Show simple item record

dc.contributor.advisorBarba Chirinos, Carlos Enrique
dc.contributor.authorCastillo Castillo, Diana Edith
dc.creatorCastillo Castillo, Diana Edith
dc.date.accessioned2022-12-02T17:21:00Z
dc.date.available2022-12-02T17:21:00Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/20.500.12759/9814
dc.description.abstractLa neuropatía óptica glaucomatosa es considerada mundialmente una de las primeras causas de ceguera, y la primera causa de forma irreversible, ésta se produce por daño del nervio óptico del ojo. Objetivo: Determinar la precisión diagnóstica del algoritmo del Sistema de Aprendizaje Profundo (Deep Learning) para detectar la neuropatía óptica glaucomatosa utilizando la retinografía. Métodos: Se realizó una revisión sistemática y metaanálisis, en las siguientes bases de datos: Pubmed, Scopus, Web of Science, Ovid-Medline, Ovid-Embase. Se aplicaron los criterios de selección en dos fases respectivamente: primero por título y resumen y luego a texto completo. Luego de esto, se extrajeron las características más relevantes de cada estudio y se realizó el análisis de sesgo utilizando el QUADAS-2, para finalmente meta analizar los resultados usando el software Stata v14. Resultados: Se obtuvieron 300 resultados al realizar las búsquedas en las 5 bases de datos, incluyéndose finalmente 8. En el análisis de sesgo, el dominio más afectado en la mayoría de estudios, fue el de la selección de pacientes; seguido por el de la prueba índice. Finalmente, al combinar los resultados se obtuvo una sensibilidad de 0.90 con un IC al 95% que va de 0.86 a 0.94 y una especificidad que va de 0.93 con un IC al 95% que va de 0.90 a 0.96. Conclusiones: El uso del sistema de aprendizaje profundo para la detección de GON ofrece una sensibilidad y especificidad aceptable respecto a la capacidad de detección de oftalmólogos especializados.es_PE
dc.description.abstractGlaucomatous optic neuropathy is considered one of the leading causes of blindness worldwide, and the leading cause irreversibly, it is caused by damage to the optic nerve of the eye. Objective: To determine the diagnostic accuracy of the Deep Learning System algorithm to detect glaucomatous optic neuropathy using retinography. Methods: A systematic review and meta-analysis was carried out in the following databases: Pubmed, Scopus, Web of Science, Ovid-Medline, Ovid-Embase. The selection criteria were applied in two phases respectively: first by title and abstract and then by full text. After this, the most relevant characteristics of each study were extracted and the bias analysis was performed using QUADAS-2, to finally meta-analyze the results using Stata v14 software. Results: 300 results were obtained when searching the 5 databases, finally including 8. In the bias analysis, the most affected domain in most studies was patient selection; followed by that of the index test. Finally, when combining the results, a sensitivity of 0.90 with a 95% CI ranging from 0.86 to 0.94 and a specificity ranging from 0.93 with a 95% CI ranging from 0.90 to 0.96 were obtained. Conclusions: The use of deep learning systems for the detection of GON offers acceptable sensitivity and specificity with respect to detection capacity of specialized ophthalmologists.en_US
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Privada Antenor Orregoes_PE
dc.relation.ispartofseriesT_MED_3322
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Privada Antenor Orregoes_PE
dc.sourceRepositorio Institucional - UPAOes_PE
dc.subjectAprendizajees_PE
dc.subjectProfundoes_PE
dc.titleAlgoritmo del sistema de aprendizaje profundo usando retinografía como método de diagnostico precoz de neuropatía óptica glaucomatosa basado en la relación Copa/Disco y la regla ISNTes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.levelTítulo Profesionales_PE
thesis.degree.grantorUniversidad Privada Antenor Orrego. Facultad de Medicina Humanaes_PE
thesis.degree.nameMédico Cirujanoes_PE
thesis.degree.disciplineMedicina Humanaes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#3.02.27es_PE
renati.advisor.orcidhttps://orcid.org/0000-0003-0583-199Xes_PE
renati.author.dni70858345
renati.advisor.dni06407964
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.discipline912016es_PE
renati.jurorPomatanta Plasencia, Jose Luis
renati.jurorHashimoto Carrasco, Victor Humberto
renati.jurorCisneros Gómez, Carlos Augusto
dc.publisher.countryPEes_PE


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess