Mostrar el registro sencillo del ítem

dc.contributor.advisorUrrelo Huiman, Luis Vladimir
dc.contributor.authorLeturia Rodríguez, Walter Iván
dc.creatorLeturia Rodríguez, Walter Iván
dc.date.accessioned2020-10-09T23:51:52Z
dc.date.available2020-10-09T23:51:52Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/20.500.12759/6631
dc.description.abstractAmérica latina ostenta el título de ser la región que alberga el mayor número de ciudades más violentas del mundo. En el 2014, Perú lideró la mayor tasa de victimización por la delincuencia con 30% superando a Ecuador, Argentina y Venezuela, según la encuesta realizada por el Barómetro de las Américas. Los miembros del cuerpo policial disponen de dispositivos, vehículos y herramientas que les permiten ejercer sus funciones de una manera segura. Sin embargo no cuentan con un mecanismo efectivo, el cual permita identificar un robo a mano armada y concentrar sus esfuerzos en llevar a cabo una oportuna intervención, salvo su pericia. En tal sentido el presente trabajo desarrolla una propuesta basada en algoritmos de aprendizaje automático junto con detección de objetos, que permitirá la detección temprana ante la comitiva de un delito perpetrado bajo la modalidad de robo a mano armada. El algoritmo desarrollado en la presente investigación se aplicó en 3 escenarios, teniendo como resultado sobresaliente el escenario de paso peatonal, en el cual se logra identificar de manera correcta los objetos que interactúan durante la ejecución de un delito y el comportamiento anómalo, previo al delito, de parte del agresor.es_PE
dc.description.abstractLatin America holds the title of being the region with the most violent cities in the world. In 2014, Peru led the highest rate of crime victimization with 30% surpassing Ecuador, Argentina, and Venezuela, according to the survey conducted by the Barometer of the Americas. The members of the police force have devices, vehicles and tools that allow them to carry out their functions in a safe manner. However, besides their expertise, they do not have an effective mechanism, that makes it possible to identify an armed robbery and to concentrate their efforts on carrying out a timely intervention. In this sense, the present work develops a proposal based on automatic learning algorithms and object detection, which will allow the early detection of a crime perpetrated under the modality of armed robbery. The algorithm developed in the present investigation was applied in 3 scenarios, having as an outstanding result the pedestrian crossing scenario, in which it is possible to correctly identify the objects that interact during the execution of a crime and the anomalous behavior from the aggressor, prior to the crime.en_US
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Privada Antenor Orregoes_PE
dc.relation.ispartofseriesT_INGS_005
dc.rightsinfo:eu-repo/semantics/closedAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Privada Antenor Orregoes_PE
dc.sourceRepositorio Institucional - UPAOes_PE
dc.subjectRealidad aumentadaes_PE
dc.subjectAprendizaje automáticoes_PE
dc.titleAprendizaje automático y realidad aumentada para la detección temprana de patrones de peligro en robo con armaes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.levelTítulo Profesionales_PE
thesis.degree.grantorUniversidad Privada Antenor Orrego. Facultad de Ingenieríaes_PE
thesis.degree.nameIngeniero de Softwarees_PE
thesis.degree.disciplineIngeniería de Softwarees_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.11.00es_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesis
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesional
dc.publisher.countryPEes_PE


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/closedAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/closedAccess