Show simple item record

dc.contributor.advisorUrrelo Huiman, Luis Vladimir
dc.contributor.authorSolano Robles, Cesar Anthony
dc.contributor.authorCaballero Cruz, Ivonne del Pilar
dc.creatorSolano Robles, Cesar Anthony
dc.date.accessioned2022-01-09T15:33:46Z
dc.date.available2022-01-09T15:33:46Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/20.500.12759/8559
dc.description.abstractEl uso de la tecnología en la gestión agrícola es un fuerte pilar para el desarrollo de la productividad en el Perú. Si bien en los últimos años este sector ha implementado tecnologías tal como drones, estaciones meteorológicas, entre otros, para el control de muchos factores que involucran en este sector, no siempre se explota la información que se genera de ello. El objetivo de este trabajo fue desarrollar un modelo de predicción de plagas en el cultivo de palto utilizando la metodología de aprendizaje automático supervisado. Se analizó un conjunto de datos de variables climatológicas y de la aparición de plagas en el cultivo de palto correspondiente a los años 2019-2020, en la Empresa Virú S. A. La investigación fue de tipo descriptivo y se utilizó las Cartillas fitosanitarias y las estaciones meteorológicas de la empresa, para recolectar datos sobre plagas y variables climatológicas respectivamente. Se construyó una base de datos, se realizó la limpieza de dataframe y el filtrado de datos. Para el procesamiento de los datos se utilizó Python, jupyterlab, Transt sql y Excel. En el análisis de datos se utilizó estadística descriptiva, estadística inferencial y las técnicas de regresión lineal. Se encontró que las plagas del cultivo del palto: Oligonychus punicae, Oligonychus yothersi, Bemisia Tabaci y Trips Tabaci presentan correlaciones significativas altas y moderadas con las variables climatológicas temperatura y humedad promedio. Se concluyó que, los modelos de predicción basados en aprendizaje automático supervisado que se estimaron predicen la aparición de estas plagas en el cultivo de palto, con una precisión menor al 90%es_PE
dc.description.abstractThe use of technology in agricultural management is a strong pillar for the development of productivity in Peru. Although in recent years this sector has implemented technologies such as drones, weather stations, among others, to control many factors that involve this sector, the information generated from it is not always exploited. The objective of this work was to develop a pest prediction model in avocado cultivation using the supervised machine learning methodology. A data set of climatological variables and the appearance of pests in the avocado crop corresponding to the years 2019-2020 was analyzed, in the Virú SA Company The investigation was descriptive and the phytosanitary cards and meteorological stations of the company, to collect data on pests and weather variables respectively. A database was built, data frame cleaning and data filtering was performed. Python, jupyterlab, Transt sql and Excel were used for data processing. Descriptive statistics, inferential statistics and linear regression techniques were used in the data analysis. It was found that the pests of the avocado crop: Oligonychus punicae, Oligonychus yothersi, Bemisia Tabaci and Trips Tabaci present significant high and moderate correlations with the climatological variable’s temperature and average humidity. It was concluded that the prediction models based on supervised machine learning that were estimated predict the appearance of these pests in the avocado crop, with a precision of less than 90%en_US
dc.description.uriTesises_PE
dc.formatapplication/pdf
dc.language.isospaes_PE
dc.publisherUniversidad Privada Antenor Orregoes_PE
dc.relation.ispartofseriesT_SIST_1496
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Privada Antenor Orregoes_PE
dc.sourceRepositorio institucional - UPAOes_PE
dc.subjectPythones_PE
dc.subjectRegresión Múltiplees_PE
dc.titleModelo de predicción de plagas en el cultivo de palto utilizando metodología de aprendizaje automático supervisado, empresa Virú S.A., 2019-2021es_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.grantorUniversidad Privada Antenor Orrego. Facultad de Ingenieríaes_PE
thesis.degree.nameIngeniero de Computación y Sistemases_PE
thesis.degree.disciplineIngeniería de Computación y Sistemases_PE
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.orcidhttps://orcid.org/0000-0003-1523-2640es_PE
renati.author.dni72304939
renati.author.dni70831801
renati.advisor.dni40010219
renati.typehttp://purl.org/pe-repo/renati/type#tesises_PE
renati.levelhttp://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.discipline611066es_PE
renati.jurorGaytan Toledo, Carlos Alberto
renati.jurorAbanto Cabrera, Heber Gerson
renati.jurorUllón Ramirez, Agustin Eduardo
dc.publisher.countryPEes_PE


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess