
2006	46.6
2007	47.26
2008	53.72
2009	61.01
2010	43.97
2013	125
2014	65.13
2015	203.33
2016	43.3
2017	187.13
2018	142.9
2019	51.27
2020	31
2021	40
2022	58.33

FUENTE: Estación Hidráulica Quirihuac

FIGURA Nº06: Análisis de Frecuencia.

FUENTE: Elaboración propia

FIGURA N°07: Ingreso de la información de precipitación

máxima de 24 horas máxima anual

File Edit View Series Hydrology Help Image: Series Hydrology Help	Nydrognomon										_		Х
Image: Second	File Edit View Se	ries Hydrology	Help										
RIO MOCHE 1950 56.00 1951 48.26 1952 170.17 1953 94.33 1954 93.26 1955 132.75 1956 212.88 1957 197.93 1958 88.33 1959 117.50 1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	🗋 🗁 🗄	0		à 🔒 •	0	0 ≩	•×	1	• 🔊	9 0		•	
1950 56.00 1951 48.26 1952 170.17 1953 94.33 1954 93.26 1955 132.75 1956 212.88 1957 197.93 1958 88.33 1959 117.50 1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40		RIO MOCHE											
1951 48.26 1952 170.17 1953 94.33 1954 93.26 1955 132.75 1956 212.88 1957 197.93 1958 88.33 1959 117.50 1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	1950	56.00											- 1
1952 170.17 1953 94.33 1954 93.26 1955 132.75 1956 212.88 1957 197.93 1958 88.33 1959 117.50 1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	1951	48.26											
1953 94.33 1954 93.26 1955 132.75 1956 212.88 1957 197.93 1958 88.33 1959 117.50 1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	1952	170.17											
1954 93.26 1955 132.75 1956 212.88 1957 197.93 1958 88.33 1959 117.50 1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	1953	94.33											
1955 132.75 1956 212.88 1957 197.93 1958 88.33 1959 117.50 1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	1954	93.26											
1956 212.88 1957 197.93 1958 88.33 1959 117.50 1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	1955	132.75											
1957 197.93 1958 88.33 1959 117.50 1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	1956	212.88											
1958 88.33 1959 117.50 1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	1957	197.93											
1959 117.50 1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	1958	88.33											
1960 198.63 1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	1959	117.50											
1961 43.92 1962 180.31 1963 117.57 1964 119.19 1965 78.40	1960	198.63											
1962 180.31 1963 117.57 1964 119.19 1965 78.40	1961	43.92											
1963 117.57 1964 119.19 1965 78.40	1962	180.31											
1964 119.19 1965 78.40	1963	117.57											
1965 78.40	1964	119.19											
	1965	78.40											_

FUENTE: Extraída de Hydrognomon
Y se procesa con las diversas distribuciones probabilística que tiene la plataforma.

FIGURA N°08: Distribuciones probabilística de la plataforma

FUENTE: Extraída de Hydrognomon

La Elección de la distribución probabilística que se ajusta mejor, se basa en la prueba bondad de ajuste (Kolgomorov Smirnov).

FIGURA N°09: Prueba Bondad de Ajuste (Kolgmorov Smirnov y Chi-Cuadrado)

File Edit View Options Forecasts P8XC Intervals Parameter values Forecasts Distribution functions plots Histogram - Density functions plots Parameter values - Forecasts Select distributions to dis Normal REJECT REJECT REJECT 0.28203% 0.21500 Intervalues - Forecasts Normal ACCEPT ACCEPT REJECT 0.28203% 0.21500 Intervalues - Forecasts Select distributions ACCEPT ACCEPT ACCEPT 5.13737% 0.16058 Galton ACCEPT ACCEPT ACCEPT ACCEPT 0.21833% 0.21915 Exponential REJECT REJECT REJECT 0.21333% 0.21915 Gamma REJECT REJECT REJECT 0.21735% 0.20882 (ag Pearson III REJECT REJECT REJECT 0.21283 0.20882 (ag Pearson III RCCEPT ACCEPT ACCEPT 0.21286% 0.21961 EV2-Max REJECT REJECT REJECT 0.21286% 0.21061 EV3-Max Galton REJECT REJECT	Statistics						- 🗆 ×
Kolmagorov-Smirnov test for:All data a=1% a=10% Attained a DMax Normal SEJECT REJECT REJECT 0.28203% 0.21500 Idea to day of the y	File Edit View Options Fore	casts P&C	Intervals P	Parameters ML	E Tests		
Normal REJECT REJECT REJECT REJECT REJECT REJECT REJECT REJECT REJECT Solar Margin Solar	Kolmogorov-Smirnov test for:All data	a=1%	a=5%	a=10%	Attained a	DMax	Select distributions to display
Normal (L-Moments) ACCEPT ACCEPT REJECT 5.13737% 0.16058 LogNormal ACCEPT ACCEPT ACCEPT 34.7946% 0.11081 Galton ACCEPT ACCEPT ACCEPT 34.7946% 0.11081 Exponential REJECT REJECT REJECT 0.21833% 0.21915 Exponential (L-Moments) ACCEPT ACCEPT ACCEPT 0.21735% 0.21923 Gamma REJECT REJECT REJECT 0.21735% 0.21923 Gamma REJECT REJECT REJECT 0.21735% 0.21923 Gamma REJECT REJECT REJECT 0.21238% 0.20882 Gy Pearson III ACCEPT ACCEPT 0.21283% 0.22082 EV1-Max (Gumbel) REJECT REJECT REJECT 0.21284% 0.22700 Pareto REJECT REJECT REJECT 0.13254% 0.22081 L-Moments Evonential L-Moments Evonential L-Moments Evonential L-Moments Evonential L-Moments Evonential L-Moments Evonentis L-Moments Evonential L-Moments Evonential L-Moments Evonential	Normal	REJECT	REJECT	REJECT	0.28203%	0.21500	drag to select many at once:
LogNormal ACCEPT ACCEPT ACCEPT 34.7946% 0.11081 Ioonal Galton ACCEPT ACCEPT ACCEPT 34.7946% 0.11081 Ioonal Exponential REJECT REJECT REJECT 0.21833% 0.21915 Gamma REJECT REJECT REJECT 0.21735% 0.09353 Gamma REJECT REJECT 0.21735% 0.21923 og Pearson III ACCEPT ACCEPT 0.21735% 0.20882 og Pearson III ACCEPT ACCEPT 0.21283% 0.21921 Gumbel Max REJECT REJECT REJECT 0.21735% 0.20882 Gy Pearson III ACCEPT ACCEPT 0.21283% 0.21921 GeV Max REJECT REJECT REJECT 0.21284% 0.22700 EV1-Max (Gumbel) REJECT REJECT REJECT 0.32576% 0.12631 L-Moments Evonential Levonents Evonential L-Moments Evonential L-Moments Evonential EV3-Max ACCEPT ACCEPT ACCEPT ACCEPT 0.13263 GEV-	Normal (L-Moments)	ACCEPT	ACCEPT	REJECT	5.13737%	0.16058	Alexand
Galton ACCEPT ACCEPT ACCEPT S9.6410% 0.09118 Galton Exponential REJECT REJECT REJECT 0.21833% 0.21915 Exponential ACCEPT ACCEPT ACCEPT S6.3615% 0.09353 Gamma REJECT REJECT REJECT 0.21735% 0.21923 Gamma REJECT REJECT REJECT 0.21735% 0.06207 Gorp Pearson III ACCEPT ACCEPT 0.40923% 0.20882 EV1-Max (Gumbel) REJECT REJECT REJECT 0.21228% 0.21961 GEV-Max REJECT REJECT REJECT 0.13284% 0.22700 EV1-Max (Gumbel) REJECT REJECT REJECT 0.17353% 0.22281 EV-Max REJECT REJECT REJECT 0.17353% 0.22281 L-Moments Exponential L-Moments REJECT REJECT REJECT 0.17353% 0.22281 L-Moments EV1-Max GeV-Max ACCEPT ACCEPT REJECT REJECT 0.23276% 0.17655 GeV-Max (L-Moments) <	LogNormal	ACCEPT	ACCEPT	ACCEPT	34.7946%	0.11081	LogNormal
Exponential REJECT RE	Galton	ACCEPT	ACCEPT	ACCEPT	59.6410%	0.09118	Galton
Exponential (L-Moments) ACCEPT ACCEPT ACCEPT S6.3615% 0.09353 PearsonIII Gamma REJECT REJECT REJECT REJECT 0.21735% 0.21923 Guided Max LogPearson III REJECT REJECT REJECT REJECT 0.40923% 0.2082 Log Pearson III ACCEPT ACCEPT ACCEPT 94.7265% 0.06207 EV1-Max (Gumbel) REJECT REJECT REJECT 0.21282% 0.21961 EV2-Max REJECT REJECT REJECT 0.13284% 0.22700 Vel-Maix (Gumbel) REJECT REJECT REJECT 0.17353% 0.22281 L-Moments Normal REJECT REJECT REJECT 0.21263 L-Moments EV2-Max GEV-Max ACCEPT ACCEPT ACCEPT 16.4439% 0.13263 GEV-Max ACCEPT ACCEPT ACCEPT 2.93245% 0.1664 GEV-Max (L-Moments) ACCEPT ACCEPT ACCEPT 2.93245% 0.1664 GEV-Min	Exponential	REJECT	REJECT	REJECT	0.21833%	0.21915	Gamma
Gamma REJECT REJECT REJECT REJECT REJECT 0.21735% 0.21923 Pearson III REJECT REJECT REJECT REJECT 0.40923% 0.20882 Log Pearson III ACCEPT ACCEPT ACCEPT 94.7265% 0.06207 EV1-Max (Gumbel) REJECT REJECT REJECT 0.21228% 0.21961 EV2-Max REJECT REJECT REJECT 0.21228% 0.22701 V2-Max (Gumbel) REJECT REJECT 0.23576% 0.22201 L-Moments Ev2-Max EV1-Min (Gumbel) REJECT REJECT REJECT 0.32876% 0.22201 EV3-Min (Weibull) REJECT REJECT REJECT 0.13264% L-Moments Ev2-Max GEV-Max ACCEPT ACCEPT ACCEPT 16.4439% 0.13263 GEV-Min (L-Moments) ACCEPT ACCEPT 23.8876% 0.11664 GEV-Min (L-Moments) ACCEPT ACCEPT 3.4547% 0.07037 EV1-Max (Gumbel, L-Moments) ACCEPT ACC	Exponential (L-Moments)	ACCEPT	ACCEPT	ACCEPT	56.3615%	0.09353	PearsonIII
Pearson III REJECT REJECT REJECT REJECT 0.40923% 0.20882 Log Pearson III ACCEPT ACCEPT ACCEPT 94.7265% 0.06207 EV1-Max (Gumbel) REJECT REJECT REJECT 0.21228% 0.21961 EV1-Max (Gumbel) REJECT REJECT 0.3284% 0.22070 EV1-Max (Gumbel) REJECT REJECT 0.3284% 0.22070 EV1-Min (Gumbel) REJECT REJECT 0.3285% 0.22070 GEV-Max ACCEPT REJECT R.32576% 0.22161 GEV-Max ACCEPT REJECT REJECT 0.328576% 0.12631 L-Moments EV2-Max ACCEPT RCJECT REJECT 2.39245% 0.17655 GEV-Min ACCEPT ACCEPT ACCEPT 2.39245% 0.17655 Pareto ACCEPT ACCEPT ACCEPT 9.36606% 0.06355 GEV-Min (L-Moments) ACCEPT ACCEPT 3.4454% 0.07037 VI-Max (Gumbel, L-Moments) ACCEP	Gamma	REJECT	REJECT	REJECT	0.21735%	0.21923	LogPearsonIII Gumbel Max
Log Pearson III ACCEPT ACCEPT ACCEPT 94.7265% 0.06207 EV1-Max (Gumbel) REJECT REJECT REJECT 0.21228% 0.21961 EV1-Max (Gumbel) REJECT REJECT REJECT 0.1228% 0.22700 EV1-Max (Gumbel) REJECT REJECT REJECT 0.13284% 0.22700 EV3-Max REJECT REJECT REJECT 0.132576% 0.21263 EV3-Min (Weibull) REJECT REJECT REJECT 0.32576% 0.13263 GEV-Max ACCEPT ACCEPT ACCEPT 16.4439% 0.13263 GEV-Max ACCEPT ACCEPT ACCEPT 2.39245% 0.17655 Pareto ACCEPT ACCEPT ACCEPT 2.39245% 0.17655 GEV-Max (L-Moments) ACCEPT ACCEPT ACCEPT 8.8876% 0.1664 GEV-Max (L-Moments) ACCEPT ACCEPT ACCEPT 8.8876% 0.1164 EV1-Max (Gumbel, L-Moments) ACCEPT ACCEPT 8.73.4457% 0	Pearson III	REJECT	REJECT	REJECT	0.40923%	0.20882	EV2-Max
EV1-Max (Gumbel) REJECT REJECT REJECT REJECT 0.2128% 0.21961 EV2-Max REJECT REJECT REJECT 0.2128% 0.21061 EV2-Max REJECT REJECT REJECT 0.13284% 0.22700 EV1-Min (Gumbel) REJECT REJECT 0.13233% 0.22281 L-Moments Exponential EV3-Min (Weibull) REJECT REJECT REJECT 0.32576% 0.17653 GEV-Max ACCEPT REJECT REJECT 0.23245% 0.17655 Pareto ACCEPT ACCEPT ACCEPT 28.8876% 0.11664 GEV-Min (L-Moments) ACCEPT ACCEPT 28.8876% 0.11664 GEV-Min (L-Moments) ACCEPT ACCEPT 8.8876% 0.11664 GEV-Min (L-Moments) ACCEPT ACCEPT 8.3876% 0.11664 GEV-Min (L-Moments) ACCEPT ACCEPT 8.020707 8.007037 GEV-Min (L-Moments) ACCEPT ACCEPT 8.02077 8.0737 0.11061	Log Pearson III	ACCEPT	ACCEPT	ACCEPT	94.7265%	0.06207	Gumbel Min Weibull
EV2-Max REJECT REJECT REJECT REJECT REJECT REJECT 0.13284% 0.22700 EV1-Min (Gumbel) REJECT REJECT REJECT 0.17353% 0.22281 L-Moments Normal EV3-Min (Weibull) REJECT REJECT REJECT 0.32575% 0.22281 GEV-Max ACCEPT RACCEPT ACCEPT 0.32575% 0.21263 GEV-Min ACCEPT ACCEPT ACCEPT 16.4439% 0.13263 GEV-Min ACCEPT ACCEPT ACCEPT 2.39245% 0.17655 Pareto ACCEPT ACCEPT ACCEPT 2.38876% 0.11664 GEV-Min (L-Moments) ACCEPT ACCEPT ACCEPT 9.36606% 0.06355 GEV-Min (L-Moments) ACCEPT ACCEPT ACCEPT 87.3445% 0.07037 GEV-Min (L-Moments) ACCEPT ACCEPT ACCEPT 87.3445% 0.07037 VI-Min (L-Moments) ACCEPT ACCEPT ACCEPT 87.3445% 0.07037 EV1-Mix (Gumbe	EV1-Max (Gumbel)	REJECT	REJECT	REJECT	0.21228%	0.21961	GEV Max
EV1-Min (Gumbel) REJECT REJECT REJECT REJECT REJECT REJECT 0.17353% 0.22281 L-Moments Normal L-Moments Normal L-Moments Normal L-Moments Normal L-Moments Normal L-Moments VI-Max GEV-Max ACCEPT ACCEPT REJECT 0.32576% 0.21263 L-Moments Normal L-Moments VI-Max GEV-Max ACCEPT ACCEPT ACCEPT 16.4439% 0.13263 GEV-Min ACCEPT REJECT R.BJECT 2.39245% 0.17655 Pareto ACCEPT ACCEPT ACCEPT 2.8.876% 0.11664 GEV-Max (L-Moments) ACCEPT ACCEPT 3.6606% 0.06355 Empirical Distributions EV1-Max (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 3.14547% 0.11071 Blom Points CCEPT ACCEPT ACCEPT 0.16732% 0.22339 EV1-Min (Weibull, L-Moments) ACCEPT ACCEPT 4.4267% 0.10269	EV2-Max	REJECT	REJECT	REJECT	0.13284%	0.22700	GEV Min
EV3-Min (Weibuil) REJECT REJECT REJECT REJECT REJECT REJECT 0.32576% 0.2123 L-Moments Ev1-Max GEV-Max ACCEPT ACCEPT ACCEPT 16.4439% 0.13263 L-Moments EV1-Max GEV-Min ACCEPT REJECT REJECT 2.39245% 0.17655 L-Moments EV1-Max Pareto ACCEPT ACCEPT ACCEPT 28.8876% 0.11664 GEV-Max (L-Moments) ACCEPT ACCEPT 3.6606% 0.06355 GEV-Max (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 87.3445% 0.11071 EV1-Max (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 31.4547% 0.11071 EV1-Min (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 2.7327% 0.11787 EV1-Min (Weibull, L-Moments) REJECT REJECT REJECT 0.16732% 0.22339 EV3-Min (Weibull, L-Moments) ACCEPT ACCEPT 4ACCEPT 4ACEPT 0.10269	EV1-Min (Gumbel)	REJECT	REJECT	REJECT	0.17353%	0.22281	L-Moments Normal
GEV-Max ACCEPT ACCEPT ACCEPT I6.4439% 0.13263 GEV-Min ACCEPT REJECT REJECT 2.39245% 0.17655 Pareto ACCEPT ACCEPT ACCEPT 2.39245% 0.11664 GEV-Max L-Moments DV1-Min ACCEPT ACCEPT 28.8876% 0.11664 GEV-Max L-Moments) ACCEPT ACCEPT 93.6606% 0.06355 GEV-Max L-Moments) ACCEPT ACCEPT 87.3445% 0.07037 VI-Max (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 87.3445% 0.07037 VI-Max (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 31.4547% 0.11401 Blom Points PV2-Max ACCEPT ACCEPT 2.7327% 0.11787 VI-Min (Weibull, L-Moments) REJECT REJECT REJECT 0.16732% 0.22339 EV3-Min (Weibull, L-Moments) ACCEPT ACCEPT 4ACCEPT 4ACEPT 0.10269	EV3-Min (Weibull)	REJECT	REJECT	REJECT	0.32576%	0.21263	L-Moments Exponential
GEV-Min ACCEPT REJECT REJECT 2.39245% 0.17655 Pareto ACCEPT ACCEPT ACCEPT 28.8876% 0.11664 GEV-Max (L-Moments) ACCEPT ACCEPT 28.8876% 0.06355 GEV-Max (L-Moments) ACCEPT ACCEPT 93.6606% 0.06355 GEV-Max (Gumbel, L-Moments) ACCEPT ACCEPT 87.3445% 0.07037 VL-Max (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 31.4547% 0.11401 EV2-Max (L-Moments) ACCEPT ACCEPT ACCEPT 27.7327% 0.11787 EV1-Min (Weibull, L-Moments) REJECT REJECT REJECT 0.16732% 0.22339 EV3-Min (Weibull, L-Moments) ACCEPT ACCEPT 4CCEPT 40.0247% 0.10269	GEV-Max	ACCEPT	ACCEPT	ACCEPT	16.4439%	0.13263	L-Moments EV2-Max
Pareto ACCEPT ACCEPT ACCEPT 28.8876% 0.11664 GEV-Max (L-Moments) ACCEPT ACCEPT ACCEPT 93.6606% 0.06355 GEV-Mink (L-Moments) ACCEPT ACCEPT 87.3445% 0.07037 EV1-Max (Gumbel, L-Moments) ACCEPT ACCEPT 87.3445% 0.11061 EV2-Max (L-Moments) ACCEPT ACCEPT 31.4547% 0.11071 EV2-Max (L-Moments) ACCEPT ACCEPT ACCEPT 0.11787 EV2-Max (L-Moments) ACCEPT ACCEPT ACCEPT 0.17327% 0.11787 EV3-Min (Weibull, L-Moments) ACCEPT ACCEPT ACCEPT 0.16732% 0.22339 EV3-Min (Weibull, L-Moments) ACCEPT ACCEPT 4ACCEPT 0.10269 Gringorten Points	GEV-Min	ACCEPT	REJECT	REJECT	2.39245%	0.17655	L-Moments EV1-Min
GEV-Max (L-Moments) ACCEPT ACCEPT ACCEPT 93.6606% 0.06355 Empirical Distributions GEV-Min (L-Moments) ACCEPT ACCEPT ACCEPT 87.3445% 0.07037 Empirical Distributions EV1-Max (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 31.4547% 0.11001 Blom Points EV2-Max (L-Moments) ACCEPT ACCEPT ACCEPT 27.7327% 0.11787 EV1-Min (Gumbel, L-Moments) REJECT REJECT 0.6732% 0.22339 Cunnane Points EV3-Min (Weibull, L-Moments) ACCEPT ACCEPT ACCEPT 44.2467% 0.10269	Pareto	ACCEPT	ACCEPT	ACCEPT	28.8876%	0.11664	Pacet
GEV-Min (L-Moments) ACCEPT ACCEPT ACCEPT 87.3445% 0.07037 Empirical Distributions EV1-Max (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 31.4547% 0.11401 Impirical Distributions EV2-Max (L-Moments) ACCEPT ACCEPT ACCEPT 27.7327% 0.11787 Impirical Distributions EV1-Min (Gumbel, L-Moments) REJECT REJECT REJECT 0.16732% 0.2239 Impirical Distributions EV3-Min (Weibuil, L-Moments) ACCEPT ACCEPT ACCEPT 44.2467% 0.10269	GEV-Max (L-Moments)	ACCEPT	ACCEPT	ACCEPT	93.6606%	0.06355	Reset
EV1-Max (Gumbel, L-Moments) ACCEPT ACCEPT ACCEPT 31.4547% 0.11401 Image: Webuil Points EV2-Max (L-Moments) ACCEPT ACCEPT ACCEPT 27.7327% 0.11787 Image: Blom Points EV1-Min (Gumbel, L-Moments) REJECT REJECT REJECT 0.16732% 0.22339 Image: Gringorten Points EV3-Min (Weibuil, L-Moments) ACCEPT ACCEPT ACCEPT 44.2467% 0.10269	GEV-Min (L-Moments)	ACCEPT	ACCEPT	ACCEPT	87.3445%	0.07037	Empirical Distributions
EV2-Max (L-Momments) ACCEPT ACCEPT ACCEPT 27.7327% 0.11787 EV1-Min (Gumbel, L-Moments) REJECT REJECT REJECT 0.16732% 0.22339 EV3-Min (Weibull, L-Moments) ACCEPT ACCEPT ACCEPT 44.2467% 0.10269	EV1-Max (Gumbel, L-Moments)	ACCEPT	ACCEPT	ACCEPT	31.4547%	0.11401	Weibull Points
EV1-Min (Gumbel, L-Moments) REJECT REJECT REJECT 0.16732% 0.22339 EV3-Min (Weibull, L-Moments) ACCEPT ACCEPT ACCEPT 44.2467% 0.10269	EV2-Max (L-Momments)	ACCEPT	ACCEPT	ACCEPT	27.7327%	0.11787	Blom Points
EV3-Min (Weibull, L-Moments) ACCEPT ACCEPT ACCEPT 44.2467% 0.10269	EV1-Min (Gumbel, L-Moments)	REJECT	REJECT	REJECT	0.16732%	0.22339	Cunnane Points
	EV3-Min (Weibull, L-Moments)	ACCEPT	ACCEPT	ACCEPT	44.2467%	0.10269	Gringor ten Points

FUENTE: Extraída de Hydrognomon

En base a la prueba bondad de ajuste de Kolgomorov Smirnov, nos menciona que la distribución Log Pearson III) es la que más se adecua, cabe mencionar que es una distribución recomendada en el Manual de Hidrología, Hidráulica y Drenaje, del Ministerio de Transporte y Comunicaciones. Donde se visualiza la curva de la distribución que se ajusta mejor, en su histograma de valores máximos anuales.

FIGURA N°10: Distribuciones probabilística de la plataforma

FUENTE: Extraída de Hydrognomon

Teniendo identificado la distribución, se utiliza el valor pico para un periodo de retorno de 500 años.

FIGURA	N°11: Distrib	ouciones pro	obabilística –	caudal de o	diseño
	de la	plataforma l	Hydrognomo	n	

All data - T(Max)= 500.000 y	Value
Normal	479.382
Normal (L-Moments)	365.877
LogNormal	1005.52
Galton	1024.6
Exponential	775.309
Exponential (L-Moments)	628.051
Gamma	802.613
Pearson III	1107.24
Log Pearson III	1010.02
EV1-Max (Gumbel)	671.677
EV2-Max	963.519
EV1-Min (Gumbel)	352.35
EV3-Min (Weibull)	821.128
GEV-Max	958.554
GEV-Min	1080.87
Pareto	996.591
GEV-Max (L-Moments)	1047.15
GEV-Min (L-Moments)	727.631
EV1-Max (Gumbel, L-Moments)	514.989
EV2-Max (L-Momments)	1539.24
EV1-Min (Gumbel, L-Moments)	285.518
EV3-Min (Weibull, L-Moments)	537.624
Pareto (L-Moments)	826.549
GEV-Max (kappa specified)	850.152
GEV-Min (kappa specified)	409.98
GEV-Max (kappa specified, L-Moments)	691.005
GEV-Min (kappa specified, L-Moments)	318.979

FUENTE: Extraída de Hydrognomon

4.1.4. Simulación Hidráulica mediante el software HEC-RAS

La simulación hidráulica en HEC-RAS proporcionó una visión detallada de las características del flujo del río Moche, considerando un periodo de retorno de 500 años. Este análisis abordó aspectos cruciales como el caudal, la velocidad y el tirante hidráulico en diversas secciones naturales del lecho del río.

Una vez completada la simulación, el software integró nuevamente las dimensiones de los pilares y las características del flujo, incluyendo detalles como la profundidad del tirante y la velocidad en la sección aguas arriba del puente. Este enfoque integral permitió comprender cómo las condiciones hidráulicas varían a lo largo del río y afectan las estructuras de los puentes. Por lo que es fundamental contar con la siguiente información:

- Terreno del río Moche seccionado cada 15m.
- Progresiva donde se ubica el puente Moche y sus dimensiones.
- Pendiente del terreno.
- Caudal máximo para un Tr de 500 años.
- Coeficientes de rugosidad del cauce (n Manning).

La simulación hidráulica en HEC-RAS proporcionó una visión detallada de las características del flujo del río Moche, considerando un periodo de retorno de 500 años. Este análisis abordó aspectos cruciales como el caudal, la velocidad y el tirante hidráulico en diversas secciones naturales del lecho del río.

Una vez completada la simulación, el software integró nuevamente las dimensiones de los pilares y las características del flujo, incluyendo detalles como la profundidad del tirante y la velocidad en la sección aguas arriba del puente. Este enfoque integral permitió comprender cómo las condiciones hidráulicas varían a lo largo del río y afectan las estructuras de los puentes.

Teniendo ya el valor pico del caudal, se procede a crear un nuevo proyecto en el software HEC-RAS, considerando unidades de sistema internacional.

New Project		
Title	File Name	Selected Folder Default Project Folder Documents
PROYECTO_SOCAVACION	*.prj	C: \Users \Daphne \Documents \ArcGIS
		C:\ C:\ Documents Addins Default.gdb Packages
OK Cancel H	Create Folder	C: [Windows]
et drive and path, then enter a new project title	e and file name.	

FIGURA Nº12: Creación del nuevo proyecto.

FUENTE: Extraída de HEC-RAS.

Para el modelamiento de nuestra tesis ingresamos el modelo digital de elevación (DEM)

FUENTE: Extraída de HEC-RAS.

Se ha generado un modelo bidimensional (2D) dimensionado con una malla de 5mx5m, con el propósito de conocer el comportamiento de las precipitaciones.

FUENTE: Extraída de HEC-RAS.

FIGURA N°15: Datos para la malla.

2D Flow Area Editor	×
2D Flow Area: PERIMETRO MOCHE	
Cell Properties	
Computation Points	
Points Spacing (m) DX: 5 DY: 5 🕺 Mesh State = Complete	
Number of Cells = 8427 Average Face Length = 5 Average Cell Size = 25 Maximum Cell Size = 45 Minimum Cell Size = 7	
Generate Computation Points Mesh Status = Success: Exis read from hdf file in 0.442 sec	ting mesh conds.
Hydraulic Cell/Face Properties	
Default Manning's n Value: 0.04	
Spatially varied Manning's n on face Compute Property	Tables
Force Mesh Recomputation	Close

FUENTE: Extraída de HEC-RAS.

Se ingresó la data de las precipitaciones registradas con un intervalo de 1 min. Para un periodo de retorno de 500 años con un caudal de Q = 1010.02 m3/s

FIGURA N°16: ingreso de datos de las precipitaciones en HEC.RAS

2D: PERIMETRO MOCHE BCLine: ENTRAD	MOCHE	Downloads\HECRAS_MODELO SOCAVACION\Modelo.prj
ad from DSS before simulation	Select DSS file and Path	Downloads\HECRAS_MODELO SOCAVACION\Modelo.p09
		Downloads/HECRAS_MODELO_SOCAVACION/Modelo.g04
		_
h:		Downloads/HECRAS_MODELO_SOCAVACION/Modelo.u03
- T-bla		Downloads/HECRAS_MODELO_SOCAVACTON/Modelo_b02
er Table U	ata time interval: 1 Minute	Commonday (ECKAS_HODELO SOCAVACION/HODED.HD2
lect/Enter the Data's Starting Time Reference	10	ê <u></u>
ose sinulation nine. Date: je sinuteor nine. jos		TT IS IS AND
Fixed Start Time: Date: Time:		
Ordinates Interpolate Missing Values Del Row Ins F	ew	TY
Hydrograph Data		300
Date Simulation Time	Flow	
(hours)	(m3/s)	11 and 1
23Jan2024 2400 0:00:00	0	at at a
2 24Jan2024 0001 0:01:00	11.111	
24Jan2024 0002 0:02:00	22.222	ERIMETRO MOCHE
24Jan2024 0003 0:03:00	33.333	PERIMET
24Jan2024 0004 0:04:00	44.444	
24Jan2024 0005 0:05:00	55.556	and the second of the
7 24Jan2024 0006 0:06:00	66.667	Stall-
24Jan2024 0007 0:07:00	77,778	The second
24Jan2024 0008 0:08:00	88.889	
	100	
24Jan2024 0009 0:09:00	100	
24Jan2024 0009 0:09:00 24Jan2024 0010 0:10:00	200	1 1 1 1 1 5
24Jan2024 0009 0:09:00 24Jan2024 0010 0:10:00 24Jan2024 0011 0:11:00	200	
24Jan2024 0009 0:09:00 24Jan2024 0010 0:10:00 24Jan2024 0011 0:11:00 24Jan2024 0012 0:12:00	200 200 200	The Art
243ar20240009 0:09:00 243ar20240010 0:10:00 243ar20240011 0:11:00 243ar20240012 0:12:00 243ar20240013 0:12:00	200 200 200 200	and the

FUENTE: Extraída de HEC-RAS.

scription:	ons Init	tial Conditions	Meteorolog	gical Data	Observed Data	<u> </u>	ipply D
Stage Hydrog	anh	Elow Hud	Boundary Co	ndition Type	S	Pating Curpus	
Normal Dep	apri th	Lateral Inf	ow Hydr.	Uniform L	ateral Inflow	Groundwater Interflow	1
T.S. Gate Oper	nings	Elev Contro	lled Gates	Naviga	ation Dams	IB Stage/Flow	1
Rules		Precipi	tation			🖾	1
Add RS	Add SA/	2D Flow Area . ect Location in e ach	table then se	Conn elect Bounda Boundar	Add Pump S ry Condition Ty Y Condition	rpe	
Storage/2D Fk	w Area	s ICLine: ENTRA	DA MOCHE	Boundar Flow Hydr	y Condition		
2 PERIMETRO N	10CHE B	CLine: SALIDA	MOCHE	Normal De	pth		

FUENTE: Extraída de HEC-RAS.

Una vez ingresada toda la data procedimos a realizar la corrida para el periodo de retorno de 500 años. Lo que nos permitirá hacer un análisis más realista y detallado para el comportamiento de las precipitaciones con el pasar del tiempo

FIGURA N°18: Programación para la corrida del periodo de retorno de 500 años

t: Modelo	D: \Usuario \Downloads \HECRAS_MO	DELO SOCAVACION\Modelo.prj
L Unsteady Flow Analysis	×	ELO SOCAVACION/Modelo.p09
^{tr} File Options Help		ELO SOCAVACION Modelo.g04
Plan: MOCHE_TR 500	Short ID: MOCHE 500	ELO SOCAVACION/Modelo-U03
Geometry File:	PUENTE MOCHE	ELO SOCAVACION/Modelo.h02
Unsteady Flow File:	CAUDAL PUENTE MOCHE	🚊 SI Units
Geometry Preprocessor Unsteady Flow Simulation		
Simulation Time Window Starting Date: 24 Ending Date: 24	JAN2024 Starting Time: 0000 JAN2024 Ending Time: 0139	
Computation Settings Computation Interval: 11 Mapping Output Interval: 11	Second 💌 Hydrograph Output Interval: 1 Minute 💌 Vinute 💌 Detailed Output Interval: 5 Minute 💌	1001-
Project DSS Filename:	\Usuario \Downloads \HECRAS_MODELO SOCAVACION \Mo 🗃	

FUENTE: Extraída de HEC-RAS.

FIGURA N°19: Resultado de la simulación para el periodo de retorno de 500 años – perímetro moche

FUENTE: Extraída de HEC-RAS.

Se procede a diseñar la estructura de los cuatro puentes a tratar (PUENTE MOCHE, SANTA ROSA, CACIQUE Y CONACHE) Seleccione el área SA/2D herramienta de capa de conexión y dibujar la línea central del puente de izquierda a derecha hacia abajo

FIGURA N°20: Conexión 2D como Línea de quiebre

FUENTE: Extraída de HEC-RAS.

Ingresar Datos del puente abriendo datos geométricos y seleccionando el tipo de estructura: puente

FIGURA N°21: Sección del terreno

FUENTE: Extraída de HEC-RAS.

FIGURA N°22: Tipo de estructura

Connection:	PUENTE SANTA ROS - 1	Apply Data	1	
Description		<u> </u>	Breach (plan data)	
Connections -	2D Flow Area: PERIMETRO SANTA	Set SA/2D	Weir Length: n/a	
To:	2D Flow Area: PERIMETRO SANTA	Set SA/2D	Centerline Length: 103.24	
Overflow Com Normal 2D E	putation Method Equation Domain 🤄 Use Weir Equation		Centerline GIS Coords	
Structure Type:	Bridge (Internal to 2D Flow Area)		Cut profile from terrain	
Not:	Weir, Gates, Culverts, Outlet RC and Outlet	TS	Clip Weir Profile to 2D Cells	
Deck/	Bridge (Internal to 20 Flow Area)			

FUENTE: Extraída de HEC-RAS.

Se procede a ingresar las dimensiones del tablero y los pilares que le corresponde al puente de estudio, donde se ingresa valores relacionados al tipo de sección de los pilares. Así como también de los estribos que dan soporte el tablero.

Deck/Roadway	Data Edito	r			
Distance 3.	6.	Wid	th	We 1.4	eir Coef
Clear Del	Row	ns Row		Cop	y US to DS
Up	ostream			Downstrea	m
Station	high chord	low chord	Station	high chord	low chord
1 6.7	32		6.7	32	
2 12.7	32	30	12.7	32	30
3 100.44	32	30	100.44	32	30
4 106.44	32		106.44	32	
5					
6					
7					
8					•
U.S Embankment	t SS 0		D.S Em	bankment S	s 0
Max Submerger	nce: 0.9	98	Min We	ir Flow El:	
 Weir Crest Shap 	<u>e</u> ted				
				ок	Cancel
Enter distance be	etween upst	ream cross :	section and	deck/roadwa	ay. (m)

FIGURA N°23: Ingreso de las dimensiones del tablero del puente.

FUENTE: Extraída de HEC-RAS.

HEC-RAS creara automáticamente las cuatro secciones transversales necesarias para procesar la hidráulica del puente en una familia de curvas

FIGURA N°24: Secciones transversales automatizadas

FUENTE: Extraída de HEC-RAS.

FIGURA N°25: Ingreso de las dimensiones de los pilares del puente.

r					
Pier	Data Editor				
A	dd Copy	Delete	Pier # 🚺	• J 1	
De	el Row Cer	nterline Station nterline Station	n Upstream n Downstream	30 30	
Flo	ating Pier Deb Il On All Set Wd/Ht for	oris Off [] / all Debr	Apply floating is Width:	debris to this pier	
		Debr	is neight:		
				-	
	Upstrea	am	Dow	Instream	I
	Upstrea Pier Width	am Elevation	Dow Pier Width	nstream Elevation]
1	Upstrea Pier Width 3	Elevation 20.25	Dow Pier Width 3	Ilevation	
1	Upstrea Pier Width 3 3	Elevation 20.25 30	Dow Pier Width 3 3	Elevation 20.25 30	
1 2 3	Upstrea Pier Width 3 3	Elevation 20.25 30	Dow Pier Width 3 3	Elevation 20.25 30]
1 2 3 4	Upstrea Pier Width 3 3	Elevation 20.25 30	Dow Pier Width 3 3	Elevation 20.25 30	
1 2 3 4 5	Upstrea Pier Width 3 3	Elevation 20.25 30	Dow Pier Width 3 3	Elevation 20.25 30	
1 2 3 4 5	Upstrea Pier Width 3 3 OK	Elevation 20.25 30 Cancel	Dow Pier Width 3 3 Help	Copy Up to Down	

FUENTE: Extraída de HEC-RAS.

FIGURA N°26: Ingreso de las dimensiones de los estribos.

Slop	Sloping Abutment Data Editor							
A	Add Copy Delete Abutment # 1 I Del Row Ins Row							
	Upstre	am	Dow	nstream				
	Station	Elevation	Station	Elevation 🔺				
1	12.7	30	12.7	30				
2	14.7	30	14.7	30				
3								
4								
5								
6	6							
7	7							
	OK Cancel Help Copy Up to Down							
Sele	ct Abutment to I	Edit						

FUENTE: Extraída de HEC-RAS.

Luego se procede a colocar variables correspondientes a los tipos de secciones de los pilares, en base a sus coeficientes "Cd" y "K"

FIGURA N°27: Configuración de la simulación con Puentes.

Conne	Connection Bridge Modeling Approach Editor							
Low	Low Flow Methods							
Use C	Use Compute ○ ✓ Energy (Standard Step)							
0	Momentum	Coef Drag Cd	1.2 🙎					
0	C 🔽 Yarnell (Class A only) Pier Shape K 0.9							
•	 Highest Energy Answer 							
High C E	High Flow Methods C Energy Only (Standard Step)							
	Submerged Inlet Cd (Blank for table)							
Submerged Inlet + Outlet Cd 0.8								
Max Low Chord (Blank for default)								
OK Cancel Help								
Enter	Cd coefficient for momentum	computations						

FUENTE: Extraída de HEC-RAS.

Y se tiene el puente a detalle, considerando que el límite del modelo 1D para generar estos tipos de estructuras, es que no podemos detallar la sección real del puente, solamente relacionarlo con coeficientes.

FIGURA N°28: Sección a detalle del puente.

FUENTE: Extraída de HEC-RAS.

Y con ello, procedemos a agregar el dato de n de Manning para las secciones

	Up	istream Ou	itside			U	pstream Insid	le			Do	wnstream In	side			Dov	vnstream Ou	tside
	Main C	hannel Ban	k Stations			Main Ch	annel Bank S	tations			Main Ci	hannel Bank	Stations			Main (Channel Bank	Stations
	Left Bank	Sta R	ight Bank Sta	_		Left Bank !	Sta Right	t Bank Sta		-	Left Bank	Sta Rig	ht Bank Sta			Left Ban	k Sta Rig	ght Bank St
P		103	3.235		0		103.23	35		0		103.	235		1	0	103	.235
	Cross Se	ction X-Y C	Coordinates			Cross Se	ction X-Y Co	ordinates			Cross Se	ction X-Y Co	ordinates			Cross Se	ection X-Y Co	ordinates
	Station	Elevation	Mann n	-		Station	Elevation	Mann n			Station	Elevation	Mann n	-		Station	Elevation	Mann n
1	0	26,03	1 0.04		1	0	27.366	0.04		1	0	29.294	0.04		1	0	28.833	0.04
2	0.79	25.63	1		2	0.736	26.82			2	0.206	29.197			2	0.368	28.807	
3	1.297	25.39	8		3	0.978	26.667			3	0.929	28.731			3	1.268	28.781	
4	1.629	25.21	.3		4	2.771	25.919			4	1.919	28.132			4	2.644	28.782	
5	2.742	24.75	6		5	3.264	25.819			5	2.735	27.668			5	3.061	28.737	
6	3.422	24.56	4		6	3.625	25.647			6	3.981	26.997			6	3.257	28.672	
7	4.02	24.47	8		7	3.967	25.52			7	4.902	26.438			7	3.618	28.512	
8	4.547	24.44	4		8	4.348	25.486			8	5.806	25.968			8	4.341	27.94	
9	4,909	24.40	1		9	4.564	25.495			9	6.719	25.578			9	5.382	27.285	
10	6.266	24.20	9		10	4.709	25.481			10	7.895	25.014			10	6.295	26.746	
11	7.179	24.12	4		11	6.955	24.885			11	8.544	24.685			11	6.647	26.602	
12	10.83	23.89	9		12	7.237	24.782			12	9.09	24.344			12	7.207	26.417	
13	11.048	23.73	1		13	7.552	24.623			13	9.688	24.136			13	7.842	26.153	
14	11.41	22.83	4		14	7.959	24,392			14	10.286	24.028			14	9.036	25.61	
15	11.743	22.57	4	-	15	8.15	24.319		-	15	11.041	24.093		-	15	9.635	25.355	
	10.004	77.44			1 40	0 740	24 220			40	11 400	24 000			40	10 004	24 202	

FIGURA N°29: Numero de Manning

FUENTE: Extraída de HEC-RAS.

Al completar el diseño del puente se procede a realizar la corrida con todo y la estructura para un periodo de retorno de 500 años donde podremos determinar tirante y velocidad más critica que se puede llegar a presentar y así poder hallar el cálculo de socavación FIGURA N°30: Corrida de la simulación con puente

FUENTE: Extraída de HEC-RAS

FIGURA N°31: Tirante del tramo de estudio

FUENTE: Extraída de HEC-RAS

FIGURA N°32: Velocidad del tramo de estudio

FUENTE: Extraída de HEC-RAS

4.2. Análisis de interpretación de resultados

4.2.1. Modelo digital

4.2.1.1. Área de estudio

La región de estudio está situada en la costa norte del Perú, específicamente en el departamento de La Libertad. Sus límites comprenden el norte con Lambayeque y Cajamarca, el sur con Áncash, el este con San Martín, y hacia el oeste se extiende hasta el Océano Pacífico.

LIMITES TERRITORIALES					
Norto	Distrito Trujillo, provincia Ascope,				
nonte	departamento Lambayeque y Cajamarca.				
Sur	Distrito Salaverry, provincia Virú,				
Sur	departamento Áncash.				
Esto	Distrito Laredo, provincia Otuzco y Julcán,				
LSIE	departamento San Martín.				
Oosto	Distrito Víctor Larco Herrera y el Océano				
Vesie	Pacífico.				

TABLA N°14: Distribución de calicatas

FUENTE: Elaboración Propia.

De igual manera se ha realizado la ubicación de cada uno de los puentes mediante el Google Earth.

FIGURA N°33: Ubicación de puente Conache

FUENTE: Google Earth.

TABLA N°15: Coordenadas geográficas puente Conache

Latitud	Longitud
8° 6'39.50"S	78°56'46.59"O

FUENTE: Elaboración Propia

FIGURA N°34: Ubicación de puente Cacique

FUENTE: Google Earth.

TABLA N°16: Coordenadas geográficas puente Cacique

Latitud	Longitud
8° 6'39.50"S	78°56'46.59"O

FUENTE: Elaboración Propia

FIGURA N°35: Ubicación de puente Santa Rosa

FUENTE: Google Earth.

TABLA Nº17: Coordenadas geográficas puente Santa

Rosa

Latitud	Longitud
8° 7'39.14"S	78°59'47.32"O

FUENTE: Elaboración Propia

FIGURA N°36: Ubicación de puente Moche

FUENTE: Google Earth.

TABLA N°18: Coordenadas geográficas puente Moche

Latitud	Longitud
8° 7'39.14"S	78°59'47.32"O

FUENTE: Elaboración Propia

4.2.1.2. Modelo Digital

Contamos con la superficie en formato TIF por lo que usaremos el software Qgis donde se va a tratar de recortar la superficie.

FIGURA N°37: Se carga la superficie de la zona de estudio.

Fuente: Exportado del Qgis

FIGURA N°38: Se da formato para crear el alineamiento

Fuente: Exportado del Qgis

Según las directrices del Manual de Hidrología, Hidráulica y Drenaje (p.88), se especifica que la longitud mínima del levantamiento topográfico necesaria, tanto aguas arriba como aguas abajo del eje del puente, debe ser de 150 m.

FIGURA N°39: Se crea el alineamiento con ayuda de base topográfica e imagen satelital.

Fuente: Exportado del Qgis

FIGURA N°40: Se crea el alineamiento con ayuda de

Fuente: Exportado del Qgis

Es por esta razón que, en este estudio, se llevó a cabo el procesamiento de la información topográfica, abarcando una longitud superior a la requerida, específicamente 17750.05 m.

Este enfoque se adoptó con el propósito de garantizar una mayor precisión en los datos recopilados. Se procedió a

crear la superficie del terreno, para facilitar su futura integración en el software HEC-RAS.

FIGURA N°41: Longitud total del alineamiento de rio.

Fuente: Exportado del Qgis

Se realizo el recorte correspondiente a la topografía para poder pasar al Hec-Ras únicamente la zona de estudio.

FIGURA N°42: Recorte de la zona de estudio

Fuente: Exportado del Qgis

De igual manera, se generó el perfil longitudinal a partir del alineamiento horizontal, para tener conocimiento de las pendientes:

FIGURA N°43: Perfil Longitudinal

Fuente: Exportado del Qgis

FIGURA N°44: Perfil Longitudinal

Fuente: Exportado del Qgis

4.2.2. Granulometría

De todas las muestras que se realizaron en las calicatas del río Moche, se llevaron al laboratorio donde a partir de ello se realizó el ensayo de Análisis Granulométrico, tal que como se tiene, **(Ver anexo del 2.1 – 2.4)**

Análisis Granulométrico de Suelos por Tamizado (MTC E 107)									
Malla N º	Abertura		%Que pasa						
	(mm)	C-1	C-2	C-3	C-4				
3"	75.000	100.00	100.00	100.00	100.00				
2 1/2"	62.500	100.00	100.00	100.00	100.00				
2"	50.000	80.45	79.26	69.45	71.09				
1 1/2"	37.500	61.69	65.81	54.11	54.79				
1"	25.000	50.67	58.70	44.59	48.23				
3/4"	19.000	39.36	53.90	35.70	40.36				
1/2"	12.500	31.51	46.60	33.59	33.86				
3/8"	9.500	28.54	39.88	28.60	31.48				
1/4"	6.250	23.77	32.43	25.62	28.46				
N° 4	4.750	21.19	26.86	22.67	26.45				
N°6	3.350	18.91	23.79	20.38	24.53				
N°8	2.360	16.93	20.79	17.91	23.06				
N°10	2.000	15.93	17.62	16.38	22.33				
N°16	1.180	12.96	14.16	13.77	20.87				
N°20	0.850	10.77	12.05	10.48	19.50				
N°30	0.600	8.29	9.97	8.27	17.21				
N°40	0.425	6.51	8.30	6.33	14.37				
N°50	0.300	5.02	6.15	4.19	10.53				
N°80	0.177	3.63	3.75	2.86	5.95				
N°100	0.150	3.23	3.13	2.55	3.75				
N° 200	0.075	2.14	1.56	1.83	2.11				
< N° 200	PLATO	0.00	0.00	0.00	0.00				

TABLA N°19:	Análisis	Granulométrico
-------------	----------	----------------

Fuente: Elaboración propia

FIGURA N°45: Curva granulometría, C-1 punto Puente

Conache

Fuente: Elaboración propia

FIGURA Nº46: Curva granulometría, C-2 punto Puente

Cacique

Fuente: Elaboración propia

FIGURA N°47: Curva granulometría, C-3 punto Puente Santa

Fuente: Elaboración propia

FIGURA Nº48: Curva granulometría, C-4 punto Puente Moche

Fuente: Elaboración propia

En el anexo XX podemos observar de manera más detallada la granulometría. El tipo de suelo, está bajo lo establecido por el Sistema Unificado de Clasificación de Suelos (SUCS), por lo tanto, se necesita obtener **Cu**: Coeficiente de Uniformidad y **Cc**: Coeficiente de Curvatura. Donde se necesita interpolar dos parámetros, los cuales son el porcentaje pasante que ayuda en la obtención de los diámetros y el tamaño de la malla a considerar:

Caracte	Características			Calicatas					
Caracte	C-1	C-2	C-3	C-4					
% que pas	26.45	22.67	26.86	21.19					
% que pasa	2.11	1.83	1.56	2.14					
Diámetros	D10 (mm)	0.28	0.79	0.30	0.76				
	D50 (mm)	27.89	31.48	15.19	24.60				
	D95 (mm)	60.13	60.26	59.23	59.03				
Coeficiente de	5.16	3.19	1.89	4.40					
Coeficiente de l	Jniformidad (Cu)	145.67	53.14	44.65	46.19				

TABLA N°20: Análisis Granulométrico

Fuente: Elaboración propia

Para los resultados del análisis granulométrico, las partículas se clasifican en GP (Grava pobremente gradada), GW (grava bien graduada).

TABLA N°21: Análisis Granulométrico

		Muestra	Resultado
Análisis	lisis Clasificación métrico (S.U.C.S)	1	GW
Granulamátrica		2	GW
Granulometrico		3	GW
		4	GP

Fuente: Elaboración propia

Los diámetros D50 y D95 son importantes ya que con ello estimamos la socavación local en los pilares de los puentes a tratar, estos diámetros llegaron a ser hallados de igual manera por medio de la interpolación de igual manera mediante interpolación. Sucesivamente, los resultados se promediaron, tal como se observa en la tabla:

TABLA N°22: Análisis Granulométrico

Diámetros requeridos promedio				
Calicata	D50 (mm)	Promedio (mm)	D95 (mm)	Promedio (mm)
C-1	27.89	24.79	60.13	
C-2	31.48		60.26	50.66
C-3	15.19		59.23	59.00
C-4	24.60		59.03	

Fuente: Elaboración propia

4.2.3. Estudió Hidrológico

En caso del estudio hidrológico, se trabajó para un periodo de retorno de 500 años, donde la plataforma Hydrognomon donde trabaja con un conjunto de distribuciones probabilísticas, donde se muestra a continuación.

FIGURA N°49: Distribuciones probabilísticas según el manual del MTC

FUENTE: Extraída de Hydrognomon

	PERIODO DE RETORNO			
Distribución	50	100	500	
	CAUDAL DE DISEÑO			
Normal	374.965	409.491	479.382	
Log normal	481.930	614.608	1005.52	
Gamma	491.251	584.515	802.613	
Pearson III	532.592	695.938	1107.24	
Log Pearson III	453.008	586.484	1010.02	
Gumbel	443.302	512.280	671.677	

TABLA N°23: Resumen de caudales de diseño

Fuente: Elaboración propia

- Se trabajó con un período de retorno de 500 años y un caudal de diseño de 1010.02 m³/s para el cálculo de socavación.
- La distribución que mejor se ajusta a los máximos caudales de diseño es Log Pearson III porque es la que más se ajusta a mi serie de datos

Donde en base a la prueba bondad de ajuste, se puede identificar que distribución probabilística es el que más se adecua.

Distribución	Kolgomorov Smirnov	Chi-cuadrado	
	Rango – D max		
Lognormal (3P)	0.209	33.32	
Log-Pearson 3	<mark>0.062</mark>	14.31	
Lognormal	0.111	17.61	
Normal	0.215	74.90	

 TABLA N°24: Prueba bondad de ajuste

FUENTE: Extraída de Hydrognomon

En base la prueba bondad de ajuste Kolgomorov Smirnov, el Log-Pearson III, se adecua a la distribución de los datos máximos anuales, con ello podemos estimar valores picos para diferentes periodos de retorno, pero el de TR 500 años, es el que va predominar para la evaluación del análisis de socavación. Por lo que el MTC lo recomienda. *(Ver anexo 6.5)*

Periodo de Retorno (TR)	Prob. Ocurrencia (P) P = 1 – 1/T	Q 24 máx	
5	0.80	156.313	
20	0.95	311.599	
25	0.96	342.771	
50	0.98	453.008	
100	0.99	586.484	
200	0.995	747.472	
500	0.998	1010.02	

TABLA N°25: Valores picos para diversos periodos de retorno

FUENTE: Extraída de Hydrognomon

4.2.4. Simulación Hidráulica mediante el software HEC-RAS

4.2.4.1. Análisis del cauce

Para el sector del puente Moche se observa que en el minuto 17 se produce un desbordamiento en cauce al momento que se corrió el modelado con la estructura incorporada.

FIGURA N°50: Modelado puente moche

FUENTE: Extraída de HEC-RAS

FUENTE: Extraída de HEC-RAS

Para el sector del puente Santa Rosa se observa que en el minuto 28 se produce un desbordamiento en cauce al momento que se corrió el modelado con la estructura incorporada.

FIGURA N°52: Modelado puente Santa Rosa

FUENTE: Extraída de HEC-RAS

FUENTE: Extraída de HEC-RAS

Para el sector del puente Cacique se observa que en el minuto 8 se produce un desbordamiento en cauce al momento que se corrió el modelado con la estructura incorporada.

FIGURA N°54: Modelado puente Cacique

FIGURA N°55: Resultado de la simulación puente Cacique

FUENTE: Extraída de HEC-RAS

Para el sector del puente Conache se observa que en el minuto 23 se produce un desbordamiento en cauce al momento que se corrió el modelado con la estructura incorporada.

FIGURA N°56: Modelado puente Conache

FUENTE: Extraída de HEC-RAS

FIGURA N°57: Resultado de la simulación puente Conache

FUENTE: Extraída de HEC-RAS

4.2.4.2. Cálculo de tirante y velocidad

Se determina el tirante y velocidad más crítico en la sección evaluada tanto para el tramo del puente Moche, Santa Rosa, Cacique y Conache.

FIGURA N°58: Tirante critico

FUENTE: Extraída de HEC-RAS

FIGURA N°59: Velocidad critica

FUENTE: Extraída de HEC-RAS

Puente	Q (m3/s)	T (m)	V (m/s)
Moche	1010.02	7.03	4.57
Santa Rosa	1010.02	6.5	4.01
Cacique	1010.02	5.36	4.09
Conache	1010.02	7.6	5.31

TABLA N°26: Valores críticos de velocidad y tirante

Fuente: Elaboración Propia

4.2.4.3. Socavación asociada en Puentes

La evaluación de la posible profundidad de socavación total implica la combinación de la socavación general, que acontece la socavación por contracción derivada de la reducción del cauce originada por la presencia del puente, y la socavación local que tiene lugar en los pilares y estribos.

En la evaluación de la socavación, se consideran las condiciones de flujo en la sección del puente y el perfil del río para un periodo de retorno de 500 años, con un valor pico de 1010.02 m3/s. Y los diámetros característicos, donde se realizó estudio de suelo cercano al puente de estudio.

FIGURA N°60: Curva granulométrica del Puente Conache

FIGURA N°61: Curva granulométrica del Puente Cacique

Fuente: Procesamiento del estudio de suelos

Fuente: Procesamiento del estudio de suelos

FIGURA N°62: Curva granulométrica del Puente Santa Rosa

Fuente: Procesamiento del estudio de suelos

FIGURA N°63: Curva granulométrica del Puente Moche

Con los parámetros de suelo como el D50 y D95, se procede a estimar las diversas socavaciones podría darse en su totalidad o local en pilares y estribos.

Con los resultados obtenidos como el tirante, velocidad, caudal, geometría del puente y el D50 se podrá obtener el valor de la socavación local y general de los puentes a tratar a base de métodos empíricos Donde para el caso del Puente Conache, se tiene una socavación local máxima de 2.71 metros y una socavación general de 1.81 metros

FIGURA N°64: Socavación local en el Puente Conache

Fuente: Elaboración Propia

FIGURA N°65: Socavación local en el Puente Conache

UNIVERSIDAD PRIVADA ANTENOR ORREGO					
TESIS: Estu	TESIS: Estudio de la socavación local en las subestructuras de los puentes Conache, Casique, Santa Rosa y Moche - Trujillo 2023				
EL L	- Cueva Vazallo Alejandra Lucia			Ubicación: Rio Moche	
Elaborado:	- Gutierrez Zaj	oata Gabriel A	lessandro	PU	ENTE: PUENTE CONACHE
III. FACTOR DE CORRECCIÓN POR EL ÁNGULO DE ATAQUE DEL FLUJO KO MÉTODO DE CSU Para hallar el angulo de ataque nos basamos de la siguiente tabla:					
		Angulo de		l/a	
		ataque	4	8	12
		0°	1.00	1.00	1.00
		15°	1.50	2.00	2.50
		30°	2.00	2.75	3.50
		45°	2.30	3.30	4.30
	L	90°	2.50	3.90	5.00
	* A excepción que si l/a es mayor que 12, se usan los valores correspodientes a l/a = 12 como maximos, ademas se usa la siguiente formula: $K_{\phi} = \left(\cos\phi + \frac{l}{a} sen\phi\right)^{\alpha s}$ Calculando:				
	a (Ancho o	le nila)	l (Longitu	d de nila)	Ø (Angulo de ataque)
	1	ic plia)	1 (Longitu	6	0 (Angulo de ataque)
	1		2.	0	0
		l/a =	2.6	⇔	3
<u>K θ = 1</u> IV. FACTOR DE CORRECCIÓN POR LA FORMA DEL LECHO K¢					
	Condición d	el lecho	Altura de la duna H [pies]	Kc	Kc = 1.1
	Socavación en a	aguas claras	N/A	1.1	
	Lecho plano y	antidunas	N/A	1.1	Se recomienda usar un valor
	Dunas pec	lueñas	2< H <10	1.1	de Kc de 1.1 considerando
	Dunas me	dianas	10< H <30	1.1 a 1.2	que el lecho tiende a ser plano
	Dunas gra	andes	H > 30	1.3	durante crecientes.
					-

