UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE CIENCIAS ECONOMICAS

ESCUELA PROFESIONAL DE ECONOMIA Y FINANZAS

INCIDENCIA DEL TIPO DE CAMBIO REAL EN LA INVERSIÓN DE LAS EMPRESAS EN EL PERÚ PARA EL PERIODO 2002-2017

TESIS PARA OBTENER TÍTULO PROFESIONAL DE ECONOMISTA CON MENCIÓN EN FINANZAS

AUTORES:

Br. JAIME MARTÍN CORDERO ALCALDE

Br. RAÚL LUCIANO MUÑOZ SOTELO

ASESOR:

Mg. FÉLIX SEGUNDO CASTILLO VERA

TRUJILLO – PERÚ

2018

PRESENTACIÓN

Señores Miembros del Jurado:

Dando cumplimiento con las disposiciones del Reglamento de Grados y Títulos de la

Universidad Privada Antenor Orrego, sometemos a vuestra consideración la tesis titulada:

"INCIDENCIA DEL TIPO DE CAMBIO REAL EN LA INVERSIÓN DE LAS

EMPRESAS EN EL PERÚ PARA EL PERIODO 2002-2017" luego de haber culminado

nuestros estudios en esta casa superior, donde nos formamos profesionalmente para estar al

servicio de la sociedad.

El presente trabajo realizado con el propósito de obtener el Título de Economista con

mención en Finanzas, es producto de una investigación ardua y constante cuyo propósito es

determinar la relación que existe entre el tipo de cambio real y las inversiones de las

empresas en el Perú durante el período 2002 – 2015 con proyección al 2017.

Por lo expuesto señores miembros del jurado, ponemos a vuestra disposición el presente

trabajo de investigación para su respectivo análisis y evaluación, no sin antes agradecer

vuestra gentil atención al mismo.

Atentamente,

Br. Cordero Alcalde, Jaime Martín

Br. Muñoz Sotelo, Raúl Luciano

i

AGRADECIMIENTO

A nuestra Universidad Privada Antenor Orrego, que a través de sus maestros nos transmitieron sus conocimientos, orientaciones y experiencias con sentido de responsabilidad y rigor académico, sin los cuales no seríamos los profesionales que somos.

Al cuerpo docente de la escuela profesional de Economía y Finanzas por todos los conocimientos y orientación impartidos a lo largo de nuestra formación académica profesional.

A nuestro asesor Félix Castillo Vera, por el apoyo y la paciencia brindada en el desarrollo de nuestra investigación y al Dr. David Jaulis Quispe por transmitir sus conocimientos siendo un gran participe de este resultado.

LOS AUTORES

DEDICATORIA

A Dios, a través de nuestro señor Jesucristo, quien nos dio la fe, la fortaleza, la salud y la esperanza para terminar esta investigación.

A nuestros padres que con su dedicación ejemplar nos han enseñado a no desfallecer ni rendirse ante nada y siempre perseverar a través de sus sabios concejos.

A nuestros familiares por ser el pilar fundamental en todo lo que somos, en toda nuestra educación, tanto académica, como de la vida, por su incondicional apoyo perfectamente mantenido a través del tiempo.

LOS AUTORES

RESUMEN

La presente investigación analiza y explica la correlación entre el tipo de cambio real y la

inversión privada en el Perú para el periodo 2002 -2015. Y su posterior proyección al año

2017, Para ello, hemos utilizado como variable dependiente la inversión tomada como el

stock de capital de las empresas registradas en la SMV y el tipo de cambio real (multilateral)

tomado de las series anuales de los datos estadísticos del BCRP. Se encontró deficiencia en

los estados financieros de las empresas analizadas: información presentada de manera no

estandarizada y ausencia de valores en algunos periodos; por lo que la información

incongruente fue eliminada y la data faltante fue agregada utilizando datos del periodo

anterior. Se realizó una estimación econométrica a través de datos panel dinámico que

permitirá un mejor entendimiento en la correlación entre la inversión privada, sus variables

de control (tamaño de la empresa y estructura financiera) y tipo de cambio real (multilateral)

ya que esta metodología combina una dimensión temporal con otra transversal. Mediante

esta estimación encontramos que el modelo es significativo de manera global al igual que

todas sus variables con excepción de la variable tamaño de la empresa. Así mismo, la

hipótesis no se cumple debido a que la inversión tiene una relación inversa con el tipo de

cambio siendo el coeficiente de la misma -73.1684% y 10.77% con respecto al Ratio de

deuda. Por lo que el tipo de cambio real multilateral influyó negativamente en el nivel de

inversión realizada por las empresas en el Perú durante el periodo 2002-2017.

Palabras claves: inversión, tipo de cambio real multilateral, datos panel.

iv

ABSTRACT

This research analyzes and explains the correlation between the real exchange rate and private investment in Peru for the period 2002-2015. And its subsequent projection to the year 2017. For this, we have used as a dependent variable the investment taken as the stock of capital of the companies registered in the SMV and the exchange rate (multilateral) real taken from the annual series of statistical data of the BCRP. Deficiency was found in the financial statements of the companies analyzed: information presented in a nonstandardized manner and absence of values in some periods; so the incongruent information was eliminated and the missing data was added using data from the previous period. An econometric estimation was made through dynamic panel data that will allow a better understanding of the correlation between private investment, its control variables (size of the company and financial structure) and real (multilateral) exchange rate since this methodology combines one temporal dimension with another transversal one. By means of this estimation we find that the model is globally significant, as are all its variables, with the exception of the variable size of the company. Likewise, the hypothesis is not fulfilled because the investment has an inverse relationship with the exchange rate, the coefficient of which is -73.1684% and 10.77% with respect to the debt ratio. Therefore, the real multilateral exchange rate negatively influenced the level of investment made by companies in Peru during the period 2002-2017.

Keywords: investment, real multilateral exchange rate, panel data.

ÍNDICE

PRESENTACIÓN	i
AGRADECIMIENTO	ii
DEDICATORIA	iii
RESUMEN	iv
ABSTRACT	v
ÍNDICE	vi
LISTA DE TABLAS	viii
LISTA DE GRÁFICOS	ix
LISTA DE ANEXOS	X
CAPÍTULO I	1
INTRODUCCIÓN	1
I. INTRODUCCIÓN	2
1.1 Formulación del problema	2
1.1.1 Realidad problemática	2
1.1.2 Enunciado del problema	5
1.1.3 Antecedentes del problema	5
1.1.4 Justificación	8
1.2 Hipótesis	9
1.3 Objetivos	10
1.3.1 Objetivo General.	10
1.3.2 Objetivos Específicos.	10
1.4 Marco Teórico	10
1.5 Marco conceptual	21
CAPITULO II	22
MATERIAL Y PROCEDIMIENTOS	22
II. MATERIAL Y PROCEDIMIENTOS.	23
2.1 Material	23
2.1.1 Población	23
2.1.3 Muestra	23
2.1.4 Técnicas e Instrumento de recopilación de datos	24

2.2	Pro	ocedimientos	24
2.2	2.1	Método	24
2.2	2.2	Diseño de contrastación.	24
2.2	2.3	Operacionalización de variables.	26
2.2	2.4	Procesamiento y análisis de datos	27
CAPÍT	ULO	III	29
PRESE	NTA	CIÓN Y DISCUSIÓN DE RESULTADOS	29
III. PR	ESEN	NTACIÓN Y DISCUSIÓN DE RESULTADOS	30
3.1	Pre	esentación de resultados	30
3.1	.1	El tipo de cambio real (Multilateral)	30
3.1	.2	Las inversiones de las empresas analizadas	31
3.1	.3	Evidencia empírica.	35
3.2	. Disc	cusión de resultados	39
CONC	LUSI	ONES	41
RECO	MENI	DACIONES	41
CONC	LUSI	ONES	42
RECO	MENI	DACIONES	43
REFER	RENC	TAS BIBLIOGRAFICAS	44
ANEV	OS		16

LISTA DE TABLAS

Tabla 1.	Regresión logarítmica del modelo panel estático	.36
Tabla 2.	Prueba de autocorrelación de Wooldridge	.37
Tabla 3.	Regresión logarítmica del modelo panel dinámico	.38
Tabla 4.	Regresión logarítmica del modelo panel dinámico	.39

LISTA DE GRÁFICOS

Gráfico 1.	Evolución de la inversión Privada 2002-2015 en el Perú3	
Gráfico 2.	2. Comportamiento del índice del Tipo de Cambio Real (Multilate	
	durante el periodo 2002 – 2015 4	
Gráfico 3.	Evolución del índice de tipo de cambio real (Multilateral) durante el	
	periodo 2002 – 2015	
Gráfico 4.	Evolución del índice de tipo de cambio real multilateral (TCRM) (Base	
	2009=100), 2002-2015	
Gráfico 5:	Evolución de las inversiones de las empresas estudiadas, 2002-2015, en	
	miles de soles	
Gráfico 6.	Evolución de las inversiones de las empresas estudiadas, 2002-2015, en	
	miles de soles	
Gráfico 7.	Evolución de las inversiones de las empresas estudiadas, 2002-2015, en	
	miles de soles	

LISTA DE ANEXOS

Anexo 1. Lista de las 30 Empresas de la Muestra	47
Anexo 2. Data del Tipo de Cambio Multilateral Real Durante el Periodo 2002 – 20	015 y
tasa de crecimiento anual	48
Anexo 3. Data de las variables de las 30 empresas de la muestra para el periodo 20	002 –
2015	49
Anexo 4. Tasas de crecimiento anual de las 30 empresas de la muestra para el peri	iodo
2002 - 2015	60
Anexo 5. Proyección de las variables significativas de la inversión y Ratio de deuc	da de
los años 2006 - 2017	61
Anexo 6. Comandos de STATA para la regresión econométrica	62

CAPÍTULO I INTRODUCCIÓN

I. INTRODUCCIÓN

1.1 Formulación del problema

1.1.1 Realidad problemática

El Perú es uno de los países Latinoamericanos con mayor crecimiento sostenido durante las últimas décadas. Sin embargo, la economía peruana muestra señales de crecimiento del PBI impulsado por la inversión total (especialmente la inversión privada que es cuatro veces la pública) y las exportaciones. por lo que resultaría un medio más relevante a considerar en la aplicación de políticas públicas. No obstante, a diferencia de la inversión pública, la inversión privada no depende de un presupuesto proveniente del gobierno, sino hay que tener en cuenta que tiene condiciones diferentes a la inversión privada.

Es por ello que un afán de poder entender como toman decisiones de inversión las empresas, abordaremos el impacto que tienen diferentes determinantes propios de la empresa como la estructura financiera, el poder mercado y externas como el tipo de cambio.

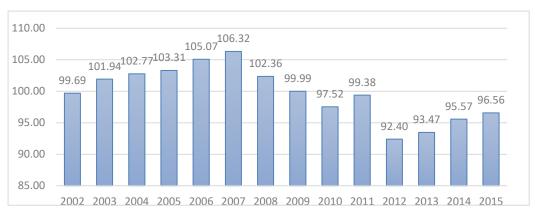
La mayoría de las grandes empresas del Perú exportan sus productos o tienen proveedores extranjeros, por lo que una variación del tipo de cambio afecta a los resultados de dichas empresas, y por ende su decisión de inversión.

La tasa de crecimiento promedio anual de la inversión privada ha venido en un ritmo de 9.8% (a pesar de la crisis internacional en 2009). Así mismo el índice del tipo de cambio real multilateral ha ido devaluándose

y decreciendo en un promedio de 99.69 en 2002 a 96.56 en 2015, el cual ha tenido un efecto positivo en los costos de inversión. (Ver Gráfico 1).

Gráfico 1. Evolución de la inversión Privada 2002-2015 en el Perú.

Fuente: Banco Central de Reserva del Perú (BCRP).


Elaboración Propia

La mayoría de las grandes empresas del Perú exportan sus productos o tienen proveedores extranjeros, por lo que una variación del tipo de cambio afecta a los resultados de dichas empresas, y por ende su decisión de inversión. Este efecto se da principalmente por dos canales: el canal de los ingresos por ventas y el canal de los egresos del pago a proveedores extranjeros.

Si consideramos que una empresa participa tanto en el mercado nacional como en el mercado extranjero vendiendo sus bienes, sean tangibles o intangibles, los cuales son producidos recurriendo al uso de insumos tanto nacionales como foráneos, es sensato afirmar que el tipo de cambio sería una variable macroeconómica relevante a considerar, pues afecta a sus utilidades tanto por el lado del ingreso como por el lado del costo,

este concepto lo plantea en su investigación Pozzolo & Nucci. Por esta razón nuestra primera variable que es el tipo de cambio real que es el multilateral¹, el cual se define como un promedio ponderado del tipo de cambio de los diferentes tipos de cambio bilaterales (Véase Anexo, Nota 1) nos muestra el comportamiento de cómo ha ido su evolución. (Ver Gráfico 2).

Gráfico 2. Comportamiento del índice del Tipo de Cambio Real (Multilateral) durante el periodo 2002 – 2015.

Fuente: Banco Central de Reserva del Perú (BCRP). Elaboración Propia

Durante el 2002 al 2007 se observa una depreciación en un 6.6% y del 2007 al 2015 se refleja una apreciación de 0.09%.

Teniendo en cuenta esto, ahora se necesita establecer la manera en que la inversión fue afectada por los determinantes mencionados anteriormente, por lo que en las siguientes secciones del documento se delimitará los canales de transmisión por los cuales pueden afectar, así como cuantificar su incidencia.

Frente a esta coyuntura, en este estudio se analiza como la capacidad del tipo de cambio real (multilateral) ha tenido influencia en sus inversiones de los agentes económicos.

1.1.2 Enunciado del problema

¿Cuál es la incidencia del tipo de cambio real en la inversión de las empresas en el Perú para el periodo 2002-2015?

1.1.3 Antecedentes del problema

Hermet (2003) La relación de variables que investigan son la inversión total y el tipo de cambio real, como indicadores de la inversión total utilizan el monto de activos fijos tangibles adquiridos, el capital que es medido como el monto de activos fijos, las ventas netas y el stock de efectivo y como indicador del tipo de cambio real se utiliza su variación. La metodología usada es el análisis de cuadros históricos de data absoluta, data porcentual y el modelo de regresión lineal de datos panel de 477 empresas manufactureras coreanas durante el periodo 1984 – 1991. Los resultados de la regresión lineal del efecto hoja de Balance fue mayor en el periodo seguido a la crisis asiática. Adicionalmente, encuentra que esta relación, es más significativa para empresas pequeñas. Entonces, apoya la hipótesis central de que el desarrollo de la inversión con respecto al tipo de cambio real es positivo.

