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Abstract
Hyperthermophile microorganisms have been discovered worldwide, and several studies regarding biodiversity and the
potential biotechnological applications have been reported. In this work, we describe for the first time the diversity of
hyperthermophile communities in the Calientes Geothermal Field (CGF) located 4400m above sea level in Tacna Region,
Perú. Three hot springs were monitored and showed a temperature around 84 to 88 °C, for the microbiome analyzed was
taken by sampling of sediment and water (pH 7.3–7.6). The hyperthermophile diversity was determined by PCR, DGGE, and
DNA sequencing. The sediments analyzed showed a greater diversity than water samples. Sediments showed a more abundant
population of bacteria than archaea, with the presence of at least 9 and 5 phylotypes, respectively. Most interestingly, in some
taxa of bacteria (Bacillus) and archaea (Haloarcula and Halalkalicoccus), any of operational taxonomic units (OTUs) have
not been observed before in hyperthermophile environments. Our results provide insight in the hyperthermophile diversity
and reveal the possibility to develop new biotechnological applications based on the kind of environments.
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Introduction

The earth hosts various unique, unknown and extreme niches,
amongall of them, that havehyperthermophile environments,
these hot spots could be found in the deep of the sea [1], and
many terrestrial geothermal systems, including along tec-
tonic boundaries, spreading centers, or “hot spots,” where
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magma bodies may reach within a few kilometers of the
Earth’s surface [2–6]. The reports of these thermic habitats
are terrestrial geothermal fields caused mainly by volcanism
[7–11]. Some examples are known, such as geothermal fields
reported from the Devonian Drummond Basin (Australia),
the Devonian Rhynie cherts (Scotland), and the Yellowstone-
style geothermal landscapes of Patagonia, Argentina ([12]).

These geothermal fields are also found in the Peruvian
Andes. Here, geothermal activity is usually manifested on
the surface as hot springs, geysers, and fumaroles. Water in
these pools is often recycled through the geysers and back
to the pool. Most of the hot springs in the Peruvian Andes
discharge alkaline water; however, pH can vary between 1
and 9 [13]. The typical discharge of these springs is 5L s−1,
but discharges of up to 60L s−1 have been measured in the
CGF [13].

The hot springs’s compositions have been monitored by
geologic drivers (climate, tectonics, heat input) that a role
as distal factors, such as water-rock interaction, hardness of
water, conductivity,microbialmetabolism,mixing, and other
physicochemical characteristics could be important for the
study of the environments [4]. The physicochemical char-
acteristics in the hot springs occur in soils rich in iron and
calcium salts, which generate yellow andwhitish colorations.
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The chemical conditions in these sites facilitate the growth
of organisms that can oxidize hydrogen, sulfur, hydrogen
sulfide, and thiosulfate [14]; reduce sulfur [15], nitrates, or
nitrites [16]; or reduce iron in a photosynthesis-dependent
way [17]. Therefore, microorganisms dominate the biota
associated with these sites, their associated high temper-
atures, and unique characteristics [14]. Hyperthermophile
microorganisms can be found living in geothermal fields,
which are fairly accessible and therefore constitute one of the
most studied habitats in terms of hyperthermophile diversity
[2, 8, 18].

For these environments, a variety of classification have
been used to define the microorganisms that live in that kind
of temperature habitat, the most common classification have
been used on optimal growth temperature, psychrophiles
growth temperature of ≤20 °C [19], mesophiles having a
20 to 45 °C [20], thermophiles having an optimal growth
temperature ranging from 45 to 80 °C [21], and hyperther-
mophiles having an optimal growth temperature of ≥80
°C [21]. For the thermophiles and hyperthermophiles, the
clades most commonly studied are the bacterial and archaeal
phylum [17], based on experience focused on study on the
microbial communities by culture-based approaches initially
used to study microbial diversity [21]. Microbial exploration
due to the development of molecular biological techniques
has greatly improved in the recent decades. Advances in
cultivation-independent methods for examining uncultured
microbes, including single-cell genomics and deep sequenc-
ing of environmental samples, have begun yielding complete
or near-complete genomes from many novel lineages [21].