Fuente: Elaboración Propia
FIGURA N°66: Socavación local en el Puente Conache

UNIVERSIDAD PRIVADA ANTENOR ORREGO							
TESIS: Estu	dio de la soca	avaci	ión local en las subestructuras de Moche - Trujillo 202	los puentes Conache, Casique, 23	Santa Rosa y		
Flahanadar	- Cueva	Vaza	allo Alejandra Lucia	Ubicación:	Rio Moche		
Elaborado:	- Gutierrez Zapata Gabriel Alessandro PUENTE: PUENTE				PUENTE (CONACHE	
V. CRITERIOS PARA ADOPTAR Ka							
			\mathbf{D}_{50} < 2 mm o \mathbf{D}_{95} < 20 mm	K _a = 1.0			
			$\mathbf{D_{50}} \ge 2 \text{ mm y } \mathbf{D_{95}} \ge 20 \text{ mm}$	$K_a = 0.4 (V_R)^{0.15}$			
	Con re	espec	to al segundo caso:				
			$K_{a} = 0.4$	$(V_{\rm P})^{0.15}$			
	*	Done	le V _n :				
			Г. т.				
			$V_R = \left\lfloor \frac{V_1}{V_{cD50}} \right\rfloor$	$\left[-\frac{V_{icD50}}{-V_{icD95}}\right] > 0$			
	* .	Ader	nas V _{icDx} :				
			$V_{icDx} = 0.64$	$5\left(\frac{D_x}{a}\right)^{0.053}V_{cDx}$			
	*]	Por u	altimo \mathbf{V}_{cDx} : $V_{cDx} = 6.1$	$9h^{\frac{1}{6}}D_{x}^{\frac{1}{3}}$			
	Donde:						
	V _R	=	Relación de velocidad				
	V_1	=	Velocidad de aproximación inmediatar	nente aguas arriba del pilar			
	V _{icDx}	=	Velocidad de aproximación requerida j las partículas de sedimento (m/s)	para iniciar socavación en el pilar para	el tamaño Dx de		
	V _{icD95}	=	Velocidad de aproximación requerida p las partículas de sedimento (m/s).	para iniciar socavación en el pilar para	el tamaño D95 de		
	V _{icD50}	=	Velocidad de aproximación requerida p las partículas de sedimento (m/s).	para iniciar socavación en el pilar para	el tamaño D50 de		
	V _{cDx}	=	Velocidad crítica para iniciar movimie (m/s).	nto de partículas de tamaño Dx del mat	erial del lecho		
	V _{cD50}	=	Velocidad crítica para iniciar movimie (m/s)	nto de partículas de tamaño D50 del m	aterial del lecho		
	a	=	Ancho del pilar (m).				
	D _x	=	Tamaño de la partícula de tal manera q	ue el x por ciento del material del lecho	o más fino.		
	h	=	Profundidad del agua aguas arriba del	pilar sin incluir la socavación local (m)			

Fuente: Elaboración Propia

FIGURA N°67: Socavación local en el Puente Conache

Fuente: Elaboración Propia

FIGURA N°68: Socavación local en el Puente Conache

UNIVERSIDAD PRIVADA ANTENOR ORREGO						
TESIS: Estu	dio de la socavación local en las subestructuras de los puente Moche - Trujillo 2023	s Conache, Casique, Santa R	osa y			
Flaborador	- Cueva Vazallo Alejandra Lucia	Ubicación: R	io Moche			
Elaborado:	- Gutierrez Zapata Gabriel Alessandro	PUENTE: P	UENTE CONACHE			
	VI. SOLUCIÓN $\frac{y_s}{h} = 2.0 * K_f * K_{\emptyset} * K_c * K_a *$	$\left(\frac{a}{h}\right)^{0.65} * F_r^{0.43}$				
	Donde: $ \begin{array}{c cccc} h & = & 7, \\ Kf & = & 1, \\ Ko & = & 1, \\ Kc & = & 1, \\ Ka & = & 0, \\ a & = & 2, \\ Fr & = & 0, \\ \end{array} $ Por lo que la socavacion local mediante el meto	60 00 00 10 40 60 61 do CSU:				
	Fr = 2.	71				

FUENTE: Elaboración Propia

TABLA N°27: Socavación general en el Puente Conache

	CALCULO DE	LA PROFUNDID	AD DE SOCAV	ACION (Hs)			
METODO DE LI	L. LIST VAN LEVED	IEV					
Suelos Granu	lares - No Cohesivo)S					
$t_s = ((a t^{5/3})/(0.68))$	$D_m^{0.28} \beta))^{1/(x+1)}$	(1)	1.	Perfil antes de la erosión			
Suelo	os Cohesivos		2. Perfil de equilibrio tras la erosión				
$t_s = ((a t^{5/3})/(0.60$	$\mathbf{g}_{s}^{1.18} \mathbf{\beta}))^{1/(x+1)}$	(2)		Р	1		
Donde:							
$\mathbf{t_s}$ = Tirante despues de	e producirse la socavacion	(m))	↑ ↑			
t = Tirante sin socava	cion (m)			t	k.		
t = 3.32	m		1		/		
$\mathbf{D}_{\mathrm{m}}=$ Diametro Medio de	e las particulas (mm)			\setminus $ $ $ $	į		
$D_{\rm m} = 27.89$	mm			2	Ý		
\mathbf{g}_{s} = Peso Especifico su	elo (Kg/m3)		ĺ,		/		
μ = Coeficiente de Cor	μ = Coeficiente de Contraccion						
a = Coefciente >>>>>	>						
$a = Q/(t_m^{5/3}B \mu)$							
Tirante medio (t _m)= A/B	Q (Caudal de Diseño)	Coeficiente de Cont Nº (raccion (µ) Tabla)1	Ancho Estable	а		
t _m = 3.03	1,010.02	μ=	0.99	B = 77.00	2.08		
PROFUNCIDAD DE SOCAVA	PROFUNCIDAD DE SOCAVACION PARA SUELOS NO COHESIVO(1) :						
X : Exponente que depende de : D_m pa	ra suelos Granulares No	Coeficiente por Tier	nno de Retorno • ß	TIRANTE DE SOCAVACION SUELO NO COHESIVOS	S GRANULARES -		
Conestvos y Zs para suetos conestw	IS, >>>>> TADLA IV US	(Tabla)	N °04)	5/2 0.25	1/(s+1)		
X (Tabla Nº 03)	1/x+1			$t_s = ((a t^{3/3})/(0.68 D_m^{0.20}))$	β)) ^{1/(x+1)}		
x = 0.31	0.76	ß =	1.05	t _s = 5.13	m		
	DD OF						
		UNDIDAD DE SO	CAVACION (t t			
	П _S На		 1.81	<u>т</u>			
	IIş	-	1,01				

FUENTE: Propia

TABLA N°28: Resultados de socavación en el puenteConache

	Periodo de Retorno (Años) \rightarrow Diametro medio (D ₅₀) \rightarrow				0 9
		Ancho de Equ	ilibrio (B)		
PUENTE		B =	77.00		
CONACHE					
	SOCA VACION GENERAL	H _s	=	t _s - t	
	SOCA VACION OLIVEIAL	Hs	=	1.81	m
	SOCA VACIÓN LOCAL	ds	=	2.71	m
	SOCA	AVACIÓN TOTAL		4.52	m

FUENTE: Propia

El caso del Puente Cacique, se tiene una socavación local máxima de 2.27 metros y una socavación general de 1.94 metros.

TABLA N°28: Resumen de socavación Local en elPuente Cacique

	PUENTE CA	ACIQUE	
V	=	4.09	
L	=	0.1	
h	=	5.36	
Kf	=	2.15	
Fr	=	0.56	
Fy	=	1.940	
			-

TABLA N°30: Resultados de socavación general en elpuente Cacique

CALCULO DE LA PROFUNDIDAD DE SOCAVACION (Hs)							
METODO DE LI	L. LIST VAN LEVED	IEV					
Suelos Granu	lares - No Cohesivo	s					
$t_s = ((a t^{5/3})/(0.68))$	$D_{m}^{0.28} \beta))^{1/(x+1)}$	(1)	 Perfil antes de la erosión Perfil de equilibrio tras la erosión 				
Suelo	os Cohesivos						
$t_s = ((a t^{5/3})/(0.60))$	$\mathbf{g}_{s}^{1.18} \beta))^{1/(x+1)}$	(2)		В	1		
Donde:							
$\mathbf{t_s}$ = Tirante despues de	e producirse la socavacion	(m)	')	↑ ↑			
\mathbf{t} = Tirante sin socavacion (m)				t	h.		
t = ^{3.52} m			N		1		
$\mathbf{D}_{\mathrm{m}}=$ Diametro Medio de	e las particulas (mm)			NI IU	į		
$D_{\rm m} = 31.48$	mm			2	/		
\mathbf{g}_{s} = Peso Especifico su	elo (Kg/m3)		ĺ,		ŧ		
μ = Coeficiente de Con	traccion						
a = Coefciente >>>>>	,						
$\mathbf{a} = \mathbf{Q}/(\mathbf{t_m}^{5/3}\mathbf{B} \ \boldsymbol{\mu})$							
Tirante medio (t _m)=A/B	Q (Caudal de Diseño)	Coeficiente de Cont N°	raccion (μ) Tabla)1	Ancho Estable	а		
$t_{\rm m} = 3.17$	1,010.02	μ=	0.99	B = 70.00	2.14		
PROFUNCIDAD DE SOCAVA	PROFUNCIDAD DE SOCAVACION PARA SUELOS NO COHESIVO(1) :						
X : Exponente que depende de : \mathbf{D}_{m} pa	ra suelos Granulares No			TIRANTE DE SOCAVACION SUELOS	GRANULARES -		
Cohesivos y \mathbf{g} s para suelos cohesivo	03.>>>>> TABLA N° 03	Coeficiente por Tier (Tabla 1	npo de Retorno : ß N °04)	NO COHESIVOS			
X (Tabla N° 03)	1/x+1			$t_s = ((a t^{5/3})/(0.68 D_m^{0.28}))$	$\beta))^{1/(x+1)}$		
x = 0.31	0.77	$\beta =$	1.05	t _s = 5.50	m		
	PROFU	JNDIDAD DE SO	DCAVACION	(H _s)			
	H _s	=	t,	<u>s</u> - t			
	H _s	=	1.98	m			

	Periodo de Retorr Diametro medio	→	500.00 31.48	
		Ancho de Equi	ilibrio (B)	
PUENTE		B =	70.00]
CACIQUE		$\mathbf{H}_{\mathbf{S}} = \mathbf{t}_{\mathbf{s}} - \mathbf{t}$		t _s - t
	SOCA VACION OENERAL	Hs	=	1.98 m
	SOCA VACIÓN LOCAL	ds	=	1.94 m
	SOCA	AVACIÓN TOTAL		3.92 m

TABLA N°31: Resultados de socavación en el puente Cacique

FUENTE: Propia

Donde para el caso del Puente Santa Rosa, se tiene una socavación local máxima de 1.75 metros y una socavación general de 1.16 metros

V	=	4.01
t	=	6.5
Q	=	1010.02
a	=	1.9
D ₅₀	=	15.19
D ₉₅	=	59.23
Kf	=	1.10
Κø	=	1.00
Kc	=	1.10
Ka	=	0.33
Fr	=	0.50
Fv	=	1.755

FUENTE: Propia

TABLA N°33: Resultados de socavación general en elpuente Santa Rosa

	CALCULO DE LA PROFUNDIDAD DE SOCAVACION (Hs)						
METODO DE LI	LIST VAN LEVED)	IEV					
Suelos Granu	lares - No Cohesivo	s					
$t_s = ((a t^{5/3})/(0.68))$	$D_{m}^{0.28} \beta))^{1/(x+1)}$	(1)	1.	Perfil antes de la erosión			
Suelo	s Cohesivos		2. Perfil de equilibrio tras la erosión				
$t_s = ((a t^{5/3})/(0.60))$	$g_s^{1.18} \beta))^{1/(x+1)}$	(2)		Б	1		
Donde:							
$\mathbf{t_s}$ = Tirante despues de	producirse la socavacion	(m)	')	† †			
t = Tirante sin socava	cion (m)			t	K.		
t = 2.43	m		1		1		
$\mathbf{D}_{\mathrm{m}}=$ Diametro Medio de	las particulas (mm)			NE U	į		
$D_{\rm m} = 15.19$	mm			2	Ý		
\mathbf{g}_{s} = Peso Especifico su	elo (Kg/m3)		ĺ,		/		
μ = Coeficiente de Con	traccion						
a = Coefciente >>>>>							
$a = Q/(t_m^{5/3}B \mu)$					-		
Tirante medio (t _m)= A/B	Q (Caudal de Diseño)	Coeficiente de Cont N°	raccion (μ) Tabla 01	Ancho Estable	a		
t _m = 2.34	1,010.02	μ=	0.99	B = 130.00	1.90		
PROFUNCIDAD DE SOCAVA	PROFUNCIDAD DE SOCAVACION PARA SUELOS NO COHESIVO(1) :						
\mathbf{X} : Exponente que depende de : \mathbf{D}_{m} pa	ra suelos Granulares No			TIRANTE DESOCAVACION SUELOS	GRANULARES		
Cohesivos y gs para suelos cohesivo	s. >>>>> TABLA N° 03	Coeficiente por Tier (Tabla I	npo de Retorno : ß N °04)	NO COHESIVOS			
X (Tabla N° 03)	1/x+1			$t_s = ((a t^{5/3})/(0.68 D_m^{0.28}))$	$(B))^{1/(x+1)}$		
x = 0.33	0.75	ß =	1.05	t _s = 3.59	m		
	PROFU	UNDIDAD DE SO	OCAVACION ((H _S)			
	H _S	=	ts	<u>- t</u>			
	H _s	=	1.16	<u>m</u>			

TABLA N°34: Resultados de socavación en el puenteSanta Rosa

	Periodo de Retorr Diametro medio	$\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$		500.00 15.19		
		Ancho de Equi	librio (B)			
PUENTE		B =	130.00			
SANTA ROSA		Hs	=	t _e - t		
	SOCAVACION GENERAL	Hs	=	1.16 m		
	SOCA VACIÓN LOCAL	ds	=	1.75 m		
	SOCA	VACIÓN TOTAL		2.91 m		

FUENTE: Propia

Donde para el caso del Puente Moche, se tiene una socavación local máxima de 1.37 metros y una socavación general de 1.51 metros.

TABLA N°35: Socavación local en el Puente Moche

V		57
t	= 7	.03
0	= 10	10.02
a	= 1	.29
D ₅₀	= 2	4.6
D ₉₅	= 59	9.03
Kf	= 0).90
Κø	= 1	.00
Kc	= 1	.10
Ka	= 0).38
		55

TABLA N°36: Resultados de socavación general en el puente Moche

TABLA N°37: Resultados de socavación en el puente Moche

	Periodo de Retorr Diametro medio	$\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$		500.0 24.60	0 D
		Ancho de Equil	ibrio (B)		
PUENTE		B =	90.00		
MOCHE		Hs	=	t _s - t	
	SOCA VACION GENERAL	Hs	=	1.51	m
	SOCA VACIÓN LOCAL	ds	=	1.37	m
	SOCA	VACIÓN TOTAL		2.88	m

FUENTE: Propia

4.3. Docimasia de hipótesis

Hipótesis nula (H0): El cálculo de socavación local depende significativamente del software HEC-RAS bajo un modelo bidimensional, no da los resultados entre 1.20m a 2.80 m.

Hipótesis alterna (H1): El cálculo de socavación local depende significativamente del software HEC-RAS bajo un modelo bidimensional, sale entre 1.20m a 2.80 m.

4.3.1. Interpretación de la Hipótesis nula (H0)

La hipótesis nula, representada como Ho, es una afirmación provisional que se acepta como verdadera y que se someterá a prueba experimental para validar su veracidad. Los resultados de estos experimentos determinarán si debemos mantenerla como válida o rechazarla. Cada hipótesis nula Ho viene acompañada de una hipótesis alternativa.

En el desarrollo de nuestra investigación se concluyó que los resultados indicados en las Tablas N° 28, 31, 34 y 37 nos indican resultados entre 1.37 a 2.71.

TABLA N°38: Resumer	n de resultados	s de socavación i	local
---------------------	-----------------	-------------------	-------

CALCULO DE SOCAVACIÓN LOCAL		
PUENTE MOCHE	1.37 m	
PUENTE SANTA ROSA	1.75 m	
PUENTE CACIQUE	1.94 m	
PUENTE CONACHE	2.71 m	

FUENTE: Propia

Dándonos un resultado de estimación de 0% de confiabilidad con la hipótesis nula propuesta.

4.3.2. Interpretación de la Hipótesis Alterna (H1)

La hipótesis alternativa se le denomina como H1, esta hipótesis es la que llega a aceptarse en el momento en que la hipótesis denominada nula Ho es rechazada. Esta hipótesis alternativa H1 vendría a ser una suposición totalmente contraria a la de la hipótesis nula. La prueba de una hipótesis estadística es un proceso que nos conduce a tomar la decisión de aceptar o rechazar la hipótesis nula Ho en vez de la hipótesis H1, y en base a los resultados de una muestra aleatoria seleccionada de la población en estudio. En el desarrollo de nuestra investigación se concluyó que los resultados indicados en las Tablas N° 28, 31, 34 y 37 nos indican resultados entre 1.37 a 2.71.

CALCULO DE SOCAVACIÓN LOCAL		
PUENTE MOCHE	1.37 m	
PUENTE SANTA ROSA	1.75 m	
PUENTE CACIQUE	1.94 m	
PUENTE CONACHE	2.71 m	

TABLA Nº3	9: Resumen	de	resultados	de	socavación	local
IADLA IN J		uc .	resultatos	ue	Socavacion	locar

Dándonos un resultado de estimación de 98 % de aproximación con la hipótesis propuesta.

4.3.3. Interpretación de hipótesis propuestos

TABLA N°40: Cuadro estadísticos de p	orueba
--------------------------------------	--------

Hipótesis nula (H0)	0%
Hipótesis alterna (H1)	98%
Sig asintótica	0.005

FUENTE: Propia

Por lo que se toma la hipótesis alterna como correcta ya que es la que más porcentaje de aprobación en comparación de la hipótesis nula.

Por lo que partiendo de la hipótesis de que la socavación en las subestructuras de los Puentes Cacique, Conache, Santa Rosa y Moche alcanza una profundidad que oscila entre 1.20 y 2.80 metros, hemos constatado que los valores obtenidos mediante los modelos numéricos se acercan considerablemente a los resultados propuestos y obtenidos a través de métodos empíricos. Cabe resaltar que mediante el software utilizado se realizó un modelado en 2D con la finalidad de evaluar y obtener valores exactos, para ser empleados en las fórmulas empíricas y así concluir con los datos de socavación en las subestructuras de los puentes a tratar.

FUENTE: Propia

V. DISCUSIÓN DE LOS RESULTADOS

- La socavación local de los puentes a tratar se dan diferente para cada uno de los pilares, incluso podemos notar que el pilar central es el más afectado en el puente Conache con una socavación de 2.71m, el puente Santa Rosa con una socavación de 1.75m y el puente moche con una socavación de 1.37 m, la cual hace que cree una cavidad importante alrededor de este pilar, no obstante los puentes tienen una profundidad regularmente entre un intervalo de 4 a 6 metros, pero aun así no debemos dejar expuesta la cimentación que se tiene del puente a tratar o hasta en el peor de los casos llega a arrastrarla en dirección a la corriente, generando así una catástrofe
- El puente cacique no cuenta con pilar central y por lo tanto se va a evaluar la socavación local en estribos mediante el método científico que más se ajusta y este es de 1.94m
- Al generar el cálculo del caudal máximo, se han tenido en consideración los registros de la estación más cercana, que en este caso se ha tomado de la estación Quiriuac que se encuentra aguas arriba del puente Conache, la cual nos brinda una noción más precisa de los caudales que se han registrado a lo largo de los últimos años y a partir de estos valores, ya podremos complementar una mejor proyección, aun asi existe un margen de error, por lo que finalmente se va a realizar un análisis estadístico con los caudales que se están evaluando y se ajustaran a la Prueba Bondad (Kolgmorov Smirnov) y a talvez de ello se proyectó un caudal para un periodo de T=500 años, teniendo como resultado un caudal de Q= 110.02m3/s
- El tirante que se logró alcanzar en el cauce del rio moche en los cuatro puentes: Moche, Santa Rosa, Cacique y Conache se tiene en un rango de 5.36 m y 7.60 m el cual en algunas zonas se puede observar desbordamiento a lo largo del rio moche
- Las velocidades que se tiene del tramo estudiado, incluyendo los cuatro puentes: Moche, Santa Rosa, Cacique y Conache, se encuentra entre 4.01 m/s y 5.31 m/s, estos datos corresponden al rango que fue evaluado al pie de las pilas de los puentes en consideración.

CONCLUSIONES

- En nuestra zona de estudio se realizó la superficie topográfica donde se analizó zonas aguas arriba y aguas debajo de cada uno de los puentes, en la que se pudo identificar sectores críticos calculando la pendiente de 0.4%
- A partir de la mecánica de suelos, se observó que el suelo presente en el lecho del río Moche en todo el largo de los puentes a considerar se encuentra conformado por una grava pobremente gradada con arena GP y de grava bien graduada con arena GW. A través de este estudio también se obtuvo los también parámetros necesarios para realizar el cálculo de socavación local como son el D50: 27.89mm, 31.48mm, 15.19mm y 24.06 mm de y el D95: de 60.13mm, 60.26mm,59.23mm y 59.03mm.
- A partir del estudio hidrológico se tiene un caudal 1010.02 m3/s para un periodo de retorno de 500 años para el estudio de socavación, esto se dio en base a la prueba bondad de ajuste de Kolgomorov Smirnov y nos menciona Log-Pearson III es la más apta y adecuada a utilizar y esta es respaldada por Manual de Hidrología, Hidráulica y Drenaje, del Ministerio de Transporte y Comunicaciones.
- Mediante la herramienta HEC-RAS, fue posible analizar y evaluar el grado que presenta la socavación local en los puentes a través de la velocidad y tirante ante una avenida máxima que se presenta en los tramos de los puentes: Conache, Cacique, Santa Rosa y Moche, a lo largo del rio moche, los valores de flujo que se obtienen de velocidad y profundidad de tirante máximos son de 5.31m/s, 4.09m/s, 4.01m/s, 4.57m/s y 7.60m, 5.36m, 6.10m, 7.03m respectivamente, siendo estos datos importantes para la calcular la profundidad de socavación local.
- Se estimó una profundidad de socavación en los cuatro puentes los cuales son: 4.52 en el puente Conache, 3.92m en el puente Cacique, 2.91m en el puente Santa Rosa y 2.88m en el puente Moche, siendo estos valores considerables al momento de evaluar la profundidad de la cimentación.

RECOMENDACIONES

- Se recomienda que las muestras del suelo estén ubicadas en zonas que presenten mayor problema de socavación y por lo tanto que estas muestras no tengan ninguna alteración para lograr un mayor y buen reconocimiento del terreno de estudio.
- Se recomienda tener la correcta geometría de los pilares de los puentes a tratar, para una mejor aproximación en los resultados obtenidos bajo el modelo bidimensional.
- Se recomienda realizar un constante estudio para analizar más a profundidad la socavación local en los diversos puentes a lo largo del rio moche, dentro de un determinado tiempo para que los resultados sean comparados con esta investigación
- Se recomienda contar con diferentes estaciones pluviométricas, para poder hallar datos que tengan consistencia y con esto lograr una comparación de dichos caudales con acertados procesamientos de evolución de la lluvia a escorrentía

BIBLIOGRAFÍA

Muñoz, E. (2002). ESTUDIO DE LAS CAUSAS DEL COLAPSO DE ALGUNOS PUENTES EN COLOMBIA. Colombia: Universidad de Bogotá.

Martinez, A. &. (2007). ¿POR QUE FALLAN LOS PUENTES EN EL PERU? Perú: UNIVERSIDAD NACIONAL DE INGENIERÍA.

Callirgos, L., & Mendez, D. (2015). GESTIÓN INTEGRAL PARA EL TRATAMIENTO DE RESIDUOS SÓLIDOS EN EL DISTRITO DE TRUJILLO PROVINCIA TRUJILLO. LA LIBERTAD. Trujillo: UPAO.

Guillermo, F. (2010). MINISTERIO DE DESARROLLO AGRARIO Y RIEGO. Obtenido de El río Moche: Problemática y perspectivas de recuperación: https://hdl.handle.net/20.500.12543/4450

Carlos Reyez & Juan Reyes (2020). DETERMINACIÓN DE LA SOCAVACIÓN PARA LAS PILAS DEL PUENTE LOCALIZADO EN EL MUNICIPIO DE RIOSUCIO CALDAS. Bogotá, Colombia: UNIVERSIDAD CATÓLICA DE COLOMBIA

Bishwajit Singh, Tamphasana Devi, & Kumar. (2020). The local scour around bridge piers—a review of remedial techniques. India: Revista ISH de Ingeniería Hidráulica.

Encalada Rojas & Mario Kevin. (2022). Evaluación de la Socavación Local en los pilares de concreto del Puente Ramis Puno 2020". Lima, Perú: Universidad Nacional Mayor de San Marcos Aguinaga Ramírez & Higeiny Adubel (2019). Estudio de la socavación en los estribos del puente Cascajal - Olmos ante máximas avenidas. Pimentel, Perú: UNIVERSIDAD SEÑOR DE SIPAN.

Armas Meléndez, M. (2021). ANÁLISIS DE LA SOCAVACIÓN LOCAL EN LOS PILARES DEL PUENTE MOCHE UBICADO EN LA CIUDAD DE TRUJILLO MEDIANTE SIMULACIÓN HIDRÁULICA EN HEC-RAS. Trujillo, Perú: Universidad Privada del Norte.

Araujo Vazallo, A., & Perez Marin, D. (2019). EFECTO DE LA DESCOLMATACIÓN DEL RÍO CHICAMA AGUAS ARRIBA DEL PUENTE VICTORIA EN LA SOCAVACIÓN DE SUS PILARES. Trujillo, Perú: UNIVERSIDAD PRIVADA ANTENOR ORREGO.

Felicísimo, A. (1994). Modelos digitales del terreno: Introducción y aplicaciones en las ciencias ambientales. España: Pentalfa.

Arturo Rocha (2009). LA MORFOLOGIA FLUVIAL Y SU INCIDENCIA EN LA ESTABILIDAD DE LAS OBRAS VIALES. Lima, Perú: INSTITUTO DE LA CONSTRUCCION Y GERENCIA.

Farfán, J., & Villena, K. (2021). Evaluación de máximas avenidas para la estimación de áreas inundables en la subcuenca Pacherrez-cuenca Chancay-Lambayeque. Lambayeque - Perú: Universidad Nacional Pedro Ruiz Gallo.

Nava Olguin, M. G. (2013). COMPARATIVA DEL ESTUDIO DE SOCAVACIÓN DEL PUENTE "TEAPA", EL REALIZADO EN 1986 Y SU COMPORTAMIENTO EN ESTE AÑO. MÉXICO, D. F: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Campa Rodriguez, A., & Astorga Bustillos, F. R. (2015). Métodos para el cálculo de la socavación local en pilas de puentes. Chihuahua, México: TECNOCIENCIA Chihuahua.

> Vide, J. (2003). INGENIERIA DE RIOS. Barcelona, España: UPC.

Nilo Quispe Ccahuin (2019), MODELAMIENTO HIDROLÓGICO E HIDRÁULICO PARA CONTROL DE SOCAVACIÓN DE ESTRIBOS DEL PUENTE MARITA DE LA CARRETERA SANCOS SACCSAMARCA, PROVINCIA DE HUANCA SANCOS – AYACUCHO, Ayacucho – Perú: Universidad Nacional de San Cristóbal de Humanga.

ANA. (2020). Resolución Jefatural N°151-2020-ANA. Memorándum N°1614-2020-ANA-OPP/UCI. Lima, Perú: Republica del Perú.

➤ Te Chow, V. (1994). HIDRAULICA DE CANALES ABIERTOS. Bogota, Colombia: Nomos S.A.

Villón Béjar, M. (2007). HIDROLOGÍA ESTADISTICA. Lima, Perú: EDICIONES VILLÓN.

ANEXOS

ANEXO 1: Resolución y permisos

ANEXO 1.1: Solicitud de revisión de proyecto de tesis.

Declaración Jurada de Compromiso de Asesor

Juan Pablo García Rivera, docente del Programa de Estudio de Ingeniería Civil identificado con ID 000029987, declaro bajo juramento que estoy debidamente colegiado y habilitado con registro CIP N° 68614 y me comprometo a asesorar el proyecto de tesis titulado "Estudio de la socavación local en las subestructuras de los puentes Conache, Casique, Santa Rosa y Moche - Trujillo 2023", cuyos autores son los bachilleres Gabriel Alessandro Gutierrez Zapata y Alejandra Lucía Cueva Vazallo; hasta la sustentación y defensa de la misma.

Trujillo, 5 de Junio del 2023.

Ms. Juan Pablo García Rivera Docente asesor Registro CIP: 68614

ANEXO 1.2: Declaración jurada de compromiso de asesor.

UNVERSION OF PRIVADIA ANTENON ORREGO	FACULTAD D Programa de l	E INGENIERÍA Estudio de Ingeniería Civ	il		
				Trujillo, 09 de junio de 2023	
OFICIO I	Nº 0861-2023-INCI-FI-	UPAO			
Señor Do ANGEL F Decano <u>Presente</u>	octor REDY ALANOCA QUENT de la Facultad de Inger 2	A niería UPAO			
		ASUM	ITO: PROPU Y JURAI	ESTA PARA DESIGNACIÓN DE ASESOR DO DE PROYECTO DE TESIS	
De mi es	pecial consideración:				
Mediant designac SUBESTR a: CUEV/ la emisió	e el presente reciba r ión del Jurado Evaluad RUCTURAS DE LOS PUEN A VAZALLO, ALEJANDRA n de la Resolución respe	ni cordial saludo y, a la vez, ele or y Asesor del proyecto de tesis ITES CONACHE, CASIQUE, SANTA R A LUCIA y GUTIERREZ ZAPATA, GA ectiva, de ser conforme:	vo a su sup "ESTUDIO I OSA Y MOC BRIEL ALES	perior Despacho, la propuesta para DE LA SOCAVACIÓN LOCAL EN LAS HE - TRUJILLO 2023", perteneciente SANDRO a fin que se sirva disponer	
Línea de	investigación:HIDRAULI		CID		٦
	Asosor		69614		_
	Presidente	GUILLERMO CABANILLAS	17902	HIDRAULICA	
JURA	Secretario	FIDEL SAGASTEGUI	32720	HIDRAULICA	_
	Vocal	LUCIO MEDINA CARBAJAL	76695	GESTION DE PROYECTOS DE CONSTRUCCIÓN	
	Accesitario	RICARDO NARVAEZ ARANDA	58776	HIDRAULICA	
Agrade	ciéndole su atención al	Atentamente, Martin Mar	vec Ben	ararle mi estima.	
Cc. Archivo Sarita Orbe	goso		`		
Av. América Sur 314 Teléfono (+51) [044 anexos: 2242 Trujillo - Perú	15 Monserrate 4] 604444				

ANEXO 1.3: Oficio para designación de propuesta de jurado.

UPA	C Facultad de Ingeniería	a
		Trujillo, 16 de junio del 2023
RESOLUCIÓ VISTO, el C CIVIL, sobra presentado GABRIEL A	DN N° 1080-2023-FI-UPAO FICIO N° 0861-2023-INCI-FI-UPAO, del Di NOMBRAMIENTO DE ASESOR y DESI por los Bachilleres: CUEVA VAZALLO, LESSANDRO, y;	rector del Programa de Estudio de INGENIERÍA GNACIÓN DE JURADO del Proyecto de Tesis ALEJANDRA LUCIA y GUTIERREZ ZAPATA,
CONSIDER	ANDO:	
Que, el Bao respectiva re	chiller en mención presenta el Proyecto de evisión, adjuntando los requisitos tanto acadé	e Tesis y propuesta de docente asesor para la micos como administrativos, y;
Que, con el propone la d la línea de ir	OFICIO N° 0861-2023-INCI-FI-UPAO, la Dire esignación de asesor y jurado del Proyecto o vestigación correspondiente;	ección del Programa de Estudio de Ingeniería Civil le Tesis hasta la sustentación de la misma, según
Que, de acu de Ingeniería	erdo con el Reglamento de Grados y Títulos a considera apropiado aceptar la propuesta d	de Pregrado de nuestra Universidad, la Facultad el Programa de Estudio de Ingeniería Civil y;
Estando de a las atribucio	acuerdo al Estatuto de la Universidad, al Reg nes conferidas a éste Despacho; °	lamento de Grados y Títulos de la Universidad y a
SE RESUEL	VE:	
PRIMERO:	NOMBRAR como DOCENTE ASESOR de misma, al docente: Ms. JUAN PABLO GAR	el Proyecto de Tesis hasta la sustentación de la CIA RIVERA, con CIP Nº 68614.
SEGUNDO:	DESIGNAR como MIEMBROS DEL JURA es: "ESTUDIO DE LA SOCAVACIÓN LI PUENTES CONACHE, CASIQUE, SAN perteneciente a la Línea de Investigación: H a los señores docentes: Ms. GUILLERMO CABANILLAS QUIROZ Ms. FIDEL SAGASTEGUI PLASENCIA	DO del Proyecto de Tesis, cuyo título propuesto OCAL EN LAS SUBESTRUCTURAS DE LOS ITA ROSA Y MOCHE - TRUJILLO 2023", HIDRAULICA, hasta la sustentación de la misma, CIP N° 17902 PRESIDENTE CIP N° 32720 SECRETARIO
	Ms. LUCIO MEDINA CARBAJAL Ms. RICARDO NARVAEZ ARANDA	CIP N° 76695 VOCAL CIP N° 58776 ACCESITARIO
TERCERO:	ESTABLECER que el título del Proyecto respectiva del jurado, respetando siempre la	de Tesis podría cambiar según la evaluación I línea de investigación.
C. Copia Marchonic Programa de Estudi <i>e</i> AAQU® Katho	SE, COMUNÍQUESE Y ARCHÍVESE.	ngel Alangça Quenta DECANO
UNIVERSIDAD PRIVADA ANTI www.upao.edu.pe	ENOR ORREGO	Av.América Sur 3145 Monserrate Trujillo - Perú Tull:[+51][044]604444 anxxo 127 Fax:282930

ANEXO 1.4: Oficio para designación de jurado.

ANEXO 1.5: Aprobación e inscripción de proyecto de tesis.

ANEXO 1.6: Resolución emitida por facultad para comenzar el trámite del Informe

ANEXO 2: Resultados y ensayos

UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA CIVIL				AO			
	MÉTODO DI	E ENSAYO ESTÁN	ASTN	ÁLISIS DE TAMAÑO 1 D - 422	DE PARTÍCULAS DE	SUELOS	
PROYECTO	ESTUDIO DE I	LA SOCAVACIÓN LO	OCAL EN LAS SUBEST	RUCTURAS DE LOS PUE 2023	ENTES CONACHE, CACIQ	UE, SANTA ROSA Y MOC	HE - TRUJILLO
SOLICITANTE - CUEVA VAZALLO, ALEJANDRA LUCIA - GUTIERREZ ZAPATA, GABRIEL ALESSANDRO UBICACIÓN : - MOCHE - TRUJILLO - LA LIBERTAD - "PUENTE CONACI FECHA : 12/03/2024 COORDENADAS : LATITUD (8° 6'38.83"S) / LONGITUD (78°56'47.65°O) MUESTRA : C-1 / MUESTRA 1 / (MUESTRA EXTRAIDA Y TRASPORT.		CHE" TADA POR EL SOLICITAT	NTE)				
D	ESCRIPCIÓN DI	E LA MUESTRA			CLASIFICACIÓN DE	LA MUESTRA	
Peso despues de	ESCRIPCION	5046 10	UNIDADES	4	Clas. SUCS :	GW	
Peso tamiz	ado:	4929.20	g		OBSERVACI	ONES	
Pérdida de la	avado:	116.90	g	м	uestra tomada e identific	ada nor solicitante	
% de finos que pasa	tamiz N°200:	2.32	%	IVI	uestra tomada e identific	ada por sonenance.	
		MALLA	O TAMIZ	MATERIA	L RETENIDO		
TIPOS DE S	UFLO		ARERTURA	PESO RETENIDO	PORCENTAJE	%RETENIDO ACUMULADO (R)	% QUE PASA (P)
TH OS DE S	CELO	ASTM	(mm)		RETENIDO (r)	(94)	(94)
		3"	75.000	(g) 0.00	0.00	0.00	(%)
		2 1/2"	62.500	0.00	0.00	0.00	100.00
	GRU	2"	50.000	1605.00	28.91	28.91	71.09
G	JES/	1 1/2"	37.500	905.00	16.30	45.21	54.79
R	-	1"	25.000	364.00	6.56	51.77	48.23
v v		3/4"	19.000	437.00	7.87	59.64	40.36
Α		1/2"	12.500	360.80	6.50	66.14	33.86
	FIN	3/8"	9.500	132.10	2.38	68.52	31.48
	IA	1/4"	6.250	167.70	3.02	71.54	28.46
		N° 4	4.750	111.80	2.01	73.55	26.45
	ଲୁ	N°6	3.350	106.70	1.92	75.47	24.53
	UES	N°8	2.360	81.30	1.46	76.94	23.06
	iΑ	N°10	2.000	40.70	0.73	77.67	22.33
А	-	N°16	1.180	81.00	1.46	79.13	20.87
R	MED	N°20	0.850	76.20	1.37	80.50	19.50
E	IA	N°30	0.600	127.00	2.29	82.79	17.21
A		N°40	0.425	157.50	2.84	85.63	14.37
		N°80	0.177	213.40	4.58	94.05	5.95
	INA	N°100	0.150	122.00	2.20	96.25	3.75
		N° 200	0.075	91.50	1.65	97.89	2.11
FINO		< N° 200	PLATO	116.90	2.11	100.00	0.00
	SUMAT	ORIA		5551.70	100.00		
DIAMET	ROS			CURVA GRANULO	OMÉTRICA		
D50	27.89	100.00	GRAVAS		ARENAS	LIMOS Y AR	CILLAS
D60	41.1117	90.00					
D30	7.7376	80.00					
D10	0.2822	70.00					
D95	145 667	S 60.00	D60-41.11				
Cc	5.160	50.00					
Descripción de l	amuestra :	40.00 30.00 20.00 10.00		D30 = 7.74	D10-6.25		
Grava bien gr	radada	0.00	10.00	0	1.000	0.100	0.010
			20.00	ABERTURA	DE TAMIZ (mm)		
Total Control of Contr							

ANEXO 2.1: Estudio de granulometría de la C-1

ANEXO 2.2: Estudio de granulometría de la C-2

UNIVERSIDAD PRIVADA ANTENOR ORREGO
FACULTAD DE INGENIERIA
ESCUELA DE INGENIERIA CIVIL

		-
	MÉTODO DE ENSAYO ESTÁNDAR PARA EL ANÁLISIS DE TAMAÑO DE PARTÍCULAS DE SUELOS	
	ASTM D - 422	
PROYECTO	ESTUDIO DE LA SOCAVACIÓN LOCAL EN LAS SUBESTRUCTURAS DE LOS PUENTES CONACHE, CACIQUE, SANTA ROSA Y MOCHE - TRU 2023	JJILLO
SOLICITANTE	- CUEVA VAZALLO, ALEJANDRA LUCIA : - GUTIERREZ ZAPATA, GABRIEL ALESSANDRO	
UBICACIÓN	: - MOCHE - TRUJILLO - LA LIBERTAD - "PUENTE SANTA ROSA"	
FECHA	: 12/03/2024	
COORDENADAS	: LATITUD (8° 7'39.33"S) / LONGITUD (78°5947.80"O)	
MUESTRA	: C-3 / MUESTRA 1 / (MUESTRA EXTRAIDA Y TRASPORTADA POR EL SOLICITANTE)	
CALICATA	: PROFUNDIDAD: 0.00 m - 085 m	

DESCRIPCIÓN DE LA MUESTRA			CLASIFICACIÓN DE LA MUESTRA
DESCRIPCIÓN UNIDADES		UNIDADES	Clas. SUCS : GW
Peso despues del secado:	5424.50	g	
Peso tamizado:	5343.10	g	OBSERVACIONES
Pérdida de lavado:	81.40	g	Muastra tomada e identificada por solicitante
% de finos que pasa tamiz N°200:	1.50	%	Muestra tomada e identificada por sonenante.

			MALLA O TAMIZ		MATERIAL RETENIDO		% OUE
TIPOS DE SUELO		ASTM	ABERTURA	PESO RETENIDO	PORCENTAJE RETENIDO (r)	ACUMULADO (R)	PASA (P)
			(mm)	(g)	(%)	(%)	(%)
		3"	75.000	0.00	0.00	0.00	100.00
	0	2 1/2"	62.500	0.00	0.00	0.00	100.00
	GRU	2"	50.000	1080.00	20.74	20.74	79.26
G	JES/	1 1/2"	37.500	700.00	13.44	34.19	65.81
R	-	1"	25.000	370.00	7.11	41.30	58.70
A		3/4"	19.000	250.00	4.80	46.10	53.90
A		1/2"	12.500	380.00	7.30	53.40	46.60
	E	3/8"	9.500	350.00	6.72	60.12	39.88
	AN	1/4"	6.250	388.00	7.45	67.57	32.43
		N° 4	4.750	290.00	5.57	73.14	26.86
	G	N°6	3.350	160.00	3.07	76.21	23.79
	RUE	N°8	2.360	156.00	3.00	79.21	20.79
	SA	N°10	2.000	165.00	3.17	82.38	17.62
		N°16	1.180	180.00	3.46	85.84	14.16
R	ME	N°20	0.850	110.00	2.11	87.95	12.05
Е	DIA	N°30	0.600	108.50	2.08	90.03	9.97
N		N°40	0.425	86.80	1.67	91.70	8.30
Α		N°50	0.300	112.00	2.15	93.85	6.15
	FIN	N°80	0.177	124.80	2.40	96.25	3.75
	AN	N°100	0.150	32.50	0.62	96.87	3.13
		N° 200	0.075	81.40	1.56	98.44	1.56
FINO		< N° 200	PLATO	81.40	1.56	100.00	0.00

ANEXO 2.3: Estudio de granulometría de la C-3

ANEXO 2.4: Estudio de granulometría de la C-4

ANEXO 3: Resultados del cálculo de socavación de forma empírica.

	ι	NIVERSIDAD PRIVADA ANT	ENOR ORREGO	and the second second
TESIS: Estu	dio de la socav	ación local en las subestructuras d Moche - Trujillo 20	e los puentes Conache, Casique)23	e, Santa Rosa y
Flahamadaa	- Cueva V	azallo Alejandra Lucia	Ubicación	: Rio Moche
Elaborado:	- Gutierrez	Zapata Gabriel Alessandro	PUENTE:	PUENTE CONACHE
	V. CRITERI	OS PARA ADOPTAR K _a		
		$D_{50} < 2 \text{ mm o } D_{95} < 20 \text{ mm}$	K _a = 1.0	
		$\mathbf{D}_{50} \ge 2 \text{ mm y } \mathbf{D}_{95} \ge 20 \text{ mm}$	$K_a = 0.4 (V_R)^{0.15}$]
	Con res	pecto al segundo caso:		
		$\mathbf{K}_{\mathbf{a}} = 0.$	$4 (V_R)^{0.15}$	
	* D(onde V _R :		
		$V_R = \left[\frac{V_1}{V_{cDS}}\right]$	$\frac{-V_{i_cD50}}{0-V_{i_cD95}} \right] > 0$	
	* A	emas V. p. :		
	110	ichids VicDx ·		
		$V_{icDx} = 0.64$	$45 \left(\frac{D_x}{a}\right)^{0.053} V_{cDx}$	
	* Pc	r ultimo \mathbf{V}_{cDx} : $V_{cDx} = 6.$	$19h^{\frac{1}{6}}D_{x}^{\frac{1}{3}}$	
	Donde:			
	Vp	 Relación de velocidad 		
	V ₁	 Velocidad de aproximación inmediata 	mente aguas arriba del pilar	
	V _{icDx}	 Velocidad de aproximación requerida las partículas de sedimento (m/s) 	para iniciar socavación en el pilar par	a el tamaño Dx de
	V _{icD95}	 Velocidad de aproximación requerida las partículas de sedimento (m/s). 	para iniciar socavación en el pilar par	a el tamaño D95 de
	V _{icD50}	 Velocidad de aproximación requerida las partículas de sedimento (m/s). 	para iniciar socavación en el pilar par	a el tamaño D50 de
	V _{cDx}	 Velocidad crítica para iniciar movimi (m/s). 	ento de partículas de tamaño Dx del m	aterial del lecho
	V _{cD50}	 Velocidad crítica para iniciar movimi (m/s) 	ento de partículas de tamaño D50 del 1	naterial del lecho
	a	Ancho del pilar (m).		
	D _x	 Tamaño de la partícula de tal manera 	que el x por ciento del material del lec	ho más fino.
	h	 Profundidad del agua aguas arriba del 	pilar sin incluir la socavación local (n	n)

TESIS: Estuc		ERSIDAD I	KIVADA ANI	LIVOR ORRES	30	1 bes
	lio de la socavación	local en las Mo	subestructuras de che - Trujillo 20	e los puentes Co 23	onache, Casique, Santa Rosa y	
Isharaday	- Cueva Vazallo	Alejandra L	ucia		Ubicación: Rio Moche	
Jabol auo.	- Gutierrez Zapa	ta Gabriel A	lessandro	PUE	NTE: PUENTE	CONACHE
	III. FACTOR DE C MÉTODO DE CSU Para hallar el a	C ORRECC U angulo de ata	IÓN POR EL Á aque nos basamo	NGULO DE A	.TAQUE DEL FLUJO ΚΦ e tabla:	
		Angulo de	T	l/a		
		ataque	4	8	12	
		0°	1.00	1.00	1.00	
		15°	1.50	2.00	2.50	
		30°	2.00	2.75	3.50	
		45°	2.30	3.30	4.30	
		90°	2.50	3.90	5.00	
	$\mathbf{a} =$ $\mathbf{b} =$ $\mathbf{a} =$	Se determi Angulo de	na como la longi ataque	tud de la pila ex	xpresada en (m).	
	a = l = Ø = * A excepción que s como maximos, ado Calculando:	Se determi Se determi Angulo de si l/a es may emas se usa	na como la longi ataque for que 12, se us la siguiente form $K_{\phi} = \left(\cos\phi \cdot \frac{1}{2}\right)$	tud de la pila ex an los valores o mula: $+\frac{i}{a}sen\phi$	xpresada en (m). correspodientes a l/a = 12	
ſ	a = l = Ø = * A excepción que s como maximos, ade Calculando: a (Ancho de	Se determi Se determi Angulo de si l/a es may emas se usa	na como la longi ataque vor que 12, se us la siguiente forn $K_{\phi} = \left(\cos\phi \cdot \frac{1}{2}\right)$	tud de la pila ex an los valores o mula: $+\frac{l}{a}sen\phi$ ^{0.65} nd de pila)	xpresada en (m). correspodientes a l/a = 12 Ø (Angulo de ataque)	1
[a = l = Ø = * A excepción que s como maximos, ado Calculando: a (Ancho de 1	Se determi Se determi Angulo de si l/a es may emas se usa	na como la longi ataque or que 12, se us la siguiente form $K_{\phi} = \left(\cos\phi\right)$ l (Longitu 2	tud de la pila ex an los valores o mula: $+\frac{l}{a}sen\phi$ ^{0.65} id de pila) .6	xpresada en (m). correspodientes a l/a = 12 Ø (Angulo de ataque) 0]
	a = l = Ø = * A excepción que s como maximos, ade Calculando: a (Ancho de 1	Se determi Se determi Angulo de si l/a es may emas se usa	na como la longi ataque for que 12, se us la siguiente form $K_{\phi} = \left(\cos\phi\right)$ l (Longitu 2.6	tud de la pila ex an los valores o mula: $+\frac{l}{a}sen\phi$ ^{0.65} id de pila) .6 \Leftrightarrow	xpresada en (m). correspodientes a l/a = 12 Ø (Angulo de ataque) 0 3]
	a = l = Ø = * A excepción que s como maximos, ado Calculando: 1 IV. FACTOR DE C	se determi Se determi Angulo de si l/a es may emas se usa pila) l/a =	na como la longi ataque for que 12, se us la siguiente form $K_{\phi} = (\cos \phi)^2$ 1 (Longitu 2.6 K $\phi =$ IÓN POR LA F	tud de la pila ex an los valores o mula: $+\frac{l}{a}sen\phi$ ^{0.65} id de pila) .6 \Leftrightarrow 1 ORMA DEL L	xpresada en (m). correspodientes a l/a = 12 Ø (Angulo de ataque) 0 3 J. ECHO Kc]
	a = l = Ø = * A excepción que s como maximos, ado Calculando: 1 IV. FACTOR DE C Condición del	se determi Se determi Angulo de si l/a es may emas se usa pila) l/a =	na como la longi ataque for que 12, se us la siguiente form $K_{\phi} = (\cos \phi)^2$ 1 (Longitu 2.6 K $\phi =$ IÓN POR LA F	tud de la pila ex an los valores o mula: $+\frac{l}{a}sen\phi$ ^{0.65} id de pila) .6 \Leftrightarrow 1 ORMA DEL L Kc	xpresada en (m). correspodientes a l/a = 12 Ø (Angulo de ataque) 0 3 .ECHO Kc]
	a = l = Ø = * A excepción que s como maximos, ado Calculando: a (Ancho de 1 IV. FACTOR DE C Condición del Socewación er er	se determi Se determi Angulo de si l/a es may emas se usa pila) l/a =	na como la longi ataque for que 12, se us la siguiente form $K_{\phi} = (\cos \phi)$ 1 (Longitu 2.6 K $\phi =$ IÓN POR LA F Altura de la duna H [pies]	tud de la pila ex an los valores o mula: $+\frac{i}{a}sen\phi$ ^{0.65} id de pila) .6 \Leftrightarrow 1 ORMA DEL L Kc	xpresada en (m). correspodientes a l/a = 12 Ø (Angulo de ataque) 0 3 LECHO Kc Ke = 1.1]
	a = l = Ø = * A excepción que s como maximos, ado Calculando: a (Ancho de 1 IV. FACTOR DE C Condición del Socavación en ag	se determi Se determi Angulo de si l/a es may emas se usa pila) l/a = CORRECCI	na como la longi ataque for que 12, se us la siguiente form $K_{\phi} = (\cos \phi)$ 1 (Longitu 2.6 K $\phi =$ IÓN POR LA F Altura de la duna H [pies] N/A	tud de la pila ex an los valores o mula: $+\frac{i}{a}sen\phi$ ^{0.65} d de pila) .6 \Leftrightarrow 1 ORMA DEL L Kc 1.1	xpresada en (m). correspodientes a l/a = 12 Ø (Angulo de ataque) 0 3 LECHO Kc Kc = 1.1]
	a = l = Ø = * A excepción que s como maximos, ado Calculando: a (Ancho de 1 IV. FACTOR DE C Condición del Socavación en ag Lecho plano y a	se determi Se determi Angulo de si l/a es may emas se usa pila) l/a = CORRECCI l lecho guas claras ntidunas	na como la longi ataque for que 12, se us la siguiente form $K_{\phi} = (\cos \phi)$ 1 (Longitu 2.6 K $\phi =$ IÓN POR LA F Altura de la duna H [pies] N/A N/A	tud de la pila ex an los valores o mula: $+\frac{i}{a}sen\phi$ ^{0.45} d de pila) .6 \Leftrightarrow 1 ORMA DEL L Kc 1.1 1.1	xpresada en (m). correspodientes a l/a = 12 Ø (Angulo de ataque) 0 3 LECHO Kc Ke = 1.1 Se recomienda usar un valor]
	a = l = Ø = * A excepción que s como maximos, ado Calculando: a (Ancho de l IV. FACTOR DE C Condición del Socavación en ag Lecho plano y a Dunas pequi	se determi Se determi Angulo de si l/a es may emas se usa pila) l/a = CORRECCI l lecho guas claras intidunas eñas	na como la longi ataque for que 12, se us la siguiente form $K_{\phi} = (\cos \phi)$ 1 (Longitu 2.6 K $\phi =$ IÓN POR LA F Altura de la duna H [pies] N/A N/A 2< H <10	tud de la pila ex an los valores o mula: $+\frac{i}{a}sen\phi$ ^{0.65} ad de pila) .6 \Rightarrow 1 ORMA DEL L Kc 1.1 1.1 1.1 1.1	xpresada en (m). correspodientes a l/a = 12 Ø (Angulo de ataque) 0 3 JECHO Kc Kc = 1.1 Se recomienda usar un valor de Kc de 1.1 considerando]
	a = l = o = * A excepción que s como maximos, ado Calculando: a (Ancho de 1 IV. FACTOR DE C Condición del Socavación en ag Lecho plano y a Dunas peque Dunas medi	se determi Se determi Angulo de si l/a es may emas se usa pila) l/a = CORRECCI l lecho guas claras intidunas eñas ianas	na como la longi ataque for que 12, se us la siguiente form $K_{\phi} = (\cos \phi \cdot \frac{1 \text{ (Longitu}}{2})$ 2.6 K ϕ = IÓN POR LA F Altura de la duna H [pies] N/A N/A 2< H <10 10< H <30	tud de la pila ex an los valores o mula: $+\frac{i}{a}sen\phi$ ^{0.65} ad de pila) .6 $+\frac{i}{a}sen\phi$ 1 ORMA DEL L Kc 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	xpresada en (m). correspodientes a l/a = 12 Ø (Angulo de ataque) 0 3 JECHO Kc Kc = 1.1 Se recomienda usar un valor de Kc de 1.1 considerando que el lecho tiende a ser plano durato arser plano]

ANEXO 3.5: Calculo de socavación local en el puente Conache mediante el método CSU.

	UNI	VERSIDAD P	RIVADA ANTI	ENOR ORRE	GO		a second and
TESIS: Estu	dio de la socavació	on local en las Mo	subestructuras de che - Trujillo 202	los puentes Co 23	onache, Casique,	Santa Rosa y	
Flahanadar	- Cueva Vazal	lo Alejandra L	lucia		Ubicación:	Rio Moche	
Liadorado:	- Gutierrez Za	pata Gabriel A	lessandro	PUE	NTE:	PUENTE SA	NTA ROSA
	III. FACTOR DI MÉTODO DE C Para hallar e	E CORRECC SU el angulo de ata	IÓN POR EL Á aque nos basamo	NGULO DE A	TAQUE DEL I e tabla:	FLUJO KΦ	
	I	Angulo de		1/a			
		ataque	4	8	12		
	ł	0°	1.00	1.00	1.00		
	ł	15°	1.50	2.00	2.50		
	1	30°	2.00	2.75	3.50		
	1	45°	2.30	3.30	4.30		
]	90°	2.50	3.90	5.00		
	Siendo:	Se determi Se determi Angulo de	na como el ancho na como la longi ataque	o de pilar expre tud de la pila es an los valores	sada en (m). «presada en (m).	a l/a = 12	
	Siendo: a = l = Ø = * A excepción qu como maximos, a Calculando:	Se determi Se determi Angulo de e si l/a es may demas se usa	na como el ancho na como la longi ataque ror que 12, se us la siguiente forr $K_{\phi} = \left(\cos\phi + \frac{1}{2}\right)$	to de pilar expre tud de la pila est an los valores nula: $\frac{1}{a}sen\phi$	sada en (m). «presada en (m). correspodientes	a l/a = 12	
	Siendo: a = l = Ø = * A excepción qu como maximos, a Calculando: a (Ancho	Se determi Se determi Angulo de e si l/a es may demas se usa de pila)	na como el ancho na como la longi ataque ror que 12, se us la siguiente forr $K_{\phi} = \left(\cos\phi + \frac{1}{2}\right)$	to de pilar expre tud de la pila es an los valores nula: $\frac{1}{a} sen \phi$ ^{0.65} d de pila)	sada en (m). (presada en (m). correspodientes Ø (Angulo	a l/a = 12 de ataque)	
	Siendo: a = l = o = * A excepción qu como maximos, a Calculando: a (Anchoo 1.9	Se determi Se determi Angulo de e si l/a es may demas se usa	na como el ancho na como la longi ataque ror que 12, se us la siguiente forr $K_{\phi} = \left(\cos\phi + \frac{1}{2}\right)$ l (Longitu 7.	to de pilar expre tud de la pila ex an los valores nula: $\frac{l}{a}sen\phi$ ^{0.65} d de pila) 3	sada en (m). (presada en (m). correspodientes Ø (Angulo	a l/a = 12 de ataque)	
	Siendo: a = l = o = * A excepción qu como maximos, a Calculando: a (Ancho) 1.9	Se determi Se determi Angulo de e si l/a es may idemas se usa de pila)	na como el ancho na como la longi ataque vor que 12, se us la siguiente forr $K_{\phi} = \left(\cos\phi + \frac{1}{2}\right)$ 1 (Longitu 7. 3.842105263	b) de pilar expre tud de la pila ex an los valores nula: $\frac{l}{a}sen\phi$ ^{0.65} d de pila) 3 \Leftrightarrow 1	sada en (m). (presada en (m). correspodientes Ø (Angulo (4	a l/a = 12 de ataque)	
	Siendo: a = l = o = * A excepción qu como maximos, a Calculando: (Ancho 1.9 IV. FACTOR DI	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a =	na como el ancho na como la longi ataque for que 12, se us la siguiente forr $K_{\phi} = (\cos \phi + \frac{1}{2})$ 3.842105263 K ϕ = IÓN POR LA FO Altura de la	o de pilar expre tud de la pila ex an los valores nula: $\frac{l}{a}sen\phi$ ^{0.65} d de pila) 3 \Leftrightarrow 1 ORMA DEL I	sada en (m). cpresada en (m). correspodientes Ø (Angulo (4 LECHO Kc	a l/a = 12 de ataque)	
	Siendo: a = l = o = * A excepción qu como maximos, a Calculando: a (Ancho) 1.9 IV. FACTOR DE Condición o	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a = E CORRECCI del lecho	na como el ancho na como la longi ataque for que 12, se us la siguiente forr $K_{\phi} = (\cos \phi + \frac{1}{2})$ 1 (Longitu 7. 3.842105263 K ϕ = IÓN POR LA FO Altura de la duna H [pies]	o de pilar expre tud de la pila ex an los valores nula: $\frac{1}{a}sen\phi$ ^{0.65} d de pila) 3 \Leftrightarrow 1 ORMA DEL I Kc	sada en (m). (presada en (m). correspodientes Ø (Angulo (4 LECHO Kc Kc =	a l/a = 12 de ataque))	
	Siendo: a = l = o = * A excepción qu como maximos, a Calculando: a (Ancho 19) IV. FACTOR DH Condición o Socavación en	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a = E CORRECCI del lecho aguas claras	na como el ancho na como la longi ataque or que 12, se us la siguiente forr $K_{\phi} = (\cos \phi + \frac{1}{2})$ 1 (Longitu 7. 3.842105263 K ϕ = IÓN POR LA FO Altura de la duna H [pies] N/A	o de pilar expre tud de la pila ex an los valores nula: $\left(\frac{l}{a}sen\phi\right)^{0.65}$ d de pila) 3 \Leftrightarrow 1 ORMA DEL I Kc 1.1	sada en (m). (presada en (m). correspodientes Ø (Angulo (4 LECHO Kc Kc =	a l/a = 12 de ataque)	
	Siendo: a = l = o = * A excepción qu como maximos, a Calculando: a (Ancho 1.9 IV. FACTOR DI Condición en Lecho plano y	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a = E CORRECCI del lecho aguas claras y antidunas	na como el ancho na como la longi ataque or que 12, se us la siguiente forr $K_{\phi} = (\cos \phi + \frac{1}{6})$ 1 (Longitu 7. 3.842105263 K ϕ = IÓN POR LA FO Altura de la duna H [pies] N/A N/A	o de pilar expre tud de la pila ex an los valores nula: $\frac{l}{a}sen\phi$ ^{0.65} d de pila) 3 \Leftrightarrow 1 ORMA DEL I Kc 1.1 1.1	sada en (m). cpresada en (m). correspodientes Ø (Angulo (4 LECHO Kc Kc = Se recomienda	a l/a = 12 de ataque)) 1.1 a usar un valor	
	Siendo: a = l = o = * A excepción qu como maximos, a Calculando: a (Ancho 1.9 IV. FACTOR DH Condición o Socavación en Lecho plano y Dunas per	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a = E CORRECCI del lecho aguas claras / antidunas queñas	na como el ancho na como la longi ataque for que 12, se us la siguiente forr $K_{\phi} = (\cos \phi + \frac{1}{6})$ 1 (Longitu 7. 3.842105263 K ϕ = IÓN POR LA FO Altura de la duna H [pies] N/A N/A 2< H <10	o de pilar expre tud de la pila ex an los valores nula: $\frac{l}{a}sen\phi$ ^{0.65} d de pila) 3 \Leftrightarrow 1 ORMA DEL I Kc 1.1 1.1 1.1	sada en (m). cpresada en (m). correspodientes Ø (Angulo (4 LECHO Kc Kc = Se recomienda de Kc de 1.1	a l/a = 12 de ataque)) 1.1 a usar un valor considerando	
	Siendo: a = l = o = * A excepción qu como maximos, a Calculando: a (Ancho) 1.9 IV. FACTOR DH Condición o Socavación en Lecho plano y Dunas per Dunas me	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a = CORRECCI del lecho aguas claras / antidunas queñas dianas	na como el ancho na como la longi ataque for que 12, se us la siguiente forr $K_{\phi} = (\cos \phi + \frac{1}{6})$ 1 (Longitu 7. 3.842105263 K ϕ = IÓN POR LA FO Altura de la duna H [pies] N/A N/A 2 <h <10<br="">10<h <30<="" td=""><td>o de pilar expre tud de la pila ex an los valores nula: $\frac{1}{a} sen \phi$^{0.65} d de pila) 3 \Leftrightarrow 1 ORMA DEL I Kc 1.1 1.1 1.1 1.1 a 1.2</td><td>sada en (m). correspodientes Ø (Angulo (4 ECHO Kc Kc = Se recomienda de Kc de 1.1 que el lecho tie</td><td>de ataque))) 1.1 a usar un valor considerando nde a ser plano</td><th></th></h></h>	o de pilar expre tud de la pila ex an los valores nula: $\frac{1}{a} sen \phi$ ^{0.65} d de pila) 3 \Leftrightarrow 1 ORMA DEL I Kc 1.1 1.1 1.1 1.1 a 1.2	sada en (m). correspodientes Ø (Angulo (4 ECHO Kc Kc = Se recomienda de Kc de 1.1 que el lecho tie	de ataque))) 1.1 a usar un valor considerando nde a ser plano	

		UN	IVERSIDAD PRIVADA ANTI	ENOR ORREGO	and the second s					
TESIS: Estudio de la socavación local en las subestructuras de los puentes Conache, Casique, Santa Rosa y Moche - Trujillo 2023										
	- Cueva	Vaza	allo Alejandra Lucia	Ubicación	1: Rio Moche					
Elaborado:	- Gutierrez Zapata Gabriel Alessandro PUENTE: PUENTE SAN									
	V. CRITEF	RIOS	PARA ADOPTAR K _a							
	$D_{50} < 2 \text{ mm o } D_{95} < 20 \text{ mm}$ $K_a = 1.0$									
			$\mathbf{D_{50}} \geq 2 \text{ mm y } \mathbf{D_{95}} \geq 20 \text{ mm}$	$K_a = 0.4 (V_R)^{0.15}$	J					
	Con re	espec	to al segundo caso:							
			$K_a = 0.4$	$(\mathbf{V_R})^{0.15}$						
	*	Done	le V _R :							
	$V_{R} = \left[\frac{V_{1} - V_{i_{cD50}}}{V_{cD50} - V_{i_{cD95}}}\right] > 0$									
	*	Ader	nas V _{icDx} :							
			$V_{icDx} = 0.64$	$5\left(\frac{D_x}{a}\right)^{0.053}V_{cDx}$						
	*	Por ı	altimo \mathbf{V}_{cDx} : $V_{cDx} = 6.1$	$9h^{\frac{1}{6}}D_{x}^{\frac{1}{3}}$						
	Donde:									
	V _R	=	Relación de velocidad							
	\mathbf{V}_1	=	Velocidad de aproximación inmediatar	nente aguas arriba del pilar						
	V _{icDx}	=	Velocidad de aproximación requerida p las partículas de sedimento (m/s)	para iniciar socavación en el pilar par	a el tamaño Dx de					
	V _{icD95}	=	Velocidad de aproximación requerida p las partículas de sedimento (m/s).	para iniciar socavación en el pilar par	a el tamaño D95 de					
	V _{icD50}	=	Velocidad de aproximación requerida p las partículas de sedimento (m/s).	para iniciar socavación en el pilar par	a el tamaño D50 de					
	V _{cDx}	=	Velocidad crítica para iniciar movimies (m/s).	nto de partículas de tamaño Dx del m	aterial del lecho					
	V _{cD50}	=	Velocidad crítica para iniciar movimier (m/s)	nto de partículas de tamaño D50 del 1	naterial del lecho					
	a	=	Ancho del pilar (m).							
	D _x	=	Tamaño de la partícula de tal manera q	ue el x por ciento del material del lec	ho más fino.					
	h	=	Profundidad del agua aguas arriba del	pilar sin incluir la socavación local (n	n)					

ANEXO 3.10: Calculo de socavación local en el puente Santa Rosa mediante el método CSU.

	UNI	VERSIDAD F	PRIVADA ANTI	ENOR ORRE	GO		a succession designed
ESIS: Estu	idio de la socavació	on local en las Mo	subestructuras de oche - Trujillo 202	los puentes Co 23	onache, Casiqu	e, Santa Rosa y	
borador	- Cueva Vazal	lo Alejandra L	lucia		Ubicació	n: Rio Moche	
aborado:	- Gutierrez Za	pata Gabriel A	lessandro	PUE	NTE:	PUENTE SA	NTA ROS
	III. FACTOR DH MÉTODO DE C Para hallar e	E CORRECC SU el angulo de ata	IÓN POR EL Á	NGULO DE A	ATAQUE DEI e tabla:	L FLUJO KΦ	
	г	Angula da		1/9			
		Angulo de		1/a	12		
	ł	ataque	4	1.00	12	-	
	ŀ	150	1.00	2.00	2.50	-1	
	ŀ	300	2.00	2.00	2.50	-	
	ł	45°	2.30	3.30	4.30	-	
	ł	90°	2.50	3.90	5.00	-1	
	•						
	Siendo: a = l = Ø = * A excepción qu como maximos, a	Se determi Se determi Angulo de e si l/a es may demas se usa	na como el ancho na como la longit ataque 707 que 12, se us a la siguiente form	o de pilar expre tud de la pila e: an los valores nula:	sada en (m). xpresada en (m correspodient	i). ies a l/a = 12	
	siendo: a = l = Ø = * A excepción qu como maximos, a Calculando:	Se determi Se determi Angulo de e si l/a es may demas se usa	na como el ancho na como la longit ataque 707 que 12, se us 1a siguiente form $K_{\phi} = \left(\cos\phi + \frac{1}{2}\right)$	tud de pilar expre tud de la pila es an los valores nula: $\frac{1}{a}sen\phi$	sada en (m). xpresada en (m correspodient	n). tes a l/a = 12	
	Siendo: a = l = Ø = * A excepción qu como maximos, a Calculando: a (Ancho o	Se determi Se determi Angulo de e si l/a es may demas se usa de pila)	na como el ancho na como la longit ataque vor que 12, se us: la siguiente form $K_{\phi} = \left(\cos\phi + \frac{1}{2}\right)$	tud de pilar expre tud de la pila es an los valores nula: $\left(\frac{l}{a} sen\phi\right)^{0.65}$ d de pila)	sada en (m). xpresada en (m correspodient Ø (Angu	a). tes a l/a = 12 lo de ataque)	
	Siendo: a = l = Ø = * A excepción qu como maximos, a Calculando: a (Ancho o 1.9	Se determi Se determi Angulo de e si l/a es may demas se usa de pila)	na como el ancho na como la longit ataque 707 que 12, se us 1a siguiente form $K_{\phi} = \left(\cos\phi + \frac{1}{2}\right)$	to de pilar expre tud de la pila ex an los valores nula: $\frac{1}{a}sen\phi^{0.65}$ d de pila) 3	sada en (m). xpresada en (m correspodient Ø (Angu	i). tes a l/a = 12 lo de ataque) 0	
	Siendo: a = l = Ø = * A excepción qu como maximos, a Calculando: a (Ancho o 1.9	Se determi Se determi Angulo de e si l/a es may demas se usa de pila)	na como el ancho na como la longit ataque 707 que 12, se us 1a siguiente form $K_{\phi} = \left(\cos\phi + \frac{1}{7}, \frac{1}{10000000000000000000000000000000000$	b) de pilar expre tud de la pila es an los valores nula: $\frac{l}{a}sen\phi$ ^{0.65} d de pila) 3 ⇔	sada en (m). xpresada en (m correspodient Ø (Angu	i). tes a l/a = 12 lo de ataque) 0	
	Siendo: a = l = Ø = * A excepción qu como maximos, a Calculando: a (Ancho o 1.9	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a =	na como el ancho na como la longit ataque for que 12, se us: la siguiente form $K_{\phi} = \left(\cos\phi + \frac{1}{6}\right)$ 1 (Longitu 7. 3.842105263 K ϕ =	b) de pilar expret tud de la pila est an los valores nula: $\frac{1}{a}sen\phi$ ^{0.65} d de pila) 3 \Leftrightarrow 1	esada en (m). xpresada en (m correspodient Ø (Angu 4	a). tes a l/a = 12 lo de ataque) 0	
	siendo: a = l = Ø = * A excepción qu como maximos, a Calculando: (Ancho 0 1.9 IV. FACTOR DE	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a =	na como el ancho na como la longit ataque 707 que 12, se usa 1a siguiente form $K_{\phi} = (\cos \phi + 1)$ 1 (Longitu 7. 3.842105263 K ϕ = IÓN POR LA FO	the de pilar expresentation of the de pilar expresentation of the de pila example of the depila of	sada en (m). xpresada en (m correspodient Ø (Angu 4 LECHO Kc	a). tes a l/a = 12 lo de ataque) 0	
	siendo: a = l = o = * A excepción qu como maximos, a Calculando: a (Ancho o 1.9 IV. FACTOR DE Condición o	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a =	na como el ancho na como la longit ataque for que 12, se us: la siguiente form $K_{\phi} = \left(\cos\phi + \frac{1}{6}\right)$ 1 (Longitu 7. 3.842105263 K ϕ = IÓN POR LA FO Altura de la duna H [pies]	$\frac{1}{a} \det \frac{1}{a} \det \frac{1}$	sada en (m). xpresada en (m correspodient Ø (Angu 4 LECHO Kc Kc =	1). tes a l/a = 12 lo de ataque) 0	
	siendo: a = l = o = * A excepción qu como maximos, a Calculando: a (Ancho o 1.9 IV. FACTOR DE Condición o Socavación en	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a = C CORRECC del lecho aguas claras	na como el ancho na como la longit ataque 707 que 12, se us: 1a siguiente form $K_{\phi} = (\cos \phi + 1)$ 1 (Longitu 7. 3.842105263 K ϕ = IÓN POR LA FO Altura de la duna H [pies] N/A	$\frac{1}{a} \operatorname{sen} \phi \int_{a}^{b} \frac{1}{a} \operatorname{sen} \phi$	sada en (m). xpresada en (m correspodient Ø (Angu 4 LECHO Kc Kc =	1). tes a l/a = 12 lo de ataque) 0	
	siendo: a = l = o = * A excepción qu como maximos, a Calculando: a (Ancho o 1.9 IV. FACTOR DE Condición o Socavación en Lecho plano y	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a = CORRECCI del lecho aguas claras y antidunas	na como el ancho na como la longit ataque /or que 12, se usa la siguiente form $K_{\phi} = (\cos \phi + 1)$ 1 (Longitu 7. 3.842105263 K ϕ = IÓN POR LA FO Altura de la duna H [pies] N/A N/A	o de pilar expret tud de la pila ex an los valores nula: $\frac{l}{a} sen \phi$ ^{0.65} d de pila) 3 \Leftrightarrow 1 ORMA DEL I Kc 1.1 1.1	sada en (m). xpresada en (m correspodient Ø (Angu 4 LECHO Kc Kc = Se recomier	1). tes a l/a = 12 lo de ataque) 0 1.1 1.1 uda usar un valor	
	siendo: a = l = o = * A excepción qu como maximos, a Calculando: a (Ancho o 1.9 IV. FACTOR DE Condición o Socavación en Lecho plano y Dunas ped	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) l/a = CORRECCI del lecho aguas claras / antidunas queñas	na como el ancho na como la longit ataque 707 que 12, se usa 1a siguiente form $K_{\phi} = (\cos \phi + 1)$ 1 (Longitu 7. 3.842105263 K ϕ = 1ÓN POR LA FO Altura de la duna H [pies] N/A N/A 2< H <10	$\frac{1}{a} \det \left(\frac{1}{a} \right)^{0.65}$	sada en (m). xpresada en (m) correspodient Ø (Angu 4 LECHO Kc Kc = Se recomient de Kc de 1.	a). tes a l/a = 12 lo de ataque) 0 1.1 tda usar un valor .1 considerando	
	siendo: a = l = o = * A excepción qu como maximos, a Calculando: (Ancho o 1.9 (IV. FACTOR DE Condición o Socavación en Lecho plano y Dunas per Dunas me	Se determi Se determi Angulo de e si l/a es may demas se usa de pila) I/a = C CORRECCI lel lecho aguas claras / antidunas queñas dianas	na como el ancho na como la longit ataque for que 12, se usa la siguiente form $K_{\phi} = (\cos \phi +$ 1 (Longitu 7. 3.842105263 K ϕ = IÓN POR LA FO Altura de la duna H [pies] N/A N/A 2< H <10 10< H <30	$\frac{1}{a} \det \frac{1}{a} \det \frac{1}$	ssada en (m). xpresada en (m) correspodient Ø (Angu 4 LECHO Kc Kc = Se recomient de Kc de 1. que el lecho for	a). tes a l/a = 12 lo de ataque) 0 1.1 1.1 uda usar un valor .1 considerando tiende a ser plano	

UNIVERSIDAD PRIVADA ANTENOR ORREGO										
TESIS: Estudio de la socavación local en las subestructuras de los puentes Conache, Casique, Santa Rosa y Moche - Trujillo 2023										
	- Cueva V	azallo Alejandra Lucia	Ubicación	: Rio Moche						
Elaborado:	borado: - Gutierrez Zapata Gabriel Alessandro PUENTE: PUENTE SA									
	V. CRITERI	OS PARA ADOPTAR K _a	1	-						
	$D_{50} < 2 \text{ mm o } D_{95} < 20 \text{ mm}$ $K_a = 1.0$									
		$\mathbf{D_{50}} \ge 2 \text{ mm y } \mathbf{D_{95}} \ge 20 \text{ mm}$	$\mathbf{K}_{\mathbf{a}} = 0.4 \left(\mathbf{V}_{\mathbf{R}} \right)^{0.15}$							
	Con res	pecto al segundo caso:								
		K _a =	$0.4 (\mathbf{V_R})^{0.15}$							
	* D	onde V _R :								
		$V_R = \left[\frac{V_R}{V_c}\right]$	$\left[\frac{V_{1} - V_{icD50}}{D_{50} - V_{icD95}}\right] > 0$							
	* A	demas V _{ieDx} :								
		KUX C								
		$V_{icDx}=0.$	$545 \left(\frac{D_x}{a}\right)^{0.053} V_{cDx}$							
	* Pc	or ultimo \mathbf{V}_{cDx} : $V_{cDx} = 0$	$5.19h^{\frac{1}{6}}D_{x}^{\frac{1}{3}}$							
	Donde:									
	V _R	 Relación de velocidad 								
	V ₁	 Velocidad de aproximación inmedi 	atamente aguas arriba del pilar							
	V _{icDx}	 Velocidad de aproximación requeri las partículas de sedimento (m/s) 	da para iniciar socavación en el pilar para	el tamaño Dx de						
	V _{icD95}	 Velocidad de aproximación requeri las partículas de sedimento (m/s). 	da para iniciar socavación en el pilar para	el tamaño D95 de						
	V _{icD50}	 Velocidad de aproximación requeri las partículas de sedimento (m/s). 	da para iniciar socavación en el pilar para	el tamaño D50 de						
	V _{cDx}	 Velocidad crítica para iniciar movi (m/s). 	niento de partículas de tamaño Dx del ma	terial del lecho						
	V _{cD50}	 Velocidad crítica para iniciar movi (m/s) 	niento de partículas de tamaño D50 del n	naterial del lecho						
	a	= Ancho del pilar (m).								
	D _x	 Tamaño de la partícula de tal mane 	a que el x por ciento del material del lech	o más fino.						
	h	 Profundidad del agua aguas arriba 	del pilar sin incluir la socavación local (m)						

ANEXO 3.15: Calculo de socavación local en el puente Moche mediante el método CSU.

ANEXO 4: Resultados del cálculo de socavación local en estribos de forma empírica.

UNIVERSIDAD PRIVADA ANTENOR ORREGO									
TESIS: Estu	TESIS: Estudio de la socavación local en las subestructuras de los puentes Conache, Casique, Santa Rosa y Moche - Trujillo 2023								
Flahanadar	- Cueva Vazallo Alejandra Luc	Vazallo Alejandra Lucia Ubicación: Rio Moche							
Elaborado:	- Gutierrez Zapata Gabriel Alessandro PUENTE: PUENTE CONA								
	CALCULO DE LA SOC Ma	AVACIÓN L etodo de Liu, C	OCAL EN EST Chang y Skinner	RIBOS MEDIANTE:					
	I. FORMULA GENERAL								
		$\frac{y_s}{h} = K_f$	$\left(\frac{L}{h}\right)^{0.4} F_r^{0.33}$						
	Donde:								
	$_{Ys}$ = Profundidad de s	ocavación							
	h = Profundidad de f	lujo en el cauc	e principal						
	L = Longitud del esti	ibo y accesos	al puente que se	opone al paso del agua					
	Fr = Numero de Frou	de, aguas arrib	a Samu da astriba						
	KI = Coefficiente de co	orrection por I	omra de estribo						
	II. SOLUCIÓN								
		ТАВ	LA DE DATOS]				
	h	7.6 m	Profundidad of	le flujo en el cauce principal					
	L	0.1 m	Longitud del	estribo y accesos al puente					
	1. Factor de correcion				_				
		Descripcion		Kf					
	Estribos con pa	ared inclinada	hacia el cauce	1.1					
	Estribo con par	red vertical		2.15					
		Kf		1.1]				

ANEXO 4.1: Calculo de socavación local en estribos del puente Conache mediante el método de Liu, Chang y Skinner.

ANEXO 4.2: Calculo de socavación local en estribos del puente Conache mediante el método e Liu, Chang y Skinner.

	UNIVE	RSIDAD PR	IVADA ANT	ENOR ORREGO				
TESIS: Estudio de la socavación local en las subestructuras de los puentes Conache, Casique, Santa Rosa y Moche - Trujillo 2023								
Flaborado	- Cueva Vazallo Alejandra Lucia Ubicación: Rio Moche							
Elaborado:	- Gutierrez Zapata	a Gabriel Ale	ssandro	PUENT	`E:	PUENTE	CACIQUE	
CALCULO DE LA SOCAVACIÓN LOCAL EN ESTRIBOS MEDIANTE: Método de Liu, Chang y Skinner								
	I. FORMULA GEN	ERAL						
			$\frac{y_s}{h} = K_f$	$f\left(\frac{L}{h}\right)^{0.4}F_r^{0.33}$				
	Donde: $Y_s = Pro$ h = Pro L = Lor Fr = Nur Kf = Coe	fundidad de s fundidad de f ngitud del estr nero de Froud eficiente de co	ocavación lujo en el cauc ibo y accesos de, aguas arrit prrección por f	ce principal al puente que se op oa fomra de estribo	pone al paso de	el agua		
	II. SOLUCIÓN						_	
			TAB	LA DE DATOS				
		h	5.36 m	Profundidad de	flujo en el cau	ce principal		
		L	0.1 m	Longitud del es	stribo y accesos	s al puente		
	1. Factor de c E	<i>orrecion</i> stribos con pa stribo con par	Descripcion red inclinada red vertical	hacia el cauce	Kf 1.1 2.1:	5		
			Kf		2.1:	5]	

ANEXO 4.3: Calculo de socavación local en estribos del puente Cacique mediante el método e Liu, Chang y Skinner.