Bonomo y Martins (2003) La relación de variables que investigan es la composición de la deuda y el tipo de cambio real, como indicadores de la composición de la deuda utilizan la tasa de crecimiento del capital, tasa de interés real doméstica, ratio de deuda y como indicador del tipo de cambio real utiliza su variación porcentual. La metodología utilizada es el análisis de q de tobin y el modelo de regresión lineal de datos panel de

203 empresas brasileñas durante la década de los 90 en el periodo 1990 – 2002. Los resultados de la regresión lineal del efecto hoja de Balance fue negativa debido a la inestabilidad y deterioro de la salud financiera del gobierno que se generaron precisamente por el alto nivel de la tasa de interés que controlaba el tipo de cambio. Adicionalmente las empresas que poseen una mayor proporción de su deuda en moneda extranjera tenderán a invertir menos ante posibles variaciones cambiarias, Sus resultados proveen evidencia de un efecto hoja de balance negativo, significativo y asimétrico sobre la decisión de inversión de las empresas. Entonces el resultado no apoya la hipótesis central, pero hay que tener en cuenta que el tipo de cambio cuando es significativa influye en la decisión de inversión. Así mismo, la estabilidad macroeconómica ha permitido que las inversiones se continúen desarrollando.

Benavente, Jhonson y Morandé (2003) La relación de variables que se investigan es la decisión de inversión en función a la composición de la deuda y el tipo de cambio real. Como indicadores de la composición de la deuda utilizan tasa de crecimiento del capital, ventas, ratio de deuda y como indicador del tipo de cambio real utiliza su variación. La metodología utilizada es el modelo de regresión lineal de datos panel para empresas chilenas que cotizan en la bolsa de valores durante los años 1994 - 2001. Los resultados muestran una correlación entre el tipo de cambio real y la composición de la deuda, validando la hipótesis planteada en la decisión de inversión con respecto al tipo de cambio real es positiva.

Loveday, Molina y Rivas-Llosa (2004) La relación de variables que se investigan es la inversión y el tipo de cambio real, como indicadores de la inversión utilizan la variación de la inversión que es calculado por el capital: inmueble, maquinaria y equipo, ratio de deuda, devaluación, emisión y como indicador del tipo de cambio real utiliza su variación. La metodología utilizada es el modelo de regresión lineal de datos panel para 141 empresas peruanas registradas CONASEV. ahora en Superintendencia de Mercado de Valores (SMV). en los años 1990 -2002. Los resultados muestran una mayor evidencia estadística para la hipótesis debido a la fortaleza financiera de grandes y pequeñas empresas reflejados en su tamaño. Además, contaron con un menor grado de apalancamiento. Entonces apoya la hipótesis central de que el desarrollo de la inversión con respecto al tipo de cambio real es positivo.

Luis Saldaña y Mario Velásquez Febrero (2007) La relación de variables que se investigan es la inversión y el tipo de cambio real, como indicadores de la inversión utilizan la variación de la inversión que es calculado por el stock de capital: (inmueble, maquinaria y equipo), tasa de crecimiento del capital, ratio de deuda, tamaño de la empresa, variable de crisis económica, recesión y como indicador del tipo de cambio real utiliza su variación. La metodología utilizada es el modelo ANCOVA de datos panel para 182 empresas peruanas en los años 1994 – 2004. Los resultados muestran una mayor evidencia estadística para la hipótesis según el cual el mayor crecimiento de la inversión fue entre 1997 y el

2001, debido a que no hubo crisis financiera. Así mismo la inversión en función al tipo de cambio es sostenible.

Ramírez-Rondán (2016) La relación de variables que se investigan es la inversión y el tipo de cambio real, como indicadores de la inversión utilizan la variación de la inversión que es calculado por: (inmueble, maquinaria y equipo neto de ventas de activos fijos sobre activos totales), total activos, flujo de caja, tasa de crecimiento del capital, ratio de deuda, tamaño de la empresa, apalancamiento, IPCperu, IPCusa, tasas de interés y como indicador del tipo de cambio real utiliza su variación. Encuentran evidencia de un alto grado de sensibilidad de las decisiones de inversión de las firmas peruanas ante una devaluación del tipo de cambio real. La metodología utilizada es el modelo de datos panel estático en mínimos cuadrados para 74 empresas peruanas que cotizan en la bolsa de valores durante los años 2002 - 2013. Los resultados del efecto hoja de balance estático no demuestra una evidencia estadística para la hipótesis según la cual se deben incluir otras variables en el análisis permitiendo para que las inversiones se continúen desarrollando.

1.1.4 Justificación

Justificación teórica

La investigación encontró el siguiente marco teórico que contrasta la evidencia empírica del modelo teórico de Pozzolo & Nucci evidenciando sus coeficientes con los signos esperados que es muy pertinente para analizar la economia peruana. Los resultados obtenidos de la información

procesada a través de datos panel dinámico podrá ser utilizada por futuros investigadores que busquen generar modelos de optimización de la inversión o de decisiones sobre la flotación del tipo de cambio y sus efectos sobre el desarrollo económico del país.

Justificación práctica.

La presente investigación brindará conocimiento para la sociedad peruana en el contexto de comprender el proceso de toma de decisiones de las empresas con respecto a la inversión y las fluctuaciones cambiarias del tipo de cambio, para que futuros investigadores puedan tomar en cuenta esta investigación y así las decisiones de inversión podrán ser tomadas más eficientemente

Justificación metodológica.

Para alcanzar el cumplimiento de los objetivos de nuestra investigación se utilizan técnicas de investigación científica basadas en recopilar de antecedentes y adaptando un marco teórico que nos ayuden a validar nuestros resultados. Así como el instrumento de investigación de datos y series estadísticas de las principales fuentes oficiales (SMV y BCRP).

1.2 Hipótesis

La incidencia del tipo de cambio real en la inversión de las empresas en el Perú para el periodo 2002-2015 es positiva.

1.3 Objetivos

1.3.1 Objetivo General.

Analizar la incidencia del tipo de cambio real en la inversión de las empresas en el Perú para el periodo 2002-2015.

1.3.2 Objetivos Específicos.

- a) Explicar el comportamiento del tipo de cambio real (Multilateral) en el periodo 2002 – 2015.
- b) Analizar la inversión de las empresas para el periodo 2002 2015.
- c) Estimar un modelo econométrico que establezca la incidencia del tipo de cambio real (Multilateral) en la inversión de las empresas.

1.4 Marco Teórico

Pozzolo & Nucci (1998), plantean un modelo teórico para encontrar la relación del tipo de cambio real con la inversión de las empresas como también el tamaño económico y la independencia financiera.

En la primera parte de esta sección se desarrollan los conceptos del capital físico, valoración de la empresa, optimizando el proceso de acumulación de capital considerando el tipo de cambio real, pero también considerando un costo de ajuste que serán las bases del modelo teórico que se presenta en la segunda parte donde muestra la trayectoria de la maximización de los beneficios llegando al resultado en términos de elasticidades. Finalmente se expondrán los distintos enfoques teóricos que explican como el efecto de las variaciones del tipo de cambio llega a la inversión haciendo un énfasis en las variables que se utilizan en los mecanismos de transmisión².

Sea:

$$\sum_{1 \le t} E_t \left[\frac{\pi_t(p_t; p_t^*; L_t; L_t^*) - \nu_t \cdot I_t - C_t(I_t)}{(1 + r_t)^t} \mid \mathcal{I}_t \right]$$
 (1)

$$\pi_t(p_t; p_t^*; L_t; L_t^*) = TR_t(p_t; p_t^*) - w_t \cdot L_t - w_t^* \cdot L_t^*$$
(2)

$$TR_t(p_t; p_t^*) = x_t(p_t) \cdot p_t(e_t) + e_t \cdot x_t^*(p_t^*) \cdot p_t^*(e_t)$$
(3)

$$x_t(p_t) + x_t^*(p_t^*) = F_t(K_t; L_t; L_t^*)$$
(4)

$$I_{t} = K_{t} - (1 - \delta_{t}) \cdot K_{t-1} \tag{5}$$

$$\pi_t(.) = \pi_j(.) = \pi(.), \forall t \neq j$$
 (6)

$$C_t(.) = C_j(.) = C(.), \forall t \neq j$$
(7)

$$F_t(.) = F_i(.) = F(.), \forall t \neq i$$
 (8)

$$v_t = 1, \forall t \tag{9}$$

$$\delta_t = 0, \forall t \tag{10}$$

$$\mathcal{J}_t = \mathcal{J}_i = \mathcal{J}_1, \forall t \neq j \tag{11}$$

$$E_t[e_t \mid \mathcal{I}_t] = E_j[e_j \mid \mathcal{I}_j], \forall t \neq j$$
(12)

$$r_t \in <0; 1> \subseteq \mathbb{Q}^+, \forall t$$
 (13)

$$r_t = r_i = r, \forall t \neq j \tag{14}$$

Donde:

 π : Beneficio

K: Capital físico

e: Tipo de cambio real

I : Inversión

C: Costo de ajuste

r: Tasa de retorno nominal

x : Demanda del producto de la empresa en el mercado nacional

 x^* : Demanda del producto de la empresa en el mercado extranjero

p: Precio del producto determinado por la empresa en el mercado nacional

 p^* : Precio del producto determinado por la empresa en el mercado extranjero

L: Insumo nacional

 L^* : Insumo importado

w: Precio del insumo nacional

w*: Precio del insumo importado

 \mathcal{I} : Información del mercado de la que dispone la empresa

 $E_t[.\mid\mathcal{I}_t]$: Expectativa para el periodo t condicional a \mathcal{I}_t

Se plantea que al inicio de una serie infinita de periodos de tiempo discreto, una empresa genérica adquiere una cantidad K_0 determinada con la cual inicia sus funciones. Sin embargo, ya que las circunstancias para los periodos siguientes son inciertas, la expectativa de la empresa respecto al importe actualizado que espera ganar en cada periodo t en base a toda la información que cuenta hasta dicho periodo es $E_t\left[\frac{\pi_t(K_t;e_t)-l_t-C_t(l_t)}{(1+r_t)^t}\mid\mathcal{I}_t\right]$. Así, asumiendo que la serie $\{r_t\}_{0\leq t}$ está identicamente distribuida y es independiente de la serie $\{\pi_t(K_t;e_t)-I_t-C_t(I_t)\}_{0\leq t}$, se busca resolver el problema de programación dinámica estocástica que consiste en maximizar la expresión (1) teniendo en cuenta a la expresión (5) como una restricción (Sydsaeter & Hammond, Lomelí & Rumbos, Sydsaeter, Hammond, Seierstad & Strom).

Para ello, primero se resuelve el problema de estática comparativa determinista que consiste en maximizar la expresión (2) teniendo en cuenta a la expresión (4) como una restricción en cada periodo t, reemplazando apropiadamente la expresión (3) en (2); e identificando a p_t, p_t^*, L_t y L_t^* como las variables endógenas de decisión y a w_t, w_t^* ,

 e_t y K_t como las variables exógenas (Sydsaeter & Hammond, Lomelí & Rumbos, Sydsaeter, Hammond, Seierstad & Strom), se deducen las siguientes expresiones:

$$\mathcal{L}_{t} = x_{t}(p_{t}) \cdot p_{t}(e_{t}) + e_{t} \cdot x_{t}^{*}(p_{t}^{*}) \cdot p_{t}^{*}(e_{t}) - w_{t} \cdot L_{t} - e_{t} \cdot w_{t}^{*} \cdot L_{t}^{*} - \lambda_{t}$$

$$\cdot [x_{t}(p_{t}) + x_{t}^{*}(p_{t}^{*}) - F_{t}(K_{t}; L_{t}; L_{t}^{*})]$$

$$(15)$$

$$\frac{\partial \mathcal{L}_t}{\partial p_t} = \frac{\partial x_t}{\partial p_t} \cdot p_t(e_t) + x_t(p_t) - \lambda_t \cdot \frac{\partial x_t}{\partial p_t} = 0$$
 (2)

$$\frac{\partial \mathcal{L}_t}{\partial p_t^*} = e_t \cdot \frac{\partial x_t^*}{\partial p_t^*} \cdot p_t^*(e_t) + e_t \cdot x_t^*(p_t^*) - \lambda_t \cdot \frac{\partial x_t^*}{\partial p_t^*} = 0$$
(3)

$$\frac{\partial \mathcal{L}_t}{\partial L_t} = -w_t + \lambda_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t} = 0 \tag{4}$$

$$\frac{\partial \mathcal{L}_t}{\partial L_t^*} = -e_t \cdot w_t^* + \lambda_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = 0 \tag{5}$$

$$\frac{\partial \mathcal{L}_t}{\partial K_t} = \lambda_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial K_t} \tag{16}$$

Determinando que [2] = [3] y [4] = [5], se llega a:

$$\lambda_{t} = p_{t}(e_{t}) \cdot \left(1 + \vartheta_{t;p \to x}^{-1}\right) = e_{t} \cdot p_{t}^{*}(e_{t}) \cdot \left(1 + \vartheta_{t;p_{t}^{*} \to x_{t}^{*}}^{-1}\right)$$

$$= \frac{w_{t}}{\frac{\partial F_{t}(K_{t}; L_{t}; L_{t}^{*})}{\partial L_{t}}} = \frac{e_{t} \cdot w_{t}^{*}}{\frac{\partial F_{t}(K_{t}; L_{t}; L_{t}^{*})}{\partial L_{t}^{*}}}$$

$$(7)$$

Donde
$$\vartheta_{t;p \to x} = \frac{\partial x_t}{\partial p_t} \cdot \frac{p_t}{x_t} \ y \ \vartheta_{t;p_t^* \to x_t^*} = \frac{\partial x_t^*}{\partial p_t^*} \cdot \frac{p_t^*}{x_t^*}.$$

Además, si:

- Se reemplaza el segundo término de la expresión [7] en la expresión [6]; y al recurrir al teorema de Euler, estableciendo que $\pi_t^{\bullet}(w_t, w_t^*, e_t; K_t)$ es la función valor, se obtiene que:

$$\frac{\partial \mathcal{L}_t}{\partial K_t} = \frac{\partial \pi_t^{\blacksquare}(w_t, w_t^*, e_t; K_t)}{\partial K_t} = p_t(e_t) \cdot \left(1 + \vartheta_{t; p \to x}^{-1}\right) \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial K_t} \tag{8}$$

 Se asume que la expresión (4) es una función homogénea de grado 1³, por el teorema de Euler se llega a:

$$F_{t}(K_{t}; L_{t}; L_{t}^{*}) = K_{t} \cdot \frac{\partial F_{t}(K_{t}; L_{t}; L_{t}^{*})}{\partial K_{t}} + L_{t} \cdot \frac{\partial F_{t}(K_{t}; L_{t}; L_{t}^{*})}{\partial L_{t}} + L_{t}^{*}$$

$$\cdot \frac{\partial F_{t}(K_{t}; L_{t}; L_{t}^{*})}{\partial L_{t}^{*}}$$

$$(9)$$

Con esto, se procede a hacer los siguientes cálculos:

1° Se reemplazan
$$w_t = p_t(e_t) \cdot \left(1 + \vartheta_{t;p \to x}^{-1}\right) \cdot \frac{\partial F_t(K_t;L_t;L_t^*)}{\partial L_t}$$
 y $e_t \cdot w_t^* = p_t(e_t)$

$$(1 + \vartheta_{t;p \to x}^{-1}) \cdot \frac{\partial F_t(K_t;L_t;L_t^*)}{\partial L_t^*}$$
, que se obtienen en [7], en

$$\frac{\pi_t^{\blacksquare}(w_t, w_t^*, e_t \; ; K_t)}{K_t} = \frac{x_t(p_t) \cdot p_t(e_t) + e_t \cdot x_t^*(p_t^*) \cdot p_t^*(e_t) - w_t \cdot L_t - e_t \cdot w_t^* \cdot L_t^*}{K_t}$$

Obteniéndose que:

$$\begin{split} \frac{\pi_t^{\bullet}(w_t, w_t^*, e_t ; K_t)}{K_t} \\ &= \frac{x_t(p_t) \cdot p_t(e_t) + e_t \cdot x_t^*(p_t^*) \cdot p_t^*(e_t)}{K_t} - p_t(e_t) \cdot \left(1 + \vartheta_{t;p \to x}^{-1}\right) \\ \cdot \left[\frac{L_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t} + L_t^* \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*}}{K_t} \right] \end{split}$$

2° Se reemplaza $L_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t} + L_t^* \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*) - K_t \cdot \frac{\partial F_t(K_t; L_t; L_t^*)}{\partial L_t^*} = F_t(K_t; L_t; L_t^*)$

 $\frac{\partial F_t(K_t;L_t;L_t^*)}{\partial K_t}$, que se obtiene de [9], en el resultado del paso anterior, llegando así a:

$$\begin{split} \frac{\pi_{t}^{\bullet}(w_{t}, w_{t}^{*}, e_{t}; K_{t})}{K_{t}} \\ &= \frac{x_{t}(p_{t}) \cdot p_{t}(e_{t}) + e_{t} \cdot x_{t}^{*}(p_{t}^{*}) \cdot p_{t}^{*}(e_{t})}{K_{t}} - p_{t}(e_{t}) \cdot \left(1 + \vartheta_{t;p \to x}^{-1}\right) \\ &\cdot \left[\frac{x_{t}(p_{t}) + x_{t}^{*}(p_{t}^{*})}{K_{t}} - \frac{\partial F_{t}(K_{t}; L_{t}; L_{t}^{*})}{\partial K_{t}}\right] \end{split}$$

3° Se despeja $\frac{\partial F_t(K_t; L_t; L_t^*)}{\partial K_t}$ en el resultado del paso anterior para fomar una expresión que será reemplazada en [8], y agrupando apropiadamente se obtiene que:

$$\frac{\partial \pi_{t}^{\bullet}(w_{t}, w_{t}^{*}, e_{t}; K_{t})}{\partial K_{t}} = \frac{\left[x_{t}(p_{t}) \cdot p_{t}(e_{t}) \cdot \left(1 + \vartheta_{t; p \to x}^{-1}\right) + e_{t} \cdot x_{t}^{*}(p_{t}^{*}) \cdot p_{t}^{*}(e_{t}) \cdot \left(1 + \vartheta_{t; p_{t}^{*} \to x_{t}^{*}}^{-1}\right) - w_{t} \cdot L_{t} - e_{t} \cdot w_{t}^{*} \cdot L_{t}^{*}\right]}{\kappa}$$

$$\frac{\partial \pi_{t}^{\bullet}(w_{t}, w_{t}^{*}, e_{t}; K_{t})}{\partial K_{t}} = \frac{\left[x_{t}(p_{t}) \cdot p_{t}(e_{t}) \cdot \left(1 + \vartheta_{t; p \to x}^{-1}\right) + e_{t} \cdot x_{t}^{*}(p_{t}^{*}) \cdot p_{t}^{*}(e_{t}) \cdot \left(1 + \vartheta_{t; p_{t}^{*} \to x_{t}^{*}}^{-1}\right) - w_{t} \cdot L_{t} - e_{t} \cdot w_{t}^{*} \cdot L_{t}^{*}\right]}{\kappa}$$

 4° Diferenciando a [10] respecto a e_t se llega a:

$$\frac{\partial^{2} \pi_{t}^{\bullet}(w_{t}, w_{t}^{*}, e_{t}; K_{t})}{\partial e_{t} \partial K_{t}} = \frac{1}{K_{t}}$$

$$\cdot \left[\frac{\partial p_{t}}{\partial e_{t}} \cdot x_{t}(p_{t}) \cdot \left(1 + \vartheta_{t;p \to x}^{-1} \right) + p_{t} \cdot \frac{\partial x_{t}}{\partial p_{t}} \cdot \frac{\partial p_{t}}{\partial e_{t}} \cdot \left(1 + \vartheta_{t;p \to x}^{-1} \right) - x_{t}(p_{t}) \cdot p_{t}(e_{t}) \right]$$

$$\cdot \frac{\partial \vartheta_{t;p \to x}}{\partial e_{t}} \cdot \vartheta_{t;p \to x}^{-2} \right]$$

$$+ \frac{1}{K_{t}} \cdot \left[x_{t}^{*}(p_{t}^{*}) \cdot p_{t}^{*}(e_{t}) \cdot \left(1 + \vartheta_{t;p_{t}^{*} \to x_{t}^{*}}^{-1} \right) + e_{t} \cdot x_{t}^{*}(p_{t}^{*}) \cdot \frac{\partial p_{t}^{*}}{\partial e_{t}} \cdot \left(1 + \vartheta_{t;p_{t}^{*} \to x_{t}^{*}}^{-1} \right) + e_{t} \cdot x_{t}^{*}(p_{t}^{*}) \cdot \frac{\partial p_{t}^{*}}{\partial e_{t}} \cdot \left(1 + \vartheta_{t;p_{t}^{*} \to x_{t}^{*}}^{-1} \right) \right]$$

$$+ \frac{1}{K_{t}} \cdot \left[-e_{t} \cdot p_{t}^{*}(e_{t}) \cdot x_{t}^{*}(p_{t}^{*}) \cdot \frac{\partial \vartheta_{t;p_{t}^{*} \to x_{t}^{*}}}{\partial e_{t}} \cdot \vartheta_{t;p_{t}^{*} \to x_{t}^{*}}^{*} - \left(w_{t}^{*} \cdot L_{t}^{*} + e_{t} \cdot L_{t}^{*} \cdot \frac{\partial w_{t}^{*}}{\partial e_{t}} \right) \right]$$

A continuación, se inicia la resolución del problema mencionado inicialmente. Para ello se consideran a las expresiones (6), (7), (8), (9), (10) y (11)⁴ para simplificar el procedimiento y se reemplaza a la expresión (2) por la expresión [10] en la expresión (1), con lo que se llega a la siguiente función valor:

$$V_1(K_0) = \max_{\{I_t\}_{t \ge 1}} \left\{ E_1 \left[\sum_{1 \le t} \frac{\left[\pi^{\bullet}(w_t, w_t^*, e_t; K_t) - I_t - C(I_t) \right]}{(1 + r_t)^t} \mid \mathcal{I}_1 \right] \right\}$$
 (12)

identificándose a $\{I_t\}_{t\geq 1}$ como la sucesión de variables de control y a $\{K_t\}_{t\geq 0}$ como la sucesión de variables de estado.

Replanteando el problema considerando que el funcionamiento de la empresa es a partir del j–ésimo periodo, se obtiene:

$$V_{j}(K_{j-1}) = \max_{\{I_{t}\}_{t \ge j}} \left\{ E_{j} \left[\sum_{j \le t} \frac{\pi^{\bullet}(w_{t}, w_{t}^{*}, e_{t}; K_{t}) - I_{t} - C(I_{t})}{(1 + r_{t})^{t}} \mid \mathcal{I}_{j} \right] \right\}$$
(12.1)

Con lo que se realizan los siguientes cálculos:

$$V_{j}(K_{j-1}) = \max_{I_{j}} \left\{ \frac{\pi^{\bullet}(w_{j}, w_{j}^{*}, e_{j}; K_{j}) - I_{j} - C(I_{j})}{(1 + r_{j})^{j}} \right\} + V_{j+1}(K_{j})$$

Estableciendo que $\overline{V_j}(K_{j-1}) = (1 + r_j)^j \cdot V_j(K_{j-1})$ se llega a:

$$\bar{V}_{j}(K_{j-1}) = \max_{I_{j}} \{\pi^{\bullet}(w_{j}, w_{j}^{*}, e_{j}; K_{j}) - I_{j} - C(I_{j})\} + \frac{(1+r_{j})^{j}}{(1+r_{j+1})^{j+1}} \cdot \bar{V}_{j+1}(K_{j})$$
(13)

donde la expresión [13] es la ecuación de Bellman, y con la que se deduce que:

$$\frac{\partial \bar{V}_j(K_{j-1})}{\partial I_j} = -1 - \frac{\partial C(I_j)}{\partial I_j} + \frac{\left(1 + r_j\right)^j}{\left(1 + r_{j+1}\right)^{j+1}} \cdot \frac{\partial \bar{V}_{j+1}(K_j)}{\partial K_j} = 0, \forall j$$
(14)

$$\frac{\partial \bar{V}_j(K_{j-1})}{\partial K_{j-1}} = 1 + \frac{\partial \mathcal{C}(I_j)}{\partial K_{j-1}} + \frac{\left(1 + r_j\right)^j}{\left(1 + r_{j+1}\right)^{j+1}} \cdot \frac{\partial \bar{V}_{j+1}(K_j)}{\partial K_j}, \forall j$$
(15)

siendo la expresión [14] una condición de primer orden, y la expresión [15] la ecuación de Euler que se obtuvo por medio del teorema de la envolvente. De [15] se pueden establecer las siguientes igualdades:

$$\frac{\partial \bar{V}_1(K_0)}{\partial K_0} = 1 + \frac{\partial C(I_1)}{\partial K_0} + \frac{(1+r_1)}{(1+r_2)^2} \cdot \frac{\partial \bar{V}_2(K_1)}{\partial K_1}$$
 (15.1)

$$\frac{\partial \bar{V}_2(K_1)}{\partial K_1} = 1 + \frac{\partial C(I_2)}{\partial K_1} + \frac{(1+r_2)^2}{(1+r_2)^3} \cdot \frac{\partial \bar{V}_3(K_2)}{\partial K_2}$$
(15.2)

$$\frac{\partial \bar{V}_3(K_2)}{\partial K_2} = 1 + \frac{\partial C(I_3)}{\partial K_2} + \frac{(1+r_3)^3}{(1+r_4)^4} \cdot \frac{\partial \bar{V}_4(K_3)}{\partial K_3}$$
 (15.3)

Reemplazando recursivamente desde la primera hasta la "última" igualdad, se obtiene la siguiente expresión:

$$\frac{\partial \bar{V}_{j}(K_{j-1})}{\partial K_{j-1}} = -\left(1 + r_{j}\right)^{j} \cdot \left\{ \sum_{1 \le t \le j-1} \left[\frac{1 + \frac{\partial C(I_{t})}{\partial K_{t-1}}}{(1 + r_{t})^{t}} \right] + \frac{\partial \bar{V}_{1}(K_{0})}{\partial K_{0}} \right\}$$
(16)

Además, despejando $\frac{(1+r_j)^j}{(1+r_{j+1})^{j+1}} \cdot \frac{\partial \overline{V}_{j+1}(K_j)}{\partial K_j}$ en [15] y reemplazando el resultado en [14] se llega a:

$$\frac{\partial C(I_j)}{\partial I_j} = \frac{\partial \bar{V}_j(K_{j-1})}{\partial K_{j-1}} - \frac{\partial C(I_j)}{\partial K_{j-1}} - 2 \tag{17}$$

Y reemplazando [16] en [17] se obtiene que:

$$\frac{\partial \mathcal{C}(l_j)}{\partial l_j} = -\left(1 + r_j\right)^j \cdot \left\{ \sum_{1 \le t \le j-1} \left[\frac{1 + \frac{\partial \mathcal{C}(l_t)}{\partial K_{t-1}}}{(1 + r_t)^t} \right] + \frac{\frac{\partial \bar{V}_1(K_0)}{\partial K_0}}{(1 + r_1)} \right\} - \frac{\partial \mathcal{C}(l_j)}{\partial K_{j-1}} - 2$$

$$(18)$$

Si se asume que $C(I_j)$ es convexa y creciente, estableciendo que $\frac{\partial C(I_t)}{\partial K_{t-1}} < -1$, $\forall t$ y que $\frac{\partial \overline{V}_1(K_0)}{\partial K_0} < 0$ en [18], se puede determinar que la siguiente función $\phi(.)$ es creciente:

$$I_{j} = \phi \left(-\left(1 + r_{j}\right)^{j} \cdot \left\{ \sum_{1 \le t \le j - 1} \left[\frac{1 + \frac{\partial \mathcal{C}(I_{t})}{\partial K_{t - 1}}}{(1 + r_{t})^{t}} \right] + \frac{\frac{\partial \overline{V}_{1}(K_{0})}{\partial K_{0}}}{(1 + r_{1})} \right\} \right) 2$$
(19)

Diferenciando [19] respecto a e_t y empleando las expresiones [10] y (14), se llega a:

$$\frac{\partial I_{t}}{\partial e_{t}} = \phi'(\cdot) \frac{1}{1 - \beta} \left[\frac{\partial K_{t}^{-1} \left(P_{t} \cdot X_{t} \cdot \left(1 + \vartheta_{t;p \to x}^{-1} \right) + e_{t} \cdot P_{t}^{*} \cdot X_{t}^{*} \cdot \left(1 + \vartheta_{t;p_{t}^{*} \to x_{t}^{*}}^{-1} \right) \right)}{\partial e_{t}} \right] (20)$$

$$- \phi'(\cdot) \frac{1}{1 - \beta} \left[\frac{\partial K_{t}^{-1} \left(w_{t} \cdot L_{t} + e_{t} \cdot w_{t}^{*} \cdot L_{t}^{*} \right)}{\partial e_{t}} \right]$$

Esta expresión muestra la dependencia de la inversión en una variación de un periodo en el nivel del tipo de cambio. Aislando el efecto de los ingresos y los costos, es importante notar el efecto de las variaciones del tipo de cambio en el nivel de inversión en el momento t, es no solo a través del cambio en los beneficios marginales actuales, sino a través del cambio en todo el flujo de beneficios marginales futuros esperados.

Con el fin de caracterizar explícitamente algunos de los factores relevantes que determinan el efecto de e_t en I_t se puede desarrollar más profundamente [20] para obtener la siguiente expresión:

$$\frac{\partial I_{t}}{\partial e} = \phi'(\cdot) \cdot \frac{1}{1 - \beta} \cdot \frac{\text{TR}}{K \cdot e}
\cdot \left\{ \frac{1}{1 + \mu^{*}} \cdot \chi \cdot \left[\eta_{P^{*}, e} \cdot (1 + \vartheta_{x^{*}}) + 1 - \varepsilon_{\mu^{*}, e} \right] + \frac{1}{1 + \mu} \cdot (1 - \chi) \right.
\cdot \left[\eta_{P, e} \cdot (1 + \vartheta_{x}) - \varepsilon_{\mu, e} \right] - \frac{1}{\overline{\mu}} \cdot \left(1 + \eta_{w^{*}, e} \right) \cdot \alpha \right\}$$
(21)

Donde:

 χ : Parte de los ingresos provenientes de las exportaciones más los ingresos totales.

 $\eta_{p,e} \ y \ \eta_{p^*e}$: Son las elasticidades de los precios fijados por la empresa con respecto a la tasa de cambio en el mercado interno y en el mundo externo.

 $\mathcal{E}_{p,e}$ y \mathcal{E}_{p^*e} : Son las elasticidades del mercado con respecto a la tasa de cambio tanto interno como externo.

 α : Es la parte de los costos de los insumos importados más los costos variables totales.

 $\eta_{w^*,e}$: Elasticidad tipo de cambio de los precios de los insumos importados

 $\bar{\mu}$: Denota margen precio costo de la empresa obtenida sin distinguir entre el mercado interno y externo.

La ecuación (9) proporciona un marco útil para aislar los principales factores determinantes de la variación de la rentabilidad, y por lo tanto en la inversión,

inducida por una depreciación, por lo que respecto a los ingresos, mayor es χ , la proporción de los ingresos que la empresa obtiene de las exportaciones, más la empresa se beneficia del aumento de la competitividad asociada a una devaluación del tipo de cambio. Centrándose en el lado de las ventas, el efecto positivo de χ interactúa con la elasticidad de traspaso extranjera $\eta_{p^*,e}$ (que van desde uno - un traspaso completo a los precios externos de una variación del tipo de cambio - a cero - a no traspaso), la elasticidad tipo de cambio del margen de ganancia (positivo), $\mathcal{E}_{\mu^*,e}$, y las elasticidades precio de la demanda externa, ϑ_{x^*} , si este último es mayor que uno ($\vartheta_{tx^*} > |-1|$ la demanda externa es elástica), se magnifica el efecto de una gran orientación externa. Lo contrario es inelástica ($\vartheta_{tx^*} < |-1|$).

Por el lado de las ventas internas, el efecto sobre la rentabilidad de las variaciones del tipo de cambio depende claramente de $(1-\chi)$, que interactúa con la elasticidad (positiva) de los precios internos con respecto a una variación del tipo de cambio, $\eta_{p,e}$ elasticidad tipo de cambio del margen de beneficio, $\mathcal{E}_{\mu,e}$ y la elasticidad precio de la demanda interna, ϑ_{tx} . Si la demanda interna es elástica, $(\vartheta_{tx} > |-1|)$, el aumento de los precios de los productos nacionales inducidos por una depreciación de la moneda determina una reducción de la cantidad vendida, lo que provoca una caída de los ingresos internos.

El efecto positivo de una depreciación de la moneda sobre los ingresos provenientes de las ventas en el extranjero, y por lo tanto de la inversión, se contrapone con el de los costos, lo que es claramente no positiva. La magnitud de este último efecto se determina, entre otras cosas, por α , la participación de los costos de los insumos importados sobre los costos variables totales, y por

 $\eta_{w^*,e}$, la elasticidad de la tasa de cambio de los precios de los insumos importados, que es no negativa y varía entre cero y uno. Este último parámetro refleja las diferentes políticas de precios de los exportadores extranjeros en el mercado de insumos intermedios.

El poder de mercado.

Una característica importante de la expresión (9) es que el grado de poder de monopolio de la empresa contribuye a determinar el efecto de las variaciones del tipo de cambio sobre los beneficios, y, por lo tanto, sobre la inversión.

La elasticidad de los precios en el mercado externo con respecto al tipo de cambio $\eta_{p^*,e}$, y el de la demanda extranjera a los precios, ϑ_{x^*} , dependen del grado de poder de monopolio de cada empresa.

Así en la expresión (9), la interacción de $\eta_{p^*,e}$ con $1 + \vartheta_{x^*}$ es tal que cuanto menor sea el poder monopolístico de la empresa, mayor será el efecto sobre las ventas externas de variaciones del tipo de cambio si es menor el poder de monopolio en el mercado exterior, menos reactivo es el margen de la empresa, μ^* , a los cambios en el tipo de cambio. Por lo tanto, se puede ver en (9) que un valor bajo de $\mathcal{E}_{\mu^*,e}$ amplia aún más el efecto del tipo de cambio sobre la rentabilidad a través de las ventas externas.

1.5 Marco conceptual

Inversión

En el contexto empresarial, es el acto mediante el cual se adquieren ciertos bienes de capital físico con el ánimo de obtener unos ingresos o rentas a lo largo del tiempo.

- Tamaño Económico de la Empresa, es el volumen relativo de facturación por costos y gasto de producción con respecto al volumen de facturación de las ventas de la empresa. Este concepto permitirá diferenciar entre empresas grandes, medianas y pequeñas.
- Tipo de cambio Real Multilateral, mide el precio relativo de los bienes y servicios de nuestra economía con respecto a los de un grupo de países con los cuales se realizan transacciones comerciales.

El tipo de cambio real multilateral (TCRM) se define como un promedio geométrico ponderado de los diferentes tipos de cambio bilaterales.

- Independencia Financiera (Ratio de deuda), calcula proporción de deuda que soporta una empresa frente a sus recursos propios. Se calcula el total pasivos en moneda extranjera expresada en moneda nacional sobre el total de activos.
- Costo de ajuste, Son aquellos que son generados por adquisición de bienes de capital físico.

CAPITULO II MATERIAL Y PROCEDIMIENTOS

II. MATERIAL Y PROCEDIMIENTOS.

2.1 Material

2.1.1 Población

La población está compuesta por todas las empresas de la Superintendencia del Mercado de Valores (SMV) que son 300 empresas registradas hasta hoy. (el detalle de las empresas que conforman la población se presenta en los anexos, Tabla 3).

2.1.2 Marco de Muestreo

La información de las 30 empresas las cuales se seleccionaron con criterio a su trayectoria ya que cotizan en la bolsa de valores y son representativas dentro de su sector, además cuentan con información secuencial de sus estados financieros del 2002 al 2015, las cuales fueron obtenidas de la Superintendencia de Mercado de Valores (SMV) y Bolsa de Valores de Lima (BVL).

2.1.3 Muestra

La muestra estará compuesta por 30 empresas líderes que cuentan con información registrada para el periodo 2002 – 2015.

2.1.4 Técnicas e Instrumento de recopilación de datos.

TÉCNICA	INSTRUMENTO
Revisión documental ⁵	Fichas bibliográficas
Descarga virtual de datos de las variables en estudio	 Página oficial de la Superintendencia de Mercado de Valores (SMV), sección Empresas (https://www.smv.gob.pe) Página oficial de la Bolsa de Valores de Lima (BVL), sección Empresas (http://www.bvl.com.pe/mercempresas.html) Página oficial del Banco Central de Reserva del Perú, sección de estadísticas (https://estadisticas.bcrp.gob.pe/estadisticas/series/)

2.2 Procedimientos

2.2.1 Método

Hipotético deductivo.

Mendoza Bellido (2013), En este método, la teoría interactúa con la realidad; pone a prueba la hipótesis derivada a partir de las teorías, a través del método deductivo, y utiliza el método estadístico para poner a prueba la pertinencia de las teorías.

2.2.2 Diseño de contrastación.

La presente investigación es:

Explicativa

Ya que analizaremos la relación que existe entre el tipo de cambio Real (multilateral) y su influencia en la inversión y otros determinantes de las empresas ubicadas en Perú.

Modelo de Datos de Panel:

$$INV_{it} = \alpha_0 + \alpha_1 TAM_{it} + \alpha_2 TCRM_{it} + \alpha_3 RD_{it} + \mu_{it}$$

i: Empresa

t:Tiempo

Donde:

 INV_{it} = Inversión.

 TAM_{it} = Tamaño Económico de la Empresa.

 $TCRM_{it}$ = Índice del Tipo de Cambio Real Multilateral.

 RD_{it} = Independencia Financiera (Ratio de Deuda)

 μ_{it} = Término de error

Esperamos que el modelo cumpla con los supuestos de Datos de Panel.

El método que se está realizando parte de una gama de información sobre el tipo de cambio real (multilateral), para luego llegar a determinar de forma específica su influencia con las inversiones en las empresas peruanas. Se empleará el método econométrico de Arellano y Bond (1991), para realizar las estimaciones correspondientes a Panel de Datos Dinámicos. Lo que caracteriza este método es que permite estudiar la dinámica de las empresas individuales, por lo que una evaluación más precisa se puede hacer sobre como los planes de

inversión de las empresas responden a la crisis especifica tales como la devaluación monetaria.

❖ No experimental

Debido a que los datos anuales que se lograron conseguir para la corrida econométrica se encuentran registradas en la Superintendencia de Mercado de Valores (SMV) en un contexto real que fueron a partir del año 2002 hasta el 2015 y no son resultado de una simulación.

2.2.3 Operacionalización de variables.

Variable de Estudio	Canales de la Variable de Estudio	Indicador	Unidad De Medida	Escala de Medida	Fuente
	Inversión de las Empresas	Tasa de variación interanual del valor en Soles de maquinaria y equipos.	Valor Nominal	De razón	Superintendenci a de mercado de valores (SMV).
Inversión (Variable Dependiente)	Tamaño Económico de la Empresa	Tasa variación interanual del ratio total utilidad sobre ventas.	Valor Monetario	De razón	Superintendenci a de mercado de valores (SMV).
	Independencia Financiera (Ratio de Deuda)	Tasa de variación interanual del Total pasivos sobre el total de activos	Valor Monetario	De razón	Superintendencia de mercado de valores (SMV). Bolsa de Valores de Lima (BVL)
Tipo de Cambio Real (Variable Independiente)	Tipo de Cambio Real Multilateral	Dato absoluto de tipo de cambio multilateral	En índice	De razón	Banco Central de Reserva del Perú.

2.2.4 Procesamiento y análisis de datos.

El análisis de la información correspondiente al periodo 2002 – 2015 fue obtenida a partir de dos fuentes principales: del Centro de Documentación de Superintendencia de Mercado de Valores (SMV) y de la Bolsa de Valores de Lima (BVL) cuyos datos fueron ingresados al Excel 2016 y serán procesados por medio del software STATA 10.

El análisis de los resultados consistirá en la verificación de todos los

Finalmente, cabe señalar que a base de datos presenta ciertas características no deseables:

supuestos en datos panel y otros relacionados con el modelo.

a. Ausencia de data consecutiva

Los datos registrados en su mayoría registran desde el año 2002 como también algunas empresas no cuentan con información para algunos años, por lo que la información del año "t-1" ha sido reconstruida a partir de información del año "t". Para resolver este problema, en los casos fue posible, se tomó la información del año "t-1" del estado financiero del periodo t. dado que los estados financieros presentan la información del año pasado en términos del presente año, fue necesario llevar estos valores a sus valores nominales corrientes ajustándolos por inflación.

b. Ausencia de notas financieras

Algunas empresas únicamente presentaron los estados financieros y no las notas de los estados financieros, en donde normalmente figuran las cantidades de activos y pasivos en moneda extranjera.

c. Data heterogénea

La data provino de dos fuentes: de la (BVL) y (SMV) (2002-2015). En este sentido, se tuvo que juntar y homogeneizar ambas bases de datos. Otra fuente de heterogeneidad de los datos ocurre debido a que los estados financieros, en especial aquellos correspondientes a la información de (SMV), no presentan una manera estandarizada de mostrar la información.

d. Mala calidad de información

Se encontraron inconsistencia entre la información presentada en los Estados Financieros y las Notas a los Estados Financieros. En este sentido, toda la información incongruente fue excluida de la base de datos con la finalidad de no contaminar la buena información.

CAPÍTULO III PRESENTACIÓN Y DISCUSIÓN DE RESULTADOS

III. PRESENTACIÓN Y DISCUSIÓN DE RESULTADOS.

3.1 Presentación de resultados

3.1.1 El tipo de cambio real (Multilateral).

El tipo de cambio real es un concepto que además de tomar en cuenta los movimientos del nivel nominal del tipo de cambio, considera el efecto de los precios en el país y en el exterior. De esta manera, proporciona un indicador de la capacidad adquisitiva de los bienes que se exportan en relación a los bienes nacionales.

El indicador del tipo de cambio real (TCRM) es además multilateral porque considera la importancia de nuestros principales socios en el comercio exterior.

Gráfico 3. Evolución del índice de tipo de cambio real multilateral (TCRM) (Base 2009=100), 2002-2015

Fuente: Estadísticas del BCRP. Elaboración propia.

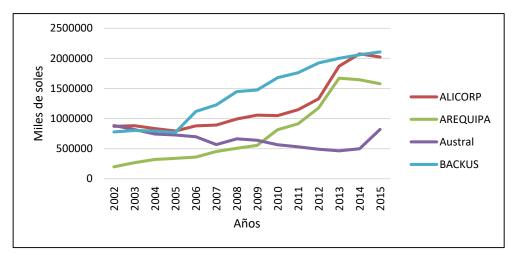
El comportamiento del TCRM tuvo una tendencia fluctuante a partir del 2002, hasta 2006 donde obtiene su punto máximo, a partir de ahí comienza a decaer.

La apreciación del tipo de cambio se debió principalmente a un importante flujo de capitales internacionales, producto de la rápida recuperación de la economía local, sólidos fundamentos macro y a la fragilidad global del dólar.

Durante el año 2015, el indicador de tipo de cambio real multilateral aumentó 2,5 por ciento con respecto al año anterior. Este resultado se debe a un aumento nominal del tipo de cambio del Sol respecto a las monedas de nuestros socios comerciales en 4,9 por ciento. Esta variación fue atenuada por la diferencia entre la inflación en el país (4,4 por ciento) y la inflación promedio de nuestros socios comerciales (2,0 por ciento), indica el BCRP.

En el periodo de estudio la variable TCRM registro una tasa de crecimiento anual de 0.6797% en promedio.

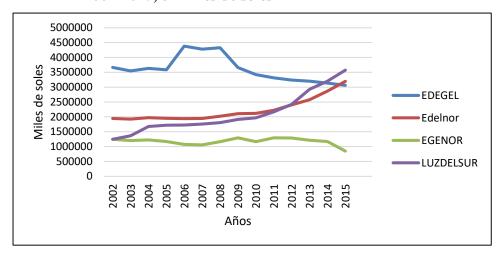
3.1.2 Las inversiones de las empresas analizadas


La economía del Perú sigue mostrando señales de ligero crecimiento impulsado por la inversión total (especialmente la inversión privada que es cuatro veces la pública) y las exportaciones.

La inversión privada nos indica varias cosas. En primer lugar, nos manifiesta la confianza del empresario, pues las inversiones se recuperan en el largo plazo y eso exige una buena cuota de confianza. También nos habla de la capacidad económica existente, pues si bien la Inversión es función inversa de la tasa de interés, también es función directa de los niveles de renta y el capital en maquinaria y equipos. En tercer lugar, importa saber qué sector o sectores son los que más invierten.

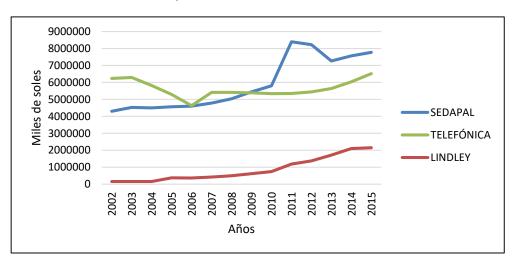
En el Perú para el período 2002-2015, la inversión se concentró en el sector minero, en la construcción y en la manufactura. El primero insume mucha tecnología y genera empleo de calidad, pero restringido. El segundo es un sector intensivo en empleo y finalmente el sector manufacturero es mixto.

En la presente investigación se analizan algunas empresas pertenecientes a los sectores indicados anteriormente.


Gráfico 4: Evolución de las inversiones de las empresas estudiadas, 2002-2015, en miles de soles

Fuente: Estadísticas del BVL. Elaboración propia.

El grafico N° 4, nos muestra la tendencia creciente de las inversiones de las empresas ALICORP, AREQUIPA, AUSTRAL Y BACKUS. En términos generales las inversiones realizadas por dichas empresas registraron tasas de crecimiento anuales de 1.0202%, 0.6287% 1.1488%, 1.0388% en promedio respectivamente, durante el período de estudio.


Gráfico 5. Evolución de las inversiones de las empresas estudiadas, 2002-2015, en miles de soles

Fuente: Estadísticas del BVL. Elaboración propia.

El grafico N° 5, nos muestra la tendencia creciente de las inversiones de las empresas EDELNOR y LUZDELSUR, también la tendencia decreciente de EGENOR y EDEGEL. En términos generales las inversiones realizadas por dichas empresas registraron tasas de crecimiento anuales de 0.9687%, 1.0457%, -0.1640% y -0.3230% en promedio respectivamente, durante el período de estudio.

Gráfico 6. Evolución de las inversiones de las empresas estudiadas, 2002-2015, en miles de soles

También se puede analizar el comportamiento de las variables de control tamaño de la empresa (TAM) y ratio de deuda (RD), utilizando el mismo procedimiento, utilizando los datos proporcionados por las fuentes oficiales. (Véase anexo 3).

Los determinantes de la inversión

Sin embargo, Es importante señalar también que las inversiones no solo están explicadas por las variables que estamos considerando en el estudio sino también está en función de varios determinantes como tipo de cambio real, expectativas, tasa de interés, rentabilidad, ROE, PBI. Pero lo estamos delimitando en función al tipo de cambio real. Incluso según los autores Hermet (2003), Benavente, Jhonson y Morandé (2003), Luis Saldaña y Mario Velásquez Febrero (2007). Hacen referencia que a más tasa de interés menos inversión y concluyen que las expectativas cumplen un factor importante y si son favorables generan mayor confianza y por lo tanto las inversiones aumentan, por lo que en nuestra investigación nos centramos y profundizamos en ver la relación y ver cómo afecta el tipo de cambio real en la inversión a través de los ingresos generado por las ventas tanto internas como externas y a través de sus costos generado por los insumos que a veces son importados o nacionales conforme está basado en nuestro modelo y para futuras investigaciones sugerimos que realicen esta relación con todas las demás variables.

3.1.3 Evidencia empírica.

En la presente investigación se consideró un modelo econométrico de datos panel, para determinar la incidencia del tipo de cambio real en la inversión de las empresas en el Perú, utilizando algunas variables de control empleadas por los diversos estudios empíricos; para el periodo 2002-2015.

Modelo de Datos de Panel:

$$INV_{it} = \alpha_0 + \alpha_1 TCRM_{it} + \alpha_2 RD_{it} + \alpha_3 TAM_{it} + \mu_{it}$$

i: Empresa

t: Tiempo

Donde:

 INV_{it} = Inversión.

 TAM_{it} = Tamaño Económico de la Empresa.

 $TCRM_{it}$ = Índice del Tipo de Cambio Real Multilateral.

 RD_{it} = Independencia Financiera (Ratio de Deuda)

 μ_{it} = Término de error

Dado que, se está interesado en estimar los parámetros del modelo de la forma panel:

Usando un conjunto de datos con N grande y T fijo.

Hay tres razones a tener en cuenta:

- ❖ INVit esté correlacionado en serie a lo largo del tiempo:
 Dependencia del estado verdadero: vía INVit-1
- Heterogeneidad observada: vía TCRMit, TAMit y RDit la cual puede estar serialmente correlacionada.
- Heterogeneidad no observada: vía los errores.

Suponemos entonces que: eit son iid sobre i y t, es decir no hay correlación serial en los errores.

Estimación econométrica:

Tabla 1. Regresión logarítmica del modelo panel estático

Fixed-effects	(within) reg	ression		Number	of obs	=	392
Group variable	e: id			Number of groups = 28			
R-sq: within	= 0 0835			Ohs ner	group: min	=	1 4
-	n = 0.5768			opp ber	2 -		14.0
	1 = 0.4196						14
				F(3,361)	=	10.97
corr(u_i, Xb)	= 0.5517			Prob >	F	=	0.0000
linv	Coef.	Std. Err.	t	P> t	[95% Conf		Interval]
ltcrm	5086454	.2835364	-1.79	0.074	-1.066236		.0489451
lrd	.1864744	.0417276	4.47	0.000	.1044146		.2685342
ltam	0955896	.0325247	-2.94	0.004	1595513		0316279
_cons	1.70941	1.306454	1.31	0.192	8598063		4.278626
sigma u	.55348282						
sigma_u sigma e	.27050143						
rho		(fraction	of variar	nce due t	0 11 i)		
	.00719022	(114001011			~ ~_±/ 		
F test that al	ll u_i=0:	F(27, 361)	= 38.2	24	Prob >	> F	= 0.0000

Fuente: Elaboración propia en base a resultados obtenidos con el programa STATA

El modelo de la tabla 1 nos indica que, al estimar por el método de efectos fijos individuales, las variables se comportan como lo predice la teoría y los antecedentes previos analizados para la presente investigación. Pero, se tiene un estadístico un R² de 0.08, y la variable TCRM no tiene una significancia estadística individual ((Prob>t=0.07), mayor al 5%.

Además, al ser una estimación por efectos fijos, sin la opción vce (robust), ya que solo así es posible calcular el Test de Hausman. De la salida anterior, es importante destacar lo siguiente: el test F de los efectos individuales que permite rechazar la hipótesis nula de que los efectos individuales son iguales a 0 (Prob>F=0.000), justificando de esta forma un análisis que considere los efectos individuales.

Al realizar el test de auto correlación:

Prueba de autocorrelación de Wooldridge, donde la hipótesis nula indica que no hay autocorrelación de primer orden. Si se rechaza, esto es F<0.000 hay un problema de autocorrelación que es necesario corregir. Por lo tanto, la tabla 4 indica que no hay problemas de autocorrelación.

Tabla 2. Prueba de autocorrelación de Wooldridge

Wooldridge test for autocorrelation in panel data
H0: no first order autocorrelation
F(1, 27) = 12.863
Prob > F = 0.0013

Fuente: Elaboración propia en base a resultados obtenidos con el programa STATA.

A pesar de ello, el modelo de efectos fijos y sus estimaciones no son consistentes. Y extendemos el análisis econométrico a un modelo dinámico⁶, encontrando los siguientes resultados.

Tabla 3. Regresión logarítmica del modelo panel dinámico

System dynamic	panel-data e	estimation	Nı	mmber of	obs	=	364
Group variable	: id		Nι	mmber of	groups	=	28
Time variable:	periodo						
			Ol	os per gr	oup:	min =	13
						avg =	13
						max =	13
Number of inst	niments =	94	W.	ald chi2(4)	_	206.23
Number of Inst	iumentos —	24		rob > chi			0.0000
On a _ stan _ ma sul	One-step results						
One-step resul	.ts						
linv	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
linv							
Ll.	. 6293428	.053357	11.79	0.000	. 52	4765	.7339207
lterm	7181055	.3184262	-2.26	0.024	-1.34	2209	0940016
lrd	.1039255	.0496649	2.09	0.036	.006	5841	.2012668
ltam	0415108	.0480065	-0.86	0.387	135	6018	.0525803
_cons	3.096107	1.459295	2.12	0.034	.235	9413	5.956272
Instruments fo	r difference	d equation					
GMM-ty	pe: L(2/.).li	inv					
Standa	rd: D.lterm I	0.lrd D.ltam					
Instruments fo	r level equat	ion					
GMM-ty	pe: LD.linv						
Standa	rd: _cons						∆ctiv:

Fuente: Elaboración propia en base a resultados obtenidos con el programa STATA

Al revisar los resultados de la tabla 3 notamos que: Los signos de las variables explicativas son iguales como lo indica la teoría planteada, excepto la variable (TAM); además las variables (IN) rezagada un período, (TCRM) y (RD) son significativas al 5 %; el valor Wald es elevado para inducir que el modelo es estadísticamente valido dado que el Pvalue casi nulo, éste presenta una prob>chi2 =0.000 lo que quiere decir que el total de regresores explican significativamente la variable dependiente.

Por último, se realizó una segunda corrida al modelo dinámico, quitando la variable explicativa (TAM). Logrando obtener casi los mismos resultados, pero mejorando la significancia estadística de las variables explicativas. Notamos también que el estadístico Wald es casi es el mismo al valor que la tabla anterior.

Tabla 4. Regresión logarítmica del modelo panel dinámico

roup variable: id Time variable: periodo	N	_			
'ime variable: periodo		umber of	groups	=	28
The variable. Periodo					
	Ol	bs per gr	oup:	min =	13
				avg =	13
				max =	13
Number of instruments = 93	Wa	ald chi2(3)	=	204.67
	P	rob > chi	2	=	0.0000
ne-step results					
linv Coef. Std. Err.	z	P> z	[95%	Conf.	Interval]
linv					
L16395246 .0521064	12.27	0.000	. 5373	3979	.7416514
ltcrm7316839 .318717	-2.30	0.022	-1.35	6358	10701
lrd .1077114 .0496951	2.17	0.030	.0103	3107	.205112
_cons 3.180755 1.459193	2.18	0.029	.320	7892	6.040722
Instruments for differenced equation					
GMM-type: L(2/.).linv					
Standard: D.ltcrm D.lrd					

Standard: _cons

Al contrastar los resultados de la presente investigación con los estudios de:

Pozzolo (1998) y Carranza (2003); quienes afirman encontrar evidencia significativa y negativa del tipo de cambio real multilateral sobre la inversión de las empresas, además de otras variables explicativas. Por lo

tanto, en la presente investigación coincidimos que el impacto encontrado es similar a los estudios previos.

Los hallazgos también, concuerdan con los distintos enfoques teóricos que explican como el efecto de las variaciones del tipo de cambio llega a la inversión haciendo un énfasis en las variables que se utilizan en los mecanismos de transmisión y el poder de mercado. Mediante el análisis econométrico se comprueba la concordancia con estos enfoques teóricos, considerando que los parámetros encontrados van en orden a la teoría económica, la cual sostiene que la relación es inversa.

Por lo tanto, los resultados obtenidos, mediante el modelo panel dinámico, corrobora la teoría económica mencionada en el marco teórico, y así también lo confirman los antecedentes empíricos considerados.

CONCLUSIONES RECOMENDACIONES

CONCLUSIONES

- Los resultados indican que del tipo de cambio real multilateral influye negativamente en el nivel de inversión realizada por las empresas en el Perú, periodo 2002-2015. Cuanto más elevado sea el TCRM menor será el nivel de inversiones. El tipo de cambio real multilateral registró una tasa de crecimiento anual de 0.6797% en promedio, durante el período de estudio. Se destaca la tendencia a la baja durante el periodo 2005-2012.
- b) Las inversiones de algunas empresas como: ALICORP, AREQUIPA, AUSTRAL, BACKUS, SEDAPAL, TELEFONICA, LINDLEY, EDELNOR, LUZDELSUR, EGENOR y EDEGEL; registraron tasas de crecimiento anuales de 1.0202%, 0.6287%, 1.1488%, 1.0388%, 0.9849%, 0.8017%, 1.2017%, 0.9687%, 1.0457%, -0.1640% y -0.3230% en promedio respectivamente, durante el período de estudio. Para las demás empresas (Véase anexo 4).
- Con respecto al modelo de panel dinámico empleado, las variables incluidas son significativas individual y globalmente para explicar el comportamiento de la variable dependiente. Excluyendo la variable TAM al no ser significativa estadísticamente en el período de estudio. Además, encontrando sus elasticidades: 0.63 para la variable IN rezagada un período, -0,73 para la variable TCRM y 0.10 para la variable RD. Así mismo se ha proyectado la inversión, ratio de deuda y tipo de cambio real multilateral (variables significativas del modelo utilizado) para los años 2016 y 2017, dichas proyecciones se realizan en base a las tendencias obtenidas durante los periodos previamente estudiados. En dichas proyecciones encontramos el crecimiento de la inversión privada se mantiene en al menos el 75% de las empresas analizadas. (véase anexos 5)

RECOMENDACIONES

- El análisis y tratamiento en esta investigación sobre el tipo de cambio y su influencia en
 el nivel de inversión realizada por las empresas en el Perú, así como su estimación,
 constituyen una herramienta fundamental para la toma de decisiones empresariales.
 Conociendo el comportamiento de estas variables en el tiempo, los encargados de estas
 políticas, pueden implementar políticas de mediano y largo plazo.
- 2. Se recomienda a las instituciones estatales encargadas de recopilar los datos estadísticos, ser más rigurosa con las empresas, al momento de recibir la información que estas le proporcionan, de tal manera no se generen problemas como: data incompleta de los estados financieros y mala calidad de información. Permitiendo obtener hallazgos sólidos.
- Se sugiere a otros investigadores seguir haciendo pruebas empíricas con metodologías de estimación diferentes con la finalidad de ver si estos resultados son concluyentes o sostenibles.

REFERENCIAS BIBLIOGRAFICAS

Arellano, M., & Bond, S. (1991). Some tests of specification for Panel Data: Monte Carlo Evidence and an application to employment Equations. Oxford University Press.

BCRP, B. C. (2016). *Guía Metodológica de la Nota Semanal*. BCRP BANCO CENTRAL DE RESERVAS DEL PERU. LIMA: Gerencia de Operaciones Monetarias y Estabilidad Financiera - Subgerencia de Operaciones de Política Monetaria. Obtenido de V. Tipo de Cambio: http://www.bcrp.gob.pe/docs/Publicaciones/Guia-Metodologica/Guia-Metodologica-05.pdf

BCRP, B. C. (s.f.). *Banco Central de Reserva del Perú*. Obtenido de http://www.bcrp.gob.pe/

Benavente, J. M., Johnson, C. A., & Morandé, F. G. (2003). *Debt Composition and Balance-Sheet Effects of Exchange Rate: A Firm level Analysis for Chile*. Santiago: Department of Economics, Universidad de Chile.

Bonomo, M., Martins, B., & Pinto, R. (2003). *Debt composition and exchange rate balance sheet effect in Brazil: a firm level analysis*. Rio de janeiro: Graduate School of Economics.

BVL, B. d. (s.f.). Obtenido de Bolsa de Valores de Lima: http://www.bvl.com.pe/

Carranza, L. J., Cayo, J. M., & Galdon-Sanchez, J. E. (2003). *Exchange Rate Volatility and Economic Performance in Peru: A Firm level Analysis*. pamplona: Facultad de Ciencias Económicas y Empresariales. Universidad de Navarra.

Harchaoui, T., Tarkhani, F., & Yuen, T. (2005). *The Effects of the Exchange Rate on Investment: Evidence from Canadian Manufacturing Industries*. Toronto: Bank of Canada.

Hermet, & Francois. (2003). *Currency Crisis and Balance Sheet Channel Effect: The Korean Experience* (Vol. Vol. 6). Reunion: Economic Bulletin. University of La Reunion.

Jimenez, F. (2006). Macroeconomia: Enfoques y Modelos. Tomo I. Lima: PUCP.

lima, B. d. (s.f.). Bolsa de Valores de lima. Obtenido de www.bvl.com.pe

Loveday, J. L., Molina C, O., & Rivas-Llosa M, R. (2004). *Mecanismos de Transmisión de la Política Monetaria y el impacto de una devaluación en el nivel de las firmas*. Lima: BCRP.

Mendoza Bellido, W. (2013). *Cómo Investigan los Economistas*. Lima: Pontificia Universidad Catolica del Perú.

Mesa, Salguero, & Sanchez. (1998). Efectos de la tasa de cambio real sobre la inversion industrial en un modelo de transferencia de precio. Revista de economia del Rosario.

Navarro, C., & Montoro, A. (2010). *Estimacion de la Q de Tobin para la Economía Peruana*. Lima: Revista de Estudios Económicos 19,33.

P, A. (2011). decisiones de inversion en empresas con dolarizacion financiera. Lima: USMP.

Pozzolo, A. F., & Nucci, F. (1998). *INVESTMENT AND THE EXCHANGE RATE: AN ANALYSIS WITH FIRM-LEVEL PANEL DATA*. ROMA: University "La Sapienza".

R., B. (1997). Determinants of Economic Growth: A Cross-Country Empirical. Michigan.

Ramírez-Rondán, N. R. (2016). *Balance Sheet and Currency Mismatch: Evidence for Peruvian Firms.* Lima: Central Bank of Peru.

Saldaña, L., & Velásquez, M. (2007). *IMPACTO DEL TIPO DE CAMBIO EN LAS DECISIONES DE INVERSIÓN DE LAS EMPRESAS PERUANA ENTRE 1994 Y EL 2005*. LIMA: PUCP.

Santiago, H., Rodríguez, C., & Perrotini, I. (2012). Tipo de cambio real y crecimiento económico en países que aplican metas de inflación. mexico: UNAM.

SMV, S. d. (s.f.). Obtenido de Superintendencia de Mercado de Valores: http://www.smv.gob.pe/

Torre, P., & Julio, A. (2009). Decisiones de Inversión en Empresas con Dolarización Financiera: Un modelo Umbral del Efecto Hoja de Balance. Lima: CIES.

Valores, S. I. (2002 - 2012). *Super Intendencia del Mercado de Valores*. Obtenido de www.SMV.gob.pe

Villalobos Moreno, L., Torres Gutiérrez, C., & Madrigal Badilla, J. (1999). *MECANISMO DE TRANSMISIÓN DE LA POLÍTICA*. San José: BANCO CENTRAL DE COSTA RICA.

ANEXOS

Anexo 1. Lista de las 30 Empresas de la Muestra

N°	EMPRESAS
1	Agro Industrial Paramonga SAA
2	Alicorp S.A.A.
3	Austral Group S.A.A
4	Cementos Pacasmayo S.A.A.
5	Cervecería San Juan S.A
6	Corporación Cervesur S.A.A
7	Compañía Goodyear del Perú S.A
8	Corporación Aceros Arequipa S.A
9	Corporación José R. Lindley S.A
10	Orazul Energy Perú S.A
11	Edegel S.A.A
12	Edelnor S.A
13	Empresa Editora el Comercio S.A.
14	Empresa Azucarera el Ingenio S.A.
15	Empresa Siderúrgica del Perú S.A.A
16	Ferreyros S.A.
17	Gloria S.A.
18	Industrias Electro Químicas S.A
19	Luz del Sur S.A.A
20	Minsur S.A.
21	Mitsui Automotriz S A
22	Refinería la Pampilla S.A.A.
23	Quimpac S.A.
24	Servicio de Agua Potable y Alcantarillado-Sedapal
25	Shougang Hierro Perú S.A.A
26	Souther Perú Copper Corporation, Sucursal Perú
27	Supermercados Peruanos S.A.
28	Telefónica del Perú S.A.A
29	Unión de Cervecerías Peruanas Backus y Johnston
	S.A.A
30	Yura S.A.

Fuente

Superintendencia de Mercado de Valores (SMV). Elaboración Propia

Anexo 2. Data del Tipo de Cambio Multilateral Real Durante el Periodo 2002 – 2015 y tasa de crecimiento anual

Periodo	Indicador
2002	99.69347
2003	101.9387
2004	102.766
2005	103.3058
2006	105.0697
2007	106.3155
2008	102.356
2009	99.99142
2010	97.52035
2011	99.37995
2012	92.3992
2013	93.47419
2014	95.56626
2015	96.55845
2016	98.48551
2017	94.94641

Tasa de crecimiento anual TCRM
0.67979682

Fuente: Banco Central de Reserva del Perú (BCRP). Elaboración Propia

Anexo 3. Data de las variables de las 30 empresas de la muestra para el periodo 2002 $-\,2015.$

			Variables				
	Periodo		IN	RD	TAM		
			(miles de soles)	(porcentaje %)	(variación porcentual %)		
1	ALICORP	2001	919768	56.37	0.95		
1	ALICORP	2002	869988	54.09	2.26		
1	ALICORP	2003	879880	50.92	2.64		
1	ALICORP	2004	833082	37.89	5.65		
1	ALICORP	2005	793626	36.24	4.81		
1	ALICORP	2006	878177	38.64	5.65		
1	ALICORP	2007	892830	40.51	4.83		
1	ALICORP	2008	992694	49.92	2.80		
1	ALICORP	2009	1057279	41.46	7.34		
1	ALICORP	2010	1047927	34.99	9.13		
1	ALICORP	2011	1147827	33.22	8.75		
1	ALICORP	2012	1326827	45.10	33.44		
1	ALICORP	2013	1870047	50.06	21.97		
1	ALICORP	2014	2073569	60.55	1.00		
1	ALICORP	2015	2022448	56.81	14.15		
2	AREQUIPA	2001	205426	37.51	15.11		
2	AREQUIPA	2002	197608	34.90	6.70		
2	AREQUIPA	2003	267095	32.40	6.23		
2	AREQUIPA	2004	319294	58.92	14.23		
2	AREQUIPA	2005	339687	39.74	10.72		
2	AREQUIPA	2006	361140	44.25	13.21		
2	AREQUIPA	2007	453061	45.08	8.43		
2	AREQUIPA	2008	502669	63.06	5.76		
2	AREQUIPA	2009	551355	55.30	-2.37		
2	AREQUIPA	2010	814782	54.85	8.44		
2	AREQUIPA	2011	911880	50.55	9.65		
2	AREQUIPA	2012	1175637	52.69	21.28		
2	AREQUIPA	2013	1670484	51.53	5.87		
2	AREQUIPA	2014	1642702	93.08	2.84		
2	AREQUIPA	2015	1577138	79.62	3.75		
3	Austral	2001	937829	87.37	-13.28		
3	Austral	2002	884845	85.95	-0.52		
3	Austral	2003	817832	98.45	-42.16		
3	Austral	2004	741997	73.20	78.10		
3	Austral	2005	725857	69.97	-0.84		
3	Austral	2006	698271	64.47	11.46		
3	Austral	2007	566491	59.75	9.28		

3	Austral	2008	661740	48.90	7.80
3	Austral	2009	639818	45.20	11.62
3	Austral	2010	565067	37.37	9.29
3	Austral	2011	528676	42.81	12.24
3	Austral	2012	490696	35.00	9.94
3	Austral	2013	464310	47.16	0.38
3	Austral	2014	498260	47.99	-5.94
3	Austral	2015	819794	51.04	-1.85
4	BACKUS	2001	542327	37.89	12.28
4	BACKUS	2002	778275	28.44	10.90
4	BACKUS	2003	802423	34.17	9.92
4	BACKUS	2004	793810	22.29	17.02
4	BACKUS	2005	768869	19.69	14.28
4	BACKUS	2006	1118097	20.09	21.26
4	BACKUS	2007	1225527	23.93	13.92
4	BACKUS	2008	1447954	33.71	15.99
4	BACKUS	2009	1472699	42.11	18.44
4	BACKUS	2010	1679230	40.37	16.86
4	BACKUS	2011	1760894	40.32	22.18
4	BACKUS	2012	1921858	47.65	23.11
4	BACKUS	2013	1999628	49.32	23.35
4	BACKUS	2014	2059065	48.81	22.62
4	BACKUS	2015	2106049	49.51	26.51
5	CERVECERIA	2001	53606	9.77	14.33
5	CERVECERIA	2002	51456	10.37	17.25
5	CERVECERIA	2003	55077	13.28	21.43
5	CERVECERIA	2004	60226	13.71	21.43
5	CERVECERIA	2005	67920	17.29	21.26
5	CERVECERIA	2006	65470	9.29	21.26
5	CERVECERIA	2007	80394	27.24	13.92
5	CERVECERIA	2008	109810	27.40	16.06
5	CERVECERIA	2009	115080	31.16	18.96
5	CERVECERIA	2010	116924	45.02	18.03
5	CERVECERIA	2011	142806	48.09	22.18
5	CERVECERIA	2012	189550	53.81	23.24
5	CERVECERIA	2013	230568	56.62	23.54
5	CERVECERIA	2014	310490	64.16	22.62
5	CERVECERIA	2015	325912	66.57	26.51
6	CERVESUR	2001	5762	24.06	87.21
6	CERVESUR	2002	34541	24.42	53.16
6	CERVESUR	2003	17074	21.52	10.63
6	CERVESUR	2004	15515	15.59	10.23
6	CERVESUR	2005	14244	4.35	8.31

6	CERVESUR	2006	14334	0.89	16.51
6	CERVESUR	2007	13965	5.14	7.94
6	CERVESUR	2008	23999	8.71	1.42
6	CERVESUR	2009	23661	2.69	6.27
6	CERVESUR	2010	37036	1.18	9.58
6	CERVESUR	2011	35904	3.37	8.80
6	CERVESUR	2012	35243	4.73	2.95
6	CERVESUR	2013	36937	3.02	-1.77
6	CERVESUR	2014	35865	4.48	6.27
6	CERVESUR	2015	35013	2.95	4.77
7	EDEGEL	2001	3610982	31.71	28.05
7	EDEGEL	2002	3662431	31.60	14.17
7	EDEGEL	2003	3547531	31.41	18.38
7	EDEGEL	2004	3630018	40.40	16.08
7	EDEGEL	2005	3585372	52.83	16.99
7	EDEGEL	2006	4382164	54.54	19.51
7	EDEGEL	2007	4279050	52.65	17.41
7	EDEGEL	2008	4327039	55.22	9.83
7	EDEGEL	2009	3661041	47.93	22.37
7	EDEGEL	2010	3422516	46.21	20.46
7	EDEGEL	2011	3311869	44.34	22.46
7	EDEGEL	2012	3237108	41.10	25.38
7	EDEGEL	2013	3201601	41.04	31.77
7	EDEGEL	2014	3136765	38.62	32.76
7	EDEGEL	2015	3061717	36.70	25.48
8	Edelnor	2001	1870058	39.56	9.35
8	Edelnor	2002	1948086	39.79	5.98
8	Edelnor	2003	1925057	43.71	5.33
8	Edelnor	2004	1973021	47.14	3.44
8	Edelnor	2005	1953011	59.43	3.90
8	Edelnor	2006	1937906	60.15	7.50
8	Edelnor	2007	1945725	63.59	9.02
8	Edelnor	2008	2020245	64.74	10.91
8	Edelnor	2009	2107664	65.11	11.15
8	Edelnor	2010	2118542	65.03	11.21
8	Edelnor	2011	2222955	61.96	10.99
8	Edelnor	2012	2401246	61.54	10.54
8	Edelnor	2013	2576614	59.75	12.25
8	Edelnor	2014	2865048	60.96	12.95
8	Edelnor	2015	3196358	59.70	11.51
9	EGENOR	2001	1227144	23.72	9.40
9	EGENOR	2002	1247137	23.03	1.99
9	EGENOR	2003	1204143	32.24	29.34

9	EGENOR	2004	1224302	29.72	12.23
9	EGENOR	2005	1168416	57.39	24.62
9	EGENOR	2006	1070677	54.11	15.68
9	EGENOR	2007	1055878	49.25	29.34
9	EGENOR	2008	1161972	58.83	24.62
9	EGENOR	2009	1294837	53.51	23.32
9	EGENOR	2010	1161972	46.49	23.32
9	EGENOR	2011	1294837	43.10	28.07
9	EGENOR	2012	1287235	44.42	28.07
9	EGENOR	2013	1212264	45.41	23.32
9	EGENOR	2014	1169794	43.23	41.69
9	EGENOR	2015	844219	38.30	34.62
10	elComercio	2001	139723	48.07	4.53
10	elComercio	2002	155860	57.19	4.64
10	elComercio	2003	152620	61.72	7.22
10	elComercio	2004	140799	60.14	2.89
10	elComercio	2005	119749	54.00	8.54
10	elComercio	2006	108064	49.17	11.07
10	elComercio	2007	110758	62.33	16.39
10	elComercio	2008	153029	67.73	15.93
10	elComercio	2009	157809	55.63	12.74
10	elComercio	2010	315618	54.73	16.61
10	elComercio	2011	313514	41.70	18.19
10	elComercio	2012	336523	37.99	18.56
10	elComercio	2013	443444	43.31	17.67
10	elComercio	2014	366706	108.86	14.11
10	elComercio	2015	368779	119.86	8.28
11	ELECTROQUIMICAS	2001	104588	69.90	2.13
11	ELECTROQUIMICAS	2002	103011	71.90	-3.17
11	ELECTROQUIMICAS	2003	110414	62.46	5.52
11	ELECTROQUIMICAS	2004	111977	61.14	3.53
11	ELECTROQUIMICAS	2005	104992	61.70	0.78
11	ELECTROQUIMICAS	2006	87321	68.67	2.21
11	ELECTROQUIMICAS	2007	79605	58.30	0.71
11	ELECTROQUIMICAS	2008	69185	40.08	0.71
11	ELECTROQUIMICAS	2009	54131	35.66	3.66
11	ELECTROQUIMICAS	2010	58117	31.95	3.99
11	ELECTROQUIMICAS	2011	57344	34.11	1.69
11	ELECTROQUIMICAS	2012	56859	31.04	-1.07
11	ELECTROQUIMICAS	2013	47108	28.65	1.21
11	ELECTROQUIMICAS	2014	46213	28.57	2.06
11	ELECTROQUIMICAS	2015	45808	19.43	0.82
12	ELINGENIO	2001	40420	28.35	0.71

12	ELINGENIO	2002	39308	24.56	-2.40
12	ELINGENIO	2003	41106	25.71	1.96
12	ELINGENIO	2004	41941	31.44	4.28
12	ELINGENIO	2005	36165	33.18	-6.45
12	ELINGENIO	2006	35502	24.78	11.42
12	ELINGENIO	2007	34640	26.36	-3.21
12	ELINGENIO	2008	33917	12.61	-20.10
12	ELINGENIO	2009	33355	11.10	17.77
12	ELINGENIO	2010	32816	11.62	17.43
12	ELINGENIO	2011	35164	17.29	62.10
12	ELINGENIO	2012	35073	23.18	45.44
12	ELINGENIO	2013	35012	27.50	-57.83
12	ELINGENIO	2014	34977	23.18	4.69
12	ELINGENIO	2015	34951	29.90	16.80
13	FERREYROS	2001	290530	73.59	-0.92
13	FERREYROS	2002	271826	67.27	1.22
13	FERREYROS	2003	262475	65.66	2.64
13	FERREYROS	2004	253306	60.58	2.99
13	FERREYROS	2005	226159	62.53	2.77
13	FERREYROS	2006	267292	60.31	6.80
13	FERREYROS	2007	367485	61.78	6.49
13	FERREYROS	2008	382833	71.38	3.51
13	FERREYROS	2009	397329	58.58	4.52
13	FERREYROS	2010	488288	58.40	4.57
13	FERREYROS	2011	672334	35.59	5.63
13	FERREYROS	2012	275345	26.36	4.74
13	FERREYROS	2013	346994	42.95	1.99
13	FERREYROS	2014	346077	40.55	1.90
13	FERREYROS	2015	348101	41.27	3.10
14	GLORIA	2001	401440	45.03	5.12
14	GLORIA	2002	325824	45.03	1.21
14	GLORIA	2003	366500	42.32	8.08
14	GLORIA	2004	402142	42.25	4.44
14	GLORIA	2005	500938	42.73	3.28
14	GLORIA	2006	507314	41.09	9.91
14	GLORIA	2007	529451	44.15	9.85
14	GLORIA	2008	546638	45.11	12.03
14	GLORIA	2009	775336	41.03	6.78
14	GLORIA	2010	857109	41.85	4.46
14	GLORIA	2011	1085832	41.13	4.26
14	GLORIA	2012	1165852	42.57	7.93
14	GLORIA	2013	1235631	43.36	8.08
14	GLORIA	2014	1287240	45.83	5.82

14	GLORIA	2015	1474868	49.62	3.98
15	GOODYEAR	2001	52879	23.25	6.48
15	GOODYEAR	2002	48242	23.15	8.09
15	GOODYEAR	2003	49709	20.69	4.12
15	GOODYEAR	2004	51077	20.24	-0.35
15	GOODYEAR	2005	51476	23.27	5.82
15	GOODYEAR	2006	50155	26.38	5.36
15	GOODYEAR	2007	50957	26.64	8.79
15	GOODYEAR	2008	49429	25.05	9.02
15	GOODYEAR	2009	44564	23.24	11.97
15	GOODYEAR	2010	53037	22.02	9.52
15	GOODYEAR	2011	157643	23.26	6.77
15	GOODYEAR	2012	170379	23.63	7.79
15	GOODYEAR	2013	199521	22.84	10.08
15	GOODYEAR	2014	211230	19.62	8.34
15	GOODYEAR	2015	211200	20.97	8.55
16	LINDEY	2001	159690	62.39	-22.60
16	LINDEY	2002	152269	64.79	-1.73
16	LINDEY	2003	152098	68.87	-2.87
16	LINDEY	2004	153009	73.76	-12.07
16	LINDEY	2005	365891	61.62	-9.43
16	LINDEY	2006	357696	60.08	1.51
16	LINDEY	2007	417783	59.24	3.42
16	LINDEY	2008	490863	60.49	2.44
16	LINDEY	2009	610104	59.61	4.31
16	LINDEY	2010	733057	62.64	2.87
16	LINDEY	2011	1074831	69.73	2.59
16	LINDEY	2012	1269934	69.23	3.67
16	LINDEY	2013	1706331	80.00	-3.42
16	LINDEY	2014	2057765	81.09	0.13
16	LINDEY	2015	2105077	83.19	-3.61
17	LUZDELSUR	2001	1189777	53.09	16.73
17	LUZDELSUR	2002	1243995	50.51	15.38
17	LUZDELSUR	2003	1356494	59.54	15.43
17	LUZDELSUR	2004	1671860	58.32	13.85
17	LUZDELSUR	2005	1711730	61.73	11.12
17	LUZDELSUR	2006	1720221	60.40	12.16
17	LUZDELSUR	2007	1749654	57.31	13.65
17	LUZDELSUR	2008	1799188	55.69	14.98
17	LUZDELSUR	2009	1906243	51.86	16.83
17	LUZDELSUR	2010	1961147	50.17	16.99
17	LUZDELSUR	2011	2148830	48.63	16.21
17	LUZDELSUR	2012	2404490	51.05	15.00

17	LUZDELSUR	2013	2908453	53.38	14.59
17	LUZDELSUR	2014	3177583	54.26	16.00
17	LUZDELSUR	2015	3545670	55.12	14.73
18	MINSUR	2001	260180	5.44	28.51
18	MINSUR	2002	253316	9.81	95.26
18	MINSUR	2003	263275	4.39	42.43
18	MINSUR	2004	265764	21.83	46.76
18	MINSUR	2005	309355	8.02	47.87
18	MINSUR	2006	322281	7.46	47.46
18	MINSUR	2007	319871	11.15	50.53
18	MINSUR	2008	315481	9.66	41.26
18	MINSUR	2009	334682	7.13	37.79
18	MINSUR	2010	405436	6.30	29.06
18	MINSUR	2011	254258	15.64	22.88
18	MINSUR	2012	382896	7.53	12.22
18	MINSUR	2013	348480	14.48	13.08
18	MINSUR	2014	320024	26.51	11.17
18	MINSUR	2015	289131	35.60	-86.56
19	MITSUI	2001	64	69.45	21.50
19	MITSUI	2002	74	62.59	30.37
19	MITSUI	2003	174	60.32	29.46
19	MITSUI	2004	216	65.01	28.03
19	MITSUI	2005	151	70.66	27.72
19	MITSUI	2006	83	77.39	68.07
19	MITSUI	2007	41	70.04	58.42
19	MITSUI	2008	43	77.81	24.75
19	MITSUI	2009	58	70.90	16.16
19	MITSUI	2010	363	66.03	13.88
19	MITSUI	2011	447	74.52	7.64
19	MITSUI	2012	2383	72.79	3.40
19	MITSUI	2013	2776	77.51	20.54
19	MITSUI	2014	2801	75.60	26.81
19	MITSUI	2015	2598	74.43	31.95
20	PACASMAYO	2001	359118	30.81	17.83
20	PACASMAYO	2002	332899	23.11	15.42
20	PACASMAYO	2003	333652	46.63	10.38
20	PACASMAYO	2004	309761	41.04	8.57
20	PACASMAYO	2005	323376	40.43	8.34
20	PACASMAYO	2006	362291	38.02	18.46
20	PACASMAYO	2007	491927	35.36	2.67
20	PACASMAYO	2008	393808	38.45	9.22
20	PACASMAYO	2009	647424	37.37	15.65
20	PACASMAYO	2010	686893	37.19	24.84

20	PACASMAYO	2011	867966	45.33	6.58
20	PACASMAYO	2012	958158	19.96	13.30
20	PACASMAYO	2013	1034918	36.68	12.28
20	PACASMAYO	2014	1510526	35.65	15.19
20	PACASMAYO	2015	1915531	39.95	17.19
21	PAMPILLA	2001	867966	57.51	1.56
21	PAMPILLA	2002	852831	57.51	1.56
21	PAMPILLA	2003	965973	62.03	0.37
21	PAMPILLA	2004	1033294	66.36	0.00
21	PAMPILLA	2005	957903	55.70	3.87
21	PAMPILLA	2006	254932	62.04	0.99
21	PAMPILLA	2007	245867	65.68	2.58
21	PAMPILLA	2008	233715	75.09	-2.01
21	PAMPILLA	2009	217691	70.18	1.82
21	PAMPILLA	2010	378724	63.81	1.13
21	PAMPILLA	2011	382620	61.97	2.25
21	PAMPILLA	2012	382871	62.81	0.63
21	PAMPILLA	2013	418943	65.41	-1.16
21	PAMPILLA	2014	527906	69.70	-1.57
21	PAMPILLA	2015	728133	61.97	1.12
22	PARAMONGA	2001	374399	42.14	1.37
22	PARAMONGA	2002	360424	58.13	4.17
22	PARAMONGA	2003	377717	64.74	8.22
22	PARAMONGA	2004	368279	54.85	15.75
22	PARAMONGA	2005	369913	53.85	5.49
22	PARAMONGA	2006	386127	46.08	17.10
22	PARAMONGA	2007	384621	44.39	8.68
22	PARAMONGA	2008	396136	47.23	-6.72
22	PARAMONGA	2009	408728	42.90	19.60
22	PARAMONGA	2010	404806	33.82	25.57
22	PARAMONGA	2011	588666	29.33	4.13
22	PARAMONGA	2012	598240	28.04	-2.15
22	PARAMONGA	2013	603123	30.06	4.19
22	PARAMONGA	2014	589396	29.52	1.25
22	PARAMONGA	2015	573307	33.90	4.80
23	QUIMPAC	2001	217691	62.99	5.70
23	QUIMPAC	2002	233715	61.06	4.32
23	QUIMPAC	2003	287624	60.26	4.49
23	QUIMPAC	2004	305493	58.21	3.98
23	QUIMPAC	2005	415999	55.04	6.38
23	QUIMPAC	2006	419678	51.80	9.00
23	QUIMPAC	2007	442092	44.89	16.02
23	QUIMPAC	2008	440925	45.57	30.42