Additional terms are commonly used to describe polyex-
tremophiles, such as thermoacidophiles, capable of growth
at high temperature and low pH, halophilic thermoalka-
liphiles, capable of growth at high temperature, high salt,
andhighpH, and thermophilic piezophiles, capable of growth
under high temperature and pressure [6, 22–24]. A technique
culture-independent that has been described as denaturing
gradient gel electrophoresis (DGGE) analysis of 16S rRNA
gene segments has been used to profile complex microbial
communities and to infer the phylogenetic affiliation of the
community members [25].

Since the application of the Taq polymerase from the
hyperthermophile Thermus aquaticus [26], the biological
application for the microorganisms on the hot springs envi-
ronments has made a paradigm shift in the industry. The
potential biotechnological of the thermophiles and hyper-
thermophiles or their enzyme applications are a variety
of advantages as bioremediation [27], the production of
biomolecules [28], production of biofuels [29], biomining
[30], in agriculture, biosurfactants could substitute chemical
surfactants as adjutants in herbicide and pesticide formula-
tions [31], or a microorganism for a biomarker of the wasted

o extreme environment [32]. This application of the ther-
mophiles or their enzymes is not surprising. They have a
remarkable capacity to work in environmental fluctuations
such as pH, temperature, and other possibilities [33].

Here, we analyzed for the first time the microbial diver-
sity in the Calientes Geothermal Field (CGF) of the Peruvian
Andes, the highest-known geothermal field. We collected
water and sediment samples from three hot springs in the
CGF, and the abundance and diversity of bacteria and archaea
were determined. These data allowed us to describe, for the
first time, the hyperthermophile diversity present in the CGF
and opened the possibility to develop novel biotechnological
applications based on the bioresources present in the unique
hyperthermophilic microorganisms inhabiting this environ-
ment.

Materials andmethods

Sample collection

TheCGF is located in theCordilleraOccidental inCandarave
Province, Tacna Region, Peru (17◦ 15’30” S, 70◦ 9’ W) at
4400mabove sea level (Fig. 1 a, b), as they represent themost
likely places to identify hyperthermophiles. A total of four
water (W) samples (3L) were collected, one from each hot
spring at a depth of 1m (samples G1 (W), G2 (W), and G3
(W)). Also, a water sample G2S (W) was collected from the
surface of G2. Each sample was filtered on-site using sterile
filter units (0.2 µm, 25mm diameter, Millipore SterivexT M ,
Darmstadt, Germany). Sediments on the filterswere retained,
and filtered water was discarded. Pool temperature and pH
were also measured. A total of five sediment (S) samples
were collected using sterile spatulas, one from each pool at
a depth of less than 10cm (samples G1 (S), G2 (S), and G3
(S)). Two additional sediment samples were taken from G1
and G2 at a depth greater than 10cm (G1T (S) and G2T
(S)). The collected sediment was placed in sterilized 50-mL
Falcon tubes. Filters and sediment samples were stored at
room temperature until DNA extraction.

Physicochemical analysis of the CGF water

The composition and content of chemical elements in the
water of three geysers G1, G2, and G3 were evaluated. For
this, 1L of water was collected from the surface of each
geyser in a glass flask, and the pHwas brought to 2with nitric
acid (1 N) and hermetically covered. The three samples were
sent to a private laboratory for physicochemical analysis of
total solids, total hardness, conductivity, and the composition
of the trace elements (EPA 200), and anions (EPA 300).
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Fig. 1 The Calientes Geothermal Field (CGF) geographical char-
acteristics. a Geographical world location of CGF and comparison
with other GF. b Location of the CGF in Peru, South America. c The
arrows indicate the location where water and sediment samples were
taken (Source: INGEMMET-Peru). Panoramic view of hot springs in
the CGF. Biofilms are visible in pool G5; calciferous borders are visible

in pool G1. The bar approximates 1m. d Sampling locations in the CGF.
(A) Hot spring 1 (G1), arrows indicate where water sample (G1 (W))
was collected; (B) G1, arrow indicates where sediment sample (G1 (S))
was collected; (C) G2, arrows indicate where water samples (G2 (W)
and G2S (W)) were obtained; (D) G3, arrow indicates the calciferous
sediment. Scale bars represents 1m of length

Genomic DNA extraction and amplification of 16 S
rRNA

Genomic DNA was extracted from sediment (600mg) or
approximately 1cm2 of the filter from each sample using
the MOBIO’s Power Soil DNA isolation kit (QIAGEN, Cal-
ifornia, USA.) according to the manufacturer’s instructions.
Amplification of the 16S rRNA gene from Bacteria and
Archaea was performed by nested PCR. For archaea anal-
ysis, the first PCR included the primers Ar4F and Un1492
and produced fragments of 1500 bp (Table 1). These were
used as templates for the nested PCR with the primers Ar3F
(positions 7–26) and Ar9R (positions 906–927) [34], which
generated an 880 bp fragment. For bacterial analysis, primers
Eub9-27F and Eub1542R were used for the first PCR [35]
(Table 1). PCR (25 µL final volume) conditions were as fol-
lows: 2mM MgCl2 (Roche, Switzerland), 200 µM dNTPs
(Promega,Wisconsin,USA), 1 pmol of each oligonucleotide,
2.5 U Gotaq ((Promega, Wisconsin, USA ), and 10–100 ng

template DNA. DNA was denatured for 5 min at 94 ◦C, fol-
lowed by 35 cycles of 94 ◦C for 30s, 55 ◦C for 45s, and
72 ◦C for 78s. Fragments were further used for denaturing
gradient gel eletrophoresis (DGGE).

Denaturing gradient gel electrophoresis (DGGE)

DGGE analysis was performed according to [41]. PCR prod-
ucts from bacterial 16S rRNA were generated with primers
341F-GC and 534R (Table 1) [39]. For archaea, primers
344F-GC [40] and 915R [40] (Table 1) were used. Primer
344F-GC contains a 5’ 40-nucleotide GC clamp that pro-
vides stability duringDGGE [39]. PCRproducts were loaded
on 7.5% polyacrylamide gels (MERCK, USA) containing a
denaturing linear gradient from 30 to 60% for bacteria and
20 to 70% for Archaea according to Green et al. (2017) [25]).
Urea (7M) and 40% formamide were defined as 100%. Sep-
arations were achieved at 60 ◦C and 200 V for 6h (BioRad D
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Table 1 List of primers used in
this study

Name Domain Position Sequence (5’-3’)

Ar4Fa Archaea 8–25 TCY GGT TGA TCC TGC CRG

Un1492Rb Universal 1492–1510 GGT TAC CTT GTT ACG ACT T

Ar3Fc Archaea 7–26 TTC CGG TTG ATC CTG CCG GA

Ar9Rd Archaea 906–927 CCC GCC AAT TCC TTT AAG TTT C

Ar344 Fe Archaea 344–363 TCG CGC CTG CTG CTC CCC GT

Ar915Rf Archaea 915–934 GTG CTC CCC CGC CAA TTC CT

27Fg Bacteria 8–27 AGA GTT TGA TCC TGG CTC AG

1542Rh Bacteria 1542–1525 AGA AAG GAG GTG ATC CAG CC

341 F-GC(P3)i Bacteria 111–130 GGA ATC TTC CAC AAT GGG CG

534 R(P2)j Bacteria 361–380 TTC CCC ACG CGT TAC TCA CC

344F-GCk Archaea 111–130 ACG GGG CGC AGC AGG CGC GA

915Rl Archaea 361–380 GTG CTC CCC CGC CAA TTC CT

G+C Clamp CGC CCG CCG CGC CCC GCG CCC

GTC CCG CCG CCC CCG CCC C

a, b, c, d, [34]; e, [36]; f, [37]; g, h, [38]; i, j, [39]; k, l, [40]

Gene,California, EstadosUnidos).Gelswere developedwith
SYBR Gold (Invitrogen; final concentration 2.5×). Bands
were observed by UV translumination (Vilber Lourmat, Ger-
many).

Re-PCR of DGGE bands

The brightest DGGE bands (Fig. 2 a, b) were cut out of the
gel with a sterile scalpel and placed in Eppendorf tubes con-
taining 100 µL of distilled sterile water (MERCK, USA).
Samples were incubated at 37 ◦C for 1h and 4 ◦C for 24h.
Recovered DNA (5 µL) from each band was amplified by
PCR in 25 µL. The primers used for re-PCR had the same
sequence as the original amplification but lacked the GC
clamp.

Sequencing of DGGE bands

DNA samples were sent to Macrogen Inc. (Seoul, South
Korea) for sequencing in an ABI PRISM 3700 (Applied
Biosystems). The forward and reverse primers were 341F
and 907R for bacteria and 344F and 915R for archaea.