UNIVERSIDAD PRIVADA ANTENOR ORREGO									
TESIS: Estudio de la socavación local en las subestructuras de los puentes Conache, Casique, Santa Rosa y Moche - Trujillo 2023									
Flaborador	- Cueva Vazallo Alejandra Luci	a		Ubicació	n: Rio Moche				
Elaborado:	- Gutierrez Zapata Gabriel Alessandro PUENTE: PUENTE SANTA RO								
CALCULO DE LA SOCAVACIÓN LOCAL EN ESTRIBOS MEDIANTE: Método de Liu, Chang y Skinner									
	I. FORMULA GENERAL								
		$\frac{y_s}{h} = K_j$	$f\left(\frac{L}{h}\right)^{0.4}F_r^{0.33}$						
	Donde: _{Ys} = Profundidad de socavación h = Profundidad de flujo en el cauce principal L = Longitud del estribo y accesos al puente que se opone al paso del agua Fr = Numero de Froude, aguas arriba Kf = Coeficiente de corrección por fomra de estribo								
	II. SOLUCIÓN								
		TAE	LA DE DATOS						
	h	6.5 m	Profundidad d	le flujo en el	cauce principal				
	L	0.1 m	Longitud del e	estribo y acce	esos al puente				
	1. Factor de correcion	Descripcion			V ∕f				
	Estribos con par	ed inclinada	hacia el cauce		1.1				
	Estribo con pare	d vertical			2.15				
	Estribo con pared vertical 2.15								
		Kf			1.1				

ANEXO 4.5: Calculo de socavación local en estribos del puente Santa Rosa mediante el método e Liu, Chang y Skinner.

	UN	IVERSIDAD PF	RIVADA ANT	ENOR ORREG	60			A CONTRACT OF A	
TESIS: Estudio de la socavación local en las subestructuras de los puentes Conache, Casique, Santa Rosa y Moche - Trujillo 2023									
	- Cueva Vaza	illo Alejandra Lu	a Lucia Ubicación: Rio Moche						
Elaborado:	- Gutierrez Z	- Gutierrez Zapata Gabriel Alessandro PUENTE: PUENTE							
	CALCU	LO DE LA SOC M	CAVACIÓN L étodo de Liu, C	OCAL EN EST Chang y Skinner	TRIBOS M	IEDIAN'	TE:		
	I. FORMULA (GENERAL							
			$\frac{y_s}{h} = K_f$	$\left(\frac{L}{h}\right)^{0.4} F_r^{0.33}$					
	Donde: _{Ys} = h = L = Fr = Kf = II. SOLUCIÓN	Profundidad de Profundidad de Longitud del est Numero de Frou Coeficiente de c	socavación flujo en el cauc ribo y accesos ide, aguas arrib orrección por f	e principal al puente que se a comra de estribo	e opone al p	paso del a	agua		
			TAB	LA DE DATOS	1. 6	-1	ania sia si		
		h	7.05 m	I ongitud dol	ae nujo en				
	L U.1 m Longitud del estribo y accesos al puente 1. Factor de correcion								
			Descripcion			Kf			
		Estribos con p	ared inclinada	hacia el cauce		1.1			
	Estribo con pared mennada nacia el cadee 1.1 Estribo con pared vertical 2.15								
			Kf			1.1			

ANEXO 4.7: Calculo de socavación local en estribos del puente Moche mediante el método e Liu, Chang y Skinner.

ANEXO 5: Panel fotográfico

ANEXO 5.1: Fotografía tomada en el puente - Rio Moche

ANEXO 5.2: Fotografía tomada en el puente - Rio Moche

ANEXO 5.3: Fotografía tomada en el puente - Rio Moche

ANEXO 5.4: Fotografía tomada en el puente - Rio Moche

ANEXO 5.5: Fotografía tomada en el puente - Rio Moche

ANEXO 5.6: Fotografía tomada en el puente - Rio Moche

ANEXO 5.7: Fotografía tomada en el puente - Rio Santa Rosa

ANEXO 5.8: Fotografía tomada en el puente - Rio Santa Rosa

ANEXO 5.9: Fotografía tomada en el puente - Rio Santa Rosa

ANEXO 5.10: Fotografía tomada en el puente - Rio Santa Rosa

ANEXO 5.11: Fotografía tomada en el puente - Rio Santa Rosa

ANEXO 5.12: Fotografía tomada en el puente - Rio Santa Rosa

ANEXO 5.13: Fotografía tomada en el puente - Rio Cacique

ANEXO 5.14: Fotografía tomada en el puente - Rio Cacique

ANEXO 5.15: Fotografía tomada en el puente - Rio Cacique

ANEXO 5.16: Fotografía tomada en el puente - Rio Cacique

ANEXO 5.17: Fotografía tomada en el puente - Rio Cacique

ANEXO 5.18: Fotografía tomada en el puente - Rio Cacique

ANEXO 5.19: Fotografía tomada en el puente - Rio Conache

ANEXO 5.20: Fotografía tomada en el puente - Rio Conache

ANEXO 5.21: Fotografía tomada en el puente - Rio Conache

ANEXO 6: Otros

ANEXO 6.1: Ubicación de C-01

ANEXO 6.2: Ubicación de C-02

ANEXO 6.3: Ubicación de C-03

ANEXO 6.4: Ubicación de C-04

			D	ESCARG	GAS MÁX	IMAS ME	ENSUALE	S DEL R		IE			
	ESTAC	ION: Quiribu	iac (Código:	201401)		WGS	34 Geográfi	cas: Latitud	-8 083333	/ Longitud: -	78 866667	Altitud(msn	m): 200
	LUTAU	Altitud: 1	96 m.s.n.m.	201401)			- Geogram	Norte:	9,106,094 r	n / Este: 73	4,385 m	Antad(man	inij. 200
Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic	Prom.
1950	3.35	17.02	15.40	21.45	4.38	1.04	0.51	0.22	0.13	2.07	2.85	56.00	10.37
1951	9.55	30.80	27.50	23.62	3.31	1.16	0.59	0.12	-	10.13	21.04	48.26	16.01
1952	37.93	90.67	170.17	116.87	20.53	3.51	1.20	0.62	-	1.08	0.56	8.15	41.03
1953	31.60	94.33	77.00	79.30	15.79	4.23	1.42	0.86	5.02	1.67	21.39	26.09	29.89
1954	22.16	86.45	132.75	24.37	9.56	8.24	1.02	0.43	1.38	14,79	2.40	6.89	26.48
1956	86.49	102.33	212.88	87.43	29.23	3.76	1.01	0.49	1.00	9.40	1.06	0.57	44.64
1957	6.72	58.75	168.60	197.93	43.18	5.66	1.37	0.51	1.10	1.44	3.32	4.65	41.10
1958	32.24	22.62	88.33	34.26	12.41	2.91	0.63	0.45	0.35	2.72	0.37	1.28	16.55
1959	0.51	48.86	76.86	117.50	36.03	2.94	1.93	0.87	2.28	6.58	6.38	15.25	26.33
1960	30.67	14.12	43.92	31.32	13.37	4.71	0.55	0.29	0.05	4.00	4.24	6.30	29.49
1962	67.42	78.51	180.31	117.73	20.98	4.62	1.40	0.65	0.67	0.52	3.55	1.27	39.80
1963	1.86	1.09	41.35	117.57	23.24	1.15	0.48	0.29	0.15	2.70	4.17	16.19	17.52
1964	17.49	51.08	85.27	119.19	34.44	3.64	1.85	2.31	2.32	8.48	18.63	2.31	28.92
1965	7.79	19.16	78.40	37.36	15.87	2.46	0.99	0.66	1.23	6.55	9.72	14.17	16.20
1966	58.45	22.01	120.45	20.33	10.29	2.38	0.51	0.53	0.59	9.7/	15.20	1.86	14.05
1968	1.43	5.31	23.42	13.92	1.25	0.45	0.20	0.43	1.14	12.70	8.49	2.92	52.27
1969	4.80	13.88	82.67	91.81	9.80	3.50	1.27	0.24	0.15	4.01	21.74	24.41	21.52
1970	96.10	13.68	31.62	38.45	31.28	5.30	1.94	1.72	4.47	21.34	18.83	25.54	24.19
1971	17.59	42.95	117.63	70.98	11.65	3.88	1.53	2.15	4.09	8.52	5.23	11.59	24.82
1972	20.86	34.59	138.25	58.07	13.52	5.28	1.85	0.88	0.82	6.16	3.86	14.03	24.85
1973	32.80	23.32	43.76	152.96	49.96	13.60	15.55	1.97	4.67	16.56	8.08	19.59	31.90
1974	20.01	47.90	170.88	51.65	17.26	4.32	1.92	4.35	1.12	22.00	2.00	2.00	15.67
1976	19.84	23.20	112.85	26.05	12.37	7.92	1.79	0.69	0.51	0.27	0.29	1.38	17.26
1977	27.07	201.52	40.00	27.00	7.23	1.76	0.85	0.72	0.45	1.60	1.04	6.32	26.30
1978	1.52	4.00	11.20	11.68	24.00	1.04	0.29	0.13	1.28	0.40	8.00	4.00	5.63
1979	9.20	17.84	54.88	24.80	8.00	2.08	0.29	0.24	0.96	0.32	0.16	0.13	9.91
1980	0.59	0.96	16.00	14.93	1.12	0.16	0.08	0.06	0.05	13.60	25.60	56.00	10.76
1981	11.20	160.00	75.00	15.20	4.00	2.00	0.48	0.32	0.20	3.62	11.20	16.00	24.94
1983	120.00	24.00	240.00	280.00	28.80	11.20	4.00	1.20	1.60	3.20	2.40	19.10	61.29
1984	8.32	97.60	152.00	12.24	21.12	12.56	3.02	2.37	1.25	3.20	14.40	15.92	28.67
1985	9.18	10.43	19.20	20.80	6.83	2.14	0.45	0.26	8.64	3.39	0.56	8.64	7.54
1986	72.00	16.75	29.70	38.94	19.62	2.08	0.64	0.37	0.77	1.44	6.78	23.23	17.69
1987	30.91	42.02	19.81	64.00	15.90	1.44	0.80	0.64	1.60	0.64	6.88	1.60	15.52
1988	27.84	32.29	28.38	98.53	39.52	8.90	1.18	0.48	0.22	6.40 23.09	9.22	6.08	21.02
1990	1.60	9.28	21.38	5.20	2.40	1.41	0.48	0.20	0.26	6.88	22.64	21.38	7.76
1991	9.60	17.92	41.50	18.99	14.22	1.54	0.54	0.24	0.13	2.40	16.00	8.00	10.92
1992	6.48	1.66	18.46	26.06	11.84	2.02	0.32	0.13	0.06	0.54	0.64	0.05	5.69
1993	6.40	61.20	66.97	40.00	19.20	8.00	1.28	0.80	9.84	12.80	24.00	18.88	22.45
1994	24.80	204.80	44.80	42.40	28.00	9.60	4.32	1.84	5.12	0.80	6.00	15.20	32.31
1995	21.60	64.00	15.20 56.00	23.84 28.80	1.28	3.36	2.88	0.77	0.56	4.80	9.00	0.48	8.64
1997	0.24	24.00	11.20	10.20	10.20	0.64	0.24	0.12	0.11	0.40	5.12	200.00	21.87
1998	220.00	750.00	1000.00	122.83	62.00	14.00	4.33	3.30	3.18	6.17	5.83	1.62	182.77
1999	41.88	240.36	28.58	38.00	54.00	10.47	5.83	2.56	9.74	12.58	6.02	14.60	38.72
2000	12.34	63.01	68.58	71.02	44.30	10.06	7.08	3.05	2.06	2.96	1.69	8.45	24.55
2001	51.07	28.05	150.00	126.82	19.73	14.28	3.55	2.42	9.73	15.97	24.07	18.58	41.02
2002	17.47	42.51	25.30	28.68	18.19	4.60	1.07	0.51	0.40	0.17	0.16	13.98	12.75
2004	4.12	26.34	39.41	17.96	5.44	2.34	0.13	0.10	0.07	16.96	17.14	38.36	14.03
2005	15.15	26.68	38.96	38.03	6.46	0.44	0.10	0.08	0.08	0.07	0.06	5.60	10.98
2006	14.57	40.17	46.60	45.08	6.23	2.93	0.28	0.10	0.09	0.08	3.10	18.97	14.85
2007	29.59	39.65	32.08	46.68	36.74	2.12	0.23	0.12	0.08	1.55	6.33	7.45	16.89
2008	12.63	40.95	55.03	43.04 61.01	23.29	5.89	1.24	0.35	0.14	10.00	20.28	2.06	20.72
2010	17.60	39.35	32.85	62.80	42.66	2.40	0.18	0.00	0.00	0.00	0.00	0.00	16.49
2011	25.32	17.94	29.07	61.28	23.44	0.35	0.08	0.06	0.06	0.06	0.06	18.41	14.68
2012	7.07	48.33	125.00	21.64	6.23	2.90	0.27	0.15	0.10	5.92	3.33	7.23	19.01
2013	7.07	48.33	125.00	21.64	6.23	2.90	0.27	0.15	0.10	1.54	3.33	7.23	18.65
2014	13.17	35.90	65.13	58.37	39.87	3.80	0.25	0.17	0.07	2.02	14.67	22.47	21.32
2015	/6.67	77.93	203.33	52.00	7.61	5.07	0.33	0.05	0.05	0.64	16.00	32.20	40.14
2017	16.00	22.37	187.13	95.27	24.87	6.50	1.00	0.60	0.80	1.50	1.00	6.13	30.26
2018	11.73	20.47	12.80	32.50	31.43	9.60	0.40	0.25	0.10	0.05	0.05	19.97	11.61
2019	4.17	36.10	51.27	46.17	19.43	2.77	0.20						22.87
2020	24.00	8.83	20.00	31.00	10.17	0.037						9.00	14.72
2021	23.00	15.00	32.83	35.00	6.67	1.50	0.40		0.10	40.00	18.33	17.33	17.29
2022	11.33	36.33	46.67	58.33	16.67	3.33	0.20						24.69

ANEXO 6.5: Descargas máximas anuales.

PRUEBA CHI-CUADRADO									
All data - T(Max)= 500.000 y	Value	a=1%	a=5%	a=10%	Attained a	Pearson Param.			
Normal	479.382	REJECT	REJECT	REJECT	%	74.9014			
Normal (L-Moments)	365.877	REJECT	REJECT	REJECT	0.00%	33.3239			
LogNormal	1005.52	REJECT	REJECT	REJECT	0.73%	17.6056			
Galton	1024.6	ACCEPT	REJECT	REJECT	1.12%	14.8169			
Exponential	775.309	REJECT	REJECT	REJECT	0.00%	37.6338			
Exponential (L-Moments)	628.051	ACCEPT	ACCEPT	ACCEPT	13.57%	9.74648			
Gamma	802.613	REJECT	REJECT	REJECT	0.00%	34.338			
Pearson III	1107.24	REJECT	REJECT	REJECT	%	112.169			
Log Pearson III	1010.02	ACCEPT	ACCEPT	ACCEPT	1.38%	14.3099			
EV1-Max (Gumbel)	671.677	REJECT	REJECT	REJECT	0.00%	42.9577			
EV2-Max	963.519	REJECT	REJECT	REJECT	%	43.4648			
EV1-Min (Gumbel)	352.35	REJECT	REJECT	REJECT	%	71.6056			
EV3-Min (Weibull)	821.128	REJECT	REJECT	REJECT	0.01%	28			
GEV-Max	958.554	REJECT	REJECT	REJECT	0.12%	20.1408			
GEV-Min	1080.87	REJECT	REJECT	REJECT	0.00%	40.4225			
Pareto	996.591	REJECT	REJECT	REJECT	0.16%	19.3803			
GEV-Max (L-Moments)	1047.15	ACCEPT	ACCEPT	REJECT	8.27%	9.74648			
GEV-Min (L-Moments)	727.631	ACCEPT	ACCEPT	ACCEPT	13.17%	8.47887			
EV1-Max (Gumbel, L-Moments)	514.989	REJECT	REJECT	REJECT	0.01%	28.7606			
EV2-Max (L-Momments)	1539.24	ACCEPT	ACCEPT	ACCEPT	17.44%	8.98592			
EV1-Min (Gumbel, L-Moments)	285.518	REJECT	REJECT	REJECT	%	54.8732			
EV3-Min (Weibull, L-Moments)	537.624	REJECT	REJECT	REJECT	0.89%	17.0986			
Pareto (L-Moments)	826.549	ACCEPT	ACCEPT	ACCEPT	12.02%	8.73239			
GEV-Max (kappa specified)	850.152	REJECT	REJECT	REJECT	0.13%	21.9155			
GEV-Min (kappa specified)	409.98	REJECT	REJECT	REJECT	%	91.6338			
GEV-Max (kappa specified, L-Moments)	691.005	ACCEPT	ACCEPT	ACCEPT	24.02%	7.97183			
GEV-Min (kappa specified, L-Moments)	318.979	REJECT	REJECT	REJECT	0.00%	37.8873			

PRUEBA Kolmogorov-Smirnov									
All data - T(Max)= 500.000 y	Value	a=1%	a=5%	a=10%	Attained a	Dmax			
Normal	479.382	REJECT	REJECT	REJECT	0.28%	0.215			
Normal (L-Moments)	365.877	ACCEPT	ACCEPT	REJECT	5.14%	0.16058			
LogNormal	1005.52	ACCEPT	ACCEPT	ACCEPT	34.79%	0.11081			
Galton	1024.6	ACCEPT	ACCEPT	ACCEPT	59.64%	0.09118			
Exponential	775.309	REJECT	REJECT	REJECT	0.22%	0.21915			
Exponential (L-Moments)	628.051	ACCEPT	ACCEPT	ACCEPT	56.36%	0.09353			
Gamma	802.613	REJECT	REJECT	REJECT	0.22%	0.21923			
Pearson III	1107.24	REJECT	REJECT	REJECT	0.41%	0.20882			
Log Pearson III	1010.02	ACCEPT	ACCEPT	ACCEPT	94.73%	0.06207			
EV1-Max (Gumbel)	671.677	REJECT	REJECT	REJECT	0.21%	0.21961			
EV2-Max	963.519	REJECT	REJECT	REJECT	0.13%	0.227			
EV1-Min (Gumbel)	352.35	REJECT	REJECT	REJECT	0.17%	0.22281			
EV3-Min (Weibull)	821.128	REJECT	REJECT	REJECT	0.33%	0.21263			
GEV-Max	958.554	ACCEPT	ACCEPT	ACCEPT	16.44%	0.13263			
GEV-Min	1080.87	ACCEPT	REJECT	REJECT	2.39%	0.17655			
Pareto	996.591	ACCEPT	ACCEPT	ACCEPT	28.89%	0.11664			
GEV-Max (L-Moments)	1047.15	ACCEPT	ACCEPT	ACCEPT	93.66%	0.06355			
GEV-Min (L-Moments)	727.631	ACCEPT	ACCEPT	ACCEPT	87.34%	0.07037			
EV1-Max (Gumbel, L-Moments)	514.989	ACCEPT	ACCEPT	ACCEPT	31.45%	0.11401			
EV2-Max (L-Momments)	1539.24	ACCEPT	ACCEPT	ACCEPT	27.73%	0.11787			
EV1-Min (Gumbel, L-Moments)	285.518	REJECT	REJECT	REJECT	0.17%	0.22339			
EV3-Min (Weibull, L-Moments)	537.624	ACCEPT	ACCEPT	ACCEPT	44.25%	0.10269			
Pareto (L-Moments)	826.549	ACCEPT	ACCEPT	ACCEPT	87.34%	0.07037			
GEV-Max (kappa specified)	850.152	ACCEPT	REJECT	REJECT	1.68%	0.18345			
GEV-Min (kappa specified)	409.98	REJECT	REJECT	REJECT	0.49%	0.20571			
GEV-Max (kappa specified, L-Moments)	691.005	ACCEPT	ACCEPT	ACCEPT	59.09%	0.09157			
GEV-Min (kappa specified, L-Moments)	318.979	ACCEPT	REJECT	REJECT	1.39%	0.18707			

ANEXO 6.6: Resultados de la prueba de bondand.

ANEXO 7: Planos