23	QUIMPAC	2009	421003	47.65	9.40
23	QUIMPAC	2010	439128	42.93	18.73
23	QUIMPAC	2011	845441	45.79	15.38
23	QUIMPAC	2012	1048964	1048964 51.67	
23	QUIMPAC	2013	1340634	54.94	19.99 11.41
23	QUIMPAC	2014	1637153	53.84	30.82
23	QUIMPAC	2015	552132	50.94	12.25
24	SEDAPAL	2001	4220221	33.39	1.54
24	SEDAPAL	2002	4295129	33.39	1.55
24	SEDAPAL	2003	4523589	35.74	1.51
24	SEDAPAL	2004	4496049	33.89	14.96
24	SEDAPAL	2005	4566110	33.39	1.31
24	SEDAPAL	2006	4596812	31.16	11.95
24	SEDAPAL	2007	4779886	31.25	14.51
24	SEDAPAL	2008	5031748	38.74	0.41
24	SEDAPAL	2009	5442857	39.67	20.28
24	SEDAPAL	2010	5804062	43.14	5.35
24	SEDAPAL	2011	8394374	46.86	-35.42
24	SEDAPAL	2012	8231698	44.79	9.51
24	SEDAPAL	2013	7266160	45.36	16.01
24	SEDAPAL	2014	7562353	47.66	17.26
24	SEDAPAL	2015	7769141 60.58		9.32
25	SHOUGANG	2001	150906	58.65	1.57
25	SHOUGANG	2002	129474	88.04	4.07
25	SHOUGANG	2003	129361	84.10	8.47
25	SHOUGANG	2004	137739	83.88	12.66
25	SHOUGANG	2005	172139	39.82	28.27
25	SHOUGANG	2006	203146	41.91	24.49
25	SHOUGANG	2007	240438	68.73	27.39
25	SHOUGANG	2008	335341	55.88	30.71
25	SHOUGANG	2009	459016	68.73	16.48
25	SHOUGANG	2010	953540	55.88	43.24
25	SHOUGANG	2011	1066386	38.91	44.56
25	SHOUGANG	2012	1009346	72.97	31.54
25	SHOUGANG	2013	1330853	74.20	34.90
25	SHOUGANG	2014	1700299	69.96	26.26
25	SHOUGANG	2015	2301987	82.67	12.42
26	Siderurgica	2001	1013021	46.14	-2.13
26	Siderurgica	2002	1017981	48.64	0.28
26	Siderurgica	2003	990354	48.93	-2.16
26	Siderurgica	2004	1011361	46.34	4.37
26	Siderurgica	2005	963659	50.90	-3.11
26	Siderurgica	2006	670624	50.94	4.89

26	Siderurgica	2007	666730	51.69	6.39
26	Siderurgica	2008	689739	71.57	1.08
26	Siderurgica	2009	744328	37.10	-6.44
26	Siderurgica	2010	900134	50.56	5.22
26	Siderurgica	2011	952899	50.65	3.46
26	Siderurgica	2012	964641	53.34	-5.90
26	Siderurgica	2013	926545	38.50	-0.11
26	Siderurgica	2014	689261	37.23	-12.74
26	Siderurgica	2015	659505	31.78	0.97
27	SOUTHERN	2001	2306925	39.96	10.17
27	SOUTHERN	2002	2497784	33.91	12.26
27	SOUTHERN	2003	2490870	34.99	19.59
27	SOUTHERN	2004	3007076	33.26	39.19
27	SOUTHERN	2005	3901988	31.36	42.56
27	SOUTHERN	2006	1295028	32.10	44.61
27	SOUTHERN	2007	1330978	26.27	44.41
27	SOUTHERN	2008	1532834	28.66	40.29
27	SOUTHERN	2009	1706747	26.98	31.79
27	SOUTHERN	2010	1927851	28.69	38.31
27	SOUTHERN	2011	1983983	15.70	33.91
27	SOUTHERN	2012	1954384	12.05	33.66
27	SOUTHERN	2013	2186943	10.47	27.40
27	SOUTHERN	2014	2381501	10.67	22.80
27	SOUTHERN	2015	2471041	13.33	16.66
28	SUPERMERCADOS	2001	279956	72.17	-1.79
28	SUPERMERCADOS	2002	289147	72.42	-1.83
28	SUPERMERCADOS	2003	296226	72.91	-5.19
28	SUPERMERCADOS	2004	313653	68.47	1.30
28	SUPERMERCADOS	2005	347282	73.19	-0.82
28	SUPERMERCADOS	2006	405188	73.66	0.35
28	SUPERMERCADOS	2007	476665	70.63	0.90
28	SUPERMERCADOS	2008	610509	71.97	1.18
28	SUPERMERCADOS	2009	793092	73.25	1.89
28	SUPERMERCADOS	2010	994534	71.51	1.78
28	SUPERMERCADOS	2011	1116465	75.08	1.32
28	SUPERMERCADOS	2012	1339783	70.63	1.89
28	SUPERMERCADOS	2013	1551688	71.64	0.29
28	SUPERMERCADOS	2014	1683273	64.19	0.39
28	SUPERMERCADOS	2015	1815919	65.10	0.67
29	TELEFÓNICA	2001	6864103	63.82	-4.49
29	TELEFÓNICA	2002	6232934	58.67	0.89
29	TELEFÓNICA	2003	6294500	56.47	0.64
29	TELEFÓNICA	2004	5814491	61.22	1.47

29	TELEFÓNICA	2005	5289166	61.90	7.29
29	TELEFÓNICA	2006	4624435	62.07	3.96
29	TELEFÓNICA	2007	5410447	62.04	-2.06
29	TELEFÓNICA	2008	5414460	58.23	6.97
29	TELEFÓNICA	2009	5387013	60.36	11.16
29	TELEFÓNICA	2010	5341203	59.33	10.46
29	TELEFÓNICA	2011	5349488	57.40	6.84
29	TELEFÓNICA	2012	5437226	50.34	9.82
29	TELEFÓNICA	2013	5640475	47.49	9.23
29	TELEFÓNICA	2014	6038388	49.76	10.08
29	TELEFÓNICA	2015	6515523	57.35	-5.10
30	YURA	2001	930584	49.47	19.41
30	YURA	2002	992268	45.93	31.03
30	YURA	2003	995182	41.85	30.35
30	YURA	2004	1048383	36.78	32.70
30	YURA	2005	256319	29.81	34.25
30	YURA	2006	273376	26.56	26.42
30	YURA	2007	324386	21.19	25.48
30	YURA	2008	450343	37.58	30.48
30	YURA	2009	568294	27.82	25.15
30	YURA	2010	1004008	45.34	24.75
30	YURA	2011	1229621	47.57	32.84
30	YURA	2012	1388495	43.38	26.42
30	YURA	2013	1837828	44.26	24.77
30	YURA	2014	2717941	57.23	24.21
30	YURA	2015	3312089	59.00	19.56

Fuente:

Superintendencia de Mercado de Valores (SMV). Elaboración Propia

Anexo 4. Tasas de crecimiento anual de las 30 empresas de la muestra para el periodo 2002-2015

EMPRESAS	INDICADOR
Agro Industrial Paramonga SAA	1.02028694
Alicorp S.A.A.	1.1489
Austral Group S.A.A	0.62873006
Cementos Pacasmayo S.A.A.	1.03889293
Cervecería San Juan S.A	1.12701888
Corporación Cervesur S.A.A	0.73591741
Compañía Goodyear del Perú S.A	-0.164
Corporación Aceros Arequipa S.A	0.96870811
Corporación José R. Lindley S.A	-0.32307437
Orazul Energy Perú S.A	1.02253251
Edegel S.A.A	-0.5553
Edelnor S.A	-0.11084258
Empresa Editora el Comercio S.A.	0.91322532
Empresa Azucarera el Ingenio S.A.	1.09419994
Empresa Siderúrgica del Perú S.A.A	1.09083921
Ferreyros S.A.	1.2018
Gloria S.A.	1.04573312
Industrias Electro Químicas S.A	0.86958983
Luz del Sur S.A.A	1.28673712
Minsur S.A.	1.117794
Mitsui Automotriz S A	-0.14622
Refinería la Pampilla S.A.A.	0.96308858
Quimpac S.A.	1.02233575
Servicio de Agua Potable y Alcantarillado-Sedapal	0.984959
Shougang Hierro Perú S.A.A	1.22316282
Souther Perú Copper Corporation, Sucursal Perú	-0.3521441
Supermercados Peruanos S.A.	-0.0107067
Telefónica del Perú S.A.A	1.12620707
Unión de Cervecerías Peruanas Backus y Johnston S.A.A.	0.801739
Yura S.A.	1.06253851

Fuente

Superintendencia de Mercado de Valores (SMV).

Elaboración Propia

Anexo 5. Proyección de las variables significativas de la inversión y Ratio de deuda de los años 2006 - 2017.

		Variab	les		
	Periodo	IN	RD (nomentain		
				(miles de soles)	(porcentaje %)
1	ALICORP	2016		109078	57.21
1	ALICORP	2017		114961	32.40
2	AREQUIPA	2016		229553	98.45
2	AREQUIPA	2017		262965	73.20
3	Austral	2016		-7319	22.29
3	Austral	2017		-7253	19.69
4	BACKUS	2016		199365	17.29
4	BACKUS	2017		218238	9.29
5	CERVECERIA	2016		41674	0.89
5	CERVECERIA	2017		47003	5.14
6	CERVESUR	2016		4476	52.65
6	CERVESUR	2017		5048	55.22
7	EDEGEL	2016		-33495	64.74
7	EDEGEL	2017		-33129	65.11
8	Edelnor	2016		116291	53.51
8	Edelnor	2017		120522	46.49
9	EGENOR	2016		-20791	54.73
9	EGENOR	2017		-20279	41.70
10	elComercio	2016		24650	34.11
10	elComercio	2017		26297	31.04
11	ELECTROQUIMICAS	2016		-2453	23.18
11	ELECTROQUIMICAS	2017		-2322	27.50
12	ELINGENIO	2016		-337	42.95
12	ELINGENIO	2017		-334	40.55
13	FERREYROS	2016		4221	45.83
13	FERREYROS	2017		4272	49.62
14	GLORIA	2016		133660	20.97
14	GLORIA	2017		145773	20.82
15	GOODYEAR	2016		20426	84.69
15	GOODYEAR	2017		22402	86.21
16	LINDEY	2016		406304	55.81
16	LINDEY	2017		483168	9.81
17	LUZDELSUR	2016		271410	64.51
17	LUZDELSUR	2017		292041	60.32

18	MINSUR	2016	2041	46.63
18	MINSUR	2017	2055	41.04
19	MITSUI	2016	728	66.36
19	MITSUI	2017	931	55.70
20	PACASMAYO	2016	226172	53.85
20	PACASMAYO	2017	252877	46.08
21	PAMPILLA	2016	-8478	51.80
21	PAMPILLA	2017	-8379	44.89
22	PARAMONGA	2016	16519	31.25
22	PARAMONGA	2017	16995	38.74
23	QUIMPAC	2016	35343	55.88
23	QUIMPAC	2017	37606	68.73
24	SEDAPAL	2016	321836	37.10
24	SEDAPAL	2017	335168	50.56
25	SHOUGANG	2016	458565	28.69
25	SHOUGANG	2017	549913	15.70
26	Siderurgica	2016	-18603	71.64
26	Siderurgica	2017	-18079	64.19
27	SOUTHERN	2016	11347	49.76
27	SOUTHERN	2017	11399	57.35
28	SUPERMERCADOS	2016	241062	59.00
28	SUPERMERCADOS	2017	273063	60.07
29	TELEFÓNICA	2016	-22599	57.25
29	TELEFÓNICA	2017	-22521	57.16
30	YURA	2016	292522	60.07
30	YURA	2017	318358	61.15

Anexo 6. Comandos de STATA para la regresión econométrica

xtreg lmyesat litcrm lpassat lvensat, fe

xtserial lmyesat litcrm lpassat lvensat if e(sample)

xtdpdsys lmyesat litcrm lpassat lvensat

 $xtdpdsys\ lmyesat\ literb\ lpassat, lags(1)\ maxldep(4)\ vsquish$

Notas

¹ El tipo de cambio real multilateral (TCRM) se define como un promedio ponderado de los diferentes tipos de cambio bilaterales. Se utiliza un promedio geométrico por ser estadísticamente preferible, al no estar afecto a la elección del año base o a la utilización de índices o niveles de tipo de cambio multilateral.

Para calcular el TCRM del nuevo sol con los "N" socios comerciales más importantes:

$$TCRM = \frac{(\prod_{i=1}^{N} E_{U.M_i.}^{S/.} * IPC_i^*)^{W_i}}{IPC_{Perú}}$$

donde:

 W_i =ponderación asignada al país "i", se define como la participación del país "i" en el comercio exterior con el Perú.

$$TCRM = E_{Canasta}^{S/.} * IPE / IPC_{Per\acute{\mathbf{u}}}$$

$$E_{Canasta}^{S/.} = \prod_{i=1}^{T} \left(\frac{E_{US\$}^{S/.}}{E_{US\$}^{U.M_i}}\right)^{W_i} = \prod_{i=1}^{T} \left(E_{US\$}^{S/.}\right)^{W_i}$$

$$\prod_{i=1}^{T} \left(IPC^*_{i}\right)^{W_i} ,$$

donde

 $E_{Canasta}^{S/.}$ = tipo de cambio multilateral del nuevo sol respecto a la canasta de monedas de los principales socios comerciales.

 $E_{US\$}^{S/.}$ = tipo de cambio multilateral del nuevo sol respecto al dólar americano.

 $E_{US_{i}}^{\widetilde{U.M_{i}}}$ = tipo de cambio multilateral de la moneda del país "i" respecto al dólar americano.

Con el fin de hacer una medida menos centrada en el dólar americano, se considera esta nueva forma de calcular el TCRM. En este caso se calcula una medida de tipo de cambio multilateral que considere las variaciones del nuevo sol respecto a la canasta de monedas de los socios comerciales. Asimismo, la medida de inflación externa utilizada es el promedio ponderado de los índices de precios de cada socio comercial. (BCRP B. C., 2016)

² En un estudio de Nucci y Pozzolo (1998), aplica el modelo dinámico de datos de panel utilizando el método generalizado de momentos estimados desarrollado por Arellano y Bond (1991). Donde sustenta que una depreciación del tipo de cambio tiene un efecto positivo sobre la inversión a través de los ingresos y un efecto negativo a través de los costos.

³ Se entiende como Rendimientos constantes a escala.

⁴ De (11) se deduce que $E_t[. \mid \mathcal{I}_1] = E_i[. \mid \mathcal{I}_1] = E_1[. \mid \mathcal{I}_1], \forall t \neq j$

⁵ Es decir, consulta de libros, trabajos previos, papers, revistas virtuales, manuales, entre otros documentos relacionados con el trabajo de investigación.

⁶ Este tipo de modelos han sido desarrollados con el propósito de incorporar en la estimación las relaciones de casualidad que se generan en el interior del modelo, como una forma de tratar los problemas de endogeneidad.