Denaturing gradient gel electrophoresis (DGGE)

To analyze the diversity of microbes in the samples, a matrix
of the distribution of DNA bands was prepared in a way to
clarify the presence or absence of differentmicrobial species.
This relationshipwas represented graphically by cluster anal-
ysis (cluster-WPGMA), based on the similarity percentage
between samples (Multi-Variate Statistical Package, version
3.12d; Kovach Computing Services, Wales, UK).

Sequence analysis

A total of 16S rRNA sequences were compared with avail-
able sequences in the database of the National Center
for Biotechnology Information (NCBI), using BlastN. The
cladograms were made in MEGA X [42].

Results

Ambiental and physical chemistry characteristics
of the CGF

There were more than 87 geothermal features in the CGF,
whose water temperature ranged around 37 and 88 ◦C and
pH almost neutral (7). Vents with temperatures close to 40
◦C contained layers of red, green, and gray biofilms, some of
which were exposed to the air (Fig. 1c). The three hot springs
chosen for this study had the highest water temperatures (G1
= 88 ◦C;G2=88 ◦C;G3=84 ◦C), and pHwas close to neutral
(G1 = 7.3; G2 = 7.14 andG3 = 7.6). Coherent tomost thermal
water found in the CGF, these pools had a distinct white-
yellow coloration and a hard bottom, which is characteristic
of carbonate and other mineral precipitates (Fig. 1 c and d;
[13]).

The composition chemical of water showed certain sim-
ilarities among the total solids, sulfates, and bicarbonates
concentration in G1 and G2, with a similarity above 99% in
all chemical characteristics (Tables 2 and 3). While trace ele-
ment composition showed amore difference betweenG1 and
G2, aluminum, calcium, magnesium, and manganese with
similarities around 23.4%, 79.3%, 76.82%, and 35.4%within
G2 have detected more concentration than G1 in these trace
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Fig. 2 DGGE diversity profiles. A PCR-DGGE analysis of the
predominant bacterial/archaeal communities of water and sediment
samples obtained from the CGF. Total DNA was extracted from sam-
ples, and the 16S rRNA gene was amplified by nested PCR using
primers specific for bacteria (A) or archaea (B). Each labeled well rep-
resents a separate sample with a denaturing linear gradient from 30
to 60% for bacteria and 20 to 70% for archaea. The bands had been
sequenced and compared in the NCBI database, the best results are
shown in Table 4. B Numbered bands were submitted for sequencing.

UPGMA (unweighted pair-group method using arithmetic averages)
dendrogram generated from bacterial denaturing gradient gel elec-
trophoresis (DGGE) profiles. Samples are from water (W), sediment
(S), C bacteria, and D archea. G1, G2, and G3 are the hot springs used
for sample collection. (W), water sample collected at 1m of depth; (s)
(W), water sample collected at the surface; (S), sediment sample col-
lected at less than 10cm of depth; (t) (S), sediment sample collected at
more than 10cm of depth

elements. However, G3 revealed the most variations in its
chemical parameters about G1 and G2, within more bicar-
bonate over 188%, but a total solid lesser of the other two
points (<50%). The trace element has been different in all
of the components only the calcium reported moderate sim-
ilarity with G2 (∼95.9) (Table 3).

Composition and diversity of microbial communities
in CGF

To analyze the bacterial and archaeal diversity of the hot
springs, DGGE was used to visualize several PCR-amplified

16S rRNA gene fragments. A 30–60% urea-formamide
denaturing gradient gel was used to separate the bacterial
PCR products obtained from primers 341F-GC and 534R
(Table 1; Fig. 2A), and a 20–70% gel was used to separate
the archaeal PCR products obtained from primers 344F-GC
and 915R (Fig. 2B). Next, cluster analysis (WPGMA) of
DGGE bands was used to look for similarities in bacterial
and archaeal composition between samples and hot springs.
Bacterial samples (Fig. 2C) showed high diversity. Indeed,
themost similar clusters, samples G2 (S) andG3 (S), had less
than 60% similarity. Analysis of archaeal samples (Fig. 2D)
revealed both diversity and similarity. The highest percentage

Table 2 General characteristics of the three hot springs in the CGF selected for biodiversity analysis

Hot springs number Activity Parameters Visual description
Temperature (◦C) pH Diameter (m)

G1 +++ 88 7.3 10 Whitish calcareous sediment

G2 ++ 88 7.4 4.5 Stony and gray

G3 ++ 84 7.6 0.89 Chalky whitish beige

The air temperature was 11 ◦C when the samples were collected
++, active
+++, very active
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Table 3 Physico-chemical analysis of the CGF water of the three hot
springs in the CGF selected for biodiversity analysis

Elements Geysers (mg L−1)
G1 G2 G3

Aluminum 0.128 0.030 <0.001

Arsenic 12.1338 12.0930 7.3290

Cadmium <0.0002 <0.0002 <0.0002

Calcium 37.260 46.998 49.421

Cobalt <0.00007 <0.00007 <0.00007

Copper <0.001 <0.001 <0.001

Chromium <0.002 <0.002 <0.002

Phosphorus <0.2 <0.2 <0.2

Iron 0.023 <0.001 0.046

Lithium 8.2425 8.9223 5.5001

Magnesium 0.285 0.371 4.275

Manganese 0.0540 0.1414 0.6112

Mercury 0.00270 0.00164 0.00081

Molybdenum 0.06133 0.06397 0.04687

Potassium 85.6 86.4 50.1

Selenium <0.002 <0.002 <0.002

Sodium 1426.07 1510.39 856.95

Zinc 0.0055 0.0030 0.0016

Sulfate 85.80 85.12 91.41

Total Solids 3920 3950 1930

Bicarbonatesa 88.6 99.8 188.2

Total hardnessa 96.2 124.7 145.5

Conductivityb 6970.00 7020.00 4440.00

a, unity (mg HCO3/L); b, unity (µS/cm)

of similarity was between G1 (S) and G1 (t) (S) (90%), fol-
lowed by G2 (S) and G3 (W) (85%), and by the G3 group,
which showed an equal similarity among them (65%). All
other samples exhibited high diversity, with less than 60%
similarity.

Phylogenetic diversity of bacteria and archaea
in CGF

To identify the phylotypes present in the CGF, 16S rRNA
sequences obtained from the brightest DGGE bands were
compared with the NCBI database using BLASTN. The
threshold for similarity was set at greater than or equal to
97%, which excluded 80.4% and 79.2% of bacterial and
archaeal sequence results, respectively. Sequence analysis
revealed 124 operational taxonomic units (OTUs) in sedi-
ment for bacteria and 54 OTUs for archaea. The analysis
of bacterial sequences revealed the presence of the phy-
lotypes Firmicutes, Deinococci, Gammaproteobacteria, and
Chloroflexi (Fig. 3, Table 4). The blast hits obtained (except
for Enterobacteriales) were associated with high salinity

environments; however, the bands 21, 28, and 34 are high
affinity with thermophilic microorganisms likeMeiothermus
spp. and Fervidobacterium spp. associated with geother-
mal environment [43, 44], and the bands 7, 10, 23, and 44
within a relationship with the clade of Bacillus spp. included
Bacillus simplex and Bacillus muralis [45, 46]. However,
bands 5, 18, 21, and 23 are associated with Exiguobac-
terium species; this clade is not reported to live above 80
°C, although relationship in a hot spring or thermophilic
application [47, 48], and Chloroflexus spp. are able to live
until 70 °C [49, 50] This suggests the potential formation of
microenvironments in the niches and/or the potential pres-
ence of more thermophilic variants of these species. For the
archaea domain, the sequences belonged to the phylotype
Halobacteria (Fig. 4, Table 4). Sequences from Band4 and
Band15were related toHaloarcula spp., a species that has not
been reported to grow at high temperatures [51]. Meanwhile,
Band17 is closed Halalkalicoccus spp., a genus commonly
grown in mesophilic environments; these have been more
associated with subterranean water environments with high
salinity (>6%) [52–54]. Band19 was related to Haloarcula
spp., another halophilic archaeon, also not reported to grow
at high temperatures, and more “alkaliphilic” than Haloar-
cula [23]; however, Band12 and Band19 are associated with
a high similarity (>97%) to uncultured archaeon.

Discussion

Geothermal fields are excellent sites for the study of hyper-
thermophile microorganisms, which are of great interest to
biotechnology. Here, we characterized for the first time the
bacterial and archaeal diversity of the CGF, the highest-
elevation geothermal field in the world (Fig. 1). Although
other CGF has been reported around the world, as Lardello,
Italy (160 to 860m a.s.l.) [55]; Rotokawa, New Zealand
( 500m a.s.l) [56]; Hengill, Iceland ( 800m a.s.l.) [57]; Yel-
lowstone park, USA ( 2.500 m a.s.l) [58]; and GCF in Latin
America as Copahue, Argentina ( 1600m a.s.l) [24], Tatio,
Chile ( 4.200) [22], in this study showed an environment
diversity assay with an elevation around 4.400 m a.s.l, this
could give an advantage and restriction in this environment
that will be presented in discussion.

About the physicochemical, the pH in this CGF is mod-
erately alkaline in the three hot springs around 7.3 to 7.6,
against other CGF with evidence of chemotroph metabolism
(Fig. 1b), like Copahue or Yellowstone with a pH around 2
to 5 [24, 58], but similar pH to hot spring with the presence
of high concentration of microorganism photosynthetic [59].
This could be explaining to the dessert that it is more heavy
metal-free and that these alkalize the water [60], this could
be supported due to the fact that Tatio hot spring in Chile has
been reported similar pH (Table 3) [22]. The conductivity
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Fig. 3 Phylogenetic tree of
bacterial diversity in the CGF
based on partial 16S rRNA
gene sequences. The brightest
bands obtained from the DGGE
were cut, re-amplified, and
sequenced. Sequences were
compared with BLASTN to the
NCBI database. Sequences from
this study are in red, indicating
the corresponding DGGE band
number. Reference sequences
were chosen to represent the
greatest diversity of bacteria.
Scale bar at the bottom left
represents 0.2 (20%) nucleotide
sequence difference
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is similar to that reported for other authors with present
chemotrophic microorganisms, and the temperature consis-
tency among the three hot springs was studied (Tabla 2),
which is a similar temperature for other CGF [24].

Microbial diversity in the CGF was abundant and varied
among samples and collection sites. The WPGMA cluster
analysis of Bacteria in sediment and water samples did not
show a clear cluster (Fig. 2), indicating high diversity in this
environment. These results confirm that each testing site and
type of sample presents different physical and chemical con-
ditions that resulted in adaptation of the microbes present in
those sites (Tables 2 and 3) [14–17, 61]. Abiotic factors such
as the ion cocktail (nutrients) of each site, as well as the tem-
perature that determines the microbial communities, were
observed in a particular location [62, 63]. Although, samples
such as G2 (S) and G3 (S) showed reasonably high similar-
ity. Differences in the environment surrounding geothermal
fields may also influence microbial diversity. For example,

the Yellowstone National Park has more abundant flora and
fauna than the CGF or any hot spring in a desertic zone, and
animals such as birds and mammals may facilitate the spread
of bacteria among thermal features [8, 14, 64, 65].

PCR-DGGEfinger printer in bacterial and archaea showed
different taxas in the environment samples in both phylum
(Fig. 2) and have no representative difference in the sedi-
ments in bacteria (Fig. 2b); however, the archaea revealed a
more significative distribution according to the CGFs loca-
tion (Fig. 1 c and d). Furthermore, the abundance in the CGF
samples was not considered because this intensity in the
bands may have been obtained by an amplification artifact
[66].

DGGE and sequence analysis revealed a higher diversity
of bacteria than archaea. Additionally, 80.4% of bacteria and
79.2% of archaea sequences had a BLASTN similarity of
less than 97%, constituting a variety of unknown microor-
ganisms that could serve as a platform for new studies and
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Table 4 BLASTN phylogenetic analysis of bacterial and archaeal 16S rRNA gene sequences obtained from DGGE

Sequence Hot springs number Accession Best match % Identity

Bacteria

Band05 G2 (W) NZ_CP007739 Bacilllus methanolicus strain MGA3 100.0

Band07 G1 (W) KY615350 Bacillus simplex strain E204 100.0

Band10 G2 (W) NR_144741 Bacillus mediterraneensis strain Marseille-P2366 100.0

Band18 G2 (S) NR_074263 Chloroflexus aurantiacus strain J-10-fl 97.7

Band21 G2 (S) NR_074226 Chloroflexus aggregans strain DSM 9485 97.8

Band23 G3 (W) NZ_JNIP01000001 Exiguobacterium sp. E11_27 98.3

Band28 G3(S) NR_145943 Meiothermus roseus strain YIM 71031 100.0

Band34 G2S (W) MK299259 Uncultured Chthonomonadales bacterium 99.0

Band44 G1T (S) AY795693 Bacterium Schreyahn_K9.Sali 98.4

Band45 G1T (S) EU876657 Uncultured proteobacterium clone DB2 99.3

Band47 G1T (S) EU919218 Uncultured Raoultella sp. clone QRSYY3 99.4

Archeae

Band04 G1 (W) JX188260 Haloarcula sp. HMC-3 99.6

Band12 G1 (S) HM234400 Uncultured archaeon clone A3-14 97.2

Band15 G2 (W) AB074561 Halobacterium sp. NCIMB 714 99.8

Band17 G2 (S) NC_014297 Uncultured Halalkalicoccus sp 99.4

Band19 G3 (W) HQ425124 archaeon BC32 97.7

Fig. 4 Phylogenetic tree of
archaeal diversity in the CGF
based on partial 16S rRNA
gene sequences. Sequences
were compared with BLASTN
to the NCBI database.
Sequences from this study are in
red, indicating the
corresponding DGGE band
number. Reference sequences
were chosen to represent the
greatest diversity of archaea.
Scale bar at the bottom left
represents 0.2 (20%) nucleotide
sequence difference
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hyperthermophile research. This match was similar to other
experiences from other hot springs reported in the literature
[18, 67, 68].

Here, we demonstrated for the first time the presence of
different taxa of hyperthermophiles (Table 3) in the GCF.
Also,we found a newclade of hyperthermophile bacteria rep-
resented by bands 5, 18, 45, 47, and 48 (Fig. 3) and observed
new branches (bands 28 and 21), which are not related to
known sequences in GenBank; in this case, the bands associ-
ated with uncultured microorganism and proteobacteria are
commonly associated with mesophilic and pathogenic but
was reported to geothermal environments, which suggest
a new clade with environment enzyme like as metal resis-
tance associate with antibiotic resistance capacity [46, 51,
69]. It is possible that these new hyperthermophile bacte-
rial species may be endemic to the CGF, indicating a high
level of endemism for bacteria in this site [70–72]. Likewise,
we identified a new clade of Archaea in bands 12 and 19
(Fig. 4) Several taxa reported in this study, such as Bacillus
spp., Gammaproteobacteria, Chloroflexus aggregans, Meio-
thermus, and Archaeas have been previously reported in this
type of environment [73]. However, we also determined the
presence of some taxa that have not been described in thermal
springs before. These include uncultured Exiguobacterium
spp., Halobacterium spp., and Halalkalicoccus spp. These
taxa may have adapted physiologically and metabolically to
take advantage of the thermal spring environment [17, 74–
76].

The biodiversity analysis of the three evaluated geysers
shows interesting results. It was determined that there is a
similarity between the prokaryotic members identified in the
geysers (G1 and G2), between bacterial members (Bacillus
muralis, B. simplex, Bacillus mediterraniensis, and Chlo-
roflexus) and archaea (Halobacterium sp, Halalkalicoccus
sp., and band 12, which would be related by its proximity to
halophilicmembers); on the other hand, the diversity analysis
of the geyser (G3) shows different members of the bacteria
domain such as Exiguobacterium andMeiothermus ruber, as
well as in archaea the appearance of a band (19) distant from
the halophilic group. These results added to the fact that there
are similarities in the temperature and pH data (Table 2), and
concentrations of certain metals (Table 3) would lead us to
suppose that geysers (G1 and G2) tend to have a common
origin and G3 a different origin.

In summary, the three sites tested had similar pH and
water temperature, but each one of them had unique micro-
bial diversity. Entire new clades of archaea and bacteria were
identified, while other taxa of archaea and bacteria have
uniquely diversified to live in these springs, which showed a
high degree of microbial endemism. These results, the first
of their kind in the CGF, will set the stage for continued
research into the metabolic strategies, use, and identifica-
tion of hyperthermophiles. This study is also important on

biotechnological applications from the singular metabolism
at a high temperature, which would have industrial benefits
and improve the circular economy.
